44#define DEBUG_TYPE "instcombine"
50 "Number of aggregate reconstructions turned into reuse of the "
51 "original aggregate");
63 return CEI ||
C->getSplatValue();
102 SmallVector<Instruction *, 2> Extracts;
108 for (
auto *U : PN->
users()) {
114 }
else if (!PHIUser) {
142 if (PHIInVal == PHIUser) {
147 unsigned opId = (B0->
getOperand(0) == PN) ? 1 : 0;
179 for (
auto *
E : Extracts) {
195 ElementCount NumElts =
199 bool IsBigEndian =
DL.isBigEndian();
203 if (
X->getType()->isIntegerTy()) {
205 "Expected fixed vector type for bitcast from scalar integer");
212 unsigned ShiftAmountC = ExtIndexC * DestWidth;
213 if ((!ShiftAmountC ||
214 isDesirableIntType(
X->getType()->getPrimitiveSizeInBits())) &&
217 X =
Builder.CreateLShr(
X, ShiftAmountC,
"extelt.offset");
221 return new BitCastInst(Trunc, DestTy);
223 return new TruncInst(
X, DestTy);
227 if (!
X->getType()->isVectorTy())
234 ElementCount NumSrcElts = SrcTy->getElementCount();
235 if (NumSrcElts == NumElts)
237 return new BitCastInst(Elt, DestTy);
240 "Src and Dst must be the same sort of vector type");
256 unsigned NarrowingRatio =
259 if (ExtIndexC / NarrowingRatio != InsIndexC) {
283 unsigned Chunk = ExtIndexC % NarrowingRatio;
285 Chunk = NarrowingRatio - 1 - Chunk;
290 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
292 if (NeedSrcBitcast && NeedDestBitcast)
295 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
296 unsigned ShAmt = Chunk * DestWidth;
302 if (NeedSrcBitcast || NeedDestBitcast)
305 if (NeedSrcBitcast) {
317 if (NeedDestBitcast) {
319 return new BitCastInst(
Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
321 return new TruncInst(Scalar, DestTy);
330 APInt &UnionUsedElts) {
334 case Instruction::ExtractElement: {
338 if (EEIIndexC && EEIIndexC->
getValue().
ult(VWidth)) {
344 case Instruction::ShuffleVector: {
346 unsigned MaskNumElts =
351 if (MaskVal == -1u || MaskVal >= 2 * VWidth)
353 if (Shuffle->
getOperand(0) == V && (MaskVal < VWidth))
354 UnionUsedElts.
setBit(MaskVal);
356 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
357 UnionUsedElts.
setBit(MaskVal - VWidth);
375 APInt UnionUsedElts(VWidth, 0);
376 for (
const Use &U : V->
uses()) {
389 return UnionUsedElts;
408 SQ.getWithInstruction(&EI)))
420 if (
SI->getCondition()->getType()->isIntegerTy() &&
428 bool HasKnownValidIndex =
false;
435 unsigned NumElts = EC.getKnownMinValue();
436 HasKnownValidIndex = IndexC->getValue().ult(NumElts);
442 if (IID == Intrinsic::stepvector && IndexC->getValue().ult(NumElts)) {
444 unsigned BitWidth = Ty->getIntegerBitWidth();
448 if (IndexC->getValue().getActiveBits() <=
BitWidth)
449 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(
BitWidth));
458 if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
467 if (
Instruction *ScalarPHI = scalarizePHI(EI, Phi))
492 (HasKnownValidIndex ||
523 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
524 if (IndexC && IdxVal < EC.getKnownMinValue() &&
GEP->hasOneUse()) {
535 return isa<VectorType>(V->getType());
537 if (VectorOps == 1) {
538 Value *NewPtr =
GEP->getPointerOperand();
540 NewPtr =
Builder.CreateExtractElement(NewPtr, IndexC);
543 for (
unsigned I = 1;
I !=
GEP->getNumOperands(); ++
I) {
552 GEP->getSourceElementType(), NewPtr, NewOps);
566 std::optional<int> SrcIdx;
568 if (SplatIndex != -1)
571 SrcIdx = SVI->getMaskValue(CI->getZExtValue());
581 if (*SrcIdx < (
int)LHSWidth)
582 Src = SVI->getOperand(0);
585 Src = SVI->getOperand(1);
589 Src, ConstantInt::get(Int64Ty, *SrcIdx,
false));
596 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
597 Value *EE =
Builder.CreateExtractElement(CI->getOperand(0), Index);
608 unsigned NumElts = EC.getKnownMinValue();
