LLVM 23.0.0git
InstructionCombining.cpp
Go to the documentation of this file.
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions. This pass does not modify the CFG. This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14// %Y = add i32 %X, 1
15// %Z = add i32 %Y, 1
16// into:
17// %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23// 1. If a binary operator has a constant operand, it is moved to the RHS
24// 2. Bitwise operators with constant operands are always grouped so that
25// shifts are performed first, then or's, then and's, then xor's.
26// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27// 4. All cmp instructions on boolean values are replaced with logical ops
28// 5. add X, X is represented as (X*2) => (X << 1)
29// 6. Multiplies with a power-of-two constant argument are transformed into
30// shifts.
31// ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm/ADT/APFloat.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/Statistic.h"
47#include "llvm/Analysis/CFG.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DIBuilder.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugInfo.h"
70#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/IRBuilder.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/Metadata.h"
81#include "llvm/IR/Operator.h"
82#include "llvm/IR/PassManager.h"
84#include "llvm/IR/Type.h"
85#include "llvm/IR/Use.h"
86#include "llvm/IR/User.h"
87#include "llvm/IR/Value.h"
88#include "llvm/IR/ValueHandle.h"
93#include "llvm/Support/Debug.h"
102#include <algorithm>
103#include <cassert>
104#include <cstdint>
105#include <memory>
106#include <optional>
107#include <string>
108#include <utility>
109
110#define DEBUG_TYPE "instcombine"
112#include <optional>
113
114using namespace llvm;
115using namespace llvm::PatternMatch;
116
117STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration, "Number of functions with one iteration");
120STATISTIC(NumTwoIterations, "Number of functions with two iterations");
121STATISTIC(NumThreeIterations, "Number of functions with three iterations");
122STATISTIC(NumFourOrMoreIterations,
123 "Number of functions with four or more iterations");
124
125STATISTIC(NumCombined , "Number of insts combined");
126STATISTIC(NumConstProp, "Number of constant folds");
127STATISTIC(NumDeadInst , "Number of dead inst eliminated");
128STATISTIC(NumSunkInst , "Number of instructions sunk");
129STATISTIC(NumExpand, "Number of expansions");
130STATISTIC(NumFactor , "Number of factorizations");
131STATISTIC(NumReassoc , "Number of reassociations");
132DEBUG_COUNTER(VisitCounter, "instcombine-visit",
133 "Controls which instructions are visited");
134
135static cl::opt<bool> EnableCodeSinking("instcombine-code-sinking",
136 cl::desc("Enable code sinking"),
137 cl::init(true));
138
140 "instcombine-max-sink-users", cl::init(32),
141 cl::desc("Maximum number of undroppable users for instruction sinking"));
142
144MaxArraySize("instcombine-maxarray-size", cl::init(1024),
145 cl::desc("Maximum array size considered when doing a combine"));
146
147namespace llvm {
149} // end namespace llvm
150
151// FIXME: Remove this flag when it is no longer necessary to convert
152// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
153// increases variable availability at the cost of accuracy. Variables that
154// cannot be promoted by mem2reg or SROA will be described as living in memory
155// for their entire lifetime. However, passes like DSE and instcombine can
156// delete stores to the alloca, leading to misleading and inaccurate debug
157// information. This flag can be removed when those passes are fixed.
158static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
159 cl::Hidden, cl::init(true));
160
161std::optional<Instruction *>
163 // Handle target specific intrinsics
164 if (II.getCalledFunction()->isTargetIntrinsic()) {
165 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*this, II);
166 }
167 return std::nullopt;
168}
169
171 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
172 bool &KnownBitsComputed) {
173 // Handle target specific intrinsics
174 if (II.getCalledFunction()->isTargetIntrinsic()) {
175 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
176 *this, II, DemandedMask, Known, KnownBitsComputed);
177 }
178 return std::nullopt;
179}
180
182 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
183 APInt &PoisonElts2, APInt &PoisonElts3,
184 std::function<void(Instruction *, unsigned, APInt, APInt &)>
185 SimplifyAndSetOp) {
186 // Handle target specific intrinsics
187 if (II.getCalledFunction()->isTargetIntrinsic()) {
188 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
189 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
190 SimplifyAndSetOp);
191 }
192 return std::nullopt;
193}
194
195bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
196 // Approved exception for TTI use: This queries a legality property of the
197 // target, not an profitability heuristic. Ideally this should be part of
198 // DataLayout instead.
199 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
200}
201
202Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
203 if (!RewriteGEP)
204 return llvm::emitGEPOffset(&Builder, DL, GEP);
205
206 IRBuilderBase::InsertPointGuard Guard(Builder);
207 auto *Inst = dyn_cast<Instruction>(GEP);
208 if (Inst)
209 Builder.SetInsertPoint(Inst);
210
211 Value *Offset = EmitGEPOffset(GEP);
212 // Rewrite non-trivial GEPs to avoid duplicating the offset arithmetic.
213 if (Inst && !GEP->hasAllConstantIndices() &&
214 !GEP->getSourceElementType()->isIntegerTy(8)) {
216 *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
217 Offset, "", GEP->getNoWrapFlags()));
219 }
220 return Offset;
221}
222
223Value *InstCombinerImpl::EmitGEPOffsets(ArrayRef<GEPOperator *> GEPs,
224 GEPNoWrapFlags NW, Type *IdxTy,
225 bool RewriteGEPs) {
226 auto Add = [&](Value *Sum, Value *Offset) -> Value * {
227 if (Sum)
228 return Builder.CreateAdd(Sum, Offset, "", NW.hasNoUnsignedWrap(),
229 NW.isInBounds());
230 else
231 return Offset;
232 };
233
234 Value *Sum = nullptr;
235 Value *OneUseSum = nullptr;
236 Value *OneUseBase = nullptr;
237 GEPNoWrapFlags OneUseFlags = GEPNoWrapFlags::all();
238 for (GEPOperator *GEP : reverse(GEPs)) {
239 Value *Offset;
240 {
241 // Expand the offset at the point of the previous GEP to enable rewriting.
242 // However, use the original insertion point for calculating Sum.
243 IRBuilderBase::InsertPointGuard Guard(Builder);
244 auto *Inst = dyn_cast<Instruction>(GEP);
245 if (RewriteGEPs && Inst)
246 Builder.SetInsertPoint(Inst);
247
249 if (Offset->getType() != IdxTy)
250 Offset = Builder.CreateVectorSplat(
251 cast<VectorType>(IdxTy)->getElementCount(), Offset);
252 if (GEP->hasOneUse()) {
253 // Offsets of one-use GEPs will be merged into the next multi-use GEP.
254 OneUseSum = Add(OneUseSum, Offset);
255 OneUseFlags = OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags());
256 if (!OneUseBase)
257 OneUseBase = GEP->getPointerOperand();
258 continue;
259 }
260
261 if (OneUseSum)
262 Offset = Add(OneUseSum, Offset);
263
264 // Rewrite the GEP to reuse the computed offset. This also includes
265 // offsets from preceding one-use GEPs.
266 if (RewriteGEPs && Inst &&
267 !(GEP->getSourceElementType()->isIntegerTy(8) &&
268 GEP->getOperand(1) == Offset)) {
270 *Inst,
271 Builder.CreatePtrAdd(
272 OneUseBase ? OneUseBase : GEP->getPointerOperand(), Offset, "",
273 OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags())));
275 }
276 }
277
278 Sum = Add(Sum, Offset);
279 OneUseSum = OneUseBase = nullptr;
280 OneUseFlags = GEPNoWrapFlags::all();
281 }
282 if (OneUseSum)
283 Sum = Add(Sum, OneUseSum);
284 if (!Sum)
285 return Constant::getNullValue(IdxTy);
286 return Sum;
287}
288
289/// Legal integers and common types are considered desirable. This is used to
290/// avoid creating instructions with types that may not be supported well by the
291/// the backend.
292/// NOTE: This treats i8, i16 and i32 specially because they are common
293/// types in frontend languages.
294bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
295 switch (BitWidth) {
296 case 8:
297 case 16:
298 case 32:
299 return true;
300 default:
301 return DL.isLegalInteger(BitWidth);
302 }
303}
304
305/// Return true if it is desirable to convert an integer computation from a
306/// given bit width to a new bit width.
307/// We don't want to convert from a legal or desirable type (like i8) to an
308/// illegal type or from a smaller to a larger illegal type. A width of '1'
309/// is always treated as a desirable type because i1 is a fundamental type in
310/// IR, and there are many specialized optimizations for i1 types.
311/// Common/desirable widths are equally treated as legal to convert to, in
312/// order to open up more combining opportunities.
313bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
314 unsigned ToWidth) const {
315 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
316 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
317
318 // Convert to desirable widths even if they are not legal types.
319 // Only shrink types, to prevent infinite loops.
320 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
321 return true;
322
323 // If this is a legal or desiable integer from type, and the result would be
324 // an illegal type, don't do the transformation.
325 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
326 return false;
327
328 // Otherwise, if both are illegal, do not increase the size of the result. We
329 // do allow things like i160 -> i64, but not i64 -> i160.
330 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
331 return false;
332
333 return true;
334}
335
336/// Return true if it is desirable to convert a computation from 'From' to 'To'.
337/// We don't want to convert from a legal to an illegal type or from a smaller
338/// to a larger illegal type. i1 is always treated as a legal type because it is
339/// a fundamental type in IR, and there are many specialized optimizations for
340/// i1 types.
341bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
342 // TODO: This could be extended to allow vectors. Datalayout changes might be
343 // needed to properly support that.
344 if (!From->isIntegerTy() || !To->isIntegerTy())
345 return false;
346
347 unsigned FromWidth = From->getPrimitiveSizeInBits();
348 unsigned ToWidth = To->getPrimitiveSizeInBits();
349 return shouldChangeType(FromWidth, ToWidth);
350}
351
352// Return true, if No Signed Wrap should be maintained for I.
353// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
354// where both B and C should be ConstantInts, results in a constant that does
355// not overflow. This function only handles the Add/Sub/Mul opcodes. For
356// all other opcodes, the function conservatively returns false.
359 if (!OBO || !OBO->hasNoSignedWrap())
360 return false;
361
362 const APInt *BVal, *CVal;
363 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
364 return false;
365
366 // We reason about Add/Sub/Mul Only.
367 bool Overflow = false;
368 switch (I.getOpcode()) {
369 case Instruction::Add:
370 (void)BVal->sadd_ov(*CVal, Overflow);
371 break;
372 case Instruction::Sub:
373 (void)BVal->ssub_ov(*CVal, Overflow);
374 break;
375 case Instruction::Mul:
376 (void)BVal->smul_ov(*CVal, Overflow);
377 break;
378 default:
379 // Conservatively return false for other opcodes.
380 return false;
381 }
382 return !Overflow;
383}
384
387 return OBO && OBO->hasNoUnsignedWrap();
388}
389
392 return OBO && OBO->hasNoSignedWrap();
393}
394
395/// Conservatively clears subclassOptionalData after a reassociation or
396/// commutation. We preserve fast-math flags when applicable as they can be
397/// preserved.
400 if (!FPMO) {
401 I.clearSubclassOptionalData();
402 return;
403 }
404
405 FastMathFlags FMF = I.getFastMathFlags();
406 I.clearSubclassOptionalData();
407 I.setFastMathFlags(FMF);
408}
409
410/// Combine constant operands of associative operations either before or after a
411/// cast to eliminate one of the associative operations:
412/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
413/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
415 InstCombinerImpl &IC) {
416 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
417 if (!Cast || !Cast->hasOneUse())
418 return false;
419
420 // TODO: Enhance logic for other casts and remove this check.
421 auto CastOpcode = Cast->getOpcode();
422 if (CastOpcode != Instruction::ZExt)
423 return false;
424
425 // TODO: Enhance logic for other BinOps and remove this check.
426 if (!BinOp1->isBitwiseLogicOp())
427 return false;
428
429 auto AssocOpcode = BinOp1->getOpcode();
430 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
431 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
432 return false;
433
434 Constant *C1, *C2;
435 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
436 !match(BinOp2->getOperand(1), m_Constant(C2)))
437 return false;
438
439 // TODO: This assumes a zext cast.
440 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
441 // to the destination type might lose bits.
442
443 // Fold the constants together in the destination type:
444 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
445 const DataLayout &DL = IC.getDataLayout();
446 Type *DestTy = C1->getType();
447 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
448 if (!CastC2)
449 return false;
450 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
451 if (!FoldedC)
452 return false;
453
454 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
455 IC.replaceOperand(*BinOp1, 1, FoldedC);
457 Cast->dropPoisonGeneratingFlags();
458 return true;
459}
460
461// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
462// inttoptr ( ptrtoint (x) ) --> x
463Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
464 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
465 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
466 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
467 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
468 Type *CastTy = IntToPtr->getDestTy();
469 if (PtrToInt &&
470 CastTy->getPointerAddressSpace() ==
471 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
472 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
473 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
474 return PtrToInt->getOperand(0);
475 }
476 return nullptr;
477}
478
479/// This performs a few simplifications for operators that are associative or
480/// commutative:
481///
482/// Commutative operators:
483///
484/// 1. Order operands such that they are listed from right (least complex) to
485/// left (most complex). This puts constants before unary operators before
486/// binary operators.
487///
488/// Associative operators:
489///
490/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
491/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
492///
493/// Associative and commutative operators:
494///
495/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
496/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
497/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
498/// if C1 and C2 are constants.
500 Instruction::BinaryOps Opcode = I.getOpcode();
501 bool Changed = false;
502
503 do {
504 // Order operands such that they are listed from right (least complex) to
505 // left (most complex). This puts constants before unary operators before
506 // binary operators.
507 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
508 getComplexity(I.getOperand(1)))
509 Changed = !I.swapOperands();
510
511 if (I.isCommutative()) {
512 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
513 replaceOperand(I, 0, Pair->first);
514 replaceOperand(I, 1, Pair->second);
515 Changed = true;
516 }
517 }
518
519 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
520 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
521
522 if (I.isAssociative()) {
523 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
524 if (Op0 && Op0->getOpcode() == Opcode) {
525 Value *A = Op0->getOperand(0);
526 Value *B = Op0->getOperand(1);
527 Value *C = I.getOperand(1);
528
529 // Does "B op C" simplify?
530 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
531 // It simplifies to V. Form "A op V".
532 replaceOperand(I, 0, A);
533 replaceOperand(I, 1, V);
534 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
535 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
536
537 // Conservatively clear all optional flags since they may not be
538 // preserved by the reassociation. Reset nsw/nuw based on the above
539 // analysis.
541
542 // Note: this is only valid because SimplifyBinOp doesn't look at
543 // the operands to Op0.
544 if (IsNUW)
545 I.setHasNoUnsignedWrap(true);
546
547 if (IsNSW)
548 I.setHasNoSignedWrap(true);
549
550 Changed = true;
551 ++NumReassoc;
552 continue;
553 }
554 }
555
556 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
557 if (Op1 && Op1->getOpcode() == Opcode) {
558 Value *A = I.getOperand(0);
559 Value *B = Op1->getOperand(0);
560 Value *C = Op1->getOperand(1);
561
562 // Does "A op B" simplify?
563 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
564 // It simplifies to V. Form "V op C".
565 replaceOperand(I, 0, V);
566 replaceOperand(I, 1, C);
567 // Conservatively clear the optional flags, since they may not be
568 // preserved by the reassociation.
570 Changed = true;
571 ++NumReassoc;
572 continue;
573 }
574 }
575 }
576
577 if (I.isAssociative() && I.isCommutative()) {
578 if (simplifyAssocCastAssoc(&I, *this)) {
579 Changed = true;
580 ++NumReassoc;
581 continue;
582 }
583
584 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
585 if (Op0 && Op0->getOpcode() == Opcode) {
586 Value *A = Op0->getOperand(0);
587 Value *B = Op0->getOperand(1);
588 Value *C = I.getOperand(1);
589
590 // Does "C op A" simplify?
591 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
592 // It simplifies to V. Form "V op B".
593 replaceOperand(I, 0, V);
594 replaceOperand(I, 1, B);
595 // Conservatively clear the optional flags, since they may not be
596 // preserved by the reassociation.
598 Changed = true;
599 ++NumReassoc;
600 continue;
601 }
602 }
603
604 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
605 if (Op1 && Op1->getOpcode() == Opcode) {
606 Value *A = I.getOperand(0);
607 Value *B = Op1->getOperand(0);
608 Value *C = Op1->getOperand(1);
609
610 // Does "C op A" simplify?
611 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
612 // It simplifies to V. Form "B op V".
613 replaceOperand(I, 0, B);
614 replaceOperand(I, 1, V);
615 // Conservatively clear the optional flags, since they may not be
616 // preserved by the reassociation.
618 Changed = true;
619 ++NumReassoc;
620 continue;
621 }
622 }
623
624 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
625 // if C1 and C2 are constants.
626 Value *A, *B;
627 Constant *C1, *C2, *CRes;
628 if (Op0 && Op1 &&
629 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
630 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
631 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
632 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
633 bool IsNUW = hasNoUnsignedWrap(I) &&
634 hasNoUnsignedWrap(*Op0) &&
635 hasNoUnsignedWrap(*Op1);
636 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
637 BinaryOperator::CreateNUW(Opcode, A, B) :
638 BinaryOperator::Create(Opcode, A, B);
639
640 if (isa<FPMathOperator>(NewBO)) {
641 FastMathFlags Flags = I.getFastMathFlags() &
642 Op0->getFastMathFlags() &
643 Op1->getFastMathFlags();
644 NewBO->setFastMathFlags(Flags);
645 }
646 InsertNewInstWith(NewBO, I.getIterator());
647 NewBO->takeName(Op1);
648 replaceOperand(I, 0, NewBO);
649 replaceOperand(I, 1, CRes);
650 // Conservatively clear the optional flags, since they may not be
651 // preserved by the reassociation.
653 if (IsNUW)
654 I.setHasNoUnsignedWrap(true);
655
656 Changed = true;
657 continue;
658 }
659 }
660
661 // No further simplifications.
662 return Changed;
663 } while (true);
664}
665
666/// Return whether "X LOp (Y ROp Z)" is always equal to
667/// "(X LOp Y) ROp (X LOp Z)".
670 // X & (Y | Z) <--> (X & Y) | (X & Z)
671 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
672 if (LOp == Instruction::And)
673 return ROp == Instruction::Or || ROp == Instruction::Xor;
674
675 // X | (Y & Z) <--> (X | Y) & (X | Z)
676 if (LOp == Instruction::Or)
677 return ROp == Instruction::And;
678
679 // X * (Y + Z) <--> (X * Y) + (X * Z)
680 // X * (Y - Z) <--> (X * Y) - (X * Z)
681 if (LOp == Instruction::Mul)
682 return ROp == Instruction::Add || ROp == Instruction::Sub;
683
684 return false;
685}
686
687/// Return whether "(X LOp Y) ROp Z" is always equal to
688/// "(X ROp Z) LOp (Y ROp Z)".
692 return leftDistributesOverRight(ROp, LOp);
693
694 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
696
697 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
698 // but this requires knowing that the addition does not overflow and other
699 // such subtleties.
700}
701
702/// This function returns identity value for given opcode, which can be used to
703/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
705 if (isa<Constant>(V))
706 return nullptr;
707
708 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
709}
710
711/// This function predicates factorization using distributive laws. By default,
712/// it just returns the 'Op' inputs. But for special-cases like
713/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
714/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
715/// allow more factorization opportunities.
718 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
719 assert(Op && "Expected a binary operator");
720 LHS = Op->getOperand(0);
721 RHS = Op->getOperand(1);
722 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
723 Constant *C;
724 if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
725 // X << C --> X * (1 << C)
727 Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
728 assert(RHS && "Constant folding of immediate constants failed");
729 return Instruction::Mul;
730 }
731 // TODO: We can add other conversions e.g. shr => div etc.
732 }
733 if (Instruction::isBitwiseLogicOp(TopOpcode)) {
734 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
736 // lshr nneg C, X --> ashr nneg C, X
737 return Instruction::AShr;
738 }
739 }
740 return Op->getOpcode();
741}
742
743/// This tries to simplify binary operations by factorizing out common terms
744/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
747 Instruction::BinaryOps InnerOpcode, Value *A,
748 Value *B, Value *C, Value *D) {
749 assert(A && B && C && D && "All values must be provided");
750
751 Value *V = nullptr;
752 Value *RetVal = nullptr;
753 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
754 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
755
756 // Does "X op' Y" always equal "Y op' X"?
757 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
758
759 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
760 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
761 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
762 // commutative case, "(A op' B) op (C op' A)"?
763 if (A == C || (InnerCommutative && A == D)) {
764 if (A != C)
765 std::swap(C, D);
766 // Consider forming "A op' (B op D)".
767 // If "B op D" simplifies then it can be formed with no cost.
768 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
769
770 // If "B op D" doesn't simplify then only go on if one of the existing
771 // operations "A op' B" and "C op' D" will be zapped as no longer used.
772 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
773 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
774 if (V)
775 RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
776 }
777 }
778
779 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
780 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
781 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
782 // commutative case, "(A op' B) op (B op' D)"?
783 if (B == D || (InnerCommutative && B == C)) {
784 if (B != D)
785 std::swap(C, D);
786 // Consider forming "(A op C) op' B".
787 // If "A op C" simplifies then it can be formed with no cost.
788 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
789
790 // If "A op C" doesn't simplify then only go on if one of the existing
791 // operations "A op' B" and "C op' D" will be zapped as no longer used.
792 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
793 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
794 if (V)
795 RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
796 }
797 }
798
799 if (!RetVal)
800 return nullptr;
801
802 ++NumFactor;
803 RetVal->takeName(&I);
804
805 // Try to add no-overflow flags to the final value.
806 if (isa<BinaryOperator>(RetVal)) {
807 bool HasNSW = false;
808 bool HasNUW = false;
810 HasNSW = I.hasNoSignedWrap();
811 HasNUW = I.hasNoUnsignedWrap();
812 }
813 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
814 HasNSW &= LOBO->hasNoSignedWrap();
815 HasNUW &= LOBO->hasNoUnsignedWrap();
816 }
817
818 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
819 HasNSW &= ROBO->hasNoSignedWrap();
820 HasNUW &= ROBO->hasNoUnsignedWrap();
821 }
822
823 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
824 // We can propagate 'nsw' if we know that
825 // %Y = mul nsw i16 %X, C
826 // %Z = add nsw i16 %Y, %X
827 // =>
828 // %Z = mul nsw i16 %X, C+1
829 //
830 // iff C+1 isn't INT_MIN
831 const APInt *CInt;
832 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
833 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
834
835 // nuw can be propagated with any constant or nuw value.
836 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
837 }
838 }
839 return RetVal;
840}
841
842// If `I` has one Const operand and the other matches `(ctpop (not x))`,
843// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
844// This is only useful is the new subtract can fold so we only handle the
845// following cases:
846// 1) (add/sub/disjoint_or C, (ctpop (not x))
847// -> (add/sub/disjoint_or C', (ctpop x))
848// 1) (cmp pred C, (ctpop (not x))
849// -> (cmp pred C', (ctpop x))
851 unsigned Opc = I->getOpcode();
852 unsigned ConstIdx = 1;
853 switch (Opc) {
854 default:
855 return nullptr;
856 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
857 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
858 // is constant.
