31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
964 !
DL.mustNotIntroduceIntToPtr(Ptr->
getType())) {
975 bool CanBeNull, CanBeFreed;
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1272 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1273 APInt Offset0(IndexWidth, 0);
1276 DL, Offset0, IsEqPred,
1279 APInt Offset1(IndexWidth, 0);
1281 DL, Offset1, IsEqPred,
1284 if (Stripped0 == Stripped1)
1323 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1343 return ConstantFP::get(Ty->getContext(),
1369 IsOutput ?
Mode.Output :
Mode.Input);
1398 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1423 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1443 bool AllowNonDeterministic) {
1456 if (!AllowNonDeterministic)
1458 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1473 if (!AllowNonDeterministic &&
C->isNaN())
1492 C->getType(), DestTy, &
DL))
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ?
DL.getAddressType(CE->getType())
1508 :
DL.getIntPtrType(CE->getType());
1515 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1518 DL, BaseOffset,
true));
1519 if (
Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1524 if (
GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1529 if (
Sub &&
Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1534 Sub->getOperand(1));
1545 case Instruction::IntToPtr:
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1556 if (MidIntSize >= SrcPtrSize) {
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1575 case Instruction::BitCast:
1586 Type *SrcTy =
C->getType();
1587 if (SrcTy == DestTy)
1601 if (
Call->isNoBuiltin())
1603 if (
Call->getFunctionType() !=
F->getFunctionType())
1612 return Arg.getType()->isFloatingPointTy();
1616 switch (
F->getIntrinsicID()) {
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_interleave3:
1663 case Intrinsic::vector_interleave4:
1664 case Intrinsic::vector_interleave5:
1665 case Intrinsic::vector_interleave6:
1666 case Intrinsic::vector_interleave7:
1667 case Intrinsic::vector_interleave8:
1668 case Intrinsic::vector_deinterleave2:
1669 case Intrinsic::vector_deinterleave3:
1670 case Intrinsic::vector_deinterleave4:
1671 case Intrinsic::vector_deinterleave5:
1672 case Intrinsic::vector_deinterleave6:
1673 case Intrinsic::vector_deinterleave7:
1674 case Intrinsic::vector_deinterleave8:
1676 case Intrinsic::amdgcn_perm:
1677 case Intrinsic::amdgcn_wave_reduce_umin:
1678 case Intrinsic::amdgcn_wave_reduce_umax:
1679 case Intrinsic::amdgcn_wave_reduce_max:
1680 case Intrinsic::amdgcn_wave_reduce_min:
1681 case Intrinsic::amdgcn_wave_reduce_add:
1682 case Intrinsic::amdgcn_wave_reduce_sub:
1683 case Intrinsic::amdgcn_wave_reduce_and:
1684 case Intrinsic::amdgcn_wave_reduce_or:
1685 case Intrinsic::amdgcn_wave_reduce_xor:
1686 case Intrinsic::amdgcn_s_wqm:
1687 case Intrinsic::amdgcn_s_quadmask:
1688 case Intrinsic::amdgcn_s_bitreplicate:
1689 case Intrinsic::arm_mve_vctp8:
1690 case Intrinsic::arm_mve_vctp16:
1691 case Intrinsic::arm_mve_vctp32:
1692 case Intrinsic::arm_mve_vctp64:
1693 case Intrinsic::aarch64_sve_convert_from_svbool:
1694 case Intrinsic::wasm_alltrue:
1695 case Intrinsic::wasm_anytrue:
1696 case Intrinsic::wasm_dot:
1698 case Intrinsic::wasm_trunc_signed:
1699 case Intrinsic::wasm_trunc_unsigned:
1704 case Intrinsic::minnum:
1705 case Intrinsic::maxnum:
1706 case Intrinsic::minimum:
1707 case Intrinsic::maximum:
1708 case Intrinsic::minimumnum:
1709 case Intrinsic::maximumnum:
1710 case Intrinsic::log:
1711 case Intrinsic::log2:
1712 case Intrinsic::log10:
1713 case Intrinsic::exp:
1714 case Intrinsic::exp2:
1715 case Intrinsic::exp10:
1716 case Intrinsic::sqrt:
1717 case Intrinsic::sin:
1718 case Intrinsic::cos:
1719 case Intrinsic::sincos:
1720 case Intrinsic::sinh:
1721 case Intrinsic::cosh:
1722 case Intrinsic::atan:
1723 case Intrinsic::pow:
1724 case Intrinsic::powi:
1725 case Intrinsic::ldexp:
1726 case Intrinsic::fma:
1727 case Intrinsic::fmuladd:
1728 case Intrinsic::frexp:
1729 case Intrinsic::fptoui_sat:
1730 case Intrinsic::fptosi_sat:
1731 case Intrinsic::convert_from_fp16:
1732 case Intrinsic::convert_to_fp16:
1733 case Intrinsic::amdgcn_cos:
1734 case Intrinsic::amdgcn_cubeid:
1735 case Intrinsic::amdgcn_cubema:
1736 case Intrinsic::amdgcn_cubesc:
1737 case Intrinsic::amdgcn_cubetc:
1738 case Intrinsic::amdgcn_fmul_legacy:
1739 case Intrinsic::amdgcn_fma_legacy:
1740 case Intrinsic::amdgcn_fract:
1741 case Intrinsic::amdgcn_sin:
1743 case Intrinsic::x86_sse_cvtss2si:
1744 case Intrinsic::x86_sse_cvtss2si64:
1745 case Intrinsic::x86_sse_cvttss2si:
1746 case Intrinsic::x86_sse_cvttss2si64:
1747 case Intrinsic::x86_sse2_cvtsd2si:
1748 case Intrinsic::x86_sse2_cvtsd2si64:
1749 case Intrinsic::x86_sse2_cvttsd2si:
1750 case Intrinsic::x86_sse2_cvttsd2si64:
1751 case Intrinsic::x86_avx512_vcvtss2si32:
1752 case Intrinsic::x86_avx512_vcvtss2si64:
1753 case Intrinsic::x86_avx512_cvttss2si:
1754 case Intrinsic::x86_avx512_cvttss2si64:
1755 case Intrinsic::x86_avx512_vcvtsd2si32:
1756 case Intrinsic::x86_avx512_vcvtsd2si64:
1757 case Intrinsic::x86_avx512_cvttsd2si:
1758 case Intrinsic::x86_avx512_cvttsd2si64:
1759 case Intrinsic::x86_avx512_vcvtss2usi32:
1760 case Intrinsic::x86_avx512_vcvtss2usi64:
1761 case Intrinsic::x86_avx512_cvttss2usi:
1762 case Intrinsic::x86_avx512_cvttss2usi64:
1763 case Intrinsic::x86_avx512_vcvtsd2usi32:
1764 case Intrinsic::x86_avx512_vcvtsd2usi64:
1765 case Intrinsic::x86_avx512_cvttsd2usi:
1766 case Intrinsic::x86_avx512_cvttsd2usi64:
1769 case Intrinsic::nvvm_fmax_d:
1770 case Intrinsic::nvvm_fmax_f:
1771 case Intrinsic::nvvm_fmax_ftz_f:
1772 case Intrinsic::nvvm_fmax_ftz_nan_f:
1773 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1775 case Intrinsic::nvvm_fmax_nan_f:
1776 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1777 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1780 case Intrinsic::nvvm_fmin_d:
1781 case Intrinsic::nvvm_fmin_f:
1782 case Intrinsic::nvvm_fmin_ftz_f:
1783 case Intrinsic::nvvm_fmin_ftz_nan_f:
