49#define DEBUG_TYPE "instcombine"
110 if (!FPO->hasNoSignedZeros() &&
135 const APInt *SelTC, *SelFC;
144 const APInt &TC = *SelTC;
145 const APInt &FC = *SelFC;
146 if (!TC.
isZero() && !FC.isZero()) {
158 Constant *TCC = ConstantInt::get(SelType, TC);
159 Constant *FCC = ConstantInt::get(SelType, FC);
160 Constant *MaskC = ConstantInt::get(SelType, AndMask);
161 for (
auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
166 V = Builder.CreateAnd(V, MaskC);
167 return Builder.CreateBinOp(
Opc, TCC, V);
181 unsigned ValZeros = ValC.
logBase2();
182 unsigned AndZeros = AndMask.
logBase2();
183 bool ShouldNotVal = !TC.
isZero();
184 bool NeedShift = ValZeros != AndZeros;
191 if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
197 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
201 if (ValZeros > AndZeros) {
202 V = Builder.CreateZExtOrTrunc(V, SelType);
203 V = Builder.CreateShl(V, ValZeros - AndZeros);
204 }
else if (ValZeros < AndZeros) {
205 V = Builder.CreateLShr(V, AndZeros - ValZeros);
206 V = Builder.CreateZExtOrTrunc(V, SelType);
208 V = Builder.CreateZExtOrTrunc(V, SelType);
214 V = Builder.CreateXor(V, ValC);
230 switch (
I->getOpcode()) {
231 case Instruction::Add:
232 case Instruction::FAdd:
233 case Instruction::Mul:
234 case Instruction::FMul:
235 case Instruction::And:
236 case Instruction::Or:
237 case Instruction::Xor:
239 case Instruction::Sub:
240 case Instruction::FSub:
241 case Instruction::FDiv:
242 case Instruction::Shl:
243 case Instruction::LShr:
244 case Instruction::AShr:
276 CondVTy->getElementCount() !=
288 if (TI->
getOpcode() != Instruction::BitCast &&
301 SI.getName() +
".v", &
SI);
306 Value *OtherOpT, *OtherOpF;
309 bool Swapped =
false) ->
Value * {
310 assert(!(Commute && Swapped) &&
311 "Commute and Swapped can't set at the same time");
316 MatchIsOpZero =
true;
321 MatchIsOpZero =
false;
326 if (!Commute && !Swapped)
335 MatchIsOpZero =
true;
340 MatchIsOpZero =
false;
354 FMF |=
SI.getFastMathFlags();
358 NewSelI->setFastMathFlags(FMF);
359 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
370 if (
TII && FII &&
TII->getIntrinsicID() == FII->getIntrinsicID()) {
372 if (
Value *MatchOp = getCommonOp(TI, FI,
true)) {
374 Builder.CreateSelect(
Cond, OtherOpT, OtherOpF,
"minmaxop", &
SI);
384 if (
TII->getIntrinsicID() == Intrinsic::ldexp) {
385 Value *LdexpVal0 =
TII->getArgOperand(0);
386 Value *LdexpExp0 =
TII->getArgOperand(1);
387 Value *LdexpVal1 = FII->getArgOperand(0);
388 Value *LdexpExp1 = FII->getArgOperand(1);
399 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
406 auto CreateCmpSel = [&](std::optional<CmpPredicate>
P,
415 SI.getName() +
".v", &
SI);
469 if (BO->getOpcode() == Instruction::SDiv ||
470 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
476 SI.getName() +
".v", &
SI);
477 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
478 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
487 Type *ElementType = TGEP->getSourceElementType();
489 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
515 unsigned OpToFold = 0;
516 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
518 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
526 FMF = FPO->getFastMathFlags();
528 TVI->getOpcode(), TVI->getType(),
true, FMF.
noSignedZeros());
529 Value *OOp = TVI->getOperand(2 - OpToFold);
535 (!OOpIsAPInt || !
isSelect01(
C->getUniqueInteger(), *OOpC)))
548 Value *NewSel =
Builder.CreateSelect(
SI.getCondition(), Swapped ?