859 case Instruction::Sub:
860 ConstIdx = 0;
861 break;
862 case Instruction::ICmp:
863 // Signed predicates aren't correct in some edge cases like for i2 types, as
864 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
865 // comparisons against it are simplfied to unsigned.
866 if (cast<ICmpInst>(I)->isSigned())
867 return nullptr;
868 break;
869 case Instruction::Or:
870 if (!match(I, m_DisjointOr(m_Value(), m_Value())))
871 return nullptr;
872 [[fallthrough]];
873 case Instruction::Add:
874 break;
875 }
876
877 Value *Op;
878 // Find ctpop.
879 if (!match(I->getOperand(1 - ConstIdx),
881 return nullptr;
882
883 Constant *C;
884 // Check other operand is ImmConstant.
885 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
886 return nullptr;
887
888 Type *Ty = Op->getType();
889 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
890 // Need extra check for icmp. Note if this check is true, it generally means
891 // the icmp will simplify to true/false.
892 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
893 Constant *Cmp =
895 if (!Cmp || !Cmp->isZeroValue())
896 return nullptr;
897 }
898
899 // Check we can invert `(not x)` for free.
900 bool Consumes = false;
901 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
902 return nullptr;
903 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
904 assert(NotOp != nullptr &&
905 "Desync between isFreeToInvert and getFreelyInverted");
906
907 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
908
909 Value *R = nullptr;
910
911 // Do the transformation here to avoid potentially introducing an infinite
912 // loop.
913 switch (Opc) {
914 case Instruction::Sub:
915 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
916 break;
917 case Instruction::Or:
918 case Instruction::Add:
919 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
920 break;
921 case Instruction::ICmp:
922 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
923 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
924 break;
925 default:
926 llvm_unreachable("Unhandled Opcode");
927 }
928 assert(R != nullptr);
929 return replaceInstUsesWith(*I, R);
930}
931
932// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
933// IFF
934// 1) the logic_shifts match
935// 2) either both binops are binops and one is `and` or
936// BinOp1 is `and`
937// (logic_shift (inv_logic_shift C1, C), C) == C1 or
938//
939// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
940//
941// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
942// IFF
943// 1) the logic_shifts match
944// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
945//
946// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
947//
948// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
949// IFF
950// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
951// 2) Binop2 is `not`
952//
953// -> (arithmetic_shift Binop1((not X), Y), Amt)
954
956 const DataLayout &DL = I.getDataLayout();
957 auto IsValidBinOpc = [](unsigned Opc) {
958 switch (Opc) {
959 default:
960 return false;
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor:
964 case Instruction::Add:
965 // Skip Sub as we only match constant masks which will canonicalize to use
966 // add.
967 return true;
968 }
969 };
970
971 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
972 // constraints.
973 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
974 unsigned ShOpc) {
975 assert(ShOpc != Instruction::AShr);
976 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
977 ShOpc == Instruction::Shl;
978 };
979
980 auto GetInvShift = [](unsigned ShOpc) {
981 assert(ShOpc != Instruction::AShr);
982 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
983 };
984
985 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
986 unsigned ShOpc, Constant *CMask,
987 Constant *CShift) {
988 // If the BinOp1 is `and` we don't need to check the mask.
989 if (BinOpc1 == Instruction::And)
990 return true;
991
992 // For all other possible transfers we need complete distributable
993 // binop/shift (anything but `add` + `lshr`).
994 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
995 return false;
996
997 // If BinOp2 is `and`, any mask works (this only really helps for non-splat
998 // vecs, otherwise the mask will be simplified and the following check will
999 // handle it).
1000 if (BinOpc2 == Instruction::And)
1001 return true;
1002
1003 // Otherwise, need mask that meets the below requirement.
1004 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
1005 Constant *MaskInvShift =
1006 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1007 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
1008 CMask;
1009 };
1010
1011 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
1012 Constant *CMask, *CShift;
1013 Value *X, *Y, *ShiftedX, *Mask, *Shift;
1014 if (!match(I.getOperand(ShOpnum),
1015 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
1016 return nullptr;
1017 if (!match(I.getOperand(1 - ShOpnum),
1019 m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))),
1020 m_Value(ShiftedX)),
1021 m_Value(Mask))))
1022 return nullptr;
1023 // Make sure we are matching instruction shifts and not ConstantExpr
1024 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
1025 auto *IX = dyn_cast<Instruction>(ShiftedX);
1026 if (!IY || !IX)
1027 return nullptr;
1028
1029 // LHS and RHS need same shift opcode
1030 unsigned ShOpc = IY->getOpcode();
1031 if (ShOpc != IX->getOpcode())
1032 return nullptr;
1033
1034 // Make sure binop is real instruction and not ConstantExpr
1035 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
1036 if (!BO2)
1037 return nullptr;
1038
1039 unsigned BinOpc = BO2->getOpcode();
1040 // Make sure we have valid binops.
1041 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
1042 return nullptr;
1043
1044 if (ShOpc == Instruction::AShr) {
1045 if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
1046 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
1047 Value *NotX = Builder.CreateNot(X);
1048 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
1050 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
1051 }
1052
1053 return nullptr;
1054 }
1055
1056 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
1057 // distribute to drop the shift irrelevant of constants.
1058 if (BinOpc == I.getOpcode() &&
1059 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
1060 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
1061 Value *NewBinOp1 = Builder.CreateBinOp(
1062 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
1063 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
1064 }
1065
1066 // Otherwise we can only distribute by constant shifting the mask, so
1067 // ensure we have constants.
1068 if (!match(Shift, m_ImmConstant(CShift)))
1069 return nullptr;
1070 if (!match(Mask, m_ImmConstant(CMask)))
1071 return nullptr;
1072
1073 // Check if we can distribute the binops.
1074 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1075 return nullptr;
1076
1077 Constant *NewCMask =
1078 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1079 Value *NewBinOp2 = Builder.CreateBinOp(
1080 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
1081 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
1082 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
1083 NewBinOp1, CShift);
1084 };
1085
1086 if (Instruction *R = MatchBinOp(0))
1087 return R;
1088 return MatchBinOp(1);
1089}
1090
1091// (Binop (zext C), (select C, T, F))
1092// -> (select C, (binop 1, T), (binop 0, F))
1093//
1094// (Binop (sext C), (select C, T, F))
1095// -> (select C, (binop -1, T), (binop 0, F))
1096//
1097// Attempt to simplify binary operations into a select with folded args, when
1098// one operand of the binop is a select instruction and the other operand is a
1099// zext/sext extension, whose value is the select condition.
1102 // TODO: this simplification may be extended to any speculatable instruction,
1103 // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1104 Instruction::BinaryOps Opc = I.getOpcode();
1105 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1106 Value *A, *CondVal, *TrueVal, *FalseVal;
1107 Value *CastOp;
1108
1109 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1110 return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1111 A->getType()->getScalarSizeInBits() == 1 &&
1112 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1113 m_Value(FalseVal)));
1114 };
1115
1116 // Make sure one side of the binop is a select instruction, and the other is a
1117 // zero/sign extension operating on a i1.
1118 if (MatchSelectAndCast(LHS, RHS))
1119 CastOp = LHS;
1120 else if (MatchSelectAndCast(RHS, LHS))
1121 CastOp = RHS;
1122 else
1123 return nullptr;
1124
1125 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1126 bool IsCastOpRHS = (CastOp == RHS);
1127 bool IsZExt = isa<ZExtInst>(CastOp);
1128 Constant *C;
1129
1130 if (IsTrueArm) {
1131 C = Constant::getNullValue(V->getType());
1132 } else if (IsZExt) {
1133 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1134 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1135 } else {
1136 C = Constant::getAllOnesValue(V->getType());
1137 }
1138
1139 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1140 : Builder.CreateBinOp(Opc, C, V);
1141 };
1142
1143 // If the value used in the zext/sext is the select condition, or the negated
1144 // of the select condition, the binop can be simplified.
1145 if (CondVal == A) {
1146 Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1147 return SelectInst::Create(CondVal, NewTrueVal,
1148 NewFoldedConst(true, FalseVal));
1149 }
1150
1151 if (match(A, m_Not(m_Specific(CondVal)))) {
1152 Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1153 return SelectInst::Create(CondVal, NewTrueVal,
1154 NewFoldedConst(false, FalseVal));
1155 }
1156
1157 return nullptr;
1158}
1159
1161 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1164 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1165 Value *A, *B, *C, *D;
1166 Instruction::BinaryOps LHSOpcode, RHSOpcode;
1167
1168 if (Op0)
1169 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1170 if (Op1)
1171 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1172
1173 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1174 // a common term.
1175 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1176 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1177 return V;
1178
1179 // The instruction has the form "(A op' B) op (C)". Try to factorize common
1180 // term.
1181 if (Op0)
1182 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1183 if (Value *V =
1184 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1185 return V;
1186
1187 // The instruction has the form "(B) op (C op' D)". Try to factorize common
1188 // term.
1189 if (Op1)
1190 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1191 if (Value *V =
1192 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1193 return V;
1194
1195 return nullptr;
1196}
1197
1198/// This tries to simplify binary operations which some other binary operation
1199/// distributes over either by factorizing out common terms
1200/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1201/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1202/// Returns the simplified value, or null if it didn't simplify.
1204 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1207 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1208
1209 // Factorization.
1210 if (Value *R = tryFactorizationFolds(I))
1211 return R;
1212
1213 // Expansion.
1214 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1215 // The instruction has the form "(A op' B) op C". See if expanding it out
1216 // to "(A op C) op' (B op C)" results in simplifications.
1217 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1218 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1219
1220 // Disable the use of undef because it's not safe to distribute undef.
1221 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1222 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1223 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1224
1225 // Do "A op C" and "B op C" both simplify?
1226 if (L && R) {
1227 // They do! Return "L op' R".
1228 ++NumExpand;
1229 C = Builder.CreateBinOp(InnerOpcode, L, R);
1230 C->takeName(&I);
1231 return C;
1232 }
1233
1234 // Does "A op C" simplify to the identity value for the inner opcode?
1235 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1236 // They do! Return "B op C".
1237 ++NumExpand;
1238 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1239 C->takeName(&I);
1240 return C;
1241 }
1242
1243 // Does "B op C" simplify to the identity value for the inner opcode?
1244 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1245 // They do! Return "A op C".
1246 ++NumExpand;
1247 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1248 C->takeName(&I);
1249 return C;
1250 }
1251 }
1252
1253 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1254 // The instruction has the form "A op (B op' C)". See if expanding it out
1255 // to "(A op B) op' (A op C)" results in simplifications.
1256 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1257 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1258
1259 // Disable the use of undef because it's not safe to distribute undef.
1260 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1261 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1262 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1263
1264 // Do "A op B" and "A op C" both simplify?
1265 if (L && R) {
1266 // They do! Return "L op' R".
1267 ++NumExpand;
1268 A = Builder.CreateBinOp(InnerOpcode, L, R);
1269 A->takeName(&I);
1270 return A;
1271 }
1272
1273 // Does "A op B" simplify to the identity value for the inner opcode?
1274 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1275 // They do! Return "A op C".
1276 ++NumExpand;
1277 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1278 A->takeName(&I);
1279 return A;
1280 }
1281
1282 // Does "A op C" simplify to the identity value for the inner opcode?
1283 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1284 // They do! Return "A op B".
1285 ++NumExpand;
1286 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1287 A->takeName(&I);
1288 return A;
1289 }
1290 }
1291
1292 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1293}
1294
1295static std::optional<std::pair<Value *, Value *>>
1297 if (LHS->getParent() != RHS->getParent())
1298 return std::nullopt;
1299
1300 if (LHS->getNumIncomingValues() < 2)
1301 return std::nullopt;
1302
1303 if (!equal(LHS->blocks(), RHS->blocks()))
1304 return std::nullopt;
1305
1306 Value *L0 = LHS->getIncomingValue(0);
1307 Value *R0 = RHS->getIncomingValue(0);
1308
1309 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1310 Value *L1 = LHS->getIncomingValue(I);
1311 Value *R1 = RHS->getIncomingValue(I);
1312
1313 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1314 continue;
1315
1316 return std::nullopt;
1317 }
1318
1319 return std::optional(std::pair(L0, R0));
1320}
1321
1322std::optional<std::pair<Value *, Value *>>
1323InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1326 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1327 return std::nullopt;
1328 switch (LHSInst->getOpcode()) {
1329 case Instruction::PHI:
1331 case Instruction::Select: {
1332 Value *Cond = LHSInst->getOperand(0);
1333 Value *TrueVal = LHSInst->getOperand(1);
1334 Value *FalseVal = LHSInst->getOperand(2);
1335 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1336 FalseVal == RHSInst->getOperand(1))
1337 return std::pair(TrueVal, FalseVal);
1338 return std::nullopt;
1339 }
1340 case Instruction::Call: {
1341 // Match min(a, b) and max(a, b)
1342 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1343 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1344 if (LHSMinMax && RHSMinMax &&
1345 LHSMinMax->getPredicate() ==
1347 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1348 LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1349 (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1350 LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1351 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1352 return std::nullopt;
1353 }
1354 default:
1355 return std::nullopt;
1356 }
1357}
1358
1360 Value *LHS,
1361 Value *RHS) {
1362 Value *A, *B, *C, *D, *E, *F;
1363 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1364 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1365 if (!LHSIsSelect && !RHSIsSelect)
1366 return nullptr;
1367
1369 ? nullptr
1370 : cast<SelectInst>(LHSIsSelect ? LHS : RHS);
1371
1372 FastMathFlags FMF;
1374 if (const auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
1375 FMF = FPOp->getFastMathFlags();
1376 Builder.setFastMathFlags(FMF);
1377 }
1378
1379 Instruction::BinaryOps Opcode = I.getOpcode();
1380 SimplifyQuery Q = SQ.getWithInstruction(&I);
1381
1382 Value *Cond, *True = nullptr, *False = nullptr;
1383
1384 // Special-case for add/negate combination. Replace the zero in the negation
1385 // with the trailing add operand:
1386 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1387 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1388 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1389 // We need an 'add' and exactly 1 arm of the select to have been simplified.
1390 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1391 return nullptr;
1392 Value *N;
1393 if (True && match(FVal, m_Neg(m_Value(N)))) {
1394 Value *Sub = Builder.CreateSub(Z, N);
1395 return Builder.CreateSelect(Cond, True, Sub, I.getName(), SI);
1396 }
1397 if (False && match(TVal, m_Neg(m_Value(N)))) {
1398 Value *Sub = Builder.CreateSub(Z, N);
1399 return Builder.CreateSelect(Cond, Sub, False, I.getName(), SI);
1400 }
1401 return nullptr;
1402 };
1403
1404 if (LHSIsSelect && RHSIsSelect && A == D) {
1405 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1406 Cond = A;
1407 True = simplifyBinOp(Opcode, B, E, FMF, Q);
1408 False = simplifyBinOp(Opcode, C, F, FMF, Q);
1409
1410 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1411 if (False && !True)
1412 True = Builder.CreateBinOp(Opcode, B, E);
1413 else if (True && !False)
1414 False = Builder.CreateBinOp(Opcode, C, F);
1415 }
1416 } else if (LHSIsSelect && LHS->hasOneUse()) {
1417 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1418 Cond = A;
1419 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1420 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1421 if (Value *NewSel = foldAddNegate(B, C, RHS))
1422 return NewSel;
1423 } else if (RHSIsSelect && RHS->hasOneUse()) {
1424 // X op (D ? E : F) -> D ? (X op E) : (X op F)
1425 Cond = D;
1426 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1427 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1428 if (Value *NewSel = foldAddNegate(E, F, LHS))
1429 return NewSel;
1430 }
1431
1432 if (!True || !False)
1433 return nullptr;
1434
1435 Value *NewSI = Builder.CreateSelect(Cond, True, False, I.getName(), SI);
1436 NewSI->takeName(&I);
1437 return NewSI;
1438}
1439
1440/// Freely adapt every user of V as-if V was changed to !V.
1441/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1443 assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1444 for (User *U : make_early_inc_range(I->users())) {
1445 if (U == IgnoredUser)
1446 continue; // Don't consider this user.
1447 switch (cast<Instruction>(U)->getOpcode()) {
1448 case Instruction::Select: {
1449 auto *SI = cast<SelectInst>(U);
1450 SI->swapValues();
1451 SI->swapProfMetadata();
1452 break;
1453 }
1454 case Instruction::Br: {
1456 BI->swapSuccessors(); // swaps prof metadata too
1457 if (BPI)
1458 BPI->swapSuccEdgesProbabilities(BI->getParent());
1459 break;
1460 }
1461 case Instruction::Xor:
1463 // Add to worklist for DCE.
1465 break;
1466 default:
1467 llvm_unreachable("Got unexpected user - out of sync with "
1468 "canFreelyInvertAllUsersOf() ?");
1469 }
1470 }
1471
1472 // Update pre-existing debug value uses.
1473 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1474 llvm::findDbgValues(I, DbgVariableRecords);
1475
1476 for (DbgVariableRecord *DbgVal : DbgVariableRecords) {
1477 SmallVector<uint64_t, 1> Ops = {dwarf::DW_OP_not};
1478 for (unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1479 Idx != End; ++Idx)
1480 if (DbgVal->getVariableLocationOp(Idx) == I)
1481 DbgVal->setExpression(
1482 DIExpression::appendOpsToArg(DbgVal->getExpression(), Ops, Idx));
1483 }
1484}
1485
1486/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1487/// constant zero (which is the 'negate' form).
1488Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1489 Value *NegV;
1490 if (match(V, m_Neg(m_Value(NegV))))
1491 return NegV;
1492
1493 // Constants can be considered to be negated values if they can be folded.
1495 return ConstantExpr::getNeg(C);
1496
1498 if (C->getType()->getElementType()->isIntegerTy())
1499 return ConstantExpr::getNeg(C);
1500
1502 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1503 Constant *Elt = CV->getAggregateElement(i);
1504 if (!Elt)
1505 return nullptr;
1506
1507 if (isa<UndefValue>(Elt))
1508 continue;
1509
1510 if (!isa<ConstantInt>(Elt))
1511 return nullptr;
1512 }
1513 return ConstantExpr::getNeg(CV);
1514 }
1515
1516 // Negate integer vector splats.
1517 if (auto *CV = dyn_cast<Constant>(V))
1518 if (CV->getType()->isVectorTy() &&
1519 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1520 return ConstantExpr::getNeg(CV);
1521
1522 return nullptr;
1523}
1524
1525// Try to fold:
1526// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1527// -> ({s|u}itofp (int_binop x, y))
1528// 2) (fp_binop ({s|u}itofp x), FpC)
1529// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1530//
1531// Assuming the sign of the cast for x/y is `OpsFromSigned`.
1532Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1533 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1535
1536 Type *FPTy = BO.getType();
1537 Type *IntTy = IntOps[0]->getType();
1538
1539 unsigned IntSz = IntTy->getScalarSizeInBits();
1540 // This is the maximum number of inuse bits by the integer where the int -> fp
1541 // casts are exact.
1542 unsigned MaxRepresentableBits =
1544
1545 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1546 // checks later on.
1547 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1548
1549 // NB: This only comes up if OpsFromSigned is true, so there is no need to
1550 // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1551 auto IsNonZero = [&](unsigned OpNo) -> bool {
1552 if (OpsKnown[OpNo].hasKnownBits() &&
1553 OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1554 return true;
1555 return isKnownNonZero(IntOps[OpNo], SQ);
1556 };
1557
1558 auto IsNonNeg = [&](unsigned OpNo) -> bool {
1559 // NB: This matches the impl in ValueTracking, we just try to use cached
1560 // knownbits here. If we ever start supporting WithCache for
1561 // `isKnownNonNegative`, change this to an explicit call.
1562 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1563 };
1564
1565 // Check if we know for certain that ({s|u}itofp op) is exact.
1566 auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1567 // Can we treat this operand as the desired sign?
1568 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1569 !IsNonNeg(OpNo))
1570 return false;
1571
1572 // If fp precision >= bitwidth(op) then its exact.
1573 // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1574 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1575 // handled specially. We can't, however, increase the bound arbitrarily for
1576 // `sitofp` as for larger sizes, it won't sign extend.
1577 if (MaxRepresentableBits < IntSz) {
1578 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1579 // numSignBits(op).
1580 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1581 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1582 if (OpsFromSigned)
1583 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1584 // Finally for unsigned check that fp precision >= bitwidth(op) -
1585 // numLeadingZeros(op).
1586 else {
1587 NumUsedLeadingBits[OpNo] =
1588 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1589 }
1590 }
1591 // NB: We could also check if op is known to be a power of 2 or zero (which
1592 // will always be representable). Its unlikely, however, that is we are
1593 // unable to bound op in any way we will be able to pass the overflow checks
1594 // later on.
1595
1596 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1597 return false;
1598 // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1599 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1600 IsNonZero(OpNo);
1601 };
1602
1603 // If we have a constant rhs, see if we can losslessly convert it to an int.
1604 if (Op1FpC != nullptr) {
1605 // Signed + Mul req non-zero
1606 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1607 !match(Op1FpC, m_NonZeroFP()))
1608 return nullptr;
1609
1611 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1612 IntTy, DL);
1613 if (Op1IntC == nullptr)
1614 return nullptr;
1615 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1616 : Instruction::UIToFP,
1617 Op1IntC, FPTy, DL) != Op1FpC)
1618 return nullptr;
1619
1620 // First try to keep sign of cast the same.
1621 IntOps[1] = Op1IntC;
1622 }
1623
1624 // Ensure lhs/rhs integer types match.
1625 if (IntTy != IntOps[1]->getType())
1626 return nullptr;
1627
1628 if (Op1FpC == nullptr) {
1629 if (!IsValidPromotion(1))
1630 return nullptr;
1631 }
1632 if (!IsValidPromotion(0))
1633 return nullptr;
1634
1635 // Final we check if the integer version of the binop will not overflow.
1637 // Because of the precision check, we can often rule out overflows.
1638 bool NeedsOverflowCheck = true;
1639 // Try to conservatively rule out overflow based on the already done precision
1640 // checks.
1641 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1642 unsigned OverflowMaxCurBits =
1643 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1644 bool OutputSigned = OpsFromSigned;
1645 switch (BO.getOpcode()) {
1646 case Instruction::FAdd:
1647 IntOpc = Instruction::Add;
1648 OverflowMaxOutputBits += OverflowMaxCurBits;
1649 break;
1650 case Instruction::FSub:
1651 IntOpc = Instruction::Sub;
1652 OverflowMaxOutputBits += OverflowMaxCurBits;
1653 break;
1654 case Instruction::FMul:
1655 IntOpc = Instruction::Mul;
1656 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1657 break;
1658 default:
1659 llvm_unreachable("Unsupported binop");
1660 }
1661 // The precision check may have already ruled out overflow.
1662 if (OverflowMaxOutputBits < IntSz) {
1663 NeedsOverflowCheck = false;
1664 // We can bound unsigned overflow from sub to in range signed value (this is
1665 // what allows us to avoid the overflow check for sub).
1666 if (IntOpc == Instruction::Sub)
1667 OutputSigned = true;
1668 }
1669
1670 // Precision check did not rule out overflow, so need to check.