1784 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1785 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1786 case Intrinsic::nvvm_fmin_nan_f:
1787 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1788 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1791 case Intrinsic::nvvm_f2i_rm:
1792 case Intrinsic::nvvm_f2i_rn:
1793 case Intrinsic::nvvm_f2i_rp:
1794 case Intrinsic::nvvm_f2i_rz:
1795 case Intrinsic::nvvm_f2i_rm_ftz:
1796 case Intrinsic::nvvm_f2i_rn_ftz:
1797 case Intrinsic::nvvm_f2i_rp_ftz:
1798 case Intrinsic::nvvm_f2i_rz_ftz:
1799 case Intrinsic::nvvm_f2ui_rm:
1800 case Intrinsic::nvvm_f2ui_rn:
1801 case Intrinsic::nvvm_f2ui_rp:
1802 case Intrinsic::nvvm_f2ui_rz:
1803 case Intrinsic::nvvm_f2ui_rm_ftz:
1804 case Intrinsic::nvvm_f2ui_rn_ftz:
1805 case Intrinsic::nvvm_f2ui_rp_ftz:
1806 case Intrinsic::nvvm_f2ui_rz_ftz:
1807 case Intrinsic::nvvm_d2i_rm:
1808 case Intrinsic::nvvm_d2i_rn:
1809 case Intrinsic::nvvm_d2i_rp:
1810 case Intrinsic::nvvm_d2i_rz:
1811 case Intrinsic::nvvm_d2ui_rm:
1812 case Intrinsic::nvvm_d2ui_rn:
1813 case Intrinsic::nvvm_d2ui_rp:
1814 case Intrinsic::nvvm_d2ui_rz:
1817 case Intrinsic::nvvm_f2ll_rm:
1818 case Intrinsic::nvvm_f2ll_rn:
1819 case Intrinsic::nvvm_f2ll_rp:
1820 case Intrinsic::nvvm_f2ll_rz:
1821 case Intrinsic::nvvm_f2ll_rm_ftz:
1822 case Intrinsic::nvvm_f2ll_rn_ftz:
1823 case Intrinsic::nvvm_f2ll_rp_ftz:
1824 case Intrinsic::nvvm_f2ll_rz_ftz:
1825 case Intrinsic::nvvm_f2ull_rm:
1826 case Intrinsic::nvvm_f2ull_rn:
1827 case Intrinsic::nvvm_f2ull_rp:
1828 case Intrinsic::nvvm_f2ull_rz:
1829 case Intrinsic::nvvm_f2ull_rm_ftz:
1830 case Intrinsic::nvvm_f2ull_rn_ftz:
1831 case Intrinsic::nvvm_f2ull_rp_ftz:
1832 case Intrinsic::nvvm_f2ull_rz_ftz:
1833 case Intrinsic::nvvm_d2ll_rm:
1834 case Intrinsic::nvvm_d2ll_rn:
1835 case Intrinsic::nvvm_d2ll_rp:
1836 case Intrinsic::nvvm_d2ll_rz:
1837 case Intrinsic::nvvm_d2ull_rm:
1838 case Intrinsic::nvvm_d2ull_rn:
1839 case Intrinsic::nvvm_d2ull_rp:
1840 case Intrinsic::nvvm_d2ull_rz:
1843 case Intrinsic::nvvm_ceil_d:
1844 case Intrinsic::nvvm_ceil_f:
1845 case Intrinsic::nvvm_ceil_ftz_f:
1847 case Intrinsic::nvvm_fabs:
1848 case Intrinsic::nvvm_fabs_ftz:
1850 case Intrinsic::nvvm_floor_d:
1851 case Intrinsic::nvvm_floor_f:
1852 case Intrinsic::nvvm_floor_ftz_f:
1854 case Intrinsic::nvvm_rcp_rm_d:
1855 case Intrinsic::nvvm_rcp_rm_f:
1856 case Intrinsic::nvvm_rcp_rm_ftz_f:
1857 case Intrinsic::nvvm_rcp_rn_d:
1858 case Intrinsic::nvvm_rcp_rn_f:
1859 case Intrinsic::nvvm_rcp_rn_ftz_f:
1860 case Intrinsic::nvvm_rcp_rp_d:
1861 case Intrinsic::nvvm_rcp_rp_f:
1862 case Intrinsic::nvvm_rcp_rp_ftz_f:
1863 case Intrinsic::nvvm_rcp_rz_d:
1864 case Intrinsic::nvvm_rcp_rz_f:
1865 case Intrinsic::nvvm_rcp_rz_ftz_f:
1867 case Intrinsic::nvvm_round_d:
1868 case Intrinsic::nvvm_round_f:
1869 case Intrinsic::nvvm_round_ftz_f:
1871 case Intrinsic::nvvm_saturate_d:
1872 case Intrinsic::nvvm_saturate_f:
1873 case Intrinsic::nvvm_saturate_ftz_f:
1875 case Intrinsic::nvvm_sqrt_f:
1876 case Intrinsic::nvvm_sqrt_rn_d:
1877 case Intrinsic::nvvm_sqrt_rn_f:
1878 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1879 return !
Call->isStrictFP();
1882 case Intrinsic::nvvm_add_rm_d:
1883 case Intrinsic::nvvm_add_rn_d:
1884 case Intrinsic::nvvm_add_rp_d:
1885 case Intrinsic::nvvm_add_rz_d:
1886 case Intrinsic::nvvm_add_rm_f:
1887 case Intrinsic::nvvm_add_rn_f:
1888 case Intrinsic::nvvm_add_rp_f:
1889 case Intrinsic::nvvm_add_rz_f:
1890 case Intrinsic::nvvm_add_rm_ftz_f:
1891 case Intrinsic::nvvm_add_rn_ftz_f:
1892 case Intrinsic::nvvm_add_rp_ftz_f:
1893 case Intrinsic::nvvm_add_rz_ftz_f:
1896 case Intrinsic::nvvm_div_rm_d:
1897 case Intrinsic::nvvm_div_rn_d:
1898 case Intrinsic::nvvm_div_rp_d:
1899 case Intrinsic::nvvm_div_rz_d:
1900 case Intrinsic::nvvm_div_rm_f:
1901 case Intrinsic::nvvm_div_rn_f:
1902 case Intrinsic::nvvm_div_rp_f:
1903 case Intrinsic::nvvm_div_rz_f:
1904 case Intrinsic::nvvm_div_rm_ftz_f:
1905 case Intrinsic::nvvm_div_rn_ftz_f:
1906 case Intrinsic::nvvm_div_rp_ftz_f:
1907 case Intrinsic::nvvm_div_rz_ftz_f:
1910 case Intrinsic::nvvm_mul_rm_d:
1911 case Intrinsic::nvvm_mul_rn_d:
1912 case Intrinsic::nvvm_mul_rp_d:
1913 case Intrinsic::nvvm_mul_rz_d:
1914 case Intrinsic::nvvm_mul_rm_f:
1915 case Intrinsic::nvvm_mul_rn_f:
1916 case Intrinsic::nvvm_mul_rp_f:
1917 case Intrinsic::nvvm_mul_rz_f:
1918 case Intrinsic::nvvm_mul_rm_ftz_f:
1919 case Intrinsic::nvvm_mul_rn_ftz_f:
1920 case Intrinsic::nvvm_mul_rp_ftz_f:
1921 case Intrinsic::nvvm_mul_rz_ftz_f:
1924 case Intrinsic::nvvm_fma_rm_d:
1925 case Intrinsic::nvvm_fma_rn_d:
1926 case Intrinsic::nvvm_fma_rp_d:
1927 case Intrinsic::nvvm_fma_rz_d:
1928 case Intrinsic::nvvm_fma_rm_f:
1929 case Intrinsic::nvvm_fma_rn_f:
1930 case Intrinsic::nvvm_fma_rp_f:
1931 case Intrinsic::nvvm_fma_rz_f:
1932 case Intrinsic::nvvm_fma_rm_ftz_f:
1933 case Intrinsic::nvvm_fma_rn_ftz_f:
1934 case Intrinsic::nvvm_fma_rp_ftz_f:
1935 case Intrinsic::nvvm_fma_rz_ftz_f:
1939 case Intrinsic::fabs:
1940 case Intrinsic::copysign:
1941 case Intrinsic::is_fpclass:
1944 case Intrinsic::ceil:
1945 case Intrinsic::floor:
1946 case Intrinsic::round:
1947 case Intrinsic::roundeven:
1948 case Intrinsic::trunc:
1949 case Intrinsic::nearbyint:
1950 case Intrinsic::rint:
1951 case Intrinsic::canonicalize:
1955 case Intrinsic::experimental_constrained_fma:
1956 case Intrinsic::experimental_constrained_fmuladd:
1957 case Intrinsic::experimental_constrained_fadd:
1958 case Intrinsic::experimental_constrained_fsub:
1959 case Intrinsic::experimental_constrained_fmul:
1960 case Intrinsic::experimental_constrained_fdiv:
1961 case Intrinsic::experimental_constrained_frem:
1962 case Intrinsic::experimental_constrained_ceil:
1963 case Intrinsic::experimental_constrained_floor:
1964 case Intrinsic::experimental_constrained_round:
1965 case Intrinsic::experimental_constrained_roundeven:
1966 case Intrinsic::experimental_constrained_trunc:
1967 case Intrinsic::experimental_constrained_nearbyint:
1968 case Intrinsic::experimental_constrained_rint:
1969 case Intrinsic::experimental_constrained_fcmp:
1970 case Intrinsic::experimental_constrained_fcmps:
1977 if (!