612 if (!EC.isScalable() && NumElts != 1) {
616 APInt PoisonElts(NumElts, 0);
617 APInt DemandedElts(NumElts, 0);
618 DemandedElts.
setBit(IndexC->getZExtValue());
627 APInt PoisonElts(NumElts, 0);
629 SrcVec, DemandedElts, PoisonElts, 0 ,
649 "Invalid CollectSingleShuffleElements");
653 Mask.assign(NumElts, -1);
658 for (
unsigned i = 0; i != NumElts; ++i)
664 for (
unsigned i = 0; i != NumElts; ++i)
665 Mask.push_back(i + NumElts);
671 Value *VecOp = IEI->getOperand(0);
672 Value *ScalarOp = IEI->getOperand(1);
673 Value *IdxOp = IEI->getOperand(2);
684 Mask[InsertedIdx] = -1;
689 unsigned ExtractedIdx =
691 unsigned NumLHSElts =
701 Mask[InsertedIdx % NumElts] = ExtractedIdx;
704 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
724 unsigned NumInsElts = InsVecType->getNumElements();
725 unsigned NumExtElts = ExtVecType->getNumElements();
728 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
729 NumExtElts >= NumInsElts)
742 for (
unsigned i = 0; i < NumExtElts; ++i)
744 for (
unsigned i = NumExtElts; i < NumInsElts; ++i)
761 if (InsertionBlock != InsElt->
getParent())
779 WideVec->insertAfter(ExtVecOpInst->getIterator());
787 if (!OldExt || OldExt->
getParent() != WideVec->getParent())
813 assert(V->getType()->isVectorTy() &&
"Invalid shuffle!");
817 Mask.assign(NumElts, -1);
818 return std::make_pair(
823 Mask.assign(NumElts, 0);
824 return std::make_pair(V,
nullptr);
829 Value *VecOp = IEI->getOperand(0);
830 Value *ScalarOp = IEI->getOperand(1);
831 Value *IdxOp = IEI->getOperand(2);
835 unsigned ExtractedIdx =
841 if (EI->
getOperand(0) == PermittedRHS || PermittedRHS ==
nullptr) {
844 assert(LR.second ==
nullptr || LR.second ==
RHS);
846 if (LR.first->getType() !=
RHS->getType()) {
854 for (
unsigned i = 0; i < NumElts; ++i)
856 return std::make_pair(V,
nullptr);
859 unsigned NumLHSElts =
861 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
862 return std::make_pair(LR.first,
RHS);
865 if (VecOp == PermittedRHS) {
868 unsigned NumLHSElts =
871 for (
unsigned i = 0; i != NumElts; ++i)
872 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
873 return std::make_pair(EI->
getOperand(0), PermittedRHS);
881 return std::make_pair(EI->
getOperand(0), PermittedRHS);
887 for (
unsigned i = 0; i != NumElts; ++i)
889 return std::make_pair(V,
nullptr);
915 assert(NumAggElts > 0 &&
"Aggregate should have elements.");
919 static constexpr auto NotFound = std::nullopt;
920 static constexpr auto FoundMismatch =
nullptr;
927 auto KnowAllElts = [&AggElts]() {
935 static const int DepthLimit = 2 * NumAggElts;
940 Depth < DepthLimit && CurrIVI && !KnowAllElts();
943 auto *InsertedValue =
951 if (Indices.
size() != 1)
957 std::optional<Instruction *> &Elt = AggElts[Indices.
front()];
958 Elt = Elt.value_or(InsertedValue);
971 enum class AggregateDescription {
987 auto Describe = [](std::optional<Value *> SourceAggregate) {
988 if (SourceAggregate == NotFound)
989 return AggregateDescription::NotFound;
990 if (*SourceAggregate == FoundMismatch)
991 return AggregateDescription::FoundMismatch;
992 return AggregateDescription::Found;
996 bool EltDefinedInUseBB =
false;
1003 auto FindSourceAggregate =
1004 [&](
Instruction *Elt,
unsigned EltIdx, std::optional<BasicBlock *> UseBB,
1005 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1007 if (UseBB && PredBB) {
1010 EltDefinedInUseBB =
true;
1019 Value *SourceAggregate = EVI->getAggregateOperand();
1022 if (SourceAggregate->
getType() != AggTy)
1023 return FoundMismatch;
1025 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
1026 return FoundMismatch;
1028 return SourceAggregate;
1034 auto FindCommonSourceAggregate =
1035 [&](std::optional<BasicBlock *> UseBB,
1036 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1037 std::optional<Value *> SourceAggregate;
1040 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
1041 "We don't store nullptr in SourceAggregate!");
1042 assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1044 "SourceAggregate should be valid after the first element,");
1049 std::optional<Value *> SourceAggregateForElement =
1050 FindSourceAggregate(*
I.value(),
I.index(), UseBB, PredBB);
1057 if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1058 return SourceAggregateForElement;
1062 switch (Describe(SourceAggregate)) {
1063 case AggregateDescription::NotFound:
1065 SourceAggregate = SourceAggregateForElement;
1067 case AggregateDescription::Found:
1070 if (*SourceAggregateForElement != *SourceAggregate)
1071 return FoundMismatch;
1073 case AggregateDescription::FoundMismatch:
1078 assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1079 "Must be a valid Value");
1080 return *SourceAggregate;
1083 std::optional<Value *> SourceAggregate;
1086 SourceAggregate = FindCommonSourceAggregate(std::nullopt,
1088 if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1089 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1091 ++NumAggregateReconstructionsSimplified;
1104 for (
const std::optional<Instruction *> &
I : AggElts) {
1128 static const int PredCountLimit = 64;
1135 if (Preds.