1671 // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1672 // `IntOps[...]` arguments to `KnownOps[...]`.
1673 if (NeedsOverflowCheck &&
1674 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1675 return nullptr;
1676
1677 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1678 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1679 IntBO->setHasNoSignedWrap(OutputSigned);
1680 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1681 }
1682 if (OutputSigned)
1683 return new SIToFPInst(IntBinOp, FPTy);
1684 return new UIToFPInst(IntBinOp, FPTy);
1685}
1686
1687// Try to fold:
1688// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1689// -> ({s|u}itofp (int_binop x, y))
1690// 2) (fp_binop ({s|u}itofp x), FpC)
1691// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1692Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1693 // Don't perform the fold on vectors, as the integer operation may be much
1694 // more expensive than the float operation in that case.
1695 if (BO.getType()->isVectorTy())
1696 return nullptr;
1697
1698 std::array<Value *, 2> IntOps = {nullptr, nullptr};
1699 Constant *Op1FpC = nullptr;
1700 // Check for:
1701 // 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1702 // 2) (binop ({s|u}itofp x), FpC)
1703 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1704 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1705 return nullptr;
1706
1707 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1708 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1709 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1710 return nullptr;
1711
1712 // Cache KnownBits a bit to potentially save some analysis.
1713 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1714
1715 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1716 // different constraints depending on the sign of the cast.
1717 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1718 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1719 IntOps, Op1FpC, OpsKnown))
1720 return R;
1721 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1722 Op1FpC, OpsKnown);
1723}
1724
1725/// A binop with a constant operand and a sign-extended boolean operand may be
1726/// converted into a select of constants by applying the binary operation to
1727/// the constant with the two possible values of the extended boolean (0 or -1).
1728Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1729 // TODO: Handle non-commutative binop (constant is operand 0).
1730 // TODO: Handle zext.
1731 // TODO: Peek through 'not' of cast.
1732 Value *BO0 = BO.getOperand(0);
1733 Value *BO1 = BO.getOperand(1);
1734 Value *X;
1735 Constant *C;
1736 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1737 !X->getType()->isIntOrIntVectorTy(1))
1738 return nullptr;
1739
1740 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1743 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1744 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1745 return createSelectInstWithUnknownProfile(X, TVal, FVal);
1746}
1747
1749 bool IsTrueArm) {
1751 for (Value *Op : I.operands()) {
1752 Value *V = nullptr;
1753 if (Op == SI) {
1754 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
1755 } else if (match(SI->getCondition(),
1758 m_Specific(Op), m_Value(V))) &&
1760 // Pass
1761 } else if (match(Op, m_ZExt(m_Specific(SI->getCondition())))) {
1762 V = IsTrueArm ? ConstantInt::get(Op->getType(), 1)
1763 : ConstantInt::getNullValue(Op->getType());
1764 } else {
1765 V = Op;
1766 }
1767 Ops.push_back(V);
1768 }
1769
1770 return simplifyInstructionWithOperands(&I, Ops, I.getDataLayout());
1771}
1772
1774 Value *NewOp, InstCombiner &IC) {
1775 Instruction *Clone = I.clone();
1776 Clone->replaceUsesOfWith(SI, NewOp);
1778 IC.InsertNewInstBefore(Clone, I.getIterator());
1779 return Clone;
1780}
1781
1783 bool FoldWithMultiUse,
1784 bool SimplifyBothArms) {
1785 // Don't modify shared select instructions unless set FoldWithMultiUse
1786 if (!SI->hasOneUser() && !FoldWithMultiUse)
1787 return nullptr;
1788
1789 Value *TV = SI->getTrueValue();
1790 Value *FV = SI->getFalseValue();
1791
1792 // Bool selects with constant operands can be folded to logical ops.
1793 if (SI->getType()->isIntOrIntVectorTy(1))
1794 return nullptr;
1795
1796 // Avoid breaking min/max reduction pattern,
1797 // which is necessary for vectorization later.
1799 for (Value *IntrinOp : Op.operands())
1800 if (auto *PN = dyn_cast<PHINode>(IntrinOp))
1801 for (Value *PhiOp : PN->operands())
1802 if (PhiOp == &Op)
1803 return nullptr;
1804
1805 // Test if a FCmpInst instruction is used exclusively by a select as
1806 // part of a minimum or maximum operation. If so, refrain from doing
1807 // any other folding. This helps out other analyses which understand
1808 // non-obfuscated minimum and maximum idioms. And in this case, at
1809 // least one of the comparison operands has at least one user besides
1810 // the compare (the select), which would often largely negate the
1811 // benefit of folding anyway.
1812 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1813 if (CI->hasOneUse()) {
1814 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1815 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1816 !CI->isCommutative())
1817 return nullptr;
1818 }
1819 }
1820
1821 // Make sure that one of the select arms folds successfully.
1822 Value *NewTV = simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/true);
1823 Value *NewFV =
1824 simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/false);
1825 if (!NewTV && !NewFV)
1826 return nullptr;
1827
1828 if (SimplifyBothArms && !(NewTV && NewFV))
1829 return nullptr;
1830
1831 // Create an instruction for the arm that did not fold.
1832 if (!NewTV)
1833 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1834 if (!NewFV)
1835 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1836 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1837}
1838
1840 Value *InValue, BasicBlock *InBB,
1841 const DataLayout &DL,
1842 const SimplifyQuery SQ) {
1843 // NB: It is a precondition of this transform that the operands be
1844 // phi translatable!
1846 for (Value *Op : I.operands()) {
1847 if (Op == PN)
1848 Ops.push_back(InValue);
1849 else
1850 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1851 }
1852
1853 // Don't consider the simplification successful if we get back a constant
1854 // expression. That's just an instruction in hiding.
1855 // Also reject the case where we simplify back to the phi node. We wouldn't
1856 // be able to remove it in that case.
1858 &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1859 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1860 return NewVal;
1861
1862 // Check if incoming PHI value can be replaced with constant
1863 // based on implied condition.
1864 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1865 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1866 if (TerminatorBI && TerminatorBI->isConditional() &&
1867 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1868 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1869 std::optional<bool> ImpliedCond = isImpliedCondition(
1870 TerminatorBI->getCondition(), ICmp->getCmpPredicate(), Ops[0], Ops[1],
1871 DL, LHSIsTrue);
1872 if (ImpliedCond)
1873 return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1874 }
1875
1876 return nullptr;
1877}
1878
1879/// In some cases it is beneficial to fold a select into a binary operator.
1880/// For example:
1881/// %1 = or %in, 4
1882/// %2 = select %cond, %1, %in
1883/// %3 = or %2, 1
1884/// =>
1885/// %1 = select i1 %cond, 5, 1
1886/// %2 = or %1, %in
1888 assert(Op.isAssociative() && "The operation must be associative!");
1889
1890 SelectInst *SI = dyn_cast<SelectInst>(Op.getOperand(0));
1891
1892 Constant *Const;
1893 if (!SI || !match(Op.getOperand(1), m_ImmConstant(Const)) ||
1894 !Op.hasOneUse() || !SI->hasOneUse())
1895 return nullptr;
1896
1897 Value *TV = SI->getTrueValue();
1898 Value *FV = SI->getFalseValue();
1899 Value *Input, *NewTV, *NewFV;
1900 Constant *Const2;
1901
1902 if (TV->hasOneUse() && match(TV, m_BinOp(Op.getOpcode(), m_Specific(FV),
1903 m_ImmConstant(Const2)))) {
1904 NewTV = ConstantFoldBinaryInstruction(Op.getOpcode(), Const, Const2);
1905 NewFV = Const;
1906 Input = FV;
1907 } else if (FV->hasOneUse() &&
1908 match(FV, m_BinOp(Op.getOpcode(), m_Specific(TV),
1909 m_ImmConstant(Const2)))) {
1910 NewTV = Const;
1911 NewFV = ConstantFoldBinaryInstruction(Op.getOpcode(), Const, Const2);
1912 Input = TV;
1913 } else
1914 return nullptr;
1915
1916 if (!NewTV || !NewFV)
1917 return nullptr;
1918
1919 Value *NewSI = Builder.CreateSelect(SI->getCondition(), NewTV, NewFV);
1920 return BinaryOperator::Create(Op.getOpcode(), NewSI, Input);
1921}
1922
1924 bool AllowMultipleUses) {
1925 unsigned NumPHIValues = PN->getNumIncomingValues();
1926 if (NumPHIValues == 0)
1927 return nullptr;
1928
1929 // We normally only transform phis with a single use. However, if a PHI has
1930 // multiple uses and they are all the same operation, we can fold *all* of the
1931 // uses into the PHI.
1932 bool OneUse = PN->hasOneUse();
1933 bool IdenticalUsers = false;
1934 if (!AllowMultipleUses && !OneUse) {
1935 // Walk the use list for the instruction, comparing them to I.
1936 for (User *U : PN->users()) {
1938 if (UI != &I && !I.isIdenticalTo(UI))
1939 return nullptr;
1940 }
1941 // Otherwise, we can replace *all* users with the new PHI we form.
1942 IdenticalUsers = true;
1943 }
1944
1945 // Check that all operands are phi-translatable.
1946 for (Value *Op : I.operands()) {
1947 if (Op == PN)
1948 continue;
1949
1950 // Non-instructions never require phi-translation.
1951 auto *I = dyn_cast<Instruction>(Op);
1952 if (!I)
1953 continue;
1954
1955 // Phi-translate can handle phi nodes in the same block.
1956 if (isa<PHINode>(I))
1957 if (I->getParent() == PN->getParent())
1958 continue;
1959
1960 // Operand dominates the block, no phi-translation necessary.
1961 if (DT.dominates(I, PN->getParent()))
1962 continue;
1963
1964 // Not phi-translatable, bail out.
1965 return nullptr;
1966 }
1967
1968 // Check to see whether the instruction can be folded into each phi operand.
1969 // If there is one operand that does not fold, remember the BB it is in.
1970 SmallVector<Value *> NewPhiValues;
1971 SmallVector<unsigned int> OpsToMoveUseToIncomingBB;
1972 bool SeenNonSimplifiedInVal = false;
1973 for (unsigned i = 0; i != NumPHIValues; ++i) {
1974 Value *InVal = PN->getIncomingValue(i);
1975 BasicBlock *InBB = PN->getIncomingBlock(i);
1976
1977 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1978 NewPhiValues.push_back(NewVal);
1979 continue;
1980 }
1981
1982 // Handle some cases that can't be fully simplified, but where we know that
1983 // the two instructions will fold into one.
1984 auto WillFold = [&]() {
1985 if (!InVal->hasUseList() || !InVal->hasOneUser())
1986 return false;
1987
1988 // icmp of ucmp/scmp with constant will fold to icmp.
1989 const APInt *Ignored;
1990 if (isa<CmpIntrinsic>(InVal) &&
1991 match(&I, m_ICmp(m_Specific(PN), m_APInt(Ignored))))
1992 return true;
1993
1994 // icmp eq zext(bool), 0 will fold to !bool.
1995 if (isa<ZExtInst>(InVal) &&
1996 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
1997 match(&I,
1999 return true;
2000
2001 return false;
2002 };
2003
2004 if (WillFold()) {
2005 OpsToMoveUseToIncomingBB.push_back(i);
2006 NewPhiValues.push_back(nullptr);
2007 continue;
2008 }
2009
2010 if (!OneUse && !IdenticalUsers)
2011 return nullptr;
2012
2013 if (SeenNonSimplifiedInVal)
2014 return nullptr; // More than one non-simplified value.
2015 SeenNonSimplifiedInVal = true;
2016
2017 // If there is exactly one non-simplified value, we can insert a copy of the
2018 // operation in that block. However, if this is a critical edge, we would
2019 // be inserting the computation on some other paths (e.g. inside a loop).
2020 // Only do this if the pred block is unconditionally branching into the phi
2021 // block. Also, make sure that the pred block is not dead code.
2023 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(InBB))
2024 return nullptr;
2025
2026 NewPhiValues.push_back(nullptr);
2027 OpsToMoveUseToIncomingBB.push_back(i);
2028
2029 // Do not push the operation across a loop backedge. This could result in
2030 // an infinite combine loop, and is generally non-profitable (especially
2031 // if the operation was originally outside the loop).
2032 if (isBackEdge(InBB, PN->getParent()))
2033 return nullptr;
2034 }
2035
2036 // Clone the instruction that uses the phi node and move it into the incoming
2037 // BB because we know that the next iteration of InstCombine will simplify it.
2039 for (auto OpIndex : OpsToMoveUseToIncomingBB) {
2041 BasicBlock *OpBB = PN->getIncomingBlock(OpIndex);
2042
2043 Instruction *Clone = Clones.lookup(OpBB);
2044 if (!Clone) {
2045 Clone = I.clone();
2046 for (Use &U : Clone->operands()) {
2047 if (U == PN)
2048 U = Op;
2049 else
2050 U = U->DoPHITranslation(PN->getParent(), OpBB);
2051 }
2052 Clone = InsertNewInstBefore(Clone, OpBB->getTerminator()->getIterator());
2053 Clones.insert({OpBB, Clone});
2054 // We may have speculated the instruction.
2056 }
2057
2058 NewPhiValues[OpIndex] = Clone;
2059 }
2060
2061 // Okay, we can do the transformation: create the new PHI node.
2062 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
2063 InsertNewInstBefore(NewPN, PN->getIterator());
2064 NewPN->takeName(PN);
2065 NewPN->setDebugLoc(PN->getDebugLoc());
2066
2067 for (unsigned i = 0; i != NumPHIValues; ++i)
2068 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
2069
2070 if (IdenticalUsers) {
2071 // Collect and deduplicate users up-front to avoid iterator invalidation.
2073 for (User *U : PN->users()) {
2075 if (User == &I)
2076 continue;
2077 ToReplace.insert(User);
2078 }
2079 for (Instruction *I : ToReplace) {
2080 replaceInstUsesWith(*I, NewPN);
2082 }
2083 OneUse = true;
2084 }
2085
2086 if (OneUse) {
2087 replaceAllDbgUsesWith(*PN, *NewPN, *PN, DT);
2088 }
2089 return replaceInstUsesWith(I, NewPN);
2090}
2091
2093 if (!BO.isAssociative())
2094 return nullptr;
2095
2096 // Find the interleaved binary ops.
2097 auto Opc = BO.getOpcode();
2098 auto *BO0 = dyn_cast<BinaryOperator>(BO.getOperand(0));
2099 auto *BO1 = dyn_cast<BinaryOperator>(BO.getOperand(1));
2100 if (!BO0 || !BO1 || !BO0->hasNUses(2) || !BO1->hasNUses(2) ||
2101 BO0->getOpcode() != Opc || BO1->getOpcode() != Opc ||
2102 !BO0->isAssociative() || !BO1->isAssociative() ||
2103 BO0->getParent() != BO1->getParent())
2104 return nullptr;
2105
2106 assert(BO.isCommutative() && BO0->isCommutative() && BO1->isCommutative() &&
2107 "Expected commutative instructions!");
2108
2109 // Find the matching phis, forming the recurrences.
2110 PHINode *PN0, *PN1;
2111 Value *Start0, *Step0, *Start1, *Step1;
2112 if (!matchSimpleRecurrence(BO0, PN0, Start0, Step0) || !PN0->hasOneUse() ||
2113 !matchSimpleRecurrence(BO1, PN1, Start1, Step1) || !PN1->hasOneUse() ||
2114 PN0->getParent() != PN1->getParent())
2115 return nullptr;
2116
2117 assert(PN0->getNumIncomingValues() == 2 && PN1->getNumIncomingValues() == 2 &&
2118 "Expected PHIs with two incoming values!");
2119
2120 // Convert the start and step values to constants.
2121 auto *Init0 = dyn_cast<Constant>(Start0);
2122 auto *Init1 = dyn_cast<Constant>(Start1);
2123 auto *C0 = dyn_cast<Constant>(Step0);
2124 auto *C1 = dyn_cast<Constant>(Step1);
2125 if (!Init0 || !Init1 || !C0 || !C1)
2126 return nullptr;
2127
2128 // Fold the recurrence constants.
2129 auto *Init = ConstantFoldBinaryInstruction(Opc, Init0, Init1);
2130 auto *C = ConstantFoldBinaryInstruction(Opc, C0, C1);
2131 if (!Init || !C)
2132 return nullptr;
2133
2134 // Create the reduced PHI.
2135 auto *NewPN = PHINode::Create(PN0->getType(), PN0->getNumIncomingValues(),
2136 "reduced.phi");
2137
2138 // Create the new binary op.
2139 auto *NewBO = BinaryOperator::Create(Opc, NewPN, C);
2140 if (Opc == Instruction::FAdd || Opc == Instruction::FMul) {
2141 // Intersect FMF flags for FADD and FMUL.
2142 FastMathFlags Intersect = BO0->getFastMathFlags() &
2143 BO1->getFastMathFlags() & BO.getFastMathFlags();
2144 NewBO->setFastMathFlags(Intersect);
2145 } else {
2146 OverflowTracking Flags;
2147 Flags.AllKnownNonNegative = false;
2148 Flags.AllKnownNonZero = false;
2149 Flags.mergeFlags(*BO0);
2150 Flags.mergeFlags(*BO1);
2151 Flags.mergeFlags(BO);
2152 Flags.applyFlags(*NewBO);
2153 }
2154 NewBO->takeName(&BO);
2155
2156 for (unsigned I = 0, E = PN0->getNumIncomingValues(); I != E; ++I) {
2157 auto *V = PN0->getIncomingValue(I);
2158 auto *BB = PN0->getIncomingBlock(I);
2159 if (V == Init0) {
2160 assert(((PN1->getIncomingValue(0) == Init1 &&
2161 PN1->getIncomingBlock(0) == BB) ||
2162 (PN1->getIncomingValue(1) == Init1 &&
2163 PN1->getIncomingBlock(1) == BB)) &&
2164 "Invalid incoming block!");
2165 NewPN->addIncoming(Init, BB);
2166 } else if (V == BO0) {
2167 assert(((PN1->getIncomingValue(0) == BO1 &&
2168 PN1->getIncomingBlock(0) == BB) ||
2169 (PN1->getIncomingValue(1) == BO1 &&
2170 PN1->getIncomingBlock(1) == BB)) &&
2171 "Invalid incoming block!");
2172 NewPN->addIncoming(NewBO, BB);
2173 } else
2174 llvm_unreachable("Unexpected incoming value!");
2175 }
2176
2177 LLVM_DEBUG(dbgs() << " Combined " << *PN0 << "\n " << *BO0
2178 << "\n with " << *PN1 << "\n " << *BO1
2179 << '\n');
2180
2181 // Insert the new recurrence and remove the old (dead) ones.
2182 InsertNewInstWith(NewPN, PN0->getIterator());
2183 InsertNewInstWith(NewBO, BO0->getIterator());
2184
2191
2192 return replaceInstUsesWith(BO, NewBO);
2193}
2194
2196 // Attempt to fold binary operators whose operands are simple recurrences.
2197 if (auto *NewBO = foldBinopWithRecurrence(BO))
2198 return NewBO;
2199
2200 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
2201 // we are guarding against replicating the binop in >1 predecessor.
2202 // This could miss matching a phi with 2 constant incoming values.
2203 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
2204 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
2205 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2206 Phi0->getNumOperands() != Phi1->getNumOperands())
2207 return nullptr;
2208
2209 // TODO: Remove the restriction for binop being in the same block as the phis.
2210 if (BO.getParent() != Phi0->getParent() ||
2211 BO.getParent() != Phi1->getParent())
2212 return nullptr;
2213
2214 // Fold if there is at least one specific constant value in phi0 or phi1's
2215 // incoming values that comes from the same block and this specific constant
2216 // value can be used to do optimization for specific binary operator.
2217 // For example:
2218 // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
2219 // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
2220 // %add = add i32 %phi0, %phi1
2221 // ==>
2222 // %add = phi i32 [%j, %bb0], [%i, %bb1]
2224 /*AllowRHSConstant*/ false);
2225 if (C) {
2226 SmallVector<Value *, 4> NewIncomingValues;
2227 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
2228 auto &Phi0Use = std::get<0>(T);
2229 auto &Phi1Use = std::get<1>(T);
2230 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2231 return false;
2232 Value *Phi0UseV = Phi0Use.get();
2233 Value *Phi1UseV = Phi1Use.get();
2234 if (Phi0UseV == C)
2235 NewIncomingValues.push_back(Phi1UseV);
2236 else if (Phi1UseV == C)
2237 NewIncomingValues.push_back(Phi0UseV);
2238 else
2239 return false;
2240 return true;
2241 };
2242
2243 if (all_of(zip(Phi0->operands(), Phi1->operands()),
2244 CanFoldIncomingValuePair)) {
2245 PHINode *NewPhi =
2246 PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
2247 assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
2248 "The number of collected incoming values should equal the number "
2249 "of the original PHINode operands!");
2250 for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
2251 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
2252 return NewPhi;
2253 }
2254 }
2255
2256 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2257 return nullptr;
2258
2259 // Match a pair of incoming constants for one of the predecessor blocks.
2260 BasicBlock *ConstBB, *OtherBB;
2261 Constant *C0, *C1;
2262 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
2263 ConstBB = Phi0->getIncomingBlock(0);
2264 OtherBB = Phi0->getIncomingBlock(1);
2265 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
2266 ConstBB = Phi0->getIncomingBlock(1);
2267 OtherBB = Phi0->getIncomingBlock(0);
2268 } else {
2269 return nullptr;
2270 }
2271 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
2272 return nullptr;
2273
2274 // The block that we are hoisting to must reach here unconditionally.
2275 // Otherwise, we could be speculatively executing an expensive or
2276 // non-speculative op.
2277 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
2278 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2279 !DT.isReachableFromEntry(OtherBB))
2280 return nullptr;
2281
2282 // TODO: This check could be tightened to only apply to binops (div/rem) that
2283 // are not safe to speculatively execute. But that could allow hoisting
2284 // potentially expensive instructions (fdiv for example).
2285 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
2287 return nullptr;
2288
2289 // Fold constants for the predecessor block with constant incoming values.
2290 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
2291 if (!NewC)
2292 return nullptr;
2293
2294 // Make a new binop in the predecessor block with the non-constant incoming
2295 // values.
2296 Builder.SetInsertPoint(PredBlockBranch);
2297 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
2298 Phi0->getIncomingValueForBlock(OtherBB),
2299 Phi1->getIncomingValueForBlock(OtherBB));
2300 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
2301 NotFoldedNewBO->copyIRFlags(&BO);
2302
2303 // Replace the binop with a phi of the new values. The old phis are dead.
2304 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
2305 NewPhi->addIncoming(NewBO, OtherBB);
2306 NewPhi->addIncoming(NewC, ConstBB);
2307 return NewPhi;
2308}
2309
2311 bool IsOtherParamConst = isa<Constant>(I.getOperand(1));
2312
2313 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
2314 if (Instruction *NewSel =
2315 FoldOpIntoSelect(I, Sel, false, !IsOtherParamConst))
2316 return NewSel;
2317 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
2318 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
2319 return NewPhi;
2320 }
2321 return nullptr;
2322}
2323
2325 // If this GEP has only 0 indices, it is the same pointer as
2326 // Src. If Src is not a trivial GEP too, don't combine
2327 // the indices.