F->hasName() ||
Call->isStrictFP())
1989 return Name ==
"acos" || Name ==
"acosf" ||
1990 Name ==
"asin" || Name ==
"asinf" ||
1991 Name ==
"atan" || Name ==
"atanf" ||
1992 Name ==
"atan2" || Name ==
"atan2f";
1994 return Name ==
"ceil" || Name ==
"ceilf" ||
1995 Name ==
"cos" || Name ==
"cosf" ||
1996 Name ==
"cosh" || Name ==
"coshf";
1998 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1999 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
2001 return Name ==
"fabs" || Name ==
"fabsf" ||
2002 Name ==
"floor" || Name ==
"floorf" ||
2003 Name ==
"fmod" || Name ==
"fmodf";
2005 return Name ==
"ilogb" || Name ==
"ilogbf";
2007 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
2008 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
2009 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
2010 Name ==
"log1p" || Name ==
"log1pf";
2012 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2014 return Name ==
"pow" || Name ==
"powf";
2016 return Name ==
"remainder" || Name ==
"remainderf" ||
2017 Name ==
"rint" || Name ==
"rintf" ||
2018 Name ==
"round" || Name ==
"roundf" ||
2019 Name ==
"roundeven" || Name ==
"roundevenf";
2021 return Name ==
"sin" || Name ==
"sinf" ||
2022 Name ==
"sinh" || Name ==
"sinhf" ||
2023 Name ==
"sqrt" || Name ==
"sqrtf";
2025 return Name ==
"tan" || Name ==
"tanf" ||
2026 Name ==
"tanh" || Name ==
"tanhf" ||
2027 Name ==
"trunc" || Name ==
"truncf";
2035 if (Name.size() < 12 || Name[1] !=
'_')
2041 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2042 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2043 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2045 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2047 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2048 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2050 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2051 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2053 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2055 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2064 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2068 return ConstantFP::get(Ty->getContext(), APF);
2070 if (Ty->isDoubleTy())
2071 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2075#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2076Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2077 if (Ty->isFP128Ty())
2078 return ConstantFP::get(Ty, V);
2084inline void llvm_fenv_clearexcept() {
2085#if HAVE_DECL_FE_ALL_EXCEPT
2086 feclearexcept(FE_ALL_EXCEPT);
2092inline bool llvm_fenv_testexcept() {
2093 int errno_val = errno;
2094 if (errno_val == ERANGE || errno_val == EDOM)
2096#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2097 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2119 switch (DenormKind) {
2123 return FTZPreserveSign(V);
2125 return FlushToPositiveZero(V);
2133 if (!DenormMode.isValid() ||
2138 llvm_fenv_clearexcept();
2139 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2140 double Result = NativeFP(
Input.convertToDouble());
2141 if (llvm_fenv_testexcept()) {
2142 llvm_fenv_clearexcept();
2146 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2149 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2150 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2151 return ConstantFP::get(Ty->getContext(), Res);
2154#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2155Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2157 llvm_fenv_clearexcept();
2158 float128
Result = NativeFP(V.convertToQuad());
2159 if (llvm_fenv_testexcept()) {
2160 llvm_fenv_clearexcept();
2164 return GetConstantFoldFPValue128(Result, Ty);
2168Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2170 llvm_fenv_clearexcept();
2171 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2172 if (llvm_fenv_testexcept()) {
2173 llvm_fenv_clearexcept();
2177 return GetConstantFoldFPValue(Result, Ty);
2184 if (
Op->containsPoisonElement())
2188 if (
Constant *SplatVal =
Op->getSplatValue()) {
2190 case Intrinsic::vector_reduce_and:
2191 case Intrinsic::vector_reduce_or:
2192 case Intrinsic::vector_reduce_smin:
2193 case Intrinsic::vector_reduce_smax:
2194 case Intrinsic::vector_reduce_umin:
2195 case Intrinsic::vector_reduce_umax:
2197 case Intrinsic::vector_reduce_add:
2198 if (SplatVal->isNullValue())
2201 case Intrinsic::vector_reduce_mul:
2202 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2205 case Intrinsic::vector_reduce_xor:
2206 if (SplatVal->isNullValue())
2208 if (OpVT->getElementCount().isKnownMultipleOf(2))
2223 APInt Acc = EltC->getValue();
2227 const APInt &
X = EltC->getValue();
2229 case Intrinsic::vector_reduce_add:
2232 case Intrinsic::vector_reduce_mul:
2235 case Intrinsic::vector_reduce_and:
2238 case Intrinsic::vector_reduce_or:
2241 case Intrinsic::vector_reduce_xor:
2244 case Intrinsic::vector_reduce_smin:
2247 case Intrinsic::vector_reduce_smax:
2250 case Intrinsic::vector_reduce_umin:
2253 case Intrinsic::vector_reduce_umax:
2259 return ConstantInt::get(
Op->getContext(), Acc);
2269Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2270 Type *Ty,
bool IsSigned) {
2272 unsigned ResultWidth = Ty->getIntegerBitWidth();
2273 assert(ResultWidth <= 64 &&
2274 "Can only constant fold conversions to 64 and 32 bit ints");
2277 bool isExact =
false;
2282 IsSigned,
mode, &isExact);
2286 return ConstantInt::get(Ty, UIntVal, IsSigned);
2290 Type *Ty =
Op->getType();
2292 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2293 return Op->getValueAPF().convertToDouble();
2303 C = &CI->getValue();
2362 return ConstantFP::get(
2367 if (!Ty->isIEEELikeFPTy())
2374 if (Src.isNormal() || Src.isInfinity())
2375 return ConstantFP::get(CI->
getContext(), Src);
2382 return ConstantFP::get(CI->
getContext(), Src);
2412 assert(Operands.
size() == 1 &&
"Wrong number of operands.");
2414 if (IntrinsicID == Intrinsic::is_constant) {
2418 if (Operands[0]->isManifestConstant())
2427 if (IntrinsicID == Intrinsic::cos ||
2428 IntrinsicID == Intrinsic::ctpop ||
2429 IntrinsicID == Intrinsic::fptoui_sat ||
2430 IntrinsicID == Intrinsic::fptosi_sat ||
2431 IntrinsicID == Intrinsic::canonicalize)
2433 if (IntrinsicID == Intrinsic::bswap ||
2434 IntrinsicID == Intrinsic::bitreverse ||
2435 IntrinsicID == Intrinsic::launder_invariant_group ||
2436 IntrinsicID == Intrinsic::strip_invariant_group)
2442 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2443 IntrinsicID == Intrinsic::strip_invariant_group) {