C : OOp,
549 Swapped ? OOp :
C,
"", &
SI);
560 bool CanInferFiniteOperandsFromResult =
561 TVI->getOpcode() == Instruction::FAdd ||
562 TVI->getOpcode() == Instruction::FSub ||
563 TVI->getOpcode() == Instruction::FMul;
565 (CanInferFiniteOperandsFromResult &&
584 if (
Instruction *R = TryFoldSelectIntoOp(
SI, TrueVal, FalseVal,
false))
587 if (
Instruction *R = TryFoldSelectIntoOp(
SI, FalseVal, TrueVal,
true))
600 const Value *CmpLHS = Cmp->getOperand(0);
601 const Value *CmpRHS = Cmp->getOperand(1);
608 if (CmpRHS == TVal) {
621 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, TVal, FVal);
627 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, TVal, FVal);
633 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, TVal, FVal);
643 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, TVal, FVal);
660 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
692 Constant *One = ConstantInt::get(SelType, 1);
693 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
694 Value *FullMask = Builder.CreateOr(
Y, MaskB);
695 Value *MaskedX = Builder.CreateAnd(
X, FullMask);
696 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
697 return new ZExtInst(ICmpNeZero, SelType);
719 const APInt *C2, *C1;
733 FI->setHasNoSignedWrap(
false);
734 FI->setHasNoUnsignedWrap(
false);
772 return Builder.CreateAShr(
X,
Y, IC->
getName(), IsExact);
800 const APInt &AndMask,
bool CreateAnd,
803 if (!TrueVal->getType()->isIntOrIntVectorTy())
806 unsigned C1Log = AndMask.
logBase2();
827 if (IdentityC ==
nullptr || !IdentityC->isNullValue())
832 bool NeedShift = C1Log != C2Log;
833 bool NeedZExtTrunc =
Y->getType()->getScalarSizeInBits() !=
834 V->getType()->getScalarSizeInBits();
837 if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
843 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
847 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
848 V = Builder.CreateShl(V, C2Log - C1Log);
849 }
else if (C1Log > C2Log) {
850 V = Builder.CreateLShr(V, C1Log - C2Log);
851 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
853 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
856 V = Builder.CreateXor(V, *C2);
858 auto *Res = Builder.CreateBinOp(BinOp->
getOpcode(),
Y, V);
860 BO->copyIRFlags(BinOp);
879 Constant *OrC = ConstantInt::get(Ty, *
C);
880 Value *NewSel = Builder.CreateSelect(
Cond, Zero, OrC,
"masksel", &Sel);
881 return BinaryOperator::CreateOr(
T, NewSel);
888 Constant *OrC = ConstantInt::get(Ty, *
C);
889 Value *NewSel = Builder.CreateSelect(
Cond, OrC, Zero,
"masksel", &Sel);
890 return BinaryOperator::CreateOr(
F, NewSel);
911 auto *CondVal =
SI.getCondition();
912 auto *TrueVal =
SI.getTrueValue();
913 auto *FalseVal =
SI.getFalseValue();
963 FalseValI->getOperand(0) ==
Y
965 : (FalseValI->getOperand(1) ==
Y ? 1 : 2),
974 const Value *TrueVal,
975 const Value *FalseVal,
995 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
996 ConstantInt::get(
A->getType(), 1));
1010 "Unexpected isUnsigned predicate!");
1016 bool IsNegative =
false;
1029 if (IsNegative && !TrueVal->hasOneUse() && !ICI->
hasOneUse())
1034 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
B);
1036 Result = Builder.CreateNeg(Result);
1045 Value *Cmp0 = Cmp->getOperand(0);
1046 Value *Cmp1 = Cmp->getOperand(1);
1066 return Builder.CreateBinaryIntrinsic(
1067 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1077 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1078 ConstantInt::get(Cmp0->
getType(), *
C));
1087 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1088 ConstantInt::get(Cmp0->
getType(), *
C));
1097 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1098 ConstantInt::get(Cmp0->
getType(), *
C));
1116 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat,
X,
Y);
1126 return Builder.CreateBinaryIntrinsic(
1136 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1,
Y);
1146 Value *Cmp0 = Cmp->getOperand(0);
1147 Value *Cmp1 = Cmp->getOperand(1);
1166 return Builder.CreateBinaryIntrinsic(
1167 Intrinsic::sadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1185 Pred = Flipped->first;
1186 Cmp1 = Flipped->second;
1194 return Builder.CreateBinaryIntrinsic(
1195 Intrinsic::sadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), *
C));
1211 return Builder.CreateBinaryIntrinsic(Intrinsic::sadd_sat,
X, Cmp1);
1219 if (!Cmp->hasOneUse())
1241 Value *
A = Cmp->getOperand(0);
1242 Value *
B = Cmp->getOperand(1);
1255 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1256 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1263 TI->setHasNoUnsignedWrap(
false);
1264 if (!TI->hasNoSignedWrap())
1265 TI->setHasNoSignedWrap(TI->hasOneUse());
1266 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1273 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1274 Builder.getFalse());
1281 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1282 Builder.getFalse());
1289 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1290 Builder.getFalse());
1297 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1298 Builder.getFalse());
1325 if (!
match(FalseVal,
1341 II->getModule(), Intrinsic::cttz,
II->getType());
1397 unsigned SizeOfInBits =
Count->getType()->getScalarSizeInBits();
1400 II->dropPoisonGeneratingAnnotations();
1412 II->dropUBImplyingAttrsAndMetadata();
1423 if (!