2328 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2329 !Src.hasOneUse())
2330 return false;
2331 return true;
2332}
2333
2334/// Find a constant NewC that has property:
2335/// shuffle(NewC, ShMask) = C
2336/// Returns nullptr if such a constant does not exist e.g. ShMask=<0,0> C=<1,2>
2337///
2338/// A 1-to-1 mapping is not required. Example:
2339/// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <poison,5,6,poison>
2341 VectorType *NewCTy) {
2342 if (isa<ScalableVectorType>(NewCTy)) {
2343 Constant *Splat = C->getSplatValue();
2344 if (!Splat)
2345 return nullptr;
2347 }
2348
2349 if (cast<FixedVectorType>(NewCTy)->getNumElements() >
2350 cast<FixedVectorType>(C->getType())->getNumElements())
2351 return nullptr;
2352
2353 unsigned NewCNumElts = cast<FixedVectorType>(NewCTy)->getNumElements();
2354 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2355 SmallVector<Constant *, 16> NewVecC(NewCNumElts, PoisonScalar);
2356 unsigned NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
2357 for (unsigned I = 0; I < NumElts; ++I) {
2358 Constant *CElt = C->getAggregateElement(I);
2359 if (ShMask[I] >= 0) {
2360 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2361 Constant *NewCElt = NewVecC[ShMask[I]];
2362 // Bail out if:
2363 // 1. The constant vector contains a constant expression.
2364 // 2. The shuffle needs an element of the constant vector that can't
2365 // be mapped to a new constant vector.
2366 // 3. This is a widening shuffle that copies elements of V1 into the
2367 // extended elements (extending with poison is allowed).
2368 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2369 I >= NewCNumElts)
2370 return nullptr;
2371 NewVecC[ShMask[I]] = CElt;
2372 }
2373 }
2374 return ConstantVector::get(NewVecC);
2375}
2376
2377// Get the result of `Vector Op Splat` (or Splat Op Vector if \p SplatLHS).
2379 Constant *Splat, bool SplatLHS,
2380 const DataLayout &DL) {
2381 ElementCount EC = cast<VectorType>(Vector->getType())->getElementCount();
2383 Constant *RHS = Vector;
2384 if (!SplatLHS)
2385 std::swap(LHS, RHS);
2386 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
2387}
2388
2390 if (!isa<VectorType>(Inst.getType()))
2391 return nullptr;
2392
2393 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
2394 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
2395 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
2396 cast<VectorType>(Inst.getType())->getElementCount());
2397 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
2398 cast<VectorType>(Inst.getType())->getElementCount());
2399
2400 auto foldConstantsThroughSubVectorInsertSplat =
2401 [&](Value *MaybeSubVector, Value *MaybeSplat,
2402 bool SplatLHS) -> Instruction * {
2403 Value *Idx;
2404 Constant *Splat, *SubVector, *Dest;
2405 if (!match(MaybeSplat, m_ConstantSplat(m_Constant(Splat))) ||
2406 !match(MaybeSubVector,
2407 m_VectorInsert(m_Constant(Dest), m_Constant(SubVector),
2408 m_Value(Idx))))
2409 return nullptr;
2410 SubVector =
2411 constantFoldBinOpWithSplat(Opcode, SubVector, Splat, SplatLHS, DL);
2412 Dest = constantFoldBinOpWithSplat(Opcode, Dest, Splat, SplatLHS, DL);
2413 if (!SubVector || !Dest)
2414 return nullptr;
2415 auto *InsertVector =
2416 Builder.CreateInsertVector(Dest->getType(), Dest, SubVector, Idx);
2417 return replaceInstUsesWith(Inst, InsertVector);
2418 };
2419
2420 // If one operand is a constant splat and the other operand is a
2421 // `vector.insert` where both the destination and subvector are constant,
2422 // apply the operation to both the destination and subvector, returning a new
2423 // constant `vector.insert`. This helps constant folding for scalable vectors.
2424 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2425 /*MaybeSubVector=*/LHS, /*MaybeSplat=*/RHS, /*SplatLHS=*/false))
2426 return Folded;
2427 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2428 /*MaybeSubVector=*/RHS, /*MaybeSplat=*/LHS, /*SplatLHS=*/true))
2429 return Folded;
2430
2431 // If both operands of the binop are vector concatenations, then perform the
2432 // narrow binop on each pair of the source operands followed by concatenation
2433 // of the results.
2434 Value *L0, *L1, *R0, *R1;
2435 ArrayRef<int> Mask;
2436 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2437 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2438 LHS->hasOneUse() && RHS->hasOneUse() &&
2439 cast<ShuffleVectorInst>(LHS)->isConcat() &&
2440 cast<ShuffleVectorInst>(RHS)->isConcat()) {
2441 // This transform does not have the speculative execution constraint as
2442 // below because the shuffle is a concatenation. The new binops are
2443 // operating on exactly the same elements as the existing binop.
2444 // TODO: We could ease the mask requirement to allow different undef lanes,
2445 // but that requires an analysis of the binop-with-undef output value.
2446 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2447 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2448 BO->copyIRFlags(&Inst);
2449 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2450 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2451 BO->copyIRFlags(&Inst);
2452 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2453 }
2454
2455 auto createBinOpReverse = [&](Value *X, Value *Y) {
2456 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2457 if (auto *BO = dyn_cast<BinaryOperator>(V))
2458 BO->copyIRFlags(&Inst);
2459 Module *M = Inst.getModule();
2461 M, Intrinsic::vector_reverse, V->getType());
2462 return CallInst::Create(F, V);
2463 };
2464
2465 // NOTE: Reverse shuffles don't require the speculative execution protection
2466 // below because they don't affect which lanes take part in the computation.
2467
2468 Value *V1, *V2;
2469 if (match(LHS, m_VecReverse(m_Value(V1)))) {
2470 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2471 if (match(RHS, m_VecReverse(m_Value(V2))) &&
2472 (LHS->hasOneUse() || RHS->hasOneUse() ||
2473 (LHS == RHS && LHS->hasNUses(2))))
2474 return createBinOpReverse(V1, V2);
2475
2476 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2477 if (LHS->hasOneUse() && isSplatValue(RHS))
2478 return createBinOpReverse(V1, RHS);
2479 }
2480 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2481 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2482 return createBinOpReverse(LHS, V2);
2483
2484 auto createBinOpVPReverse = [&](Value *X, Value *Y, Value *EVL) {
2485 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2486 if (auto *BO = dyn_cast<BinaryOperator>(V))
2487 BO->copyIRFlags(&Inst);
2488
2489 ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
2490 Value *AllTrueMask = Builder.CreateVectorSplat(EC, Builder.getTrue());
2491 Module *M = Inst.getModule();
2493 M, Intrinsic::experimental_vp_reverse, V->getType());
2494 return CallInst::Create(F, {V, AllTrueMask, EVL});
2495 };
2496
2497 Value *EVL;
2499 m_Value(V1), m_AllOnes(), m_Value(EVL)))) {
2500 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2502 m_Value(V2), m_AllOnes(), m_Specific(EVL))) &&
2503 (LHS->hasOneUse() || RHS->hasOneUse() ||
2504 (LHS == RHS && LHS->hasNUses(2))))
2505 return createBinOpVPReverse(V1, V2, EVL);
2506
2507 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2508 if (LHS->hasOneUse() && isSplatValue(RHS))
2509 return createBinOpVPReverse(V1, RHS, EVL);
2510 }
2511 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2512 else if (isSplatValue(LHS) &&
2514 m_Value(V2), m_AllOnes(), m_Value(EVL))))
2515 return createBinOpVPReverse(LHS, V2, EVL);
2516
2517 // It may not be safe to reorder shuffles and things like div, urem, etc.
2518 // because we may trap when executing those ops on unknown vector elements.
2519 // See PR20059.
2521 return nullptr;
2522
2523 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2524 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2525 if (auto *BO = dyn_cast<BinaryOperator>(XY))
2526 BO->copyIRFlags(&Inst);
2527 return new ShuffleVectorInst(XY, M);
2528 };
2529
2530 // If both arguments of the binary operation are shuffles that use the same
2531 // mask and shuffle within a single vector, move the shuffle after the binop.
2532 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2533 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2534 V1->getType() == V2->getType() &&
2535 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2536 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2537 return createBinOpShuffle(V1, V2, Mask);
2538 }
2539
2540 // If both arguments of a commutative binop are select-shuffles that use the
2541 // same mask with commuted operands, the shuffles are unnecessary.
2542 if (Inst.isCommutative() &&
2543 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2544 match(RHS,
2545 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2546 auto *LShuf = cast<ShuffleVectorInst>(LHS);
2547 auto *RShuf = cast<ShuffleVectorInst>(RHS);
2548 // TODO: Allow shuffles that contain undefs in the mask?
2549 // That is legal, but it reduces undef knowledge.
2550 // TODO: Allow arbitrary shuffles by shuffling after binop?
2551 // That might be legal, but we have to deal with poison.
2552 if (LShuf->isSelect() &&
2553 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2554 RShuf->isSelect() &&
2555 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2556 // Example:
2557 // LHS = shuffle V1, V2, <0, 5, 6, 3>
2558 // RHS = shuffle V2, V1, <0, 5, 6, 3>
2559 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2560 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2561 NewBO->copyIRFlags(&Inst);
2562 return NewBO;
2563 }
2564 }
2565
2566 // If one argument is a shuffle within one vector and the other is a constant,
2567 // try moving the shuffle after the binary operation. This canonicalization
2568 // intends to move shuffles closer to other shuffles and binops closer to
2569 // other binops, so they can be folded. It may also enable demanded elements
2570 // transforms.
2571 Constant *C;
2573 m_Mask(Mask))),
2574 m_ImmConstant(C)))) {
2575 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
2576 "Shuffle should not change scalar type");
2577
2578 bool ConstOp1 = isa<Constant>(RHS);
2579 if (Constant *NewC =
2581 // For fixed vectors, lanes of NewC not used by the shuffle will be poison
2582 // which will cause UB for div/rem. Mask them with a safe constant.
2583 if (isa<FixedVectorType>(V1->getType()) && Inst.isIntDivRem())
2584 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2585
2586 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2587 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2588 Value *NewLHS = ConstOp1 ? V1 : NewC;
2589 Value *NewRHS = ConstOp1 ? NewC : V1;
2590 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2591 }
2592 }
2593
2594 // Try to reassociate to sink a splat shuffle after a binary operation.
2595 if (Inst.isAssociative() && Inst.isCommutative()) {
2596 // Canonicalize shuffle operand as LHS.
2597 if (isa<ShuffleVectorInst>(RHS))
2598 std::swap(LHS, RHS);
2599
2600 Value *X;
2601 ArrayRef<int> MaskC;
2602 int SplatIndex;
2603 Value *Y, *OtherOp;
2604 if (!match(LHS,
2605 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2606 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2607 X->getType() != Inst.getType() ||
2608 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2609 return nullptr;
2610
2611 // FIXME: This may not be safe if the analysis allows undef elements. By
2612 // moving 'Y' before the splat shuffle, we are implicitly assuming
2613 // that it is not undef/poison at the splat index.
2614 if (isSplatValue(OtherOp, SplatIndex)) {
2615 std::swap(Y, OtherOp);
2616 } else if (!isSplatValue(Y, SplatIndex)) {
2617 return nullptr;
2618 }
2619
2620 // X and Y are splatted values, so perform the binary operation on those
2621 // values followed by a splat followed by the 2nd binary operation:
2622 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2623 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2624 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2625 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2626 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2627
2628 // Intersect FMF on both new binops. Other (poison-generating) flags are
2629 // dropped to be safe.
2630 if (isa<FPMathOperator>(R)) {
2631 R->copyFastMathFlags(&Inst);
2632 R->andIRFlags(RHS);
2633 }
2634 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2635 NewInstBO->copyIRFlags(R);
2636 return R;
2637 }
2638
2639 return nullptr;
2640}
2641
2642/// Try to narrow the width of a binop if at least 1 operand is an extend of
2643/// of a value. This requires a potentially expensive known bits check to make
2644/// sure the narrow op does not overflow.
2645Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2646 // We need at least one extended operand.
2647 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2648
2649 // If this is a sub, we swap the operands since we always want an extension
2650 // on the RHS. The LHS can be an extension or a constant.
2651 if (BO.getOpcode() == Instruction::Sub)
2652 std::swap(Op0, Op1);
2653
2654 Value *X;
2655 bool IsSext = match(Op0, m_SExt(m_Value(X)));
2656 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2657 return nullptr;
2658
2659 // If both operands are the same extension from the same source type and we
2660 // can eliminate at least one (hasOneUse), this might work.
2661 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2662 Value *Y;
2663 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2664 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2665 (Op0->hasOneUse() || Op1->hasOneUse()))) {
2666 // If that did not match, see if we have a suitable constant operand.
2667 // Truncating and extending must produce the same constant.
2668 Constant *WideC;
2669 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2670 return nullptr;
2671 Constant *NarrowC = getLosslessInvCast(WideC, X->getType(), CastOpc, DL);
2672 if (!NarrowC)
2673 return nullptr;
2674 Y = NarrowC;
2675 }
2676
2677 // Swap back now that we found our operands.
2678 if (BO.getOpcode() == Instruction::Sub)
2679 std::swap(X, Y);
2680
2681 // Both operands have narrow versions. Last step: the math must not overflow
2682 // in the narrow width.
2683 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2684 return nullptr;
2685
2686 // bo (ext X), (ext Y) --> ext (bo X, Y)
2687 // bo (ext X), C --> ext (bo X, C')
2688 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2689 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2690 if (IsSext)
2691 NewBinOp->setHasNoSignedWrap();
2692 else
2693 NewBinOp->setHasNoUnsignedWrap();
2694 }
2695 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2696}
2697
2698/// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y))
2699/// transform.
2704
2705/// Thread a GEP operation with constant indices through the constant true/false
2706/// arms of a select.
2708 InstCombiner::BuilderTy &Builder) {
2709 if (!GEP.hasAllConstantIndices())
2710 return nullptr;
2711
2712 Instruction *Sel;
2713 Value *Cond;
2714 Constant *TrueC, *FalseC;
2715 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2716 !match(Sel,
2717 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2718 return nullptr;
2719
2720 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2721 // Propagate 'inbounds' and metadata from existing instructions.
2722 // Note: using IRBuilder to create the constants for efficiency.
2723 SmallVector<Value *, 4> IndexC(GEP.indices());
2724 GEPNoWrapFlags NW = GEP.getNoWrapFlags();
2725 Type *Ty = GEP.getSourceElementType();
2726 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
2727 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
2728 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2729}
2730
2731// Canonicalization:
2732// gep T, (gep i8, base, C1), (Index + C2) into
2733// gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2735 GEPOperator *Src,
2736 InstCombinerImpl &IC) {
2737 if (GEP.getNumIndices() != 1)
2738 return nullptr;
2739 auto &DL = IC.getDataLayout();
2740 Value *Base;
2741 const APInt *C1;
2742 if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
2743 return nullptr;
2744 Value *VarIndex;
2745 const APInt *C2;
2746 Type *PtrTy = Src->getType()->getScalarType();
2747 unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
2748 if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
2749 return nullptr;
2750 if (C1->getBitWidth() != IndexSizeInBits ||
2751 C2->getBitWidth() != IndexSizeInBits)
2752 return nullptr;
2753 Type *BaseType = GEP.getSourceElementType();
2755 return nullptr;
2756 APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
2757 APInt NewOffset = TypeSize * *C2 + *C1;
2758 if (NewOffset.isZero() ||
2759 (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
2761 if (GEP.hasNoUnsignedWrap() &&
2762 cast<GEPOperator>(Src)->hasNoUnsignedWrap() &&
2763 match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()))) {
2765 if (GEP.isInBounds() && cast<GEPOperator>(Src)->isInBounds())
2766 Flags |= GEPNoWrapFlags::inBounds();
2767 }
2768
2769 Value *GEPConst =
2770 IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset), "", Flags);
2771 return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex, Flags);
2772 }
2773
2774 return nullptr;
2775}
2776
2777/// Combine constant offsets separated by variable offsets.
2778/// ptradd (ptradd (ptradd p, C1), x), C2 -> ptradd (ptradd p, x), C1+C2
2780 InstCombinerImpl &IC) {
2781 if (!GEP.hasAllConstantIndices())
2782 return nullptr;
2783
2786 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
2787 while (true) {
2788 if (!InnerGEP)
2789 return nullptr;
2790
2791 NW = NW.intersectForReassociate(InnerGEP->getNoWrapFlags());
2792 if (InnerGEP->hasAllConstantIndices())
2793 break;
2794
2795 if (!InnerGEP->hasOneUse())
2796 return nullptr;
2797
2798 Skipped.push_back(InnerGEP);
2799 InnerGEP = dyn_cast<GetElementPtrInst>(InnerGEP->getPointerOperand());
2800 }
2801
2802 // The two constant offset GEPs are directly adjacent: Let normal offset
2803 // merging handle it.
2804 if (Skipped.empty())
2805 return nullptr;
2806
2807 // FIXME: This one-use check is not strictly necessary. Consider relaxing it
2808 // if profitable.
2809 if (!InnerGEP->hasOneUse())
2810 return nullptr;
2811
2812 // Don't bother with vector splats.
2813 Type *Ty = GEP.getType();
2814 if (InnerGEP->getType() != Ty)
2815 return nullptr;
2816
2817 const DataLayout &DL = IC.getDataLayout();
2818 APInt Offset(DL.getIndexTypeSizeInBits(Ty), 0);
2819 if (!GEP.accumulateConstantOffset(DL, Offset) ||
2820 !InnerGEP->accumulateConstantOffset(DL, Offset))
2821 return nullptr;
2822
2823 IC.replaceOperand(*Skipped.back(), 0, InnerGEP->getPointerOperand());
2824 for (GetElementPtrInst *SkippedGEP : Skipped)
2825 SkippedGEP->setNoWrapFlags(NW);
2826
2827 return IC.replaceInstUsesWith(
2828 GEP,
2829 IC.Builder.CreatePtrAdd(Skipped.front(), IC.Builder.getInt(Offset), "",
2830 NW.intersectForOffsetAdd(GEP.getNoWrapFlags())));
2831}
2832
2834 GEPOperator *Src) {
2835 // Combine Indices - If the source pointer to this getelementptr instruction
2836 // is a getelementptr instruction with matching element type, combine the
2837 // indices of the two getelementptr instructions into a single instruction.
2838 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2839 return nullptr;
2840
2841 if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
2842 return I;
2843
2844 if (auto *I = combineConstantOffsets(GEP, *this))
2845 return I;
2846
2847 if (Src->getResultElementType() != GEP.getSourceElementType())
2848 return nullptr;
2849
2850 // Fold chained GEP with constant base into single GEP:
2851 // gep i8, (gep i8, %base, C1), (select Cond, C2, C3)
2852 // -> gep i8, %base, (select Cond, C1+C2, C1+C3)
2853 if (Src->hasOneUse() && GEP.getNumIndices() == 1 &&
2854 Src->getNumIndices() == 1) {
2855 Value *SrcIdx = *Src->idx_begin();
2856 Value *GEPIdx = *GEP.idx_begin();
2857 const APInt *ConstOffset, *TrueVal, *FalseVal;
2858 Value *Cond;
2859
2860 if ((match(SrcIdx, m_APInt(ConstOffset)) &&
2861 match(GEPIdx,
2862 m_Select(m_Value(Cond), m_APInt(TrueVal), m_APInt(FalseVal)))) ||
2863 (match(GEPIdx, m_APInt(ConstOffset)) &&
2864 match(SrcIdx,
2865 m_Select(m_Value(Cond), m_APInt(TrueVal), m_APInt(FalseVal))))) {
2866 auto *Select = isa<SelectInst>(GEPIdx) ? cast<SelectInst>(GEPIdx)
2867 : cast<SelectInst>(SrcIdx);
2868
2869 // Make sure the select has only one use.
2870 if (!Select->hasOneUse())
2871 return nullptr;
2872
2873 if (TrueVal->getBitWidth() != ConstOffset->getBitWidth() ||
2874 FalseVal->getBitWidth() != ConstOffset->getBitWidth())
2875 return nullptr;
2876
2877 APInt NewTrueVal = *ConstOffset + *TrueVal;
2878 APInt NewFalseVal = *ConstOffset + *FalseVal;
2879 Constant *NewTrue = ConstantInt::get(Select->getType(), NewTrueVal);
2880 Constant *NewFalse = ConstantInt::get(Select->getType(), NewFalseVal);
2881 Value *NewSelect = Builder.CreateSelect(Cond, NewTrue, NewFalse);
2882 GEPNoWrapFlags Flags =
2884 return replaceInstUsesWith(GEP,
2885 Builder.CreateGEP(GEP.getResultElementType(),
2886 Src->getPointerOperand(),
2887 NewSelect, "", Flags));
2888 }
2889 }
2890
2891 // Find out whether the last index in the source GEP is a sequential idx.
2892 bool EndsWithSequential = false;
2893 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2894 I != E; ++I)
2895 EndsWithSequential = I.isSequential();
2896 if (!EndsWithSequential)
2897 return nullptr;
2898
2899 // Replace: gep (gep %P, long B), long A, ...
2900 // With: T = long A+B; gep %P, T, ...
2901 Value *SO1 = Src->getOperand(Src->getNumOperands() - 1);
2902 Value *GO1 = GEP.getOperand(1);
2903
2904 // If they aren't the same type, then the input hasn't been processed
2905 // by the loop above yet (which canonicalizes sequential index types to
2906 // intptr_t). Just avoid transforming this until the input has been
2907 // normalized.
2908 if (SO1->getType() != GO1->getType())
2909 return nullptr;
2910
2911 Value *Sum =
2912 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2913 // Only do the combine when we are sure the cost after the
2914 // merge is never more than that before the merge.
2915 if (Sum == nullptr)
2916 return nullptr;
2917
2919 Indices.append(Src->op_begin() + 1, Src->op_end() - 1);
2920 Indices.push_back(Sum);
2921 Indices.append(GEP.op_begin() + 2, GEP.op_end());
2922
2923 // Don't create GEPs with more than one non-zero index.
2924 unsigned NumNonZeroIndices = count_if(Indices, [](Value *Idx) {
2925 auto *C = dyn_cast<Constant>(Idx);
2926 return !C || !C->isNullValue();
2927 });
2928 if (NumNonZeroIndices > 1)
2929 return nullptr;
2930
2931 return replaceInstUsesWith(
2932 GEP, Builder.CreateGEP(
2933 Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2935}
2936
2939 bool &DoesConsume, unsigned Depth) {
2940 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2941 // ~(~(X)) -> X.
2942 Value *A, *B;
2943 if (match(V, m_Not(m_Value(A)))) {
2944 DoesConsume = true;
2945 return A;
2946 }
2947
2948 Constant *C;
2949 // Constants can be considered to be not'ed values.
2950 if (match(V, m_ImmConstant(C)))
2951 return ConstantExpr::getNot(C);
2952
2954 return nullptr;
2955
2956 // The rest of the cases require that we invert all uses so don't bother
2957 // doing the analysis if we know we can't use the result.