2448 Call->getParent() ?
Call->getCaller() :
nullptr;
2459 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2470 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2471 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2472 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2477 unsigned Width = Ty->getIntegerBitWidth();
2479 bool IsExact =
false;
2484 return ConstantInt::get(Ty,
Int);
2489 if (IntrinsicID == Intrinsic::fptoui_sat ||
2490 IntrinsicID == Intrinsic::fptosi_sat) {
2493 IntrinsicID == Intrinsic::fptoui_sat);
2496 return ConstantInt::get(Ty,
Int);
2499 if (IntrinsicID == Intrinsic::canonicalize)
2500 return constantFoldCanonicalize(Ty,
Call, U);
2502#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2503 if (Ty->isFP128Ty()) {
2504 if (IntrinsicID == Intrinsic::log) {
2505 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2506 return GetConstantFoldFPValue128(Result, Ty);
2509 LibFunc Fp128Func = NotLibFunc;
2510 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2511 Fp128Func == LibFunc_logl)
2512 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2516 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2522 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint ||
2523 IntrinsicID == Intrinsic::roundeven) {
2525 return ConstantFP::get(Ty->getContext(), U);
2528 if (IntrinsicID == Intrinsic::round) {
2530 return ConstantFP::get(Ty->getContext(), U);
2533 if (IntrinsicID == Intrinsic::roundeven) {
2535 return ConstantFP::get(Ty->getContext(), U);
2538 if (IntrinsicID == Intrinsic::ceil) {
2540 return ConstantFP::get(Ty->getContext(), U);
2543 if (IntrinsicID == Intrinsic::floor) {
2545 return ConstantFP::get(Ty->getContext(), U);
2548 if (IntrinsicID == Intrinsic::trunc) {
2550 return ConstantFP::get(Ty->getContext(), U);
2553 if (IntrinsicID == Intrinsic::fabs) {
2555 return ConstantFP::get(Ty->getContext(), U);
2558 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2566 APFloat AlmostOne(U.getSemantics(), 1);
2567 AlmostOne.next(
true);
2568 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2574 std::optional<APFloat::roundingMode>
RM;
2575 switch (IntrinsicID) {
2578 case Intrinsic::experimental_constrained_nearbyint:
2579 case Intrinsic::experimental_constrained_rint: {
2581 RM = CI->getRoundingMode();
2586 case Intrinsic::experimental_constrained_round:
2589 case Intrinsic::experimental_constrained_ceil:
2592 case Intrinsic::experimental_constrained_floor:
2595 case Intrinsic::experimental_constrained_trunc:
2603 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2605 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2609 }
else if (U.isSignaling()) {
2610 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2615 return ConstantFP::get(Ty->getContext(), U);
2619 switch (IntrinsicID) {
2621 case Intrinsic::nvvm_f2i_rm:
2622 case Intrinsic::nvvm_f2i_rn:
2623 case Intrinsic::nvvm_f2i_rp:
2624 case Intrinsic::nvvm_f2i_rz:
2625 case Intrinsic::nvvm_f2i_rm_ftz:
2626 case Intrinsic::nvvm_f2i_rn_ftz:
2627 case Intrinsic::nvvm_f2i_rp_ftz:
2628 case Intrinsic::nvvm_f2i_rz_ftz:
2630 case Intrinsic::nvvm_f2ui_rm:
2631 case Intrinsic::nvvm_f2ui_rn:
2632 case Intrinsic::nvvm_f2ui_rp:
2633 case Intrinsic::nvvm_f2ui_rz:
2634 case Intrinsic::nvvm_f2ui_rm_ftz:
2635 case Intrinsic::nvvm_f2ui_rn_ftz:
2636 case Intrinsic::nvvm_f2ui_rp_ftz:
2637 case Intrinsic::nvvm_f2ui_rz_ftz:
2639 case Intrinsic::nvvm_d2i_rm:
2640 case Intrinsic::nvvm_d2i_rn:
2641 case Intrinsic::nvvm_d2i_rp:
2642 case Intrinsic::nvvm_d2i_rz:
2644 case Intrinsic::nvvm_d2ui_rm:
2645 case Intrinsic::nvvm_d2ui_rn:
2646 case Intrinsic::nvvm_d2ui_rp:
2647 case Intrinsic::nvvm_d2ui_rz:
2649 case Intrinsic::nvvm_f2ll_rm:
2650 case Intrinsic::nvvm_f2ll_rn:
2651 case Intrinsic::nvvm_f2ll_rp:
2652 case Intrinsic::nvvm_f2ll_rz:
2653 case Intrinsic::nvvm_f2ll_rm_ftz:
2654 case Intrinsic::nvvm_f2ll_rn_ftz:
2655 case Intrinsic::nvvm_f2ll_rp_ftz:
2656 case Intrinsic::nvvm_f2ll_rz_ftz:
2658 case Intrinsic::nvvm_f2ull_rm:
2659 case Intrinsic::nvvm_f2ull_rn:
2660 case Intrinsic::nvvm_f2ull_rp:
2661 case Intrinsic::nvvm_f2ull_rz:
2662 case Intrinsic::nvvm_f2ull_rm_ftz:
2663 case Intrinsic::nvvm_f2ull_rn_ftz:
2664 case Intrinsic::nvvm_f2ull_rp_ftz:
2665 case Intrinsic::nvvm_f2ull_rz_ftz:
2667 case Intrinsic::nvvm_d2ll_rm:
2668 case Intrinsic::nvvm_d2ll_rn:
2669 case Intrinsic::nvvm_d2ll_rp:
2670 case Intrinsic::nvvm_d2ll_rz:
2672 case Intrinsic::nvvm_d2ull_rm:
2673 case Intrinsic::nvvm_d2ull_rn:
2674 case Intrinsic::nvvm_d2ull_rp:
2675 case Intrinsic::nvvm_d2ull_rz: {
2681 return ConstantInt::get(Ty, 0);
2684 unsigned BitWidth = Ty->getIntegerBitWidth();
2694 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2695 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2699 bool IsExact =
false;
2700 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2701 return ConstantInt::get(Ty, ResInt);
2717 switch (IntrinsicID) {
2719 case Intrinsic::log:
2720 return ConstantFoldFP(log, APF, Ty);
2721 case Intrinsic::log2:
2723 return ConstantFoldFP(
log2, APF, Ty);
2724 case Intrinsic::log10:
2726 return ConstantFoldFP(log10, APF, Ty);
2727 case Intrinsic::exp:
2728 return ConstantFoldFP(exp, APF, Ty);
2729 case Intrinsic::exp2:
2731 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2732 case Intrinsic::exp10:
2734 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2735 case Intrinsic::sin:
2736 return ConstantFoldFP(sin, APF, Ty);
2737 case Intrinsic::cos:
2738 return ConstantFoldFP(cos, APF, Ty);
2739 case Intrinsic::sinh:
2740 return ConstantFoldFP(sinh, APF, Ty);
2741 case Intrinsic::cosh:
2742 return ConstantFoldFP(cosh, APF, Ty);
2743 case Intrinsic::atan:
2746 return ConstantFP::get(Ty->getContext(), U);
2747 return ConstantFoldFP(atan, APF, Ty);
2748 case Intrinsic::sqrt:
2749 return ConstantFoldFP(sqrt, APF, Ty);
2752 case Intrinsic::nvvm_ceil_ftz_f:
2753 case Intrinsic::nvvm_ceil_f:
2754 case Intrinsic::nvvm_ceil_d:
2755 return ConstantFoldFP(
2760 case Intrinsic::nvvm_fabs_ftz:
2761 case Intrinsic::nvvm_fabs:
2762 return ConstantFoldFP(
2767 case Intrinsic::nvvm_floor_ftz_f:
2768 case Intrinsic::nvvm_floor_f:
2769 case Intrinsic::nvvm_floor_d:
2770 return ConstantFoldFP(
2775 case Intrinsic::nvvm_rcp_rm_ftz_f:
2776 case Intrinsic::nvvm_rcp_rn_ftz_f:
2777 case Intrinsic::nvvm_rcp_rp_ftz_f:
2778 case Intrinsic::nvvm_rcp_rz_ftz_f:
2779 case Intrinsic::nvvm_rcp_rm_d:
2780 case Intrinsic::nvvm_rcp_rm_f:
2781 case Intrinsic::nvvm_rcp_rn_d:
2782 case Intrinsic::nvvm_rcp_rn_f:
2783 case Intrinsic::nvvm_rcp_rp_d:
2784 case Intrinsic::nvvm_rcp_rp_f:
2785 case Intrinsic::nvvm_rcp_rz_d:
2786 case Intrinsic::nvvm_rcp_rz_f: {
2790 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2796 Res = FTZPreserveSign(Res);