TrueVal->getType()->isIntOrIntVectorTy())
1463 if (!
I || !
I->hasOneUse() ||
1472 for (Use &U :
I->operands()) {
1505 bool Swapped =
false;
1506 if (
Cmp.isEquivalence(
true)) {
1509 }
else if (!
Cmp.isEquivalence()) {
1513 Value *CmpLHS =
Cmp.getOperand(0), *CmpRHS =
Cmp.getOperand(1);
1514 auto ReplaceOldOpWithNewOp = [&](
Value *OldOp,
1515 Value *NewOp) -> Instruction * {
1562 if (CanReplaceCmpLHSWithRHS) {
1563 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1567 if (CanReplaceCmpRHSWithLHS) {
1568 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1585 if ((CanReplaceCmpLHSWithRHS &&
1588 &DropFlags) == TrueVal) ||
1589 (CanReplaceCmpRHSWithLHS &&
1592 &DropFlags) == TrueVal)) {
1593 for (Instruction *
I : DropFlags) {
1594 I->dropPoisonGeneratingAnnotations();
1715 if (Cmp00->
getType() !=
X->getType() &&
X->hasOneUse())
1723 else if (!
match(Cmp00,
1731 Value *ReplacementLow, *ReplacementHigh;
1768 std::swap(ReplacementLow, ReplacementHigh);
1774 "Unexpected predicate type.");
1782 "Unexpected predicate type.");
1784 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1800 if (
X->getType() != Sel0.
getType()) {
1810 assert(ReplacementLow && ReplacementHigh &&
1811 "Constant folding of ImmConstant cannot fail");
1817 Value *MaybeReplacedLow =
1823 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1867 Value *SelVal0, *SelVal1;
1876 auto MatchesSelectValue = [SelVal0, SelVal1](
Constant *
C) {
1877 return C->isElementWiseEqual(SelVal0) ||
C->isElementWiseEqual(SelVal1);
1881 if (MatchesSelectValue(C0))
1886 if (!FlippedStrictness)
1890 if (!MatchesSelectValue(FlippedStrictness->second))
1899 Cmp.getName() +
".inv");
1910 if (!
Cmp->hasOneUse())
1940 Value *TVal =
SI.getTrueValue();
1941 Value *FVal =
SI.getFalseValue();
1975 Op->dropPoisonGeneratingFlags();
1980 MMI && MMI->getLHS() == V &&
match(MMI->getRHS(),
m_APInt(OpC))) {
1982 {InvDomCR, ConstantRange(*OpC)});
1984 MMI->dropPoisonGeneratingAnnotations();
2047 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
2079 Opcode = BOp->getOpcode();
2080 IsIntrinsic =
false;
2094 Opcode =
II->getIntrinsicID();
2102 const DataLayout &
DL =
Cmp->getDataLayout();
2111 if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
2114 }
else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
2116 RHS = Flipped->second;
2124 return Builder.CreateBinaryIntrinsic(Opcode, MinMax, C2);
2127 Value *BinOp =
Builder.CreateBinOp(BinOpc, MinMax, C2);
2132 if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
2133 BinOpc == Instruction::Mul) {
2136 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
true))
2137 BinOpInst->setHasNoSignedWrap();
2139 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
false))
2140 BinOpInst->setHasNoUnsignedWrap();
2158static Instruction *foldICmpUSubSatWithAndForMostSignificantBitCmp(
2164 const APInt *Constant1, *Constant2;
2182 auto *Ty =
A->getType();
2190 APInt AdjAP1 = *Constant1 - MostSignificantBit + 1;
2191 APInt AdjAP2 = *Constant2 - MostSignificantBit + 1;
2193 auto *Adj1 = ConstantInt::get(Ty, AdjAP1);
2194 auto *Adj2 = ConstantInt::get(Ty, AdjAP2);
2199 Constant *MSBConst = ConstantInt::get(Ty, MostSignificantBit);
2200 return BinaryOperator::CreateAnd(
Or, MSBConst);
2207 canonicalizeSPF(*ICI,
SI.getTrueValue(),
SI.getFalseValue(), *
this))
2210 if (
Value *V = foldSelectInstWithICmpConst(SI, ICI,
Builder))
2213 if (
Value *V = canonicalizeClampLike(SI, *ICI,
Builder, *
this))
2216 if (Instruction *NewSel =
2217 tryToReuseConstantFromSelectInComparison(SI, *ICI, *
this))
2219 if (Instruction *Folded =
2220 foldICmpUSubSatWithAndForMostSignificantBitCmp(SI, ICI,
Builder))
2231 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *
this))
2241 InstCombiner::BuilderTy::InsertPointGuard Guard(
Builder);
2246 SI.swapProfMetadata();
2253 if (Instruction *V =
2260 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal,
Builder))
2263 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal,
Builder))
2269 if (
Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *
this))
2297 if (
C ==
A ||
C ==
B) {
2312 Value *CondVal =
SI.getCondition();
2317 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2321 if ((TI->getOpcode() == Instruction::Sub &&
2322 FI->getOpcode() == Instruction::Add) ||
2323 (TI->getOpcode() == Instruction::FSub &&
2324 FI->getOpcode() == Instruction::FAdd)) {
2327 }
else if ((FI->getOpcode() == Instruction::Sub &&
2328 TI->getOpcode() == Instruction::Add) ||
2329 (FI->getOpcode() == Instruction::FSub &&
2330 TI->getOpcode() == Instruction::FAdd)) {
2336 Value *OtherAddOp =
nullptr;