2958 if (!WillInvertAllUses)
2959 return nullptr;
2960
2961 // Compares can be inverted if all of their uses are being modified to use
2962 // the ~V.
2963 if (auto *I = dyn_cast<CmpInst>(V)) {
2964 if (Builder != nullptr)
2965 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2966 I->getOperand(1));
2967 return NonNull;
2968 }
2969
2970 // If `V` is of the form `A + B` then `-1 - V` can be folded into
2971 // `(-1 - B) - A` if we are willing to invert all of the uses.
2972 if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2973 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2974 DoesConsume, Depth))
2975 return Builder ? Builder->CreateSub(BV, A) : NonNull;
2976 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2977 DoesConsume, Depth))
2978 return Builder ? Builder->CreateSub(AV, B) : NonNull;
2979 return nullptr;
2980 }
2981
2982 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2983 // into `A ^ B` if we are willing to invert all of the uses.
2984 if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2985 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2986 DoesConsume, Depth))
2987 return Builder ? Builder->CreateXor(A, BV) : NonNull;
2988 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2989 DoesConsume, Depth))
2990 return Builder ? Builder->CreateXor(AV, B) : NonNull;
2991 return nullptr;
2992 }
2993
2994 // If `V` is of the form `B - A` then `-1 - V` can be folded into
2995 // `A + (-1 - B)` if we are willing to invert all of the uses.
2996 if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2997 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2998 DoesConsume, Depth))
2999 return Builder ? Builder->CreateAdd(AV, B) : NonNull;
3000 return nullptr;
3001 }
3002
3003 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
3004 // into `A s>> B` if we are willing to invert all of the uses.
3005 if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
3006 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3007 DoesConsume, Depth))
3008 return Builder ? Builder->CreateAShr(AV, B) : NonNull;
3009 return nullptr;
3010 }
3011
3012 Value *Cond;
3013 // LogicOps are special in that we canonicalize them at the cost of an
3014 // instruction.
3015 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
3017 // Selects/min/max with invertible operands are freely invertible
3018 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
3019 bool LocalDoesConsume = DoesConsume;
3020 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
3021 LocalDoesConsume, Depth))
3022 return nullptr;
3023 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3024 LocalDoesConsume, Depth)) {
3025 DoesConsume = LocalDoesConsume;
3026 if (Builder != nullptr) {
3027 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
3028 DoesConsume, Depth);
3029 assert(NotB != nullptr &&
3030 "Unable to build inverted value for known freely invertable op");
3031 if (auto *II = dyn_cast<IntrinsicInst>(V))
3032 return Builder->CreateBinaryIntrinsic(
3033 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
3034 return Builder->CreateSelect(Cond, NotA, NotB);
3035 }
3036 return NonNull;
3037 }
3038 }
3039
3040 if (PHINode *PN = dyn_cast<PHINode>(V)) {
3041 bool LocalDoesConsume = DoesConsume;
3043 for (Use &U : PN->operands()) {
3044 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
3045 Value *NewIncomingVal = getFreelyInvertedImpl(
3046 U.get(), /*WillInvertAllUses=*/false,
3047 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
3048 if (NewIncomingVal == nullptr)
3049 return nullptr;
3050 // Make sure that we can safely erase the original PHI node.
3051 if (NewIncomingVal == V)
3052 return nullptr;
3053 if (Builder != nullptr)
3054 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
3055 }
3056
3057 DoesConsume = LocalDoesConsume;
3058 if (Builder != nullptr) {
3060 Builder->SetInsertPoint(PN);
3061 PHINode *NewPN =
3062 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
3063 for (auto [Val, Pred] : IncomingValues)
3064 NewPN->addIncoming(Val, Pred);
3065 return NewPN;
3066 }
3067 return NonNull;
3068 }
3069
3070 if (match(V, m_SExtLike(m_Value(A)))) {
3071 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3072 DoesConsume, Depth))
3073 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
3074 return nullptr;
3075 }
3076
3077 if (match(V, m_Trunc(m_Value(A)))) {
3078 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3079 DoesConsume, Depth))
3080 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
3081 return nullptr;
3082 }
3083
3084 // De Morgan's Laws:
3085 // (~(A | B)) -> (~A & ~B)
3086 // (~(A & B)) -> (~A | ~B)
3087 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
3088 bool IsLogical, Value *A,
3089 Value *B) -> Value * {
3090 bool LocalDoesConsume = DoesConsume;
3091 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
3092 LocalDoesConsume, Depth))
3093 return nullptr;
3094 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3095 LocalDoesConsume, Depth)) {
3096 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
3097 LocalDoesConsume, Depth);
3098 DoesConsume = LocalDoesConsume;
3099 if (IsLogical)
3100 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
3101 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
3102 }
3103
3104 return nullptr;
3105 };
3106
3107 if (match(V, m_Or(m_Value(A), m_Value(B))))
3108 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
3109 B);
3110
3111 if (match(V, m_And(m_Value(A), m_Value(B))))
3112 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
3113 B);
3114
3115 if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
3116 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
3117 B);
3118
3119 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
3120 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
3121 B);
3122
3123 return nullptr;
3124}
3125
3126/// Return true if we should canonicalize the gep to an i8 ptradd.
3128 Value *PtrOp = GEP.getOperand(0);
3129 Type *GEPEltType = GEP.getSourceElementType();
3130 if (GEPEltType->isIntegerTy(8))
3131 return false;
3132
3133 // Canonicalize scalable GEPs to an explicit offset using the llvm.vscale
3134 // intrinsic. This has better support in BasicAA.
3135 if (GEPEltType->isScalableTy())
3136 return true;
3137
3138 // gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies
3139 // together.
3140 if (GEP.getNumIndices() == 1 &&
3141 match(GEP.getOperand(1),
3143 m_Shl(m_Value(), m_ConstantInt())))))
3144 return true;
3145
3146 // gep (gep %p, C1), %x, C2 is expanded so the two constants can
3147 // possibly be merged together.
3148 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
3149 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3150 any_of(GEP.indices(), [](Value *V) {
3151 const APInt *C;
3152 return match(V, m_APInt(C)) && !C->isZero();
3153 });
3154}
3155
3157 IRBuilderBase &Builder) {
3158 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
3159 if (!Op1)
3160 return nullptr;
3161
3162 // Don't fold a GEP into itself through a PHI node. This can only happen
3163 // through the back-edge of a loop. Folding a GEP into itself means that
3164 // the value of the previous iteration needs to be stored in the meantime,
3165 // thus requiring an additional register variable to be live, but not
3166 // actually achieving anything (the GEP still needs to be executed once per
3167 // loop iteration).
3168 if (Op1 == &GEP)
3169 return nullptr;
3170 GEPNoWrapFlags NW = Op1->getNoWrapFlags();
3171
3172 int DI = -1;
3173
3174 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
3175 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
3176 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3177 Op1->getSourceElementType() != Op2->getSourceElementType())
3178 return nullptr;
3179
3180 // As for Op1 above, don't try to fold a GEP into itself.
3181 if (Op2 == &GEP)
3182 return nullptr;
3183
3184 // Keep track of the type as we walk the GEP.
3185 Type *CurTy = nullptr;
3186
3187 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
3188 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3189 return nullptr;
3190
3191 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3192 if (DI == -1) {
3193 // We have not seen any differences yet in the GEPs feeding the
3194 // PHI yet, so we record this one if it is allowed to be a
3195 // variable.
3196
3197 // The first two arguments can vary for any GEP, the rest have to be
3198 // static for struct slots
3199 if (J > 1) {
3200 assert(CurTy && "No current type?");
3201 if (CurTy->isStructTy())
3202 return nullptr;
3203 }
3204
3205 DI = J;
3206 } else {
3207 // The GEP is different by more than one input. While this could be
3208 // extended to support GEPs that vary by more than one variable it
3209 // doesn't make sense since it greatly increases the complexity and
3210 // would result in an R+R+R addressing mode which no backend
3211 // directly supports and would need to be broken into several
3212 // simpler instructions anyway.
3213 return nullptr;
3214 }
3215 }
3216
3217 // Sink down a layer of the type for the next iteration.
3218 if (J > 0) {
3219 if (J == 1) {
3220 CurTy = Op1->getSourceElementType();
3221 } else {
3222 CurTy =
3223 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
3224 }
3225 }
3226 }
3227
3228 NW &= Op2->getNoWrapFlags();
3229 }
3230
3231 // If not all GEPs are identical we'll have to create a new PHI node.
3232 // Check that the old PHI node has only one use so that it will get
3233 // removed.
3234 if (DI != -1 && !PN->hasOneUse())
3235 return nullptr;
3236
3237 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
3238 NewGEP->setNoWrapFlags(NW);
3239
3240 if (DI == -1) {
3241 // All the GEPs feeding the PHI are identical. Clone one down into our
3242 // BB so that it can be merged with the current GEP.
3243 } else {
3244 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
3245 // into the current block so it can be merged, and create a new PHI to
3246 // set that index.
3247 PHINode *NewPN;
3248 {
3249 IRBuilderBase::InsertPointGuard Guard(Builder);
3250 Builder.SetInsertPoint(PN);
3251 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3252 PN->getNumOperands());
3253 }
3254
3255 for (auto &I : PN->operands())
3256 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
3257 PN->getIncomingBlock(I));
3258
3259 NewGEP->setOperand(DI, NewPN);
3260 }
3261
3262 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
3263 return NewGEP;
3264}
3265
3267 Value *PtrOp = GEP.getOperand(0);
3268 SmallVector<Value *, 8> Indices(GEP.indices());
3269 Type *GEPType = GEP.getType();
3270 Type *GEPEltType = GEP.getSourceElementType();
3271 if (Value *V =
3272 simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
3273 SQ.getWithInstruction(&GEP)))
3274 return replaceInstUsesWith(GEP, V);
3275
3276 // For vector geps, use the generic demanded vector support.
3277 // Skip if GEP return type is scalable. The number of elements is unknown at
3278 // compile-time.
3279 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
3280 auto VWidth = GEPFVTy->getNumElements();
3281 APInt PoisonElts(VWidth, 0);
3282 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
3283 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
3284 PoisonElts)) {
3285 if (V != &GEP)
3286 return replaceInstUsesWith(GEP, V);
3287 return &GEP;
3288 }
3289 }
3290
3291 // Eliminate unneeded casts for indices, and replace indices which displace
3292 // by multiples of a zero size type with zero.
3293 bool MadeChange = false;
3294
3295 // Index width may not be the same width as pointer width.
3296 // Data layout chooses the right type based on supported integer types.
3297 Type *NewScalarIndexTy =
3298 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
3299
3301 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
3302 ++I, ++GTI) {
3303 // Skip indices into struct types.
3304 if (GTI.isStruct())
3305 continue;
3306
3307 Type *IndexTy = (*I)->getType();
3308 Type *NewIndexType =
3309 IndexTy->isVectorTy()
3310 ? VectorType::get(NewScalarIndexTy,
3311 cast<VectorType>(IndexTy)->getElementCount())
3312 : NewScalarIndexTy;
3313
3314 // If the element type has zero size then any index over it is equivalent
3315 // to an index of zero, so replace it with zero if it is not zero already.
3316 Type *EltTy = GTI.getIndexedType();
3317 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
3318 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
3319 *I = Constant::getNullValue(NewIndexType);
3320 MadeChange = true;
3321 }
3322
3323 if (IndexTy != NewIndexType) {
3324 // If we are using a wider index than needed for this platform, shrink
3325 // it to what we need. If narrower, sign-extend it to what we need.
3326 // This explicit cast can make subsequent optimizations more obvious.
3327 if (IndexTy->getScalarSizeInBits() <
3328 NewIndexType->getScalarSizeInBits()) {
3329 if (GEP.hasNoUnsignedWrap() && GEP.hasNoUnsignedSignedWrap())
3330 *I = Builder.CreateZExt(*I, NewIndexType, "", /*IsNonNeg=*/true);
3331 else
3332 *I = Builder.CreateSExt(*I, NewIndexType);
3333 } else {
3334 *I = Builder.CreateTrunc(*I, NewIndexType, "", GEP.hasNoUnsignedWrap(),
3335 GEP.hasNoUnsignedSignedWrap());
3336 }
3337 MadeChange = true;
3338 }
3339 }
3340 if (MadeChange)
3341 return &GEP;
3342
3343 // Canonicalize constant GEPs to i8 type.
3344 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
3345 APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
3346 if (GEP.accumulateConstantOffset(DL, Offset))
3347 return replaceInstUsesWith(
3348 GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
3349 GEP.getNoWrapFlags()));
3350 }
3351
3353 Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
3354 Value *NewGEP =
3355 Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags());
3356 return replaceInstUsesWith(GEP, NewGEP);
3357 }
3358
3359 // Strip trailing zero indices.
3360 auto *LastIdx = dyn_cast<Constant>(Indices.back());
3361 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3362 return replaceInstUsesWith(
3363 GEP, Builder.CreateGEP(GEP.getSourceElementType(), PtrOp,
3364 drop_end(Indices), "", GEP.getNoWrapFlags()));
3365 }
3366
3367 // Strip leading zero indices.
3368 auto *FirstIdx = dyn_cast<Constant>(Indices.front());
3369 if (FirstIdx && FirstIdx->isNullValue() &&
3370 !FirstIdx->getType()->isVectorTy()) {
3372 ++GTI;
3373 if (!GTI.isStruct())
3374 return replaceInstUsesWith(GEP, Builder.CreateGEP(GTI.getIndexedType(),
3375 GEP.getPointerOperand(),
3376 drop_begin(Indices), "",
3377 GEP.getNoWrapFlags()));
3378 }
3379
3380 // Scalarize vector operands; prefer splat-of-gep.as canonical form.
3381 // Note that this looses information about undef lanes; we run it after
3382 // demanded bits to partially mitigate that loss.
3383 if (GEPType->isVectorTy() && llvm::any_of(GEP.operands(), [](Value *Op) {
3384 return Op->getType()->isVectorTy() && getSplatValue(Op);
3385 })) {
3386 SmallVector<Value *> NewOps;
3387 for (auto &Op : GEP.operands()) {
3388 if (Op->getType()->isVectorTy())
3389 if (Value *Scalar = getSplatValue(Op)) {
3390 NewOps.push_back(Scalar);
3391 continue;
3392 }
3393 NewOps.push_back(Op);
3394 }
3395
3396 Value *Res = Builder.CreateGEP(GEP.getSourceElementType(), NewOps[0],
3397 ArrayRef(NewOps).drop_front(), GEP.getName(),
3398 GEP.getNoWrapFlags());
3399 if (!Res->getType()->isVectorTy()) {
3400 ElementCount EC = cast<VectorType>(GEPType)->getElementCount();
3401 Res = Builder.CreateVectorSplat(EC, Res);
3402 }
3403 return replaceInstUsesWith(GEP, Res);
3404 }
3405
3406 bool SeenNonZeroIndex = false;
3407 for (auto [IdxNum, Idx] : enumerate(Indices)) {
3408 auto *C = dyn_cast<Constant>(Idx);
3409 if (C && C->isNullValue())
3410 continue;
3411
3412 if (!SeenNonZeroIndex) {
3413 SeenNonZeroIndex = true;
3414 continue;
3415 }
3416
3417 // GEP has multiple non-zero indices: Split it.
3418 ArrayRef<Value *> FrontIndices = ArrayRef(Indices).take_front(IdxNum);
3419 Value *FrontGEP =
3420 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3421 GEP.getName() + ".split", GEP.getNoWrapFlags());
3422
3423 SmallVector<Value *> BackIndices;
3424 BackIndices.push_back(Constant::getNullValue(NewScalarIndexTy));
3425 append_range(BackIndices, drop_begin(Indices, IdxNum));
3427 GetElementPtrInst::getIndexedType(GEPEltType, FrontIndices), FrontGEP,
3428 BackIndices, GEP.getNoWrapFlags());
3429 }
3430
3431 // Check to see if the inputs to the PHI node are getelementptr instructions.
3432 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
3433 if (Value *NewPtrOp = foldGEPOfPhi(GEP, PN, Builder))
3434 return replaceOperand(GEP, 0, NewPtrOp);
3435 }
3436
3437 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
3438 if (Instruction *I = visitGEPOfGEP(GEP, Src))
3439 return I;
3440
3441 if (GEP.getNumIndices() == 1) {
3442 unsigned AS = GEP.getPointerAddressSpace();
3443 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3444 DL.getIndexSizeInBits(AS)) {
3445 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
3446
3447 if (TyAllocSize == 1) {
3448 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
3449 // but only if the result pointer is only used as if it were an integer.
3450 // (The case where the underlying object is the same is handled by
3451 // InstSimplify.)
3452 Value *X = GEP.getPointerOperand();
3453 Value *Y;
3454 if (match(GEP.getOperand(1), m_Sub(m_PtrToIntOrAddr(m_Value(Y)),
3456 GEPType == Y->getType()) {
3457 bool HasNonAddressBits =
3458 DL.getAddressSizeInBits(AS) != DL.getPointerSizeInBits(AS);
3459 bool Changed = false;
3460 GEP.replaceUsesWithIf(Y, [&](Use &U) {
3461 bool ShouldReplace =
3462 isa<PtrToAddrInst, ICmpInst>(U.getUser()) ||
3463 (!HasNonAddressBits && isa<PtrToIntInst>(U.getUser()));
3464 Changed |= ShouldReplace;
3465 return ShouldReplace;
3466 });
3467 return Changed ? &GEP : nullptr;
3468 }
3469 } else if (auto *ExactIns =
3470 dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
3471 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
3472 Value *V;
3473 if (ExactIns->isExact()) {
3474 if ((has_single_bit(TyAllocSize) &&
3475 match(GEP.getOperand(1),
3476 m_Shr(m_Value(V),
3477 m_SpecificInt(countr_zero(TyAllocSize))))) ||
3478 match(GEP.getOperand(1),
3479 m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
3480 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3481 GEP.getPointerOperand(), V,
3482 GEP.getNoWrapFlags());
3483 }
3484 }
3485 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3486 // Try to canonicalize non-i8 element type to i8 if the index is an
3487 // exact instruction. If the index is an exact instruction (div/shr)
3488 // with a constant RHS, we can fold the non-i8 element scale into the
3489 // div/shr (similiar to the mul case, just inverted).
3490 const APInt *C;
3491 std::optional<APInt> NewC;
3492 if (has_single_bit(TyAllocSize) &&
3493 match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
3494 C->uge(countr_zero(TyAllocSize)))
3495 NewC = *C - countr_zero(TyAllocSize);
3496 else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
3497 APInt Quot;
3498 uint64_t Rem;
3499 APInt::udivrem(*C, TyAllocSize, Quot, Rem);
3500 if (Rem == 0)
3501 NewC = Quot;
3502 } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
3503 APInt Quot;
3504 int64_t Rem;
3505 APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
3506 // For sdiv we need to make sure we arent creating INT_MIN / -1.
3507 if (!Quot.isAllOnes() && Rem == 0)
3508 NewC = Quot;
3509 }
3510
3511 if (NewC.has_value()) {
3512 Value *NewOp = Builder.CreateBinOp(
3513 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
3514 ConstantInt::get(V->getType(), *NewC));
3515 cast<BinaryOperator>(NewOp)->setIsExact();
3516 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3517 GEP.getPointerOperand(), NewOp,
3518 GEP.getNoWrapFlags());
3519 }
3520 }
3521 }
3522 }
3523 }
3524 // We do not handle pointer-vector geps here.
3525 if (GEPType->isVectorTy())
3526 return nullptr;
3527
3528 if (!GEP.isInBounds()) {
3529 unsigned IdxWidth =
3530 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
3531 APInt BasePtrOffset(IdxWidth, 0);
3532 Value *UnderlyingPtrOp =
3533 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, BasePtrOffset);
3534 bool CanBeNull, CanBeFreed;
3535 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
3536 DL, CanBeNull, CanBeFreed);
3537 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3538 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
3539 BasePtrOffset.isNonNegative()) {
3540 APInt AllocSize(IdxWidth, DerefBytes);
3541 if (BasePtrOffset.ule(AllocSize)) {
3543 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
3544 }
3545 }
3546 }
3547 }
3548
3549 // nusw + nneg -> nuw
3550 if (GEP.hasNoUnsignedSignedWrap() && !GEP.hasNoUnsignedWrap() &&
3551 all_of(GEP.indices(), [&](Value *Idx) {
3552 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3553 })) {
3554 GEP.setNoWrapFlags(GEP.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap());
3555 return &GEP;
3556 }
3557
3558 // These rewrites are trying to preserve inbounds/nuw attributes. So we want
3559 // to do this after having tried to derive "nuw" above.
3560 if (GEP.getNumIndices() == 1) {
3561 // Given (gep p, x+y) we want to determine the common nowrap flags for both
3562 // geps if transforming into (gep (gep p, x), y).
3563 auto GetPreservedNoWrapFlags = [&](bool AddIsNUW) {
3564 // We can preserve both "inbounds nuw", "nusw nuw" and "nuw" if we know
3565 // that x + y does not have unsigned wrap.
3566 if (GEP.hasNoUnsignedWrap() && AddIsNUW)
3567 return GEP.getNoWrapFlags();
3568 return GEPNoWrapFlags::none();
3569 };
3570
3571 // Try to replace ADD + GEP with GEP + GEP.
3572 Value *Idx1, *Idx2;
3573 if (match(GEP.getOperand(1),
3574 m_OneUse(m_AddLike(m_Value(Idx1), m_Value(Idx2))))) {
3575 // %idx = add i64 %idx1, %idx2
3576 // %gep = getelementptr i32, ptr %ptr, i64 %idx
3577 // as:
3578 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3579 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3580 bool NUW = match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()));
3581 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3582 auto *NewPtr =
3583 Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
3584 Idx1, "", NWFlags);
3585 return replaceInstUsesWith(GEP,
3586 Builder.CreateGEP(GEP.getSourceElementType(),
3587 NewPtr, Idx2, "", NWFlags));
3588 }
3589 ConstantInt *C;
3590 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAddLike(
3591 m_Value(Idx1), m_ConstantInt(C))))))) {
3592 // %add = add nsw i32 %idx1, idx2
3593 // %sidx = sext i32 %add to i64
3594 // %gep = getelementptr i32, ptr %ptr, i64 %sidx
3595 // as:
3596 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3597 // %newgep = getelementptr i32, ptr %newptr, i32 idx2
3598 bool NUW = match(GEP.getOperand(1),
3600 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3601 auto *NewPtr = Builder.CreateGEP(
3602 GEP.getSourceElementType(), GEP.getPointerOperand(),
3603 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", NWFlags);
3604 return replaceInstUsesWith(
3605 GEP,
3606 Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
3607 Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
3608 "", NWFlags));
3609 }
3610 }
3611
3613 return R;
3614
3615 return nullptr;
3616}
3617
3619 Instruction *AI) {
3621 return true;
3622 if (auto *LI = dyn_cast<LoadInst>(V))
3623 return isa<GlobalVariable>(LI->getPointerOperand());
3624 // Two distinct allocations will never be equal.
3625 return isAllocLikeFn(V, &TLI) && V != AI;
3626}
3627
3628/// Given a call CB which uses an address UsedV, return true if we can prove the
3629/// call's only possible effect is storing to V.