2797 return ConstantFP::get(Ty->getContext(), Res);
2802 case Intrinsic::nvvm_round_ftz_f:
2803 case Intrinsic::nvvm_round_f:
2804 case Intrinsic::nvvm_round_d: {
2809 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2811 return ConstantFP::get(Ty->getContext(), V);
2814 case Intrinsic::nvvm_saturate_ftz_f:
2815 case Intrinsic::nvvm_saturate_d:
2816 case Intrinsic::nvvm_saturate_f: {
2818 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2819 if (V.isNegative() || V.isZero() || V.isNaN())
2823 return ConstantFP::get(Ty->getContext(), One);
2824 return ConstantFP::get(Ty->getContext(), APF);
2827 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2828 case Intrinsic::nvvm_sqrt_f:
2829 case Intrinsic::nvvm_sqrt_rn_d:
2830 case Intrinsic::nvvm_sqrt_rn_f:
2833 return ConstantFoldFP(
2839 case Intrinsic::amdgcn_cos:
2840 case Intrinsic::amdgcn_sin: {
2841 double V = getValueAsDouble(
Op);
2842 if (V < -256.0 || V > 256.0)
2847 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2848 double V4 = V * 4.0;
2849 if (V4 == floor(V4)) {
2851 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2852 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2859 return GetConstantFoldFPValue(V, Ty);
2866 LibFunc
Func = NotLibFunc;
2875 case LibFunc_acos_finite:
2876 case LibFunc_acosf_finite:
2878 return ConstantFoldFP(acos, APF, Ty);
2882 case LibFunc_asin_finite:
2883 case LibFunc_asinf_finite:
2885 return ConstantFoldFP(asin, APF, Ty);
2891 return ConstantFP::get(Ty->getContext(), U);
2893 return ConstantFoldFP(atan, APF, Ty);
2897 if (TLI->
has(Func)) {
2899 return ConstantFP::get(Ty->getContext(), U);
2905 return ConstantFoldFP(cos, APF, Ty);
2909 case LibFunc_cosh_finite:
2910 case LibFunc_coshf_finite:
2912 return ConstantFoldFP(cosh, APF, Ty);
2916 case LibFunc_exp_finite:
2917 case LibFunc_expf_finite:
2919 return ConstantFoldFP(exp, APF, Ty);
2923 case LibFunc_exp2_finite:
2924 case LibFunc_exp2f_finite:
2927 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2931 if (TLI->
has(Func)) {
2933 return ConstantFP::get(Ty->getContext(), U);
2937 case LibFunc_floorf:
2938 if (TLI->
has(Func)) {
2940 return ConstantFP::get(Ty->getContext(), U);
2945 case LibFunc_log_finite:
2946 case LibFunc_logf_finite:
2948 return ConstantFoldFP(log, APF, Ty);
2952 case LibFunc_log2_finite:
2953 case LibFunc_log2f_finite:
2956 return ConstantFoldFP(
log2, APF, Ty);
2959 case LibFunc_log10f:
2960 case LibFunc_log10_finite:
2961 case LibFunc_log10f_finite:
2964 return ConstantFoldFP(log10, APF, Ty);
2967 case LibFunc_ilogbf:
2969 return ConstantInt::get(Ty,
ilogb(APF),
true);
2974 return ConstantFoldFP(logb, APF, Ty);
2977 case LibFunc_log1pf:
2980 return ConstantFP::get(Ty->getContext(), U);
2982 return ConstantFoldFP(log1p, APF, Ty);
2989 return ConstantFoldFP(erf, APF, Ty);
2991 case LibFunc_nearbyint:
2992 case LibFunc_nearbyintf:
2995 case LibFunc_roundeven:
2996 case LibFunc_roundevenf:
2997 if (TLI->
has(Func)) {
2999 return ConstantFP::get(Ty->getContext(), U);
3003 case LibFunc_roundf:
3004 if (TLI->
has(Func)) {
3006 return ConstantFP::get(Ty->getContext(), U);
3012 return ConstantFoldFP(sin, APF, Ty);
3016 case LibFunc_sinh_finite:
3017 case LibFunc_sinhf_finite:
3019 return ConstantFoldFP(sinh, APF, Ty);
3024 return ConstantFoldFP(sqrt, APF, Ty);
3029 return ConstantFoldFP(tan, APF, Ty);
3034 return ConstantFoldFP(tanh, APF, Ty);
3037 case LibFunc_truncf:
3038 if (TLI->
has(Func)) {
3040 return ConstantFP::get(Ty->getContext(), U);
3048 switch (IntrinsicID) {
3049 case Intrinsic::bswap:
3050 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3051 case Intrinsic::ctpop:
3052 return ConstantInt::get(Ty,
Op->getValue().popcount());
3053 case Intrinsic::bitreverse:
3054 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3055 case Intrinsic::convert_from_fp16: {
3065 "Precision lost during fp16 constfolding");
3067 return ConstantFP::get(Ty->getContext(), Val);
3070 case Intrinsic::amdgcn_s_wqm: {
3072 Val |= (Val & 0x5555555555555555ULL) << 1 |
3073 ((Val >> 1) & 0x5555555555555555ULL);
3074 Val |= (Val & 0x3333333333333333ULL) << 2 |
3075 ((Val >> 2) & 0x3333333333333333ULL);
3076 return ConstantInt::get(Ty, Val);
3079 case Intrinsic::amdgcn_s_quadmask: {
3082 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3086 QuadMask |= (1ULL <<
I);
3088 return ConstantInt::get(Ty, QuadMask);
3091 case Intrinsic::amdgcn_s_bitreplicate: {
3093 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3094 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3095 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3096 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3097 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3098 Val = Val | Val << 1;
3099 return ConstantInt::get(Ty, Val);
3104 if (Operands[0]->
getType()->isVectorTy()) {
3106 switch (IntrinsicID) {
3108 case Intrinsic::vector_reduce_add:
3109 case Intrinsic::vector_reduce_mul:
3110 case Intrinsic::vector_reduce_and:
3111 case Intrinsic::vector_reduce_or:
3112 case Intrinsic::vector_reduce_xor:
3113 case Intrinsic::vector_reduce_smin:
3114 case Intrinsic::vector_reduce_smax:
3115 case Intrinsic::vector_reduce_umin:
3116 case Intrinsic::vector_reduce_umax:
3117 if (
Constant *
C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3120 case Intrinsic::x86_sse_cvtss2si:
3121 case Intrinsic::x86_sse_cvtss2si64:
3122 case Intrinsic::x86_sse2_cvtsd2si:
3123 case Intrinsic::x86_sse2_cvtsd2si64:
3126 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3130 case Intrinsic::x86_sse_cvttss2si:
3131 case Intrinsic::x86_sse_cvttss2si64:
3132 case Intrinsic::x86_sse2_cvttsd2si:
3133 case Intrinsic::x86_sse2_cvttsd2si64:
3136 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3141 case Intrinsic::wasm_anytrue:
3142 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3145 case Intrinsic::wasm_alltrue:
3148 for (
unsigned I = 0;
I !=
E; ++
I) {
3152 return ConstantInt::get(Ty, 0);
3158 return ConstantInt::get(Ty, 1);
3170 if (FCmp->isSignaling()) {
3179 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3189 LibFunc
Func = NotLibFunc;
3201 const APFloat &Op1V = Op1->getValueAPF();
3202 const APFloat &Op2V = Op2->getValueAPF();
3209 case LibFunc_pow_finite:
3210 case LibFunc_powf_finite:
3212 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3216 if (TLI->
has(Func)) {
3217 APFloat V = Op1->getValueAPF();
3219 return ConstantFP::get(Ty->getContext(), V);
3222 case LibFunc_remainder:
3223 case LibFunc_remainderf:
3224 if (TLI->
has(Func)) {
3225 APFloat V = Op1->getValueAPF();
3227 return ConstantFP::get(Ty->getContext(), V);
3231 case LibFunc_atan2f:
3237 case LibFunc_atan2_finite:
3238 case LibFunc_atan2f_finite:
3240 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3250 assert(Operands.