2337 if (SubOp->getOperand(0) == AddOp->
getOperand(0)) {
2339 }
else if (SubOp->getOperand(0) == AddOp->
getOperand(1)) {
2347 if (
SI.getType()->isFPOrFPVectorTy()) {
2348 NegVal = Builder.
CreateFNeg(SubOp->getOperand(1));
2351 Flags &= SubOp->getFastMathFlags();
2352 NegInst->setFastMathFlags(Flags);
2355 NegVal = Builder.
CreateNeg(SubOp->getOperand(1));
2358 Value *NewTrueOp = OtherAddOp;
2359 Value *NewFalseOp = NegVal;
2363 SI.getName() +
".p", &
SI);
2365 if (
SI.getType()->isFPOrFPVectorTy()) {
2367 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2370 Flags &= SubOp->getFastMathFlags();
2374 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2387 Value *CondVal =
SI.getCondition();
2399 auto IsSignedSaturateLimit = [&](
Value *Limit,
bool IsAdd) {
2409 auto IsZeroOrOne = [](
const APInt &
C) {
return C.isZero() ||
C.isOne(); };
2426 IsMinMax(TrueVal, FalseVal))
2433 IsMinMax(FalseVal, TrueVal))
2439 IsMinMax(TrueVal, FalseVal))
2444 IsMinMax(FalseVal, TrueVal))
2449 IsMinMax(FalseVal, TrueVal))
2454 IsMinMax(TrueVal, FalseVal))
2462 if (
II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2465 NewIntrinsicID = Intrinsic::uadd_sat;
2466 else if (
II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2469 NewIntrinsicID = Intrinsic::usub_sat;
2470 else if (
II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2471 IsSignedSaturateLimit(TrueVal,
true))
2480 NewIntrinsicID = Intrinsic::sadd_sat;
2481 else if (
II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2482 IsSignedSaturateLimit(TrueVal,
false))
2491 NewIntrinsicID = Intrinsic::ssub_sat;
2496 NewIntrinsicID,
SI.getType());
2512 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2522 (!Cmp ||
Cmp->getOperand(0)->getType() != SmallType))
2546 Value *CondVal =
SI.getCondition();
2552 unsigned NumElts = CondValTy->getNumElements();
2554 Mask.reserve(NumElts);
2555 for (
unsigned i = 0; i != NumElts; ++i) {
2565 Mask.push_back(i + NumElts);
2618 if (TVal ==
A || TVal ==
B || FVal ==
A || FVal ==
B)
2635 if (TSrc ==
C && FSrc ==
D) {
2639 }
else if (TSrc ==
D && FSrc ==
C) {
2681 if (Extract->getIndices()[0] !=
I)
2690 if (
Select->getCondition() ==
SI.getCondition())
2691 if (
Select->getFalseValue() ==
SI.getTrueValue() ||
2692 Select->getTrueValue() ==
SI.getFalseValue())
2696 auto *CmpXchg = isExtractFromCmpXchg(
SI.getCondition(), 1);
2703 if (
auto *
X = isExtractFromCmpXchg(
SI.getTrueValue(), 0))
2704 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getFalseValue())
2705 return SI.getFalseValue();
2710 if (
auto *
X = isExtractFromCmpXchg(
SI.getFalseValue(), 0))
2711 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getTrueValue())
2712 return SI.getFalseValue();
2736 Value *SV0, *SV1, *SA0, *SA1;
2745 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2751 Or1->
getOpcode() == BinaryOperator::LShr &&
2752 "Illegal or(shift,shift) pair");
2767 bool IsFshl = (ShAmt == SA0);
2769 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2789 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2811 assert(TC != FC &&
"Expected equal select arms to simplify");
2815 bool IsTrueIfSignSet;
2833 Value *MagArg = ConstantFP::get(SelType,
abs(*TC));
2852 I->copyIRFlags(&Sel);
2855 M, Intrinsic::vector_reverse,
V->getType());
2863 return createSelReverse(
C,
X,
Y);
2867 return createSelReverse(
C,
X, FVal);
2872 return createSelReverse(
C, TVal,
Y);
2879 unsigned NumElts = VecTy->getNumElements();
2880 APInt PoisonElts(NumElts, 0);
2898 return new ShuffleVectorInst(
X, NewSel, Mask);
2903 return new ShuffleVectorInst(NewSel,
Y, Mask);
2912 return new ShuffleVectorInst(
X, NewSel, Mask);
2917 return new ShuffleVectorInst(NewSel,
Y, Mask);
2929 auto *IDomNode = DT[BB]->getIDom();
2935 Value *IfTrue, *IfFalse;
2951 if (TrueSucc == FalseSucc)
2973 if (!DT.