3630static bool isRemovableWrite(CallBase &CB, Value *UsedV,
3631 const TargetLibraryInfo &TLI) {
3632 if (!CB.use_empty())
3633 // TODO: add recursion if returned attribute is present
3634 return false;
3635
3636 if (CB.isTerminator())
3637 // TODO: remove implementation restriction
3638 return false;
3639
3640 if (!CB.willReturn() || !CB.doesNotThrow())
3641 return false;
3642
3643 // If the only possible side effect of the call is writing to the alloca,
3644 // and the result isn't used, we can safely remove any reads implied by the
3645 // call including those which might read the alloca itself.
3646 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
3647 return Dest && Dest->Ptr == UsedV;
3648}
3649
3650static std::optional<ModRefInfo>
3652 const TargetLibraryInfo &TLI, bool KnowInit) {
3654 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
3655 Worklist.push_back(AI);
3657
3658 do {
3659 Instruction *PI = Worklist.pop_back_val();
3660 for (User *U : PI->users()) {
3662 switch (I->getOpcode()) {
3663 default:
3664 // Give up the moment we see something we can't handle.
3665 return std::nullopt;
3666
3667 case Instruction::AddrSpaceCast:
3668 case Instruction::BitCast:
3669 case Instruction::GetElementPtr:
3670 Users.emplace_back(I);
3671 Worklist.push_back(I);
3672 continue;
3673
3674 case Instruction::ICmp: {
3675 ICmpInst *ICI = cast<ICmpInst>(I);
3676 // We can fold eq/ne comparisons with null to false/true, respectively.
3677 // We also fold comparisons in some conditions provided the alloc has
3678 // not escaped (see isNeverEqualToUnescapedAlloc).
3679 if (!ICI->isEquality())
3680 return std::nullopt;
3681 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3682 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3683 return std::nullopt;
3684
3685 // Do not fold compares to aligned_alloc calls, as they may have to
3686 // return null in case the required alignment cannot be satisfied,
3687 // unless we can prove that both alignment and size are valid.
3688 auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3689 // Check if alignment and size of a call to aligned_alloc is valid,
3690 // that is alignment is a power-of-2 and the size is a multiple of the
3691 // alignment.
3692 const APInt *Alignment;
3693 const APInt *Size;
3694 return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3695 match(CB->getArgOperand(1), m_APInt(Size)) &&
3696 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3697 };
3698 auto *CB = dyn_cast<CallBase>(AI);
3699 LibFunc TheLibFunc;
3700 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3701 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3702 !AlignmentAndSizeKnownValid(CB))
3703 return std::nullopt;
3704 Users.emplace_back(I);
3705 continue;
3706 }
3707
3708 case Instruction::Call:
3709 // Ignore no-op and store intrinsics.
3711 switch (II->getIntrinsicID()) {
3712 default:
3713 return std::nullopt;
3714
3715 case Intrinsic::memmove:
3716 case Intrinsic::memcpy:
3717 case Intrinsic::memset: {
3719 if (MI->isVolatile())
3720 return std::nullopt;
3721 // Note: this could also be ModRef, but we can still interpret that
3722 // as just Mod in that case.
3723 ModRefInfo NewAccess =
3724 MI->getRawDest() == PI ? ModRefInfo::Mod : ModRefInfo::Ref;
3725 if ((Access & ~NewAccess) != ModRefInfo::NoModRef)
3726 return std::nullopt;
3727 Access |= NewAccess;
3728 [[fallthrough]];
3729 }
3730 case Intrinsic::assume:
3731 case Intrinsic::invariant_start:
3732 case Intrinsic::invariant_end:
3733 case Intrinsic::lifetime_start:
3734 case Intrinsic::lifetime_end:
3735 case Intrinsic::objectsize:
3736 Users.emplace_back(I);
3737 continue;
3738 case Intrinsic::launder_invariant_group:
3739 case Intrinsic::strip_invariant_group:
3740 Users.emplace_back(I);
3741 Worklist.push_back(I);
3742 continue;
3743 }
3744 }
3745
3746 if (Family && getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3747 getAllocationFamily(I, &TLI) == Family) {
3748 Users.emplace_back(I);
3749 continue;
3750 }
3751
3752 if (Family && getReallocatedOperand(cast<CallBase>(I)) == PI &&
3753 getAllocationFamily(I, &TLI) == Family) {
3754 Users.emplace_back(I);
3755 Worklist.push_back(I);
3756 continue;
3757 }
3758
3759 if (!isRefSet(Access) &&
3760 isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3762 Users.emplace_back(I);
3763 continue;
3764 }
3765
3766 return std::nullopt;
3767
3768 case Instruction::Store: {
3770 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3771 return std::nullopt;
3772 if (isRefSet(Access))
3773 return std::nullopt;
3775 Users.emplace_back(I);
3776 continue;
3777 }
3778
3779 case Instruction::Load: {
3780 LoadInst *LI = cast<LoadInst>(I);
3781 if (LI->isVolatile() || LI->getPointerOperand() != PI)
3782 return std::nullopt;
3783 if (isModSet(Access))
3784 return std::nullopt;
3786 Users.emplace_back(I);
3787 continue;
3788 }
3789 }
3790 llvm_unreachable("missing a return?");
3791 }
3792 } while (!Worklist.empty());
3793
3795 return Access;
3796}
3797
3800
3801 // If we have a malloc call which is only used in any amount of comparisons to
3802 // null and free calls, delete the calls and replace the comparisons with true
3803 // or false as appropriate.
3804
3805 // This is based on the principle that we can substitute our own allocation
3806 // function (which will never return null) rather than knowledge of the
3807 // specific function being called. In some sense this can change the permitted
3808 // outputs of a program (when we convert a malloc to an alloca, the fact that
3809 // the allocation is now on the stack is potentially visible, for example),
3810 // but we believe in a permissible manner.
3812
3813 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3814 // before each store.
3816 std::unique_ptr<DIBuilder> DIB;
3817 if (isa<AllocaInst>(MI)) {
3818 findDbgUsers(&MI, DVRs);
3819 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3820 }
3821
3822 // Determine what getInitialValueOfAllocation would return without actually
3823 // allocating the result.
3824 bool KnowInitUndef = false;
3825 bool KnowInitZero = false;
3826 Constant *Init =
3828 if (Init) {
3829 if (isa<UndefValue>(Init))
3830 KnowInitUndef = true;
3831 else if (Init->isNullValue())
3832 KnowInitZero = true;
3833 }
3834 // The various sanitizers don't actually return undef memory, but rather
3835 // memory initialized with special forms of runtime poison
3836 auto &F = *MI.getFunction();
3837 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
3838 F.hasFnAttribute(Attribute::SanitizeAddress))
3839 KnowInitUndef = false;
3840
3841 auto Removable =
3842 isAllocSiteRemovable(&MI, Users, TLI, KnowInitZero | KnowInitUndef);
3843 if (Removable) {
3844 for (WeakTrackingVH &User : Users) {
3845 // Lowering all @llvm.objectsize and MTI calls first because they may use
3846 // a bitcast/GEP of the alloca we are removing.
3847 if (!User)
3848 continue;
3849
3851
3853 if (II->getIntrinsicID() == Intrinsic::objectsize) {
3854 SmallVector<Instruction *> InsertedInstructions;
3855 Value *Result = lowerObjectSizeCall(
3856 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3857 for (Instruction *Inserted : InsertedInstructions)
3858 Worklist.add(Inserted);
3859 replaceInstUsesWith(*I, Result);
3861 User = nullptr; // Skip examining in the next loop.
3862 continue;
3863 }
3864 if (auto *MTI = dyn_cast<MemTransferInst>(I)) {
3865 if (KnowInitZero && isRefSet(*Removable)) {
3867 Builder.SetInsertPoint(MTI);
3868 auto *M = Builder.CreateMemSet(
3869 MTI->getRawDest(),
3870 ConstantInt::get(Type::getInt8Ty(MI.getContext()), 0),
3871 MTI->getLength(), MTI->getDestAlign());
3872 M->copyMetadata(*MTI);
3873 }
3874 }
3875 }
3876 }
3877 for (WeakTrackingVH &User : Users) {
3878 if (!User)
3879 continue;
3880
3882
3883 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3885 ConstantInt::get(Type::getInt1Ty(C->getContext()),
3886 C->isFalseWhenEqual()));
3887 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3888 for (auto *DVR : DVRs)
3889 if (DVR->isAddressOfVariable())
3891 } else {
3892 // Casts, GEP, or anything else: we're about to delete this instruction,
3893 // so it can not have any valid uses.
3894 Constant *Replace;
3895 if (isa<LoadInst>(I)) {
3896 assert(KnowInitZero || KnowInitUndef);
3897 Replace = KnowInitUndef ? UndefValue::get(I->getType())
3898 : Constant::getNullValue(I->getType());
3899 } else
3900 Replace = PoisonValue::get(I->getType());
3901 replaceInstUsesWith(*I, Replace);
3902 }
3904 }
3905
3907 // Replace invoke with a NOP intrinsic to maintain the original CFG
3908 Module *M = II->getModule();
3909 Function *F = Intrinsic::getOrInsertDeclaration(M, Intrinsic::donothing);
3910 auto *NewII = InvokeInst::Create(
3911 F, II->getNormalDest(), II->getUnwindDest(), {}, "", II->getParent());
3912 NewII->setDebugLoc(II->getDebugLoc());
3913 }
3914
3915 // Remove debug intrinsics which describe the value contained within the
3916 // alloca. In addition to removing dbg.{declare,addr} which simply point to
3917 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3918 //
3919 // ```
3920 // define void @foo(i32 %0) {
3921 // %a = alloca i32 ; Deleted.
3922 // store i32 %0, i32* %a
3923 // dbg.value(i32 %0, "arg0") ; Not deleted.
3924 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3925 // call void @trivially_inlinable_no_op(i32* %a)
3926 // ret void
3927 // }
3928 // ```
3929 //
3930 // This may not be required if we stop describing the contents of allocas
3931 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3932 // the LowerDbgDeclare utility.
3933 //
3934 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3935 // "arg0" dbg.value may be stale after the call. However, failing to remove
3936 // the DW_OP_deref dbg.value causes large gaps in location coverage.
3937 //
3938 // FIXME: the Assignment Tracking project has now likely made this
3939 // redundant (and it's sometimes harmful).
3940 for (auto *DVR : DVRs)
3941 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3942 DVR->eraseFromParent();
3943
3944 return eraseInstFromFunction(MI);
3945 }
3946 return nullptr;
3947}
3948
3949/// Move the call to free before a NULL test.
3950///
3951/// Check if this free is accessed after its argument has been test
3952/// against NULL (property 0).
3953/// If yes, it is legal to move this call in its predecessor block.
3954///
3955/// The move is performed only if the block containing the call to free
3956/// will be removed, i.e.:
3957/// 1. it has only one predecessor P, and P has two successors
3958/// 2. it contains the call, noops, and an unconditional branch
3959/// 3. its successor is the same as its predecessor's successor
3960///
3961/// The profitability is out-of concern here and this function should
3962/// be called only if the caller knows this transformation would be
3963/// profitable (e.g., for code size).
3965 const DataLayout &DL) {
3966 Value *Op = FI.getArgOperand(0);
3967 BasicBlock *FreeInstrBB = FI.getParent();
3968 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3969
3970 // Validate part of constraint #1: Only one predecessor
3971 // FIXME: We can extend the number of predecessor, but in that case, we
3972 // would duplicate the call to free in each predecessor and it may
3973 // not be profitable even for code size.
3974 if (!PredBB)
3975 return nullptr;
3976
3977 // Validate constraint #2: Does this block contains only the call to
3978 // free, noops, and an unconditional branch?
3979 BasicBlock *SuccBB;
3980 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3981 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3982 return nullptr;
3983
3984 // If there are only 2 instructions in the block, at this point,
3985 // this is the call to free and unconditional.
3986 // If there are more than 2 instructions, check that they are noops
3987 // i.e., they won't hurt the performance of the generated code.
3988 if (FreeInstrBB->size() != 2) {
3989 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3990 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3991 continue;
3992 auto *Cast = dyn_cast<CastInst>(&Inst);
3993 if (!Cast || !Cast->isNoopCast(DL))
3994 return nullptr;
3995 }
3996 }
3997 // Validate the rest of constraint #1 by matching on the pred branch.
3998 Instruction *TI = PredBB->getTerminator();
3999 BasicBlock *TrueBB, *FalseBB;
4000 CmpPredicate Pred;
4001 if (!match(TI, m_Br(m_ICmp(Pred,
4003 m_Specific(Op->stripPointerCasts())),
4004 m_Zero()),
4005 TrueBB, FalseBB)))
4006 return nullptr;
4007 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
4008 return nullptr;
4009
4010 // Validate constraint #3: Ensure the null case just falls through.
4011 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
4012 return nullptr;
4013 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
4014 "Broken CFG: missing edge from predecessor to successor");
4015
4016 // At this point, we know that everything in FreeInstrBB can be moved
4017 // before TI.
4018 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
4019 if (&Instr == FreeInstrBBTerminator)
4020 break;
4021 Instr.moveBeforePreserving(TI->getIterator());
4022 }
4023 assert(FreeInstrBB->size() == 1 &&
4024 "Only the branch instruction should remain");
4025
4026 // Now that we've moved the call to free before the NULL check, we have to
4027 // remove any attributes on its parameter that imply it's non-null, because
4028 // those attributes might have only been valid because of the NULL check, and
4029 // we can get miscompiles if we keep them. This is conservative if non-null is
4030 // also implied by something other than the NULL check, but it's guaranteed to
4031 // be correct, and the conservativeness won't matter in practice, since the
4032 // attributes are irrelevant for the call to free itself and the pointer
4033 // shouldn't be used after the call.
4034 AttributeList Attrs = FI.getAttributes();
4035 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
4036 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
4037 if (Dereferenceable.isValid()) {
4038 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
4039 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
4040 Attribute::Dereferenceable);
4041 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
4042 }
4043 FI.setAttributes(Attrs);
4044
4045 return &FI;
4046}
4047
4049 // free undef -> unreachable.
4050 if (isa<UndefValue>(Op)) {
4051 // Leave a marker since we can't modify the CFG here.
4053 return eraseInstFromFunction(FI);
4054 }
4055
4056 // If we have 'free null' delete the instruction. This can happen in stl code
4057 // when lots of inlining happens.
4059 return eraseInstFromFunction(FI);
4060
4061 // If we had free(realloc(...)) with no intervening uses, then eliminate the
4062 // realloc() entirely.
4064 if (CI && CI->hasOneUse())
4065 if (Value *ReallocatedOp = getReallocatedOperand(CI))
4066 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
4067
4068 // If we optimize for code size, try to move the call to free before the null
4069 // test so that simplify cfg can remove the empty block and dead code
4070 // elimination the branch. I.e., helps to turn something like:
4071 // if (foo) free(foo);
4072 // into
4073 // free(foo);
4074 //
4075 // Note that we can only do this for 'free' and not for any flavor of
4076 // 'operator delete'; there is no 'operator delete' symbol for which we are
4077 // permitted to invent a call, even if we're passing in a null pointer.
4078 if (MinimizeSize) {
4079 LibFunc Func;
4080 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
4082 return I;
4083 }
4084
4085 return nullptr;
4086}
4087
4089 Value *RetVal = RI.getReturnValue();
4090 if (!RetVal)
4091 return nullptr;
4092
4093 Function *F = RI.getFunction();
4094 Type *RetTy = RetVal->getType();
4095 if (RetTy->isPointerTy()) {
4096 bool HasDereferenceable =
4097 F->getAttributes().getRetDereferenceableBytes() > 0;
4098 if (F->hasRetAttribute(Attribute::NonNull) ||
4099 (HasDereferenceable &&
4101 if (Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
4102 return replaceOperand(RI, 0, V);
4103 }
4104 }
4105
4106 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
4107 return nullptr;
4108
4109 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
4110 if (ReturnClass == fcNone)
4111 return nullptr;
4112
4113 KnownFPClass KnownClass;
4114 if (SimplifyDemandedFPClass(&RI, 0, ~ReturnClass, KnownClass))
4115 return &RI;
4116
4117 return nullptr;
4118}
4119
4120// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
4122 // Try to remove the previous instruction if it must lead to unreachable.
4123 // This includes instructions like stores and "llvm.assume" that may not get
4124 // removed by simple dead code elimination.
4125 bool Changed = false;
4126 while (Instruction *Prev = I.getPrevNode()) {
4127 // While we theoretically can erase EH, that would result in a block that
4128 // used to start with an EH no longer starting with EH, which is invalid.
4129 // To make it valid, we'd need to fixup predecessors to no longer refer to
4130 // this block, but that changes CFG, which is not allowed in InstCombine.
4131 if (Prev->isEHPad())
4132 break; // Can not drop any more instructions. We're done here.
4133
4135 break; // Can not drop any more instructions. We're done here.
4136 // Otherwise, this instruction can be freely erased,
4137 // even if it is not side-effect free.
4138
4139 // A value may still have uses before we process it here (for example, in
4140 // another unreachable block), so convert those to poison.
4141 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
4142 eraseInstFromFunction(*Prev);
4143 Changed = true;
4144 }
4145 return Changed;
4146}
4147
4152
4154 assert(BI.isUnconditional() && "Only for unconditional branches.");
4155
4156 // If this store is the second-to-last instruction in the basic block
4157 // (excluding debug info) and if the block ends with
4158 // an unconditional branch, try to move the store to the successor block.
4159
4160 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
4161 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
4162 do {
4163 if (BBI != FirstInstr)
4164 --BBI;
4165 } while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4166
4167 return dyn_cast<StoreInst>(BBI);
4168 };
4169
4170 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
4172 return &BI;
4173
4174 return nullptr;
4175}
4176
4179 if (!DeadEdges.insert({From, To}).second)
4180 return;
4181
4182 // Replace phi node operands in successor with poison.
4183 for (PHINode &PN : To->phis())
4184 for (Use &U : PN.incoming_values())
4185 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
4186 replaceUse(U, PoisonValue::get(PN.getType()));
4187 addToWorklist(&PN);
4188 MadeIRChange = true;
4189 }
4190
4191 Worklist.push_back(To);
4192}
4193
4194// Under the assumption that I is unreachable, remove it and following
4195// instructions. Changes are reported directly to MadeIRChange.
4198 BasicBlock *BB = I->getParent();
4199 for (Instruction &Inst : make_early_inc_range(
4200 make_range(std::next(BB->getTerminator()->getReverseIterator()),
4201 std::next(I->getReverseIterator())))) {
4202 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4203 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
4204 MadeIRChange = true;
4205 }
4206 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4207 continue;
4208 // RemoveDIs: erase debug-info on this instruction manually.
4209 Inst.dropDbgRecords();
4211 MadeIRChange = true;
4212 }
4213
4216 MadeIRChange = true;
4217 for (Value *V : Changed)
4219 }
4220
4221 // Handle potentially dead successors.
4222 for (BasicBlock *Succ : successors(BB))
4223 addDeadEdge(BB, Succ, Worklist);
4224}
4225
4228 while (!Worklist.empty()) {
4229 BasicBlock *BB = Worklist.pop_back_val();
4230 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
4231 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4232 }))
4233 continue;
4234
4236 }
4237}
4238
4240 BasicBlock *LiveSucc) {
4242 for (BasicBlock *Succ : successors(BB)) {
4243 // The live successor isn't dead.
4244 if (Succ == LiveSucc)
4245 continue;
4246
4247 addDeadEdge(BB, Succ, Worklist);
4248 }
4249
4251}
4252
4254 if (BI.isUnconditional())
4256
4257 // Change br (not X), label True, label False to: br X, label False, True
4258 Value *Cond = BI.getCondition();
4259 Value *X;
4260 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
4261 // Swap Destinations and condition...
4262 BI.swapSuccessors();
4263 if (BPI)
4264 BPI->swapSuccEdgesProbabilities(BI.getParent());
4265 return replaceOperand(BI, 0, X);
4266 }
4267
4268 // Canonicalize logical-and-with-invert as logical-or-with-invert.
4269 // This is done by inverting the condition and swapping successors:
4270 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
4271 Value *Y;
4272 if (isa<SelectInst>(Cond) &&
4273 match(Cond,
4275 Value *NotX = Builder.CreateNot(X, "not." + X->getName());
4276 Value *Or = Builder.CreateLogicalOr(NotX, Y);
4277 BI.swapSuccessors();
4278 if (BPI)
4279 BPI->swapSuccEdgesProbabilities(BI.getParent());
4280 return replaceOperand(BI, 0, Or);
4281 }
4282
4283 // If the condition is irrelevant, remove the use so that other
4284 // transforms on the condition become more effective.
4285 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
4286 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
4287
4288 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
4289 CmpPredicate Pred;
4290 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
4291 !isCanonicalPredicate(Pred)) {
4292 // Swap destinations and condition.
4293 auto *Cmp = cast<CmpInst>(Cond);
4294 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
4295 BI.swapSuccessors();
4296 if (BPI)
4297 BPI->swapSuccEdgesProbabilities(BI.getParent());
4298 Worklist.push(Cmp);
4299 return &BI;
4300 }
4301
4302 if (isa<UndefValue>(Cond)) {
4303 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
4304 return nullptr;
4305 }
4306 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4308 BI.getSuccessor(!CI->getZExtValue()));
4309 return nullptr;
4310 }
4311
4312 // Replace all dominated uses of the condition with true/false
4313 // Ignore constant expressions to avoid iterating over uses on other
4314 // functions.
4315 if (!isa<Constant>(Cond) && BI.getSuccessor(0) != BI.getSuccessor(1)) {
4316 for (auto &U : make_early_inc_range(Cond->uses())) {
4317 BasicBlockEdge Edge0(BI.getParent(), BI.getSuccessor(0));
4318 if (DT.dominates(Edge0, U)) {
4319 replaceUse(U, ConstantInt::getTrue(Cond->getType()));
4320 addToWorklist(cast<Instruction>(U.getUser()));
4321 continue;
4322 }
4323 BasicBlockEdge Edge1(BI.getParent(), BI.getSuccessor(1));
4324 if (DT.dominates(Edge1, U)) {
4325 replaceUse(U, ConstantInt::getFalse(Cond->getType()));
4326 addToWorklist(cast<Instruction>(U.getUser()));
4327 }
4328 }
4329 }
4330
4331 DC.registerBranch(&BI);
4332 return nullptr;
4333}
4334
4335// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
4336// we can prove that both (switch C) and (switch X) go to the default when cond
4337// is false/true.
4340 bool IsTrueArm) {
4341 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4342 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
4343 if (!C)
4344 return nullptr;
4345
4346 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
4347 if (CstBB != SI.getDefaultDest())
4348 return nullptr;
4349 Value *X = Select->getOperand(3 - CstOpIdx);
4350 CmpPredicate Pred;
4351 const APInt *RHSC;
4352 if (!match(Select->getCondition(),
4353 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
4354 return nullptr;
4355 if (IsTrueArm)
4356 Pred = ICmpInst::getInversePredicate(Pred);
4357
4358 // See whether we can replace the select with X
4360 for (auto Case : SI.cases())
4361 if (!CR.contains(Case.getCaseValue()->getValue()))
4362 return nullptr;
4363
4364 return X;
4365}
4366
4368 Value *Cond = SI.getCondition();
4369 Value *Op0;
4370 const APInt *CondOpC;
4371 using InvertFn = std::function<APInt(const APInt &Case, const APInt &C)>;
4372
4373 auto MaybeInvertible = [&](Value *Cond) -> InvertFn {
4374 if (match(Cond, m_Add(m_Value(Op0), m_APInt(CondOpC))))
4375 // Change 'switch (X+C) case Case:' into 'switch (X) case Case-C'.