size() == 2 &&
"Wrong number of operands.");
3252 if (Ty->isFloatingPointTy()) {
3257 switch (IntrinsicID) {
3258 case Intrinsic::maxnum:
3259 case Intrinsic::minnum:
3260 case Intrinsic::maximum:
3261 case Intrinsic::minimum:
3262 case Intrinsic::maximumnum:
3263 case Intrinsic::minimumnum:
3264 case Intrinsic::nvvm_fmax_d:
3265 case Intrinsic::nvvm_fmin_d:
3273 case Intrinsic::nvvm_fmax_f:
3274 case Intrinsic::nvvm_fmax_ftz_f:
3275 case Intrinsic::nvvm_fmax_ftz_nan_f:
3276 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3277 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3278 case Intrinsic::nvvm_fmax_nan_f:
3279 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3280 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3282 case Intrinsic::nvvm_fmin_f:
3283 case Intrinsic::nvvm_fmin_ftz_f:
3284 case Intrinsic::nvvm_fmin_ftz_nan_f:
3285 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3286 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3287 case Intrinsic::nvvm_fmin_nan_f:
3288 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3289 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3293 if (!IsOp0Undef && !IsOp1Undef)
3297 APInt NVCanonicalNaN(32, 0x7fffffff);
3298 return ConstantFP::get(
3299 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3302 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3311 const APFloat &Op1V = Op1->getValueAPF();
3314 if (Op2->getType() != Op1->getType())
3316 const APFloat &Op2V = Op2->getValueAPF();
3318 if (
const auto *ConstrIntr =
3323 switch (IntrinsicID) {
3326 case Intrinsic::experimental_constrained_fadd:
3327 St = Res.
add(Op2V, RM);
3329 case Intrinsic::experimental_constrained_fsub:
3332 case Intrinsic::experimental_constrained_fmul:
3335 case Intrinsic::experimental_constrained_fdiv:
3336 St = Res.
divide(Op2V, RM);
3338 case Intrinsic::experimental_constrained_frem:
3341 case Intrinsic::experimental_constrained_fcmp:
3342 case Intrinsic::experimental_constrained_fcmps:
3343 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3347 return ConstantFP::get(Ty->getContext(), Res);
3351 switch (IntrinsicID) {
3354 case Intrinsic::copysign:
3356 case Intrinsic::minnum:
3359 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3360 case Intrinsic::maxnum:
3363 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3364 case Intrinsic::minimum:
3365 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3366 case Intrinsic::maximum:
3367 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3368 case Intrinsic::minimumnum:
3369 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3370 case Intrinsic::maximumnum:
3371 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3373 case Intrinsic::nvvm_fmax_d:
3374 case Intrinsic::nvvm_fmax_f:
3375 case Intrinsic::nvvm_fmax_ftz_f:
3376 case Intrinsic::nvvm_fmax_ftz_nan_f:
3377 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3378 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3379 case Intrinsic::nvvm_fmax_nan_f:
3380 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3381 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3383 case Intrinsic::nvvm_fmin_d:
3384 case Intrinsic::nvvm_fmin_f:
3385 case Intrinsic::nvvm_fmin_ftz_f:
3386 case Intrinsic::nvvm_fmin_ftz_nan_f:
3387 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3388 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3389 case Intrinsic::nvvm_fmin_nan_f:
3390 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3391 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3393 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3394 IntrinsicID == Intrinsic::nvvm_fmin_d);
3399 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3400 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3402 bool XorSign =
false;
3404 XorSign =
A.isNegative() ^
B.isNegative();
3409 bool IsFMax =
false;
3410 switch (IntrinsicID) {
3411 case Intrinsic::nvvm_fmax_d:
3412 case Intrinsic::nvvm_fmax_f:
3413 case Intrinsic::nvvm_fmax_ftz_f:
3414 case Intrinsic::nvvm_fmax_ftz_nan_f:
3415 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3416 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3417 case Intrinsic::nvvm_fmax_nan_f:
3418 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3419 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3425 if (ShouldCanonicalizeNaNs) {
3427 if (
A.isNaN() &&
B.isNaN())
3428 return ConstantFP::get(Ty, NVCanonicalNaN);
3429 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3430 return ConstantFP::get(Ty, NVCanonicalNaN);
3433 if (
A.isNaN() &&
B.isNaN())
3443 return ConstantFP::get(Ty->getContext(), Res);
3446 case Intrinsic::nvvm_add_rm_f:
3447 case Intrinsic::nvvm_add_rn_f:
3448 case Intrinsic::nvvm_add_rp_f:
3449 case Intrinsic::nvvm_add_rz_f:
3450 case Intrinsic::nvvm_add_rm_d:
3451 case Intrinsic::nvvm_add_rn_d:
3452 case Intrinsic::nvvm_add_rp_d:
3453 case Intrinsic::nvvm_add_rz_d:
3454 case Intrinsic::nvvm_add_rm_ftz_f:
3455 case Intrinsic::nvvm_add_rn_ftz_f:
3456 case Intrinsic::nvvm_add_rp_ftz_f:
3457 case Intrinsic::nvvm_add_rz_ftz_f: {
3460 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3461 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3471 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3472 return ConstantFP::get(Ty->getContext(), Res);
3477 case Intrinsic::nvvm_mul_rm_f:
3478 case Intrinsic::nvvm_mul_rn_f:
3479 case Intrinsic::nvvm_mul_rp_f:
3480 case Intrinsic::nvvm_mul_rz_f:
3481 case Intrinsic::nvvm_mul_rm_d:
3482 case Intrinsic::nvvm_mul_rn_d:
3483 case Intrinsic::nvvm_mul_rp_d:
3484 case Intrinsic::nvvm_mul_rz_d:
3485 case Intrinsic::nvvm_mul_rm_ftz_f:
3486 case Intrinsic::nvvm_mul_rn_ftz_f:
3487 case Intrinsic::nvvm_mul_rp_ftz_f:
3488 case Intrinsic::nvvm_mul_rz_ftz_f: {
3491 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3492 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3502 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3503 return ConstantFP::get(Ty->getContext(), Res);
3508 case Intrinsic::nvvm_div_rm_f:
3509 case Intrinsic::nvvm_div_rn_f:
3510 case Intrinsic::nvvm_div_rp_f:
3511 case Intrinsic::nvvm_div_rz_f:
3512 case Intrinsic::nvvm_div_rm_d:
3513 case Intrinsic::nvvm_div_rn_d:
3514 case Intrinsic::nvvm_div_rp_d:
3515 case Intrinsic::nvvm_div_rz_d:
3516 case Intrinsic::nvvm_div_rm_ftz_f:
3517 case Intrinsic::nvvm_div_rn_ftz_f:
3518 case Intrinsic::nvvm_div_rp_ftz_f:
3519 case Intrinsic::nvvm_div_rz_ftz_f: {
3521 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3522 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3530 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3531 return ConstantFP::get(Ty->getContext(), Res);
3537 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3540 switch (IntrinsicID) {
3543 case Intrinsic::pow:
3544 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3545 case Intrinsic::amdgcn_fmul_legacy:
3550 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3554 switch (IntrinsicID) {
3555 case Intrinsic::ldexp: {
3556 return ConstantFP::get(
3560 case Intrinsic::is_fpclass: {
3573 return ConstantInt::get(Ty, Result);
3575 case Intrinsic::powi: {
3576 int Exp =
static_cast<int>(Op2C->getSExtValue());
3577 switch (Ty->getTypeID()) {
3581 if (Ty->isHalfTy()) {
3586 return ConstantFP::get(Ty->getContext(), Res);