size() >= PredCountLimit)
1144 bool FoundSrcAgg =
false;
1146 std::pair<
decltype(SourceAggregates)
::iterator,
bool>
IV =
1155 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1156 if (Describe(SourceAggregate) == AggregateDescription::Found) {
1158 IV.first->second = *SourceAggregate;
1163 if (!BI || !BI->isUnconditional())
1173 for (
auto &It : SourceAggregates) {
1174 if (Describe(It.second) == AggregateDescription::Found)
1178 if (EltDefinedInUseBB)
1186 if (UseBB != OrigBB)
1191 bool ConstAgg =
true;
1192 for (
auto Val : AggElts) {
1205 for (
auto &It : SourceAggregates) {
1206 if (Describe(It.second) == AggregateDescription::Found)
1210 Builder.SetInsertPoint(Pred->getTerminator());
1212 for (
auto [Idx, Val] :
enumerate(AggElts)) {
1214 V =
Builder.CreateInsertValue(V, Elt, Idx);
1226 Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt());
1230 PHI->addIncoming(SourceAggregates[Pred], Pred);
1232 ++NumAggregateReconstructionsSimplified;
1245 I.getAggregateOperand(),
I.getInsertedValueOperand(),
I.getIndices(),
1246 SQ.getWithInstruction(&
I)))
1249 bool IsRedundant =
false;
1258 while (V->hasOneUse() &&
Depth < 10) {
1261 if (!UserInsInst || U->getOperand(0) != V)
1263 if (UserInsInst->getIndices() == FirstIndices) {
1291 if (MaskSize != VecSize)
1296 for (
int i = 0; i != MaskSize; ++i) {
1298 if (Elt != -1 && Elt != i && Elt != i + VecSize)
1323 if (NumElements == 1)
1335 if (!Idx || CurrIE->
getOperand(1) != SplatVal)
1342 if (CurrIE != &InsElt &&
1343 (!CurrIE->
hasOneUse() && (NextIE !=
nullptr || !Idx->isZero())))
1346 ElementPresent[Idx->getZExtValue()] =
true;
1352 if (FirstIE == &InsElt)
1360 if (!ElementPresent.
all())
1366 Constant *Zero = ConstantInt::get(Int64Ty, 0);
1373 for (
unsigned i = 0; i != NumElements; ++i)
1374 if (!ElementPresent[i])
1385 if (!Shuf || !Shuf->isZeroEltSplat())
1400 Value *Op0 = Shuf->getOperand(0);
1408 unsigned NumMaskElts =
1411 for (
unsigned i = 0; i != NumMaskElts; ++i)
1412 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1423 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1439 Value *
X = Shuf->getOperand(0);
1447 unsigned NumMaskElts =
1451 for (
unsigned i = 0; i != NumMaskElts; ++i) {
1454 NewMask[i] = OldMask[i];
1455 }
else if (OldMask[i] == (
int)IdxC) {
1461 "Unexpected shuffle mask element for identity shuffle");
1481 if (!InsElt1 || !InsElt1->hasOneUse())
1492 Value *NewInsElt1 = Builder.CreateInsertElement(
X, ScalarC, IdxC2);
1505 if (!Inst || !Inst->hasOneUse())
1510 Constant *ShufConstVec, *InsEltScalar;
1534 unsigned NumElts = Mask.size();
1537 for (
unsigned I = 0;
I != NumElts; ++
I) {
1538 if (
I == InsEltIndex) {
1539 NewShufElts[
I] = InsEltScalar;
1540 NewMaskElts[
I] = InsEltIndex + NumElts;
1544 NewMaskElts[
I] = Mask[
I];
1548 if (!NewShufElts[
I])
1575 auto ValI = std::begin(Val);
1582 Mask[
I] = NumElts +
I;
1587 for (
unsigned I = 0;
I < NumElts; ++
I) {
1619 CastOpcode = Instruction::FPExt;
1621 CastOpcode = Instruction::SExt;
1623 CastOpcode = Instruction::ZExt;
1628 if (
X->getType()->getScalarType() !=
Y->getType())
1656 Value *Scalar0, *BaseVec;
1658 if (!VTy || (VTy->getNumElements() & 1) ||
1667 if (Index0 + 1 != Index1 || Index0 & 1)
1684 Type *SrcTy =
X->getType();
1685 unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1686 unsigned VecEltWidth = VTy->getScalarSizeInBits();
1687 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1692 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1696 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1697 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec,
X, NewIndex);
1702 Value *VecOp = IE.getOperand(0);
1703 Value *ScalarOp = IE.getOperand(1);
1704 Value *IdxOp = IE.getOperand(2);
1707 VecOp, ScalarOp, IdxOp,
SQ.getWithInstruction(&IE)))
1715 Value *BaseVec, *OtherScalar;
1720 !
isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1721 Value *NewIns =
Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1723 Builder.getInt64(OtherIndexVal));
1741 Value *NewInsElt =
Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1756 Value *NewInsElt =
Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1764 uint64_t InsertedIdx, ExtractedIdx;
1788 if (!Insert.hasOneUse())
1797 if (isShuffleRootCandidate(IE)) {
1808 if (LR.first != &IE && LR.second != &IE) {
1810 if (LR.second ==
nullptr)
1819 unsigned VWidth = VecTy->getNumElements();
1820 APInt PoisonElts(VWidth, 0);
1843 return IdentityShuf;
1857 unsigned Depth = 5) {
1864 if (!
I)
return false;
1867 if (!
I->hasOneUse())
1870 if (
Depth == 0)
return false;
1872 switch (
I->getOpcode()) {
1873 case Instruction::UDiv:
1874 case Instruction::SDiv:
1875 case Instruction::URem:
1876 case Instruction::SRem:
1883 case Instruction::Add:
1884 case Instruction::FAdd:
1885 case Instruction::Sub:
1886 case Instruction::FSub:
1887 case Instruction::Mul:
1888 case Instruction::FMul:
1889 case Instruction::FDiv:
1890 case Instruction::FRem:
1891 case Instruction::Shl:
1892 case Instruction::LShr:
1893 case Instruction::AShr:
1894 case Instruction::And:
1895 case Instruction::Or:
1896 case Instruction::Xor:
1897 case Instruction::ICmp:
1898 case Instruction::FCmp:
1899 case Instruction::Trunc:
1900 case Instruction::ZExt:
1901 case Instruction::SExt:
1902 case Instruction::FPToUI:
1903 case Instruction::FPToSI:
1904 case Instruction::UIToFP:
1905 case Instruction::SIToFP:
1906 case Instruction::FPTrunc:
1907 case Instruction::FPExt:
1908 case Instruction::GetElementPtr: {
1911 Type *ITy =
I->getType();
1915 for (
Value *Operand :
I->operands()) {
1921 case Instruction::InsertElement: {
1923 if (!CI)
return false;
1928 bool SeenOnce =
false;
1929 for (
int I : Mask) {
1930 if (
I == ElementNumber) {
1946 Builder.SetInsertPoint(
I);
1947 switch (
I->getOpcode()) {
1948 case Instruction::Add:
1949 case Instruction::FAdd:
1950 case Instruction::Sub:
1951 case Instruction::FSub:
1952 case Instruction::Mul:
1953 case Instruction::FMul:
1954 case Instruction::UDiv:
1955 case Instruction::SDiv:
1956 case Instruction::FDiv:
1957 case Instruction::URem:
1958 case Instruction::SRem:
1959 case Instruction::FRem:
1960 case Instruction::Shl:
1961 case Instruction::LShr:
1962 case Instruction::AShr:
1963 case Instruction::And:
1964 case Instruction::Or:
1965 case Instruction::Xor: {
1967 assert(NewOps.
size() == 2 &&
"binary operator with #ops != 2");
1969 NewOps[0], NewOps[1]);
1976 NewI->setIsExact(BO->
isExact());
1979 NewI->copyFastMathFlags(
I);
1983 case Instruction::ICmp:
1984 assert(NewOps.
size() == 2 &&
"icmp with #ops != 2");
1985 return Builder.CreateICmp(
cast<ICmpInst>(
I)->getPredicate(), NewOps[0],
1987 case Instruction::FCmp:
1988 assert(NewOps.
size() == 2 &&
"fcmp with #ops != 2");
1989 return Builder.CreateFCmp(
cast<FCmpInst>(
I)->getPredicate(), NewOps[0],
1991 case Instruction::Trunc:
1992 case Instruction::ZExt:
1993 case Instruction::SExt:
1994 case Instruction::FPToUI:
1995 case Instruction::FPToSI:
1996 case Instruction::UIToFP:
1997 case Instruction::SIToFP:
1998 case Instruction::FPTrunc:
1999 case Instruction::FPExt: {
2003 I->getType()->getScalarType(),
2005 assert(NewOps.