4376 return [](const APInt &Case, const APInt &C) { return Case - C; };
4377
4378 if (match(Cond, m_Sub(m_APInt(CondOpC), m_Value(Op0))))
4379 // Change 'switch (C-X) case Case:' into 'switch (X) case C-Case'.
4380 return [](const APInt &Case, const APInt &C) { return C - Case; };
4381
4382 if (match(Cond, m_Xor(m_Value(Op0), m_APInt(CondOpC))) &&
4383 !CondOpC->isMinSignedValue() && !CondOpC->isMaxSignedValue())
4384 // Change 'switch (X^C) case Case:' into 'switch (X) case Case^C'.
4385 // Prevent creation of large case values by excluding extremes.
4386 return [](const APInt &Case, const APInt &C) { return Case ^ C; };
4387
4388 return nullptr;
4389 };
4390
4391 // Attempt to invert and simplify the switch condition, as long as the
4392 // condition is not used further, as it may not be profitable otherwise.
4393 if (auto InvertFn = MaybeInvertible(Cond); InvertFn && Cond->hasOneUse()) {
4394 for (auto &Case : SI.cases()) {
4395 const APInt &New = InvertFn(Case.getCaseValue()->getValue(), *CondOpC);
4396 Case.setValue(ConstantInt::get(SI.getContext(), New));
4397 }
4398 return replaceOperand(SI, 0, Op0);
4399 }
4400
4401 uint64_t ShiftAmt;
4402 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
4403 ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
4404 all_of(SI.cases(), [&](const auto &Case) {
4405 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4406 })) {
4407 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
4409 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
4410 Shl->hasOneUse()) {
4411 Value *NewCond = Op0;
4412 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
4413 // If the shift may wrap, we need to mask off the shifted bits.
4414 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4415 NewCond = Builder.CreateAnd(
4416 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
4417 }
4418 for (auto Case : SI.cases()) {
4419 const APInt &CaseVal = Case.getCaseValue()->getValue();
4420 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
4421 : CaseVal.lshr(ShiftAmt);
4422 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
4423 }
4424 return replaceOperand(SI, 0, NewCond);
4425 }
4426 }
4427
4428 // Fold switch(zext/sext(X)) into switch(X) if possible.
4429 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
4430 bool IsZExt = isa<ZExtInst>(Cond);
4431 Type *SrcTy = Op0->getType();
4432 unsigned NewWidth = SrcTy->getScalarSizeInBits();
4433
4434 if (all_of(SI.cases(), [&](const auto &Case) {
4435 const APInt &CaseVal = Case.getCaseValue()->getValue();
4436 return IsZExt ? CaseVal.isIntN(NewWidth)
4437 : CaseVal.isSignedIntN(NewWidth);
4438 })) {
4439 for (auto &Case : SI.cases()) {
4440 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4441 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4442 }
4443 return replaceOperand(SI, 0, Op0);
4444 }
4445 }
4446
4447 // Fold switch(select cond, X, Y) into switch(X/Y) if possible
4448 if (auto *Select = dyn_cast<SelectInst>(Cond)) {
4449 if (Value *V =
4450 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
4451 return replaceOperand(SI, 0, V);
4452 if (Value *V =
4453 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
4454 return replaceOperand(SI, 0, V);
4455 }
4456
4457 KnownBits Known = computeKnownBits(Cond, &SI);
4458 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
4459 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
4460
4461 // Compute the number of leading bits we can ignore.
4462 // TODO: A better way to determine this would use ComputeNumSignBits().
4463 for (const auto &C : SI.cases()) {
4464 LeadingKnownZeros =
4465 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
4466 LeadingKnownOnes =
4467 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
4468 }
4469
4470 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4471
4472 // Shrink the condition operand if the new type is smaller than the old type.
4473 // But do not shrink to a non-standard type, because backend can't generate
4474 // good code for that yet.
4475 // TODO: We can make it aggressive again after fixing PR39569.
4476 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
4477 shouldChangeType(Known.getBitWidth(), NewWidth)) {
4478 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
4479 Builder.SetInsertPoint(&SI);
4480 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
4481
4482 for (auto Case : SI.cases()) {
4483 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4484 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4485 }
4486 return replaceOperand(SI, 0, NewCond);
4487 }
4488
4489 if (isa<UndefValue>(Cond)) {
4490 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
4491 return nullptr;
4492 }
4493 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4495 SI.findCaseValue(CI)->getCaseSuccessor());
4496 return nullptr;
4497 }
4498
4499 return nullptr;
4500}
4501
4503InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
4505 if (!WO)
4506 return nullptr;
4507
4508 Intrinsic::ID OvID = WO->getIntrinsicID();
4509 const APInt *C = nullptr;
4510 if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
4511 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4512 OvID == Intrinsic::umul_with_overflow)) {
4513 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
4514 if (C->isAllOnes())
4515 return BinaryOperator::CreateNeg(WO->getLHS());
4516 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
4517 if (C->isPowerOf2()) {
4518 return BinaryOperator::CreateShl(
4519 WO->getLHS(),
4520 ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
4521 }
4522 }
4523 }
4524
4525 // We're extracting from an overflow intrinsic. See if we're the only user.
4526 // That allows us to simplify multiple result intrinsics to simpler things
4527 // that just get one value.
4528 if (!WO->hasOneUse())
4529 return nullptr;
4530
4531 // Check if we're grabbing only the result of a 'with overflow' intrinsic
4532 // and replace it with a traditional binary instruction.
4533 if (*EV.idx_begin() == 0) {
4534 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4535 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
4536 // Replace the old instruction's uses with poison.
4537 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
4539 return BinaryOperator::Create(BinOp, LHS, RHS);
4540 }
4541
4542 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
4543
4544 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
4545 if (OvID == Intrinsic::usub_with_overflow)
4546 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
4547
4548 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
4549 // +1 is not possible because we assume signed values.
4550 if (OvID == Intrinsic::smul_with_overflow &&
4551 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4552 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4553
4554 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
4555 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4556 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4557 // Only handle even bitwidths for performance reasons.
4558 if (BitWidth % 2 == 0)
4559 return new ICmpInst(
4560 ICmpInst::ICMP_UGT, WO->getLHS(),
4561 ConstantInt::get(WO->getLHS()->getType(),
4563 }
4564
4565 // If only the overflow result is used, and the right hand side is a
4566 // constant (or constant splat), we can remove the intrinsic by directly
4567 // checking for overflow.
4568 if (C) {
4569 // Compute the no-wrap range for LHS given RHS=C, then construct an
4570 // equivalent icmp, potentially using an offset.
4571 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
4572 WO->getBinaryOp(), *C, WO->getNoWrapKind());
4573
4574 CmpInst::Predicate Pred;
4575 APInt NewRHSC, Offset;
4576 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
4577 auto *OpTy = WO->getRHS()->getType();
4578 auto *NewLHS = WO->getLHS();
4579 if (Offset != 0)
4580 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
4581 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
4582 ConstantInt::get(OpTy, NewRHSC));
4583 }
4584
4585 return nullptr;
4586}
4587
4590 InstCombiner::BuilderTy &Builder) {
4591 // Helper to fold frexp of select to select of frexp.
4592
4593 if (!SelectInst->hasOneUse() || !FrexpCall->hasOneUse())
4594 return nullptr;
4596 Value *TrueVal = SelectInst->getTrueValue();
4597 Value *FalseVal = SelectInst->getFalseValue();
4598
4599 const APFloat *ConstVal = nullptr;
4600 Value *VarOp = nullptr;
4601 bool ConstIsTrue = false;
4602
4603 if (match(TrueVal, m_APFloat(ConstVal))) {
4604 VarOp = FalseVal;
4605 ConstIsTrue = true;
4606 } else if (match(FalseVal, m_APFloat(ConstVal))) {
4607 VarOp = TrueVal;
4608 ConstIsTrue = false;
4609 } else {
4610 return nullptr;
4611 }
4612
4613 Builder.SetInsertPoint(&EV);
4614
4615 CallInst *NewFrexp =
4616 Builder.CreateCall(FrexpCall->getCalledFunction(), {VarOp}, "frexp");
4617 NewFrexp->copyIRFlags(FrexpCall);
4618
4619 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0, "mantissa");
4620
4621 int Exp;
4622 APFloat Mantissa = frexp(*ConstVal, Exp, APFloat::rmNearestTiesToEven);
4623
4624 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4625
4626 Value *NewSel = Builder.CreateSelectFMF(
4627 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4628 ConstIsTrue ? NewEV : ConstantMantissa, SelectInst, "select.frexp");
4629 return NewSel;
4630}
4632 Value *Agg = EV.getAggregateOperand();
4633
4634 if (!EV.hasIndices())
4635 return replaceInstUsesWith(EV, Agg);
4636
4637 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
4638 SQ.getWithInstruction(&EV)))
4639 return replaceInstUsesWith(EV, V);
4640
4641 Value *Cond, *TrueVal, *FalseVal;
4643 m_Value(Cond), m_Value(TrueVal), m_Value(FalseVal)))))) {
4644 auto *SelInst =
4645 cast<SelectInst>(cast<IntrinsicInst>(Agg)->getArgOperand(0));
4646 if (Value *Result =
4647 foldFrexpOfSelect(EV, cast<IntrinsicInst>(Agg), SelInst, Builder))
4648 return replaceInstUsesWith(EV, Result);
4649 }
4651 // We're extracting from an insertvalue instruction, compare the indices
4652 const unsigned *exti, *exte, *insi, *inse;
4653 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
4654 exte = EV.idx_end(), inse = IV->idx_end();
4655 exti != exte && insi != inse;
4656 ++exti, ++insi) {
4657 if (*insi != *exti)
4658 // The insert and extract both reference distinctly different elements.
4659 // This means the extract is not influenced by the insert, and we can
4660 // replace the aggregate operand of the extract with the aggregate
4661 // operand of the insert. i.e., replace
4662 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4663 // %E = extractvalue { i32, { i32 } } %I, 0
4664 // with
4665 // %E = extractvalue { i32, { i32 } } %A, 0
4666 return ExtractValueInst::Create(IV->getAggregateOperand(),
4667 EV.getIndices());
4668 }
4669 if (exti == exte && insi == inse)
4670 // Both iterators are at the end: Index lists are identical. Replace
4671 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4672 // %C = extractvalue { i32, { i32 } } %B, 1, 0
4673 // with "i32 42"
4674 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
4675 if (exti == exte) {
4676 // The extract list is a prefix of the insert list. i.e. replace
4677 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4678 // %E = extractvalue { i32, { i32 } } %I, 1
4679 // with
4680 // %X = extractvalue { i32, { i32 } } %A, 1
4681 // %E = insertvalue { i32 } %X, i32 42, 0
4682 // by switching the order of the insert and extract (though the
4683 // insertvalue should be left in, since it may have other uses).
4684 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
4685 EV.getIndices());
4686 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
4687 ArrayRef(insi, inse));
4688 }
4689 if (insi == inse)
4690 // The insert list is a prefix of the extract list
4691 // We can simply remove the common indices from the extract and make it
4692 // operate on the inserted value instead of the insertvalue result.
4693 // i.e., replace
4694 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4695 // %E = extractvalue { i32, { i32 } } %I, 1, 0
4696 // with
4697 // %E extractvalue { i32 } { i32 42 }, 0
4698 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
4699 ArrayRef(exti, exte));
4700 }
4701
4702 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4703 return R;
4704
4705 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4706 // Bail out if the aggregate contains scalable vector type
4707 if (auto *STy = dyn_cast<StructType>(Agg->getType());
4708 STy && STy->isScalableTy())
4709 return nullptr;
4710
4711 // If the (non-volatile) load only has one use, we can rewrite this to a
4712 // load from a GEP. This reduces the size of the load. If a load is used
4713 // only by extractvalue instructions then this either must have been
4714 // optimized before, or it is a struct with padding, in which case we
4715 // don't want to do the transformation as it loses padding knowledge.
4716 if (L->isSimple() && L->hasOneUse()) {
4717 // extractvalue has integer indices, getelementptr has Value*s. Convert.
4718 SmallVector<Value*, 4> Indices;
4719 // Prefix an i32 0 since we need the first element.
4720 Indices.push_back(Builder.getInt32(0));
4721 for (unsigned Idx : EV.indices())
4722 Indices.push_back(Builder.getInt32(Idx));
4723
4724 // We need to insert these at the location of the old load, not at that of
4725 // the extractvalue.
4726 Builder.SetInsertPoint(L);
4727 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
4728 L->getPointerOperand(), Indices);
4729 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
4730 // Whatever aliasing information we had for the orignal load must also
4731 // hold for the smaller load, so propagate the annotations.
4732 NL->setAAMetadata(L->getAAMetadata());
4733 // Returning the load directly will cause the main loop to insert it in
4734 // the wrong spot, so use replaceInstUsesWith().
4735 return replaceInstUsesWith(EV, NL);
4736 }
4737 }
4738
4739 if (auto *PN = dyn_cast<PHINode>(Agg))
4740 if (Instruction *Res = foldOpIntoPhi(EV, PN))
4741 return Res;
4742
4743 // Canonicalize extract (select Cond, TV, FV)
4744 // -> select cond, (extract TV), (extract FV)
4745 if (auto *SI = dyn_cast<SelectInst>(Agg))
4746 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
4747 return R;
4748
4749 // We could simplify extracts from other values. Note that nested extracts may
4750 // already be simplified implicitly by the above: extract (extract (insert) )
4751 // will be translated into extract ( insert ( extract ) ) first and then just
4752 // the value inserted, if appropriate. Similarly for extracts from single-use
4753 // loads: extract (extract (load)) will be translated to extract (load (gep))
4754 // and if again single-use then via load (gep (gep)) to load (gep).
4755 // However, double extracts from e.g. function arguments or return values
4756 // aren't handled yet.
4757 return nullptr;
4758}
4759
4760/// Return 'true' if the given typeinfo will match anything.
4761static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
4762 switch (Personality) {
4766 // The GCC C EH and Rust personality only exists to support cleanups, so
4767 // it's not clear what the semantics of catch clauses are.
4768 return false;
4770 return false;
4772 // While __gnat_all_others_value will match any Ada exception, it doesn't
4773 // match foreign exceptions (or didn't, before gcc-4.7).
4774 return false;
4785 return TypeInfo->isNullValue();
4786 }
4787 llvm_unreachable("invalid enum");
4788}
4789
4790static bool shorter_filter(const Value *LHS, const Value *RHS) {
4791 return
4792 cast<ArrayType>(LHS->getType())->getNumElements()
4793 <
4794 cast<ArrayType>(RHS->getType())->getNumElements();
4795}
4796
4798 // The logic here should be correct for any real-world personality function.
4799 // However if that turns out not to be true, the offending logic can always
4800 // be conditioned on the personality function, like the catch-all logic is.
4801 EHPersonality Personality =
4802 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
4803
4804 // Simplify the list of clauses, eg by removing repeated catch clauses
4805 // (these are often created by inlining).
4806 bool MakeNewInstruction = false; // If true, recreate using the following:
4807 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
4808 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
4809
4810 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
4811 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
4812 bool isLastClause = i + 1 == e;
4813 if (LI.isCatch(i)) {
4814 // A catch clause.
4815 Constant *CatchClause = LI.getClause(i);
4816 Constant *TypeInfo = CatchClause->stripPointerCasts();
4817
4818 // If we already saw this clause, there is no point in having a second
4819 // copy of it.
4820 if (AlreadyCaught.insert(TypeInfo).second) {
4821 // This catch clause was not already seen.
4822 NewClauses.push_back(CatchClause);
4823 } else {
4824 // Repeated catch clause - drop the redundant copy.
4825 MakeNewInstruction = true;
4826 }
4827
4828 // If this is a catch-all then there is no point in keeping any following
4829 // clauses or marking the landingpad as having a cleanup.
4830 if (isCatchAll(Personality, TypeInfo)) {
4831 if (!isLastClause)
4832 MakeNewInstruction = true;
4833 CleanupFlag = false;
4834 break;
4835 }
4836 } else {
4837 // A filter clause. If any of the filter elements were already caught
4838 // then they can be dropped from the filter. It is tempting to try to
4839 // exploit the filter further by saying that any typeinfo that does not
4840 // occur in the filter can't be caught later (and thus can be dropped).
4841 // However this would be wrong, since typeinfos can match without being
4842 // equal (for example if one represents a C++ class, and the other some
4843 // class derived from it).
4844 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4845 Constant *FilterClause = LI.getClause(i);
4846 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4847 unsigned NumTypeInfos = FilterType->getNumElements();
4848
4849 // An empty filter catches everything, so there is no point in keeping any
4850 // following clauses or marking the landingpad as having a cleanup. By
4851 // dealing with this case here the following code is made a bit simpler.
4852 if (!NumTypeInfos) {
4853 NewClauses.push_back(FilterClause);
4854 if (!isLastClause)
4855 MakeNewInstruction = true;
4856 CleanupFlag = false;
4857 break;
4858 }
4859
4860 bool MakeNewFilter = false; // If true, make a new filter.
4861 SmallVector<Constant *, 16> NewFilterElts; // New elements.
4862 if (isa<ConstantAggregateZero>(FilterClause)) {
4863 // Not an empty filter - it contains at least one null typeinfo.
4864 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4865 Constant *TypeInfo =
4867 // If this typeinfo is a catch-all then the filter can never match.
4868 if (isCatchAll(Personality, TypeInfo)) {
4869 // Throw the filter away.
4870 MakeNewInstruction = true;
4871 continue;
4872 }
4873
4874 // There is no point in having multiple copies of this typeinfo, so
4875 // discard all but the first copy if there is more than one.
4876 NewFilterElts.push_back(TypeInfo);
4877 if (NumTypeInfos > 1)
4878 MakeNewFilter = true;
4879 } else {
4880 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4881 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4882 NewFilterElts.reserve(NumTypeInfos);
4883
4884 // Remove any filter elements that were already caught or that already
4885 // occurred in the filter. While there, see if any of the elements are
4886 // catch-alls. If so, the filter can be discarded.
4887 bool SawCatchAll = false;
4888 for (unsigned j = 0; j != NumTypeInfos; ++j) {
4889 Constant *Elt = Filter->getOperand(j);
4890 Constant *TypeInfo = Elt->stripPointerCasts();
4891 if (isCatchAll(Personality, TypeInfo)) {
4892 // This element is a catch-all. Bail out, noting this fact.
4893 SawCatchAll = true;
4894 break;
4895 }
4896
4897 // Even if we've seen a type in a catch clause, we don't want to
4898 // remove it from the filter. An unexpected type handler may be
4899 // set up for a call site which throws an exception of the same
4900 // type caught. In order for the exception thrown by the unexpected
4901 // handler to propagate correctly, the filter must be correctly
4902 // described for the call site.
4903 //
4904 // Example:
4905 //
4906 // void unexpected() { throw 1;}
4907 // void foo() throw (int) {
4908 // std::set_unexpected(unexpected);
4909 // try {
4910 // throw 2.0;
4911 // } catch (int i) {}
4912 // }
4913
4914 // There is no point in having multiple copies of the same typeinfo in
4915 // a filter, so only add it if we didn't already.
4916 if (SeenInFilter.insert(TypeInfo).second)
4917 NewFilterElts.push_back(cast<Constant>(Elt));
4918 }
4919 // A filter containing a catch-all cannot match anything by definition.
4920 if (SawCatchAll) {
4921 // Throw the filter away.
4922 MakeNewInstruction = true;
4923 continue;
4924 }
4925
4926 // If we dropped something from the filter, make a new one.
4927 if (NewFilterElts.size() < NumTypeInfos)
4928 MakeNewFilter = true;
4929 }
4930 if (MakeNewFilter) {
4931 FilterType = ArrayType::get(FilterType->getElementType(),
4932 NewFilterElts.size());
4933 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4934 MakeNewInstruction = true;
4935 }
4936
4937 NewClauses.push_back(FilterClause);
4938
4939 // If the new filter is empty then it will catch everything so there is
4940 // no point in keeping any following clauses or marking the landingpad
4941 // as having a cleanup. The case of the original filter being empty was
4942 // already handled above.
4943 if (MakeNewFilter && !NewFilterElts.size()) {
4944 assert(MakeNewInstruction && "New filter but not a new instruction!");
4945 CleanupFlag = false;
4946 break;
4947 }
4948 }
4949 }
4950
4951 // If several filters occur in a row then reorder them so that the shortest
4952 // filters come first (those with the smallest number of elements). This is
4953 // advantageous because shorter filters are more likely to match, speeding up
4954 // unwinding, but mostly because it increases the effectiveness of the other
4955 // filter optimizations below.
4956 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4957 unsigned j;
4958 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4959 for (j = i; j != e; ++j)
4960 if (!isa<ArrayType>(NewClauses[j]->getType()))
4961 break;
4962
4963 // Check whether the filters are already sorted by length. We need to know
4964 // if sorting them is actually going to do anything so that we only make a
4965 // new landingpad instruction if it does.
4966 for (unsigned k = i; k + 1 < j; ++k)
4967 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4968 // Not sorted, so sort the filters now. Doing an unstable sort would be
4969 // correct too but reordering filters pointlessly might confuse users.
4970 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4972 MakeNewInstruction = true;
4973 break;
4974 }
4975
4976 // Look for the next batch of filters.
4977 i = j + 1;
4978 }
4979
4980 // If typeinfos matched if and only if equal, then the elements of a filter L
4981 // that occurs later than a filter F could be replaced by the intersection of
4982 // the elements of F and L. In reality two typeinfos can match without being
4983 // equal (for example if one represents a C++ class, and the other some class
4984 // derived from it) so it would be wrong to perform this transform in general.
4985 // However the transform is correct and useful if F is a subset of L. In that
4986 // case L can be replaced by F, and thus removed altogether since repeating a
4987 // filter is pointless. So here we look at all pairs of filters F and L where
4988 // L follows F in the list of clauses, and remove L if every element of F is
4989 // an element of L. This can occur when inlining C++ functions with exception
4990 // specifications.
4991 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4992 // Examine each filter in turn.
4993 Value *Filter = NewClauses[i];
4994 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4995 if (!FTy)
4996 // Not a filter - skip it.
4997 continue;
4998 unsigned FElts = FTy->getNumElements();
4999 // Examine each filter following this one. Doing this backwards means that
5000 // we don't have to worry about filters disappearing under us when removed.
5001 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
5002 Value *LFilter = NewClauses[j];
5003 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
5004 if (!LTy)
5005 // Not a filter - skip it.
5006 continue;
5007 // If Filter is a subset of LFilter, i.e. every element of Filter is also
5008 // an element of LFilter, then discard LFilter.
5009 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
5010 // If Filter is empty then it is a subset of LFilter.