3601 if (Operands[0]->
getType()->isIntegerTy() &&
3602 Operands[1]->
getType()->isIntegerTy()) {
3603 const APInt *C0, *C1;
3604 if (!getConstIntOrUndef(Operands[0], C0) ||
3605 !getConstIntOrUndef(Operands[1], C1))
3608 switch (IntrinsicID) {
3610 case Intrinsic::smax:
3611 case Intrinsic::smin:
3612 case Intrinsic::umax:
3613 case Intrinsic::umin:
3618 return ConstantInt::get(
3624 case Intrinsic::scmp:
3625 case Intrinsic::ucmp:
3627 return ConstantInt::get(Ty, 0);
3630 if (IntrinsicID == Intrinsic::scmp)
3631 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3633 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3634 return ConstantInt::get(Ty, Res,
true);
3636 case Intrinsic::usub_with_overflow:
3637 case Intrinsic::ssub_with_overflow:
3643 case Intrinsic::uadd_with_overflow:
3644 case Intrinsic::sadd_with_overflow:
3654 case Intrinsic::smul_with_overflow:
3655 case Intrinsic::umul_with_overflow: {
3663 switch (IntrinsicID) {
3665 case Intrinsic::sadd_with_overflow:
3666 Res = C0->
sadd_ov(*C1, Overflow);
3668 case Intrinsic::uadd_with_overflow:
3669 Res = C0->
uadd_ov(*C1, Overflow);
3671 case Intrinsic::ssub_with_overflow:
3672 Res = C0->
ssub_ov(*C1, Overflow);
3674 case Intrinsic::usub_with_overflow:
3675 Res = C0->
usub_ov(*C1, Overflow);
3677 case Intrinsic::smul_with_overflow:
3678 Res = C0->
smul_ov(*C1, Overflow);
3680 case Intrinsic::umul_with_overflow:
3681 Res = C0->
umul_ov(*C1, Overflow);
3685 ConstantInt::get(Ty->getContext(), Res),
3690 case Intrinsic::uadd_sat:
3691 case Intrinsic::sadd_sat:
3696 if (IntrinsicID == Intrinsic::uadd_sat)
3697 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3699 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3700 case Intrinsic::usub_sat:
3701 case Intrinsic::ssub_sat:
3706 if (IntrinsicID == Intrinsic::usub_sat)
3707 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3709 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3710 case Intrinsic::cttz:
3711 case Intrinsic::ctlz:
3712 assert(C1 &&
"Must be constant int");
3719 if (IntrinsicID == Intrinsic::cttz)
3724 case Intrinsic::abs:
3725 assert(C1 &&
"Must be constant int");
3736 return ConstantInt::get(Ty, C0->
abs());
3737 case Intrinsic::amdgcn_wave_reduce_umin:
3738 case Intrinsic::amdgcn_wave_reduce_umax:
3739 case Intrinsic::amdgcn_wave_reduce_max:
3740 case Intrinsic::amdgcn_wave_reduce_min:
3741 case Intrinsic::amdgcn_wave_reduce_add:
3742 case Intrinsic::amdgcn_wave_reduce_sub:
3743 case Intrinsic::amdgcn_wave_reduce_and:
3744 case Intrinsic::amdgcn_wave_reduce_or:
3745 case Intrinsic::amdgcn_wave_reduce_xor:
3760 switch (IntrinsicID) {
3762 case Intrinsic::x86_avx512_vcvtss2si32:
3763 case Intrinsic::x86_avx512_vcvtss2si64:
3764 case Intrinsic::x86_avx512_vcvtsd2si32:
3765 case Intrinsic::x86_avx512_vcvtsd2si64:
3768 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3772 case Intrinsic::x86_avx512_vcvtss2usi32:
3773 case Intrinsic::x86_avx512_vcvtss2usi64:
3774 case Intrinsic::x86_avx512_vcvtsd2usi32:
3775 case Intrinsic::x86_avx512_vcvtsd2usi64:
3778 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3782 case Intrinsic::x86_avx512_cvttss2si:
3783 case Intrinsic::x86_avx512_cvttss2si64:
3784 case Intrinsic::x86_avx512_cvttsd2si:
3785 case Intrinsic::x86_avx512_cvttsd2si64:
3788 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3792 case Intrinsic::x86_avx512_cvttss2usi:
3793 case Intrinsic::x86_avx512_cvttss2usi64:
3794 case Intrinsic::x86_avx512_cvttsd2usi:
3795 case Intrinsic::x86_avx512_cvttsd2usi64:
3798 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3813 APFloat MA(Sem), SC(Sem), TC(Sem);
3826 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3848 switch (IntrinsicID) {
3851 case Intrinsic::amdgcn_cubeid:
3853 case Intrinsic::amdgcn_cubema:
3855 case Intrinsic::amdgcn_cubesc:
3857 case Intrinsic::amdgcn_cubetc:
3864 const APInt *C0, *C1, *C2;
3865 if (!getConstIntOrUndef(Operands[0], C0) ||
3866 !getConstIntOrUndef(Operands[1], C1) ||
3867 !getConstIntOrUndef(Operands[2], C2))
3874 unsigned NumUndefBytes = 0;
3875 for (
unsigned I = 0;
I < 32;
I += 8) {
3884 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3888 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3890 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3893 Val.insertBits(
B,
I, 8);
3896 if (NumUndefBytes == 4)
3899 return ConstantInt::get(Ty, Val);
3908 assert(Operands.
size() == 3 &&
"Wrong number of operands.");
3913 const APFloat &C1 = Op1->getValueAPF();
3914 const APFloat &C2 = Op2->getValueAPF();
3915 const APFloat &C3 = Op3->getValueAPF();
3921 switch (IntrinsicID) {
3924 case Intrinsic::experimental_constrained_fma:
3925 case Intrinsic::experimental_constrained_fmuladd:
3929 if (mayFoldConstrained(
3931 return ConstantFP::get(Ty->getContext(), Res);
3935 switch (IntrinsicID) {
3937 case Intrinsic::amdgcn_fma_legacy: {
3943 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3947 case Intrinsic::fma:
3948 case Intrinsic::fmuladd: {
3951 return ConstantFP::get(Ty->getContext(), V);
3954 case Intrinsic::nvvm_fma_rm_f:
3955 case Intrinsic::nvvm_fma_rn_f:
3956 case Intrinsic::nvvm_fma_rp_f:
3957 case Intrinsic::nvvm_fma_rz_f:
3958 case Intrinsic::nvvm_fma_rm_d:
3959 case Intrinsic::nvvm_fma_rn_d:
3960 case Intrinsic::nvvm_fma_rp_d:
3961 case Intrinsic::nvvm_fma_rz_d:
3962 case Intrinsic::nvvm_fma_rm_ftz_f:
3963 case Intrinsic::nvvm_fma_rn_ftz_f:
3964 case Intrinsic::nvvm_fma_rp_ftz_f:
3965 case Intrinsic::nvvm_fma_rz_ftz_f: {
3967 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3968 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3969 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3979 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3980 return ConstantFP::get(Ty->getContext(), Res);
3985 case Intrinsic::amdgcn_cubeid:
3986 case Intrinsic::amdgcn_cubema:
3987 case Intrinsic::amdgcn_cubesc:
3988 case Intrinsic::amdgcn_cubetc: {
3989 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3990 return ConstantFP::get(Ty->getContext(), V);
3997 if (IntrinsicID == Intrinsic::smul_fix ||
3998 IntrinsicID == Intrinsic::smul_fix_sat) {
3999 const APInt *C0, *C1;
4000 if (!getConstIntOrUndef(Operands[0], C0) ||
4001 !getConstIntOrUndef(Operands[1], C1))
4017 assert(Scale < Width &&
"Illegal scale.");
4018 unsigned ExtendedWidth = Width * 2;
4020 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
4021 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4027 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
4030 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4031 const APInt *C0, *C1, *C2;
4032 if (!getConstIntOrUndef(Operands[0], C0) ||
4033 !getConstIntOrUndef(Operands[1], C1) ||
4034 !getConstIntOrUndef(Operands[2], C2))
4037 bool IsRight = IntrinsicID == Intrinsic::fshr;
4039 return Operands[IsRight ? 1 : 0];
4048 return Operands[IsRight ? 1 : 0];
4051 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4052 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4054 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4056 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4057 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4060 if (IntrinsicID == Intrinsic::amdgcn_perm)
4061 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4077 if (Operands.