dominates(Insn, Pred->getTerminator()))
2992 CandidateBlocks.
insert(
I->getParent());
2995 if (
auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
3008 Value *CondVal =
SI.getCondition();
3013 Value *
Op, *RemRes, *Remainder;
3015 bool TrueIfSigned =
false;
3029 return BinaryOperator::CreateAnd(
Op,
Add);
3041 return FoldToBitwiseAnd(Remainder);
3050 return FoldToBitwiseAnd(ConstantInt::get(RemRes->
getType(), 2));
3060 Value *InnerCondVal =
SI.getCondition();
3061 Value *InnerTrueVal =
SI.getTrueValue();
3062 Value *InnerFalseVal =
SI.getFalseValue();
3064 "The type of inner condition must match with the outer.");
3066 return *Implied ? InnerTrueVal : InnerFalseVal;
3073 assert(
Op->getType()->isIntOrIntVectorTy(1) &&
3074 "Op must be either i1 or vector of i1.");
3075 if (
SI.getCondition()->getType() !=
Op->getType())
3077 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(SI,
Op, IsAnd,
DL))
3078 return createSelectInstWithUnknownProfile(
3088 Value *CondVal =
SI.getCondition();
3090 bool ChangedFMF =
false;
3091 for (
bool Swap : {
false,
true}) {
3129 if (FMF.
noNaNs() && !
SI.hasNoNaNs()) {
3130 SI.setHasNoNaNs(
true);
3133 if (FMF.
noInfs() && !
SI.hasNoInfs()) {
3134 SI.setHasNoInfs(
true);
3141 SI.setHasNoNaNs(
true);
3155 if (!
SI.hasNoSignedZeros() &&
3158 if (!
SI.hasNoNaNs() &&
3176 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
3185 for (
bool Swap : {
false,
true}) {
3201 if (Swap == TrueIfSigned && !CondVal->
hasOneUse() && !
TrueVal->hasOneUse())
3207 if (Swap != TrueIfSigned)
3212 return ChangedFMF ? &
SI :
nullptr;
3234 Value *XBiasedHighBits =
SI.getFalseValue();
3247 const APInt *LowBitMaskCst;
3252 const APInt *BiasCst, *HighBitMaskCst;
3253 if (!
match(XBiasedHighBits,
3256 !
match(XBiasedHighBits,
3261 if (!LowBitMaskCst->
isMask())
3264 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
3265 if (InvertedLowBitMaskCst != *HighBitMaskCst)
3268 APInt AlignmentCst = *LowBitMaskCst + 1;
3270 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
3275 if (*BiasCst == *LowBitMaskCst &&
impliesPoison(XBiasedHighBits,
X))
3276 return XBiasedHighBits;
3281 Type *Ty =
X->getType();
3282 Value *XOffset = Builder.
CreateAdd(
X, ConstantInt::get(Ty, *LowBitMaskCst),
3283 X->getName() +
".biased");
3284 Value *
R = Builder.
CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3290struct DecomposedSelect {
3302foldSelectOfSymmetricSelect(
SelectInst &OuterSelVal,
3305 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3333 DecomposedSelect OuterSel;
3340 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3348 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3356 DecomposedSelect InnerSel;
3357 if (!
match(InnerSelVal,
3364 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3366 Value *AltCond =
nullptr;
3367 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](
auto m_InnerCond) {
3372 return IsAndVariant ?