size() == 1 &&
"cast with #ops != 1");
2009 case Instruction::GetElementPtr: {
2010 Value *Ptr = NewOps[0];
2024 assert(V->getType()->isVectorTy() &&
"can't reorder non-vector elements");
2041 switch (
I->getOpcode()) {
2042 case Instruction::Add:
2043 case Instruction::FAdd:
2044 case Instruction::Sub:
2045 case Instruction::FSub:
2046 case Instruction::Mul:
2047 case Instruction::FMul:
2048 case Instruction::UDiv:
2049 case Instruction::SDiv:
2050 case Instruction::FDiv:
2051 case Instruction::URem:
2052 case Instruction::SRem:
2053 case Instruction::FRem:
2054 case Instruction::Shl:
2055 case Instruction::LShr:
2056 case Instruction::AShr:
2057 case Instruction::And:
2058 case Instruction::Or:
2059 case Instruction::Xor:
2060 case Instruction::ICmp:
2061 case Instruction::FCmp:
2062 case Instruction::Trunc:
2063 case Instruction::ZExt:
2064 case Instruction::SExt:
2065 case Instruction::FPToUI:
2066 case Instruction::FPToSI:
2067 case Instruction::UIToFP:
2068 case Instruction::SIToFP:
2069 case Instruction::FPTrunc:
2070 case Instruction::FPExt:
2071 case Instruction::Select:
2072 case Instruction::GetElementPtr: {
2077 for (
int i = 0, e =
I->getNumOperands(); i != e; ++i) {
2082 if (
I->getOperand(i)->getType()->isVectorTy())
2085 V =
I->getOperand(i);
2087 NeedsRebuild |= (V !=
I->getOperand(i));
2093 case Instruction::InsertElement: {
2101 for (
int e = Mask.size(); Index != e; ++Index) {
2102 if (Mask[Index] == Element) {
2115 Builder.SetInsertPoint(
I);
2116 return Builder.CreateInsertElement(V,
I->getOperand(1), Index);
2132 unsigned MaskElems = Mask.size();
2133 unsigned BegIdx = Mask.front();
2134 unsigned EndIdx = Mask.back();
2135 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2137 for (
unsigned I = 0;
I != MaskElems; ++
I)
2138 if (
static_cast<unsigned>(Mask[
I]) != BegIdx +
I)
2163 case Instruction::Shl: {
2168 Instruction::Shl, ConstantInt::get(Ty, 1),
C,
DL);
2169 assert(ShlOne &&
"Constant folding of immediate constants failed");
2170 return {Instruction::Mul, BO0, ShlOne};
2174 case Instruction::Or: {
2177 return {Instruction::Add, BO0, BO1};
2180 case Instruction::Sub:
2195 assert(Shuf.
isSelect() &&
"Must have select-equivalent shuffle");
2200 unsigned NumElts = Mask.size();
2204 if (ShufOp && ShufOp->isSelect() &&
2205 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2211 if (!ShufOp || !ShufOp->isSelect() ||
2212 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2215 Value *
X = ShufOp->getOperand(0), *
Y = ShufOp->getOperand(1);
2217 ShufOp->getShuffleMask(Mask1);
2218 assert(Mask1.
size() == NumElts &&
"Vector size changed with select shuffle");
2231 for (
unsigned i = 0; i != NumElts; ++i)
2232 NewMask[i] = Mask[i] < (
signed)NumElts ? Mask[i] : Mask1[i];
2237 "Unexpected shuffle mask");
2243 assert(Shuf.
isSelect() &&
"Must have select-equivalent shuffle");
2266 Value *
X = Op0IsBinop ? Op1 : Op0;
2287 bool MightCreatePoisonOrUB =
2290 if (MightCreatePoisonOrUB)
2325 Value *NewIns = Builder.CreateInsertElement(PoisonVec,
X, (
uint64_t)0);
2331 unsigned NumMaskElts =
2334 for (
unsigned i = 0; i != NumMaskElts; ++i)
2336 NewMask[i] = Mask[i];
2373 Constant *C0 =
nullptr, *C1 =
nullptr;
2374 bool ConstantsAreOp1;
2377 ConstantsAreOp1 =
false;
2382 ConstantsAreOp1 =
true;
2389 bool DropNSW =
false;
2390 if (ConstantsAreOp1 && Opc0 != Opc1) {
2394 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2398 Opc0 = AltB0.Opcode;
2402 Opc1 = AltB1.Opcode;
2407 if (Opc0 != Opc1 || !C0 || !C1)
2420 bool MightCreatePoisonOrUB =
2423 if (MightCreatePoisonOrUB)
2446 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2456 V =
Builder.CreateShuffleVector(
X,
Y, Mask);