size() == 1)
4078 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4080 if (Operands.
size() == 2) {
4082 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4083 return FoldedLibCall;
4085 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands,
Call);
4088 if (Operands.
size() == 3)
4089 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4094static Constant *ConstantFoldFixedVectorCall(
4102 switch (IntrinsicID) {
4103 case Intrinsic::masked_load: {
4104 auto *SrcPtr = Operands[0];
4105 auto *
Mask = Operands[1];
4106 auto *Passthru = Operands[2];
4112 auto *MaskElt =
Mask->getAggregateElement(
I);
4115 auto *PassthruElt = Passthru->getAggregateElement(
I);
4125 if (MaskElt->isNullValue()) {
4129 }
else if (MaskElt->isOneValue()) {
4141 case Intrinsic::arm_mve_vctp8:
4142 case Intrinsic::arm_mve_vctp16:
4143 case Intrinsic::arm_mve_vctp32:
4144 case Intrinsic::arm_mve_vctp64: {
4150 for (
unsigned i = 0; i < Lanes; i++) {
4160 case Intrinsic::get_active_lane_mask: {
4166 uint64_t Limit = Op1->getZExtValue();
4169 for (
unsigned i = 0; i < Lanes; i++) {
4170 if (
Base + i < Limit)
4179 case Intrinsic::vector_extract: {
4186 unsigned VecNumElements =
4188 unsigned StartingIndex = Idx->getZExtValue();
4191 if (NumElements == VecNumElements && StartingIndex == 0)
4194 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4199 Result[
I - StartingIndex] = Elt;
4204 case Intrinsic::vector_insert: {
4211 unsigned SubVecNumElements =
4213 unsigned VecNumElements =
4215 unsigned IdxN = Idx->getZExtValue();
4217 if (SubVecNumElements == VecNumElements && IdxN == 0)
4220 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4222 if (
I < IdxN + SubVecNumElements)
4232 case Intrinsic::vector_interleave2:
4233 case Intrinsic::vector_interleave3:
4234 case Intrinsic::vector_interleave4:
4235 case Intrinsic::vector_interleave5:
4236 case Intrinsic::vector_interleave6:
4237 case Intrinsic::vector_interleave7:
4238 case Intrinsic::vector_interleave8: {
4239 unsigned NumElements =
4241 unsigned NumOperands = Operands.
size();
4242 for (
unsigned I = 0;
I < NumElements; ++
I) {
4243 for (
unsigned J = 0; J < NumOperands; ++J) {
4244 Constant *Elt = Operands[J]->getAggregateElement(
I);
4247 Result[NumOperands *
I + J] = Elt;
4252 case Intrinsic::wasm_dot: {
4253 unsigned NumElements =
4257 "wasm dot takes i16x8 and produces i32x4");
4258 assert(Ty->isIntegerTy());
4259 int32_t MulVector[8];
4261 for (
unsigned I = 0;
I < NumElements; ++
I) {
4269 for (
unsigned I = 0;
I <
Result.size();
I++) {
4270 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4271 Result[
I] = ConstantInt::get(Ty, IAdd);
4282 for (
unsigned J = 0, JE = Operands.
size(); J != JE; ++J) {
4285 Lane[J] = Operands[J];
4289 Constant *Agg = Operands[J]->getAggregateElement(
I);
4298 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4307static Constant *ConstantFoldScalableVectorCall(
4311 switch (IntrinsicID) {
4312 case Intrinsic::aarch64_sve_convert_from_svbool: {
4314 if (!Src || !Src->isNullValue())
4319 case Intrinsic::get_active_lane_mask: {
4322 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4326 case Intrinsic::vector_interleave2:
4327 case Intrinsic::vector_interleave3:
4328 case Intrinsic::vector_interleave4:
4329 case Intrinsic::vector_interleave5:
4330 case Intrinsic::vector_interleave6:
4331 case Intrinsic::vector_interleave7:
4332 case Intrinsic::vector_interleave8: {
4333 Constant *SplatVal = Operands[0]->getSplatValue();
4364 Constant *Folded = ConstantFoldScalarCall(
4371static std::pair<Constant *, Constant *>
4380 const APFloat &U = ConstFP->getValueAPF();
4383 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4390 return {Result0, Result1};
4400 switch (IntrinsicID) {
4401 case Intrinsic::frexp: {
4409 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4410 Constant *Lane = Operands[0]->getAggregateElement(
I);
4411 std::tie(Results0[
I], Results1[
I]) =
4412 ConstantFoldScalarFrexpCall(Lane, Ty1);
4421 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4426 case Intrinsic::sincos: {
4430 auto ConstantFoldScalarSincosCall =
4431 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4433 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4435 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4436 return std::make_pair(SinResult, CosResult);
4444 Constant *Lane = Operands[0]->getAggregateElement(
I);
4445 std::tie(SinResults[
I], CosResults[
I]) =
4446 ConstantFoldScalarSincosCall(Lane);
4447 if (!SinResults[
I] || !CosResults[
I])
4455 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4456 if (!SinResult || !CosResult)
4460 case Intrinsic::vector_deinterleave2:
4461 case Intrinsic::vector_deinterleave3:
4462 case Intrinsic::vector_deinterleave4:
4463 case Intrinsic::vector_deinterleave5:
4464 case Intrinsic::vector_deinterleave6:
4465 case Intrinsic::vector_deinterleave7:
4466 case Intrinsic::vector_deinterleave8: {
4468 auto *Vec = Operands[0];
4486 for (
unsigned I = 0;
I != NumResults; ++
I) {
4487 for (
unsigned J = 0; J != NumElements; ++J) {
4500 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI,
Call);
4516 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4522 bool AllowNonDeterministic) {
4523 if (
Call->isNoBuiltin())
4540 Type *Ty =
F->getReturnType();
4541 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4546 return ConstantFoldFixedVectorCall(
4547 Name, IID, FVTy, Operands,
F->getDataLayout(), TLI,
Call);
4550 return ConstantFoldScalableVectorCall(
4551 Name, IID, SVTy, Operands,
F->getDataLayout(), TLI,
Call);
4554 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4555 F->getDataLayout(), TLI,
Call);
4560 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI,
Call);
4567 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4577 if (
Call->arg_size() == 1) {
4587 case LibFunc_log10l:
4589 case LibFunc_log10f:
4590 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4593 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4599 if (OpC->getType()->isDoubleTy())
4601 if (OpC->getType()->isFloatTy())
4609 if (OpC->getType()->isDoubleTy())
4611 if (OpC->getType()->isFloatTy())
4621 return !
Op.isInfinity();
4625 case LibFunc_tanf: {
4628 Type *Ty = OpC->getType();
4629 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4630 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4656 if (OpC->getType()->isDoubleTy())
4658 if (OpC->getType()->isFloatTy())
4665 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4675 if (
Call->arg_size() == 2) {
4685 case LibFunc_powf: {
4689 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4691 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4699 case LibFunc_remainderl:
4700 case LibFunc_remainder:
4701 case LibFunc_remainderf:
4706 case LibFunc_atan2f:
4707 case LibFunc_atan2l:
4727 case Instruction::BitCast:
4730 case Instruction::Trunc: {
4738 Flags->NSW = ZExtC == SExtC;
4742 case Instruction::SExt:
4743 case Instruction::ZExt: {
4747 if (!CastInvC || CastInvC !=
C)
4749 if (Flags && CastOp == Instruction::ZExt) {
4753 Flags->NNeg = CastInvC == SExtInvC;
4774void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static constexpr roundingMode rmTowardZero
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
static constexpr roundingMode rmNearestTiesToAway
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.