match(OuterSel.Cond,
3382 if (matchOuterCond(
m_Specific(InnerSel.Cond))) {
3387 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3388 InnerSel.Cond = NotInnerCond;
3393 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3394 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3397 IsAndVariant ? SelInner : InnerSel.TrueVal,
3398 !IsAndVariant ? SelInner : InnerSel.FalseVal);
3404static bool impliesPoisonOrCond(
const Value *ValAssumedPoison,
const Value *V,
3416 if (ICmp->hasSameSign() &&
3435 Value *CondVal =
SI.getCondition();
3438 Type *SelType =
SI.getType();
3455 if (impliesPoisonOrCond(FalseVal, CondVal,
false)) {
3457 return BinaryOperator::CreateOr(CondVal, FalseVal);
3461 impliesPoisonOrCond(FalseVal,
B,
false)) {
3476 auto AndFactorization = [&](
Value *Common,
Value *InnerCond,
3478 bool SelFirst =
false) -> Instruction * {
3479 Value *InnerSel =
Builder.CreateSelect(InnerCond, One, InnerVal);
3482 if (FalseLogicAnd || (CondLogicAnd && Common ==
A))
3485 return BinaryOperator::CreateAnd(Common, InnerSel);
3489 return AndFactorization(
A,
B,
D);
3491 return AndFactorization(
A,
B,
C);
3493 return AndFactorization(
B,
A,
D);
3495 return AndFactorization(
B,
A,
C, CondLogicAnd && FalseLogicAnd);
3500 if (impliesPoisonOrCond(TrueVal, CondVal,
true)) {
3502 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3506 impliesPoisonOrCond(TrueVal,
B,
true)) {
3521 auto OrFactorization = [&](
Value *Common,
Value *InnerCond,
3523 bool SelFirst =
false) -> Instruction * {
3524 Value *InnerSel =
Builder.CreateSelect(InnerCond, InnerVal, Zero);
3527 if (TrueLogicOr || (CondLogicOr && Common ==
A))
3530 return BinaryOperator::CreateOr(Common, InnerSel);
3534 return OrFactorization(
A,
B,
D);
3536 return OrFactorization(
A,
B,
C);
3538 return OrFactorization(
B,
A,
D);
3540 return OrFactorization(
B,
A,
C, CondLogicOr && TrueLogicOr);
3601 return BinaryOperator::CreateXor(
A,
B);
3619 Value *AndV =
Builder.CreateSelect(NotC, FalseVal, Zero);
3635 auto *FI =
new FreezeInst(*
Y, (*Y)->getName() +
".fr");
3641 if (
auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
3652 if (Res && *Res ==
false)
3658 if (Res && *Res ==
false)
3667 if (Res && *Res ==
true)
3673 if (Res && *Res ==
true)
3688 bool MayNeedFreeze = SelCond && SelFVal &&
3689 match(SelFVal->getTrueValue(),
3694 Value *C2 =
nullptr, *A2 =
nullptr, *B2 =
nullptr;
3698 }
else if (
match(FalseVal,
3705 return createSelectInstWithUnknownProfile(
C,
A,
B);
3719 bool MayNeedFreeze = SelCond && SelFVal &&
3720 match(SelCond->getTrueValue(),
3725 Value *C2 =
nullptr, *A2 =
nullptr, *B2 =
nullptr;
3735 return createSelectInstWithUnknownProfile(
C,
B,
A);
3750 bool &ShouldDropNoWrap) {
3773 ShouldDropNoWrap =
false;
3779 auto MatchForward = [&](
Value *CommonAncestor) {
3780 const APInt *
C =
nullptr;
3781 if (CtlzOp == CommonAncestor)
3784 ShouldDropNoWrap =
true;
3789 ShouldDropNoWrap =
true;
3800 const APInt *
C =
nullptr;
3801 Value *CommonAncestor;
3802 if (MatchForward(Cond0)) {
3806 if (!MatchForward(CommonAncestor))
3844 Type *SelType =
SI.getType();
3853 Value *Cond0, *Ctlz, *CtlzOp;
3862 bool ShouldDropNoWrap;
3869 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp,
BitWidth,
3873 if (ShouldDropNoWrap) {
3905 Value *TV =
SI.getTrueValue();
3906 Value *FV =
SI.getFalseValue();
3927 auto FlippedPredAndConst =
3929 if (!FlippedPredAndConst)
3931 Pred = FlippedPredAndConst->first;
3932 RHS = FlippedPredAndConst->second;
3949 bool Replace =
false;
3950 CmpPredicate ExtendedCmpPredicate;
3970 CmpPredicate FalseBranchSelectPredicate;
3971 const APInt *InnerTV, *InnerFV;
3977 FalseBranchSelectPredicate =
3982 if (!InnerTV->
isOne()) {
3998 CmpPredicate InnerPred;
4000 const APInt *InnerTV, *InnerFV;
4009 bool CanSubOne = IsSigned ? !
C->isMinSignedValue() : !
C->isMinValue();
4011 APInt Cminus1 = *
C - 1;
4021 bool CanAddOne = IsSigned ? !
C->isMaxSignedValue() : !