2459 Value *NewBO = ConstantsAreOp1 ?
Builder.CreateBinOp(BOpc, V, NewC) :
2460 Builder.CreateBinOp(BOpc, NewC, V);
2468 NewI->copyIRFlags(B0);
2469 NewI->andIRFlags(B1);
2471 NewI->setHasNoSignedWrap(
false);
2473 NewI->dropPoisonGeneratingFlags();
2492 Type *SrcType =
X->getType();
2493 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2500 "Expected a shuffle that decreases length");
2507 for (
unsigned i = 0, e = Mask.size(); i != e; ++i) {
2510 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2511 assert(LSBIndex <= INT32_MAX &&
"Overflowed 32-bits");
2512 if (Mask[i] != (
int)LSBIndex)
2538 unsigned NarrowNumElts =
2563 bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2569 S0->getOpcode() !=
S1->getOpcode() ||
2570 (!S0->hasOneUse() && !
S1->hasOneUse()))
2577 NewF = UnaryOperator::CreateFNeg(NewShuf);
2598 switch (CastOpcode) {
2599 case Instruction::SExt:
2600 case Instruction::ZExt:
2601 case Instruction::FPToSI:
2602 case Instruction::FPToUI:
2603 case Instruction::SIToFP:
2604 case Instruction::UIToFP:
2615 if (ShufTy->getElementCount().getKnownMinValue() >
2616 ShufOpTy->getElementCount().getKnownMinValue())
2623 auto *NewIns = Builder.CreateShuffleVector(Cast0->getOperand(0),
2631 if (!Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2632 Cast0->getSrcTy() != Cast1->getSrcTy())
2637 "Expected fixed vector operands for casts and binary shuffle");
2638 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2642 if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2646 Value *
X = Cast0->getOperand(0);
2647 Value *
Y = Cast1->getOperand(0);
2662 X->getType()->getPrimitiveSizeInBits() ==
2690 assert(NumElts < Mask.size() &&
2691 "Identity with extract must have less elements than its inputs");
2693 for (
unsigned i = 0; i != NumElts; ++i) {
2695 int MaskElt = Mask[i];
2696 NewMask[i] = ExtractMaskElt ==
PoisonMaskElem ? ExtractMaskElt : MaskElt;
2709 int NumElts = Mask.size();
2735 if (NumElts != InpNumElts)
2739 auto isShufflingScalarIntoOp1 = [&](
Value *&Scalar,
ConstantInt *&IndexC) {
2747 int NewInsIndex = -1;
2748 for (
int i = 0; i != NumElts; ++i) {
2754 if (Mask[i] == NumElts + i)
2758 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2765 assert(NewInsIndex != -1 &&
"Did not fold shuffle with unused operand?");
2768 IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex);
2777 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2785 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2797 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2798 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2806 Value *
X = Shuffle0->getOperand(0);
2807 Value *
Y = Shuffle1->getOperand(0);
2808 if (
X->getType() !=
Y->getType() ||
2817 "Unexpected operand for identity shuffle");
2825 assert(WideElts > NarrowElts &&
"Unexpected types for identity with padding");
2829 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2835 if (Mask[i] < WideElts) {
2836 if (Shuffle0->getMaskValue(Mask[i]) == -1)
2839 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2846 if (Mask[i] < WideElts) {
2847 assert(Mask[i] < NarrowElts &&
"Unexpected shuffle mask");
2848 NewMask[i] = Mask[i];
2850 assert(Mask[i] < (WideElts + NarrowElts) &&
"Unexpected shuffle mask");
2851 NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2873 if (
X->getType() !=
Y->getType())
2882 NewBOI->copyIRFlags(BinOp);
2918 X->getType()->isVectorTy() &&
X->getType() ==
Y->getType() &&
2919 X->getType()->getScalarSizeInBits() ==
2921 (LHS->hasOneUse() || RHS->hasOneUse())) {
2936 X->getType()->isVectorTy() && VWidth == LHSWidth) {
2939 unsigned XNumElts = XType->getNumElements();
2945 ScaledMask, XType, ShufQuery))
2953 "Shuffle with 2 undef ops not simplified?");
2981 APInt PoisonElts(VWidth, 0);
3003 if (
SI->getCondition()->getType()->isIntegerTy() &&
3050 bool MadeChange =
false;
3053 unsigned MaskElems = Mask.size();
3055 unsigned VecBitWidth =
DL.getTypeSizeInBits(SrcTy);
3056 unsigned SrcElemBitWidth =
DL.getTypeSizeInBits(SrcTy->getElementType());
3057 assert(SrcElemBitWidth &&
"vector elements must have a bitwidth");
3058 unsigned SrcNumElems = SrcTy->getNumElements();
3064 if (BC->use_empty())
3067 if (BC->hasOneUse()) {
3069 if (BC2 && isEliminableCastPair(BC, BC2))
3075 unsigned BegIdx = Mask.front();
3076 Type *TgtTy = BC->getDestTy();
3077 unsigned TgtElemBitWidth =
DL.getTypeSizeInBits(TgtTy);
3078 if (!TgtElemBitWidth)
3080 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
3081 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
3082 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
3083 if (!VecBitWidthsEqual)
3088 if (!BegIsAligned) {
3092 for (
unsigned I = 0, E = MaskElems, Idx = BegIdx;
I != E; ++Idx, ++
I)
3093 ShuffleMask[
I] = Idx;
3094 V =
Builder.CreateShuffleVector(V, ShuffleMask,
3098 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
3099 assert(SrcElemsPerTgtElem);
3100 BegIdx /= SrcElemsPerTgtElem;
3101 auto [It, Inserted] = NewBCs.
try_emplace(CastSrcTy);
3103 It->second =
Builder.CreateBitCast(V, CastSrcTy, SVI.
getName() +
".bc");
3104 auto *Ext =
Builder.CreateExtractElement(It->second, BegIdx,
3161 LHSShuffle =
nullptr;
3164 RHSShuffle =
nullptr;
3165 if (!LHSShuffle && !RHSShuffle)
3166 return MadeChange ? &SVI :
nullptr;
3168 Value* LHSOp0 =
nullptr;
3169 Value* LHSOp1 =
nullptr;
3170 Value* RHSOp0 =
nullptr;
3171 unsigned LHSOp0Width = 0;
3172 unsigned RHSOp0Width = 0;
3182 Value* newLHS = LHS;
3183 Value* newRHS = RHS;
3191 else if (LHSOp0Width == LHSWidth) {
3196 if (RHSShuffle && RHSOp0Width == LHSWidth) {
3200 if (LHSOp0 == RHSOp0) {
3205 if (newLHS == LHS && newRHS == RHS)
3206 return MadeChange ? &SVI :
nullptr;
3212 if (RHSShuffle && newRHS != RHS)
3215 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3221 for (
unsigned i = 0; i < VWidth; ++i) {
3226 }
else if (Mask[i] < (
int)LHSWidth) {
3231 if (newLHS != LHS) {
3232 eltMask = LHSMask[Mask[i]];
3248 else if (newRHS != RHS) {
3249 eltMask = RHSMask[Mask[i]-LHSWidth];
3252 if (eltMask >= (
int)RHSOp0Width) {
3254 "should have been check above");
3258 eltMask = Mask[i]-LHSWidth;
3266 if (eltMask >= 0 && newRHS !=
nullptr && newLHS != newRHS)
3267 eltMask += newLHSWidth;
3272 if (SplatElt >= 0 && SplatElt != eltMask)
3282 if (
isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3288 return MadeChange ? &SVI :
nullptr;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file provides internal interfaces used to implement the InstCombine.
static Instruction * foldConstantInsEltIntoShuffle(InsertElementInst &InsElt)
insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex --> shufflevector X,...
static Value * evaluateInDifferentElementOrder(Value *V, ArrayRef< int > Mask, IRBuilderBase &Builder)
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, SmallVectorImpl< int > &Mask)
If V is a shuffle of values that ONLY returns elements from either LHS or RHS, return the shuffle mas...
static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl< int > &Mask, Value *PermittedRHS, InstCombinerImpl &IC, bool &Rerun)
static APInt findDemandedEltsByAllUsers(Value *V)
Find union of elements of V demanded by all its users.
static Instruction * foldTruncInsEltPair(InsertElementInst &InsElt, bool IsBigEndian, InstCombiner::BuilderTy &Builder)
If we are inserting 2 halves of a value into adjacent elements of a vector, try to convert to a singl...
static Instruction * foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf, const SimplifyQuery &SQ)
static Instruction * foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf)
static Instruction * foldIdentityExtractShuffle(ShuffleVectorInst &Shuf)
Try to fold an extract subvector operation.
static bool findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr, APInt &UnionUsedElts)
Find elements of V demanded by UserInstr.
static Instruction * foldInsEltIntoSplat(InsertElementInst &InsElt)
Try to fold an insert element into an existing splat shuffle by changing the shuffle's mask to includ...
std::pair< Value *, Value * > ShuffleOps
We are building a shuffle to create V, which is a sequence of insertelement, extractelement pairs.
static Instruction * foldShuffleWithInsert(ShuffleVectorInst &Shuf, InstCombinerImpl &IC)
Try to replace a shuffle with an insertelement or try to replace a shuffle operand with the operand o...