C->isMaxValue();
4023 APInt Cplus1 = *
C + 1;
4032 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
4035 SI,
Builder.CreateIntrinsic(
SI.getType(), IID, {LHS, RHS}));
4083 return Op->getType()->isIntOrIntVectorTy() &&
4084 hasAffectedValue(Op, Affected, Depth + 1);
4098 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
4101 auto TryFoldIntoAddConstant =
4113 Swapped ?
X : Z,
"", &
SI);
4144 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
false);
4148 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
true);
4164 bool CreateAnd =
false;
4166 Value *CmpLHS, *CmpRHS;
4174 const APInt *AndRHS;
4181 AndMask = Res->Mask;
4194 V = Trunc->getOperand(0);
4195 AndMask =
APInt(
V->getType()->getScalarSizeInBits(), 1);
4197 CreateAnd = !Trunc->hasNoUnsignedWrap();
4206 CreateAnd, Builder))
4210 CreateAnd, Builder))
4217 Value *CondVal =
SI.getCondition();
4220 Type *SelType =
SI.getType();
4223 SQ.getWithInstruction(&SI)))
4226 if (Instruction *
I = canonicalizeSelectToShuffle(SI))
4229 if (Instruction *
I = canonicalizeScalarSelectOfVecs(SI, *
this))
4271 return new ZExtInst(CondVal, SelType);
4275 return new SExtInst(CondVal, SelType);
4280 return new ZExtInst(NotCond, SelType);
4286 return new SExtInst(NotCond, SelType);
4294 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
4296 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
4297 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
4305 Value *NewCond =
Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp,
4306 FCmp->getName() +
".inv");
4308 FastMathFlags FMF =
SI.getFastMathFlags();
4309 if (FCmp->hasNoNaNs())
4311 if (FCmp->hasNoInfs())
4314 Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FMF);
4333 Value *MatchCmp0 =
nullptr;
4334 Value *MatchCmp1 =
nullptr;
4346 if (Cmp0 == MatchCmp0 &&
4347 matchFMulByZeroIfResultEqZero(*
this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
4348 SI, SIFPOp->hasNoSignedZeros()))
4360 if (SIFPOp->hasNoNaNs() &&
4361 (SIFPOp->hasNoSignedZeros() ||
4362 (SIFPOp->hasOneUse() &&
4367 Builder.CreateBinaryIntrinsic(Intrinsic::maxnum,
X,
Y, &SI);
4369 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4370 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4377 Builder.CreateBinaryIntrinsic(Intrinsic::minnum,
X,
Y, &SI);
4379 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4380 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4388 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *
this))
4400 if (
Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal,
Builder,
SQ))
4403 if (Instruction *
Add = foldAddSubSelect(SI,
Builder))
4405 if (Instruction *
Add = foldOverflowingAddSubSelect(SI,
Builder))
4415 if (TI && FI && TI->getOpcode() == FI->getOpcode())
4422 if (Instruction *
I = foldSelectWithSRem(SI, *
this,
Builder))
4427 auto SelectGepWithBase = [&](GetElementPtrInst *Gep,
Value *
Base,
4428 bool Swap) -> GetElementPtrInst * {
4442 Builder.CreateSelect(CondVal, NewT, NewF,
SI.getName() +
".idx", &SI);
4447 if (
auto *NewGep = SelectGepWithBase(TrueGep, FalseVal,
false))
4450 if (
auto *NewGep = SelectGepWithBase(FalseGep, TrueVal,
true))
4466 RHS2, SI, SPF,
RHS))
4470 RHS2, SI, SPF,
LHS))
4479 bool IsCastNeeded =
LHS->
getType() != SelType;
4484 ((CmpLHS !=
LHS && CmpLHS !=
RHS) ||
4485 (CmpRHS !=
LHS && CmpRHS !=
RHS)))) {
4499 Value *NewCast =
Builder.CreateCast(CastOp, NewSI, SelType);
4511 if (TrueSI->getCondition()->getType() == CondVal->
getType()) {
4514 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4515 *TrueSI, CondVal,
true,
DL))
4522 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
4523 Value *
And =
Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
4531 if (FalseSI->getCondition()->getType() == CondVal->
getType()) {
4534 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4535 *FalseSI, CondVal,
false,
DL))
4539 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
4540 Value *
Or =
Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
4554 BinaryOperator *TrueBO;
4557 if (TrueBOSI->getCondition() == CondVal) {
4564 if (TrueBOSI->getCondition() == CondVal) {
4573 BinaryOperator *FalseBO;
4576 if (FalseBOSI->getCondition() == CondVal) {
4583 if (FalseBOSI->getCondition() == CondVal) {
4596 SI.swapProfMetadata();
4617 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI,
Builder))
4621 if (
Value *V = foldSelectCmpXchg(SI))
4627 if (Instruction *Funnel = foldSelectFunnelShift(SI,
Builder))
4630 if (Instruction *Copysign = foldSelectToCopysign(SI,
Builder))
4633 if (Instruction *PN = foldSelectToPhi(SI,
DT,
Builder))
4636 if (
Value *V = foldRoundUpIntegerWithPow2Alignment(SI,
Builder))
4651 MaskedInst->setArgOperand(2, FalseVal );
4666 bool CanMergeSelectIntoLoad =
false;
4670 if (CanMergeSelectIntoLoad) {
4673 MaskedInst->setArgOperand(2, TrueVal );
4678 if (Instruction *
I = foldSelectOfSymmetricSelect(SI,
Builder))
4681 if (Instruction *
I = foldNestedSelects(SI,
Builder))
4691 if (Instruction *
I = foldBitCeil(SI,
Builder, *
this))
4705 auto FoldSelectWithAndOrCond = [&](
bool IsAnd,
Value *
A,
4706 Value *
B) -> Instruction * {
4708 SQ.getWithInstruction(&SI))) {
4716 if (NewTrueVal == TrueVal && NewFalseVal == FalseVal &&
4727 if (
Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *
this))
4729 IsAnd ? FalseVal : V);
4737 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4739 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
RHS,
LHS))
4742 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4744 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
RHS,
LHS))