static Instruction * canonicalizeInsertSplat(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
If we have an insert of a scalar to a non-zero element of an undefined vector and then shuffle that v...
static Instruction * foldTruncShuffle(ShuffleVectorInst &Shuf, bool IsBigEndian)
Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
static bool replaceExtractElements(InsertElementInst *InsElt, ExtractElementInst *ExtElt, InstCombinerImpl &IC)
If we have insertion into a vector that is wider than the vector that we are extracting from,...
static bool cheapToScalarize(Value *V, Value *EI)
Return true if the value is cheaper to scalarize than it is to leave as a vector operation.
static Value * buildNew(Instruction *I, ArrayRef< Value * > NewOps, IRBuilderBase &Builder)
Rebuild a new instruction just like 'I' but with the new operands given.
static bool canEvaluateShuffled(Value *V, ArrayRef< int > Mask, unsigned Depth=5)
Return true if we can evaluate the specified expression tree if the vector elements were shuffled in ...
static Instruction * foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf)
A select shuffle of a select shuffle with a shared operand can be reduced to a single select shuffle.
static Instruction * hoistInsEltConst(InsertElementInst &InsElt2, InstCombiner::BuilderTy &Builder)
If we have an insertelement instruction feeding into another insertelement and the 2nd is inserting a...
static Instruction * foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
Canonicalize FP negate/abs after shuffle.
static Instruction * foldCastShuffle(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
Canonicalize casts after shuffle.
static Instruction * narrowInsElt(InsertElementInst &InsElt, InstCombiner::BuilderTy &Builder)
If both the base vector and the inserted element are extended from the same type, do the insert eleme...
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf)
static Instruction * foldInsSequenceIntoSplat(InsertElementInst &InsElt)
Turn a chain of inserts that splats a value into an insert + shuffle: insertelt(insertelt(insertelt(i...
static Instruction * foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt)
Try to fold an extract+insert element into an existing identity shuffle by changing the shuffle's mas...
static ConstantInt * getPreferredVectorIndex(ConstantInt *IndexC)
Given a constant index for a extractelement or insertelement instruction, return it with the canonica...
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, ArrayRef< int > Mask)
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL)
Binops may be transformed into binops with different opcodes and operands.
This file provides the interface for the instcombine pass implementation.
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SDValue narrowVectorSelect(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, const X86Subtarget &Subtarget)
If both arms of a vector select are concatenated vectors, split the select, and concatenate the resul...
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
OtherOps getOpcode() const
Get the opcode casted to the right type.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
A parsed version of the target data layout string in and methods for querying it.
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
Common base class shared among various IRBuilders.
This instruction inserts a single (scalar) element into a VectorType value.
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
VectorType * getType() const
Overload to return most specific vector type.
This instruction inserts a struct field of array element value into an aggregate value.
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSelectShuffle(ShuffleVectorInst &Shuf)
Try to fold shuffles that are the equivalent of a vector select.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitInsertValueInst(InsertValueInst &IV)
Try to find redundant insertvalue instructions, like the following ones: %0 = insertvalue { i8,...
Instruction * visitInsertElementInst(InsertElementInst &IE)
Instruction * visitExtractElementInst(ExtractElementInst &EI)
Instruction * simplifyBinOpSplats(ShuffleVectorInst &SVI)
Instruction * foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI)
Look for chain of insertvalue's that fully define an aggregate, and trace back the values inserted,...
Instruction * visitShuffleVectorInst(ShuffleVectorInst &SVI)
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
const SimplifyQuery & getSimplifyQuery() const
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
A wrapper class for inspecting calls to intrinsic functions.
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
bool changesLength() const
Return true if this shuffle returns a vector with a different number of elements than its source vect...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
VectorType * getType() const
Overload to return most specific vector type.
bool increasesLength() const
Return true if this shuffle returns a vector with a greater number of elements than its source vector...
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
bool isSelect() const
Return true if this shuffle chooses elements from its source vectors without lane crossings and all o...
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool all() const
Returns true if all bits are set.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getStructNumElements() const
LLVM_ABI uint64_t getArrayNumElements() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
UnaryOps getOpcode() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Type * getElementType() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
auto m_Undef()
Match an arbitrary undef constant.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
auto dyn_cast_or_null(const Y &Val)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
constexpr int PoisonMaskElem
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
These are the ingredients in an alternate form binary operator as described below.
BinopElts(BinaryOperator::BinaryOps Opc=(BinaryOperator::BinaryOps) 0, Value *V0=nullptr, Value *V1=nullptr)
BinaryOperator::BinaryOps Opcode
A MapVector that performs no allocations if smaller than a certain size.