4750 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4753 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4760 return BinaryOperator::CreateXor(CondVal, FalseVal);
4767 CondContext CC(CondVal);
4769 CC.AffectedValues.insert(V);
4771 SimplifyQuery Q =
SQ.getWithInstruction(&SI).getWithCondContext(CC);
4772 if (!CC.AffectedValues.empty()) {
4774 hasAffectedValue(TrueVal, CC.AffectedValues, 0)) {
4783 hasAffectedValue(FalseVal, CC.AffectedValues, 0)) {
4798 if (TrueVal == Trunc)
4800 if (FalseVal == Trunc)
4804 if (TrueVal == Trunc)
4807 if (FalseVal == Trunc)
4811 Value *MaskedLoadPtr;
4816 TrueVal->getType(), MaskedLoadPtr,
4818 CondVal, FalseVal));
4823 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
4825 Value *CmpLHS, *CmpRHS;
4842 SI.getModule(), Intrinsic::scmp, {SI.getType(), SI.getType()});
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const HexagonInstrInfo * TII
This file provides internal interfaces used to implement the InstCombine.
static Value * foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Try to fold a select to a min/max intrinsic.
static Value * canonicalizeSaturatedAddSigned(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Instruction * foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder)
Canonicalize a set or clear of a masked set of constant bits to select-of-constants form.
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond,...
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ?
static Value * foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
Try to match patterns with select and subtract as absolute difference.
static Instruction * foldSelectZeroOrFixedOp(SelectInst &SI, InstCombinerImpl &IC)
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC)
Replace a select operand based on an equality comparison with the identity constant of a binop.
static Value * foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
static Value * foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); iff C1 is a mask and th...
static Value * canonicalizeSaturatedAddUnsigned(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static Value * foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) into: IF C2 u>= C1 (BinOp Y,...
This file provides the interface for the instcombine pass implementation.
Machine Check Debug Module
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static const uint32_t IV[8]
bool bitwiseIsEqual(const APFloat &RHS) const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isMinValue() const
Determine if this is the smallest unsigned value.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countLeadingZeros() const
unsigned logBase2() const
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
bool isMaxValue() const
Determine if this is the largest unsigned value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
An instruction that atomically checks whether a specified value is in a memory location,...
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
bool isNonStrictPredicate() const
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
bool isIntPredicate() const
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Tagged union holding either a T or a Error.
Utility class for floating point operations which can have information about relaxed accuracy require...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
bool noSignedZeros() const
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
void setNoInfs(bool B=true)
This class represents a freeze function that returns random concrete value if an operand is either a ...
Value * getPointerOperand()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
static CmpPredicate getSwappedCmpPredicate(CmpPredicate Pred)
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Common base class shared among various IRBuilders.
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldVectorSelect(SelectInst &Sel)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Instruction * foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
We have (select c, TI, FI), and we know that TI and FI have the same opcode.
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldSelectIntoOp(SelectInst &SI, Value *, Value *)
Try to fold the select into one of the operands to allow further optimization.
Value * foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, Value *FalseVal)
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool isSameOperationAs(const Instruction *I, unsigned flags=0) const LLVM_READONLY
This function determines if the specified instruction executes the same operation as the current one.
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setHasNoNaNs(bool B)
Set or clear the no-nans flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool contains(ConstPtrType Ptr) const
A SetVector that performs no allocations if smaller than a certain size.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
CommutativeBinaryIntrinsic_match< IntrID, T0, T1 > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedLoad Intrinsic.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ap_match< APInt > m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedGather Intrinsic.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
ElementType
The element type of an SRV or UAV resource.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr unsigned MaxAnalysisRecursionDepth
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
FunctionAddr VTableAddr Count
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithInstruction(const Instruction *I) const