5011 if (!FElts) {
5012 // Discard LFilter.
5013 NewClauses.erase(J);
5014 MakeNewInstruction = true;
5015 // Move on to the next filter.
5016 continue;
5017 }
5018 unsigned LElts = LTy->getNumElements();
5019 // If Filter is longer than LFilter then it cannot be a subset of it.
5020 if (FElts > LElts)
5021 // Move on to the next filter.
5022 continue;
5023 // At this point we know that LFilter has at least one element.
5024 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
5025 // Filter is a subset of LFilter iff Filter contains only zeros (as we
5026 // already know that Filter is not longer than LFilter).
5028 assert(FElts <= LElts && "Should have handled this case earlier!");
5029 // Discard LFilter.
5030 NewClauses.erase(J);
5031 MakeNewInstruction = true;
5032 }
5033 // Move on to the next filter.
5034 continue;
5035 }
5036 ConstantArray *LArray = cast<ConstantArray>(LFilter);
5037 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
5038 // Since Filter is non-empty and contains only zeros, it is a subset of
5039 // LFilter iff LFilter contains a zero.
5040 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
5041 for (unsigned l = 0; l != LElts; ++l)
5042 if (LArray->getOperand(l)->isNullValue()) {
5043 // LFilter contains a zero - discard it.
5044 NewClauses.erase(J);
5045 MakeNewInstruction = true;
5046 break;
5047 }
5048 // Move on to the next filter.
5049 continue;
5050 }
5051 // At this point we know that both filters are ConstantArrays. Loop over
5052 // operands to see whether every element of Filter is also an element of
5053 // LFilter. Since filters tend to be short this is probably faster than
5054 // using a method that scales nicely.
5056 bool AllFound = true;
5057 for (unsigned f = 0; f != FElts; ++f) {
5058 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
5059 AllFound = false;
5060 for (unsigned l = 0; l != LElts; ++l) {
5061 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
5062 if (LTypeInfo == FTypeInfo) {
5063 AllFound = true;
5064 break;
5065 }
5066 }
5067 if (!AllFound)
5068 break;
5069 }
5070 if (AllFound) {
5071 // Discard LFilter.
5072 NewClauses.erase(J);
5073 MakeNewInstruction = true;
5074 }
5075 // Move on to the next filter.
5076 }
5077 }
5078
5079 // If we changed any of the clauses, replace the old landingpad instruction
5080 // with a new one.
5081 if (MakeNewInstruction) {
5083 NewClauses.size());
5084 for (Constant *C : NewClauses)
5085 NLI->addClause(C);
5086 // A landing pad with no clauses must have the cleanup flag set. It is
5087 // theoretically possible, though highly unlikely, that we eliminated all
5088 // clauses. If so, force the cleanup flag to true.
5089 if (NewClauses.empty())
5090 CleanupFlag = true;
5091 NLI->setCleanup(CleanupFlag);
5092 return NLI;
5093 }
5094
5095 // Even if none of the clauses changed, we may nonetheless have understood
5096 // that the cleanup flag is pointless. Clear it if so.
5097 if (LI.isCleanup() != CleanupFlag) {
5098 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
5099 LI.setCleanup(CleanupFlag);
5100 return &LI;
5101 }
5102
5103 return nullptr;
5104}
5105
5106Value *
5108 // Try to push freeze through instructions that propagate but don't produce
5109 // poison as far as possible. If an operand of freeze does not produce poison
5110 // then push the freeze through to the operands that are not guaranteed
5111 // non-poison. The actual transform is as follows.
5112 // Op1 = ... ; Op1 can be poison
5113 // Op0 = Inst(Op1, NonPoisonOps...)
5114 // ... = Freeze(Op0)
5115 // =>
5116 // Op1 = ...
5117 // Op1.fr = Freeze(Op1)
5118 // ... = Inst(Op1.fr, NonPoisonOps...)
5119
5120 auto CanPushFreeze = [](Value *V) {
5121 if (!isa<Instruction>(V) || isa<PHINode>(V))
5122 return false;
5123
5124 // We can't push the freeze through an instruction which can itself create
5125 // poison. If the only source of new poison is flags, we can simply
5126 // strip them (since we know the only use is the freeze and nothing can
5127 // benefit from them.)
5129 /*ConsiderFlagsAndMetadata*/ false);
5130 };
5131
5132 // Pushing freezes up long instruction chains can be expensive. Instead,
5133 // we directly push the freeze all the way to the leaves. However, we leave
5134 // deduplication of freezes on the same value for freezeOtherUses().
5135 Use *OrigUse = &OrigFI.getOperandUse(0);
5138 Worklist.push_back(OrigUse);
5139 while (!Worklist.empty()) {
5140 auto *U = Worklist.pop_back_val();
5141 Value *V = U->get();
5142 if (!CanPushFreeze(V)) {
5143 // If we can't push through the original instruction, abort the transform.
5144 if (U == OrigUse)
5145 return nullptr;
5146
5147 auto *UserI = cast<Instruction>(U->getUser());
5148 Builder.SetInsertPoint(UserI);
5149 Value *Frozen = Builder.CreateFreeze(V, V->getName() + ".fr");
5150 U->set(Frozen);
5151 continue;
5152 }
5153
5154 auto *I = cast<Instruction>(V);
5155 if (!Visited.insert(I).second)
5156 continue;
5157
5158 // reverse() to emit freezes in a more natural order.
5159 for (Use &Op : reverse(I->operands())) {
5160 Value *OpV = Op.get();
5162 continue;
5163 Worklist.push_back(&Op);
5164 }
5165
5166 I->dropPoisonGeneratingAnnotations();
5167 this->Worklist.add(I);
5168 }
5169
5170 return OrigUse->get();
5171}
5172
5174 PHINode *PN) {
5175 // Detect whether this is a recurrence with a start value and some number of
5176 // backedge values. We'll check whether we can push the freeze through the
5177 // backedge values (possibly dropping poison flags along the way) until we
5178 // reach the phi again. In that case, we can move the freeze to the start
5179 // value.
5180 Use *StartU = nullptr;
5182 for (Use &U : PN->incoming_values()) {
5183 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
5184 // Add backedge value to worklist.
5185 Worklist.push_back(U.get());
5186 continue;
5187 }
5188
5189 // Don't bother handling multiple start values.
5190 if (StartU)
5191 return nullptr;
5192 StartU = &U;
5193 }
5194
5195 if (!StartU || Worklist.empty())
5196 return nullptr; // Not a recurrence.
5197
5198 Value *StartV = StartU->get();
5199 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
5200 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
5201 // We can't insert freeze if the start value is the result of the
5202 // terminator (e.g. an invoke).
5203 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
5204 return nullptr;
5205
5208 while (!Worklist.empty()) {
5209 Value *V = Worklist.pop_back_val();
5210 if (!Visited.insert(V).second)
5211 continue;
5212
5213 if (Visited.size() > 32)
5214 return nullptr; // Limit the total number of values we inspect.
5215
5216 // Assume that PN is non-poison, because it will be after the transform.
5217 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
5218 continue;
5219
5222 /*ConsiderFlagsAndMetadata*/ false))
5223 return nullptr;
5224
5225 DropFlags.push_back(I);
5226 append_range(Worklist, I->operands());
5227 }
5228
5229 for (Instruction *I : DropFlags)
5230 I->dropPoisonGeneratingAnnotations();
5231
5232 if (StartNeedsFreeze) {
5233 Builder.SetInsertPoint(StartBB->getTerminator());
5234 Value *FrozenStartV = Builder.CreateFreeze(StartV,
5235 StartV->getName() + ".fr");
5236 replaceUse(*StartU, FrozenStartV);
5237 }
5238 return replaceInstUsesWith(FI, PN);
5239}
5240
5242 Value *Op = FI.getOperand(0);
5243
5244 if (isa<Constant>(Op) || Op->hasOneUse())
5245 return false;
5246
5247 // Move the freeze directly after the definition of its operand, so that
5248 // it dominates the maximum number of uses. Note that it may not dominate
5249 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
5250 // the normal/default destination. This is why the domination check in the
5251 // replacement below is still necessary.
5252 BasicBlock::iterator MoveBefore;
5253 if (isa<Argument>(Op)) {
5254 MoveBefore =
5256 } else {
5257 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
5258 if (!MoveBeforeOpt)
5259 return false;
5260 MoveBefore = *MoveBeforeOpt;
5261 }
5262
5263 // Re-point iterator to come after any debug-info records.
5264 MoveBefore.setHeadBit(false);
5265
5266 bool Changed = false;
5267 if (&FI != &*MoveBefore) {
5268 FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
5269 Changed = true;
5270 }
5271
5272 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
5273 bool Dominates = DT.dominates(&FI, U);
5274 Changed |= Dominates;
5275 return Dominates;
5276 });
5277
5278 return Changed;
5279}
5280
5281// Check if any direct or bitcast user of this value is a shuffle instruction.
5283 for (auto *U : V->users()) {
5285 return true;
5286 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
5287 return true;
5288 }
5289 return false;
5290}
5291
5293 Value *Op0 = I.getOperand(0);
5294
5295 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
5296 return replaceInstUsesWith(I, V);
5297
5298 // freeze (phi const, x) --> phi const, (freeze x)
5299 if (auto *PN = dyn_cast<PHINode>(Op0)) {
5300 if (Instruction *NV = foldOpIntoPhi(I, PN))
5301 return NV;
5302 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
5303 return NV;
5304 }
5305
5307 return replaceInstUsesWith(I, NI);
5308
5309 // If I is freeze(undef), check its uses and fold it to a fixed constant.
5310 // - or: pick -1
5311 // - select's condition: if the true value is constant, choose it by making
5312 // the condition true.
5313 // - phi: pick the common constant across operands
5314 // - default: pick 0
5315 //
5316 // Note that this transform is intentionally done here rather than
5317 // via an analysis in InstSimplify or at individual user sites. That is
5318 // because we must produce the same value for all uses of the freeze -
5319 // it's the reason "freeze" exists!
5320 //
5321 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
5322 // duplicating logic for binops at least.
5323 auto getUndefReplacement = [&](Type *Ty) {
5324 auto pickCommonConstantFromPHI = [](PHINode &PN) -> Value * {
5325 // phi(freeze(undef), C, C). Choose C for freeze so the PHI can be
5326 // removed.
5327 Constant *BestValue = nullptr;
5328 for (Value *V : PN.incoming_values()) {
5329 if (match(V, m_Freeze(m_Undef())))
5330 continue;
5331
5333 if (!C)
5334 return nullptr;
5335
5337 return nullptr;
5338
5339 if (BestValue && BestValue != C)
5340 return nullptr;
5341
5342 BestValue = C;
5343 }
5344 return BestValue;
5345 };
5346
5347 Value *NullValue = Constant::getNullValue(Ty);
5348 Value *BestValue = nullptr;
5349 for (auto *U : I.users()) {
5350 Value *V = NullValue;
5351 if (match(U, m_Or(m_Value(), m_Value())))
5353 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
5354 V = ConstantInt::getTrue(Ty);
5355 else if (match(U, m_c_Select(m_Specific(&I), m_Value(V)))) {
5356 if (V == &I || !isGuaranteedNotToBeUndefOrPoison(V, &AC, &I, &DT))
5357 V = NullValue;
5358 } else if (auto *PHI = dyn_cast<PHINode>(U)) {
5359 if (Value *MaybeV = pickCommonConstantFromPHI(*PHI))
5360 V = MaybeV;
5361 }
5362
5363 if (!BestValue)
5364 BestValue = V;
5365 else if (BestValue != V)
5366 BestValue = NullValue;
5367 }
5368 assert(BestValue && "Must have at least one use");
5369 assert(BestValue != &I && "Cannot replace with itself");
5370 return BestValue;
5371 };
5372
5373 if (match(Op0, m_Undef())) {
5374 // Don't fold freeze(undef/poison) if it's used as a vector operand in
5375 // a shuffle. This may improve codegen for shuffles that allow
5376 // unspecified inputs.
5378 return nullptr;
5379 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
5380 }
5381
5382 auto getFreezeVectorReplacement = [](Constant *C) -> Constant * {
5383 Type *Ty = C->getType();
5384 auto *VTy = dyn_cast<FixedVectorType>(Ty);
5385 if (!VTy)
5386 return nullptr;
5387 unsigned NumElts = VTy->getNumElements();
5388 Constant *BestValue = Constant::getNullValue(VTy->getScalarType());
5389 for (unsigned i = 0; i != NumElts; ++i) {
5390 Constant *EltC = C->getAggregateElement(i);
5391 if (EltC && !match(EltC, m_Undef())) {
5392 BestValue = EltC;
5393 break;
5394 }
5395 }
5396 return Constant::replaceUndefsWith(C, BestValue);
5397 };
5398
5399 Constant *C;
5400 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement() &&
5401 !C->containsConstantExpression()) {
5402 if (Constant *Repl = getFreezeVectorReplacement(C))
5403 return replaceInstUsesWith(I, Repl);
5404 }
5405
5406 // Replace uses of Op with freeze(Op).
5407 if (freezeOtherUses(I))
5408 return &I;
5409
5410 return nullptr;
5411}
5412
5413/// Check for case where the call writes to an otherwise dead alloca. This
5414/// shows up for unused out-params in idiomatic C/C++ code. Note that this
5415/// helper *only* analyzes the write; doesn't check any other legality aspect.
5417 auto *CB = dyn_cast<CallBase>(I);
5418 if (!CB)
5419 // TODO: handle e.g. store to alloca here - only worth doing if we extend
5420 // to allow reload along used path as described below. Otherwise, this
5421 // is simply a store to a dead allocation which will be removed.
5422 return false;
5423 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
5424 if (!Dest)
5425 return false;
5426 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
5427 if (!AI)
5428 // TODO: allow malloc?
5429 return false;
5430 // TODO: allow memory access dominated by move point? Note that since AI
5431 // could have a reference to itself captured by the call, we would need to
5432 // account for cycles in doing so.
5433 SmallVector<const User *> AllocaUsers;
5435 auto pushUsers = [&](const Instruction &I) {
5436 for (const User *U : I.users()) {
5437 if (Visited.insert(U).second)
5438 AllocaUsers.push_back(U);
5439 }
5440 };
5441 pushUsers(*AI);
5442 while (!AllocaUsers.empty()) {
5443 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
5444 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
5445 pushUsers(*UserI);
5446 continue;
5447 }
5448 if (UserI == CB)
5449 continue;
5450 // TODO: support lifetime.start/end here
5451 return false;
5452 }
5453 return true;
5454}
5455
5456/// Try to move the specified instruction from its current block into the
5457/// beginning of DestBlock, which can only happen if it's safe to move the
5458/// instruction past all of the instructions between it and the end of its
5459/// block.
5461 BasicBlock *DestBlock) {
5462 BasicBlock *SrcBlock = I->getParent();
5463
5464 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
5465 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
5466 I->isTerminator())
5467 return false;
5468
5469 // Do not sink static or dynamic alloca instructions. Static allocas must
5470 // remain in the entry block, and dynamic allocas must not be sunk in between
5471 // a stacksave / stackrestore pair, which would incorrectly shorten its
5472 // lifetime.
5473 if (isa<AllocaInst>(I))
5474 return false;
5475
5476 // Do not sink into catchswitch blocks.
5477 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
5478 return false;
5479
5480 // Do not sink convergent call instructions.
5481 if (auto *CI = dyn_cast<CallInst>(I)) {
5482 if (CI->isConvergent())
5483 return false;
5484 }
5485
5486 // Unless we can prove that the memory write isn't visibile except on the
5487 // path we're sinking to, we must bail.
5488 if (I->mayWriteToMemory()) {
5489 if (!SoleWriteToDeadLocal(I, TLI))
5490 return false;
5491 }
5492
5493 // We can only sink load instructions if there is nothing between the load and
5494 // the end of block that could change the value.
5495 if (I->mayReadFromMemory() &&
5496 !I->hasMetadata(LLVMContext::MD_invariant_load)) {
5497 // We don't want to do any sophisticated alias analysis, so we only check
5498 // the instructions after I in I's parent block if we try to sink to its
5499 // successor block.
5500 if (DestBlock->getUniquePredecessor() != I->getParent())
5501 return false;
5502 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
5503 E = I->getParent()->end();
5504 Scan != E; ++Scan)
5505 if (Scan->mayWriteToMemory())
5506 return false;
5507 }
5508
5509 I->dropDroppableUses([&](const Use *U) {
5510 auto *I = dyn_cast<Instruction>(U->getUser());
5511 if (I && I->getParent() != DestBlock) {
5512 Worklist.add(I);
5513 return true;
5514 }
5515 return false;
5516 });
5517 /// FIXME: We could remove droppable uses that are not dominated by
5518 /// the new position.
5519
5520 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
5521 I->moveBefore(*DestBlock, InsertPos);
5522 ++NumSunkInst;
5523
5524 // Also sink all related debug uses from the source basic block. Otherwise we
5525 // get debug use before the def. Attempt to salvage debug uses first, to
5526 // maximise the range variables have location for. If we cannot salvage, then
5527 // mark the location undef: we know it was supposed to receive a new location
5528 // here, but that computation has been sunk.
5529 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
5530 findDbgUsers(I, DbgVariableRecords);
5531 if (!DbgVariableRecords.empty())
5532 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
5533 DbgVariableRecords);
5534
5535 // PS: there are numerous flaws with this behaviour, not least that right now
5536 // assignments can be re-ordered past other assignments to the same variable
5537 // if they use different Values. Creating more undef assignements can never be
5538 // undone. And salvaging all users outside of this block can un-necessarily
5539 // alter the lifetime of the live-value that the variable refers to.
5540 // Some of these things can be resolved by tolerating debug use-before-defs in
5541 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
5542 // being used for more architectures.
5543
5544 return true;
5545}
5546
5548 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
5549 BasicBlock *DestBlock,
5550 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
5551 // For all debug values in the destination block, the sunk instruction
5552 // will still be available, so they do not need to be dropped.
5553
5554 // Fetch all DbgVariableRecords not already in the destination.
5555 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
5556 for (auto &DVR : DbgVariableRecords)
5557 if (DVR->getParent() != DestBlock)
5558 DbgVariableRecordsToSalvage.push_back(DVR);
5559
5560 // Fetch a second collection, of DbgVariableRecords in the source block that
5561 // we're going to sink.
5562 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
5563 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
5564 if (DVR->getParent() == SrcBlock)
5565 DbgVariableRecordsToSink.push_back(DVR);
5566
5567 // Sort DbgVariableRecords according to their position in the block. This is a
5568 // partial order: DbgVariableRecords attached to different instructions will
5569 // be ordered by the instruction order, but DbgVariableRecords attached to the
5570 // same instruction won't have an order.
5571 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
5572 return B->getInstruction()->comesBefore(A->getInstruction());
5573 };
5574 llvm::stable_sort(DbgVariableRecordsToSink, Order);
5575
5576 // If there are two assignments to the same variable attached to the same
5577 // instruction, the ordering between the two assignments is important. Scan
5578 // for this (rare) case and establish which is the last assignment.
5579 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5581 if (DbgVariableRecordsToSink.size() > 1) {
5583 // Count how many assignments to each variable there is per instruction.
5584 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5585 DebugVariable DbgUserVariable =
5586 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5587 DVR->getDebugLoc()->getInlinedAt());
5588 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5589 }
5590
5591 // If there are any instructions with two assignments, add them to the
5592 // FilterOutMap to record that they need extra filtering.
5594 for (auto It : CountMap) {
5595 if (It.second > 1) {
5596 FilterOutMap[It.first] = nullptr;
5597 DupSet.insert(It.first.first);
5598 }
5599 }
5600
5601 // For all instruction/variable pairs needing extra filtering, find the
5602 // latest assignment.
5603 for (const Instruction *Inst : DupSet) {
5604 for (DbgVariableRecord &DVR :
5605 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
5606 DebugVariable DbgUserVariable =
5607 DebugVariable(DVR.getVariable(), DVR.getExpression(),
5608 DVR.getDebugLoc()->getInlinedAt());
5609 auto FilterIt =
5610 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
5611 if (FilterIt == FilterOutMap.end())
5612 continue;
5613 if (FilterIt->second != nullptr)
5614 continue;
5615 FilterIt->second = &DVR;
5616 }
5617 }
5618 }
5619
5620 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
5621 // out any duplicate assignments identified above.
5623 SmallSet<DebugVariable, 4> SunkVariables;
5624 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5626 continue;
5627
5628 DebugVariable DbgUserVariable =
5629 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5630 DVR->getDebugLoc()->getInlinedAt());
5631
5632 // For any variable where there were multiple assignments in the same place,
5633 // ignore all but the last assignment.
5634 if (!FilterOutMap.empty()) {
5635 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5636 auto It = FilterOutMap.find(IVP);
5637
5638 // Filter out.
5639 if (It != FilterOutMap.end() && It->second != DVR)
5640 continue;
5641 }
5642
5643 if (!SunkVariables.insert(DbgUserVariable).second)
5644 continue;
5645
5646 if (DVR->isDbgAssign())
5647 continue;
5648
5649 DVRClones.emplace_back(DVR->clone());
5650 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
5651 }
5652
5653 // Perform salvaging without the clones, then sink the clones.
5654 if (DVRClones.empty())
5655 return;
5656
5657 salvageDebugInfoForDbgValues(*I, DbgVariableRecordsToSalvage);
5658
5659 // The clones are in reverse order of original appearance. Assert that the
5660 // head bit is set on the iterator as we _should_ have received it via
5661 // getFirstInsertionPt. Inserting like this will reverse the clone order as
5662 // we'll repeatedly insert at the head, such as:
5663 // DVR-3 (third insertion goes here)
5664 // DVR-2 (second insertion goes here)
5665 // DVR-1 (first insertion goes here)
5666 // Any-Prior-DVRs
5667 // InsertPtInst
5668 assert(InsertPos.getHeadBit());
5669 for (DbgVariableRecord *DVRClone : DVRClones) {
5670 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5671 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
5672 }
5673}
5674
5676 while (!Worklist.isEmpty()) {
5677 // Walk deferred instructions in reverse order, and push them to the
5678 // worklist, which means they'll end up popped from the worklist in-order.
5679 while (Instruction *I = Worklist.popDeferred()) {
5680 // Check to see if we can DCE the instruction. We do this already here to
5681 // reduce the number of uses and thus allow other folds to trigger.
5682 // Note that eraseInstFromFunction() may push additional instructions on
5683 // the deferred worklist, so this will DCE whole instruction chains.
5686 ++NumDeadInst;
5687 continue;
5688 }
5689
5690 Worklist.push(I);
5691 }
5692
5693 Instruction *I = Worklist.removeOne();
5694 if (I == nullptr) continue; // skip null values.
5695
5696 // Check to see if we can DCE the instruction.
5699 ++NumDeadInst;
5700 continue;
5701 }
5702
5703 if (!DebugCounter::shouldExecute(VisitCounter))
5704 continue;
5705
5706 // See if we can trivially sink this instruction to its user if we can
5707 // prove that the successor is not executed more frequently than our block.
5708 // Return the UserBlock if successful.
5709 auto getOptionalSinkBlockForInst =
5710 [this](Instruction *I) -> std::optional<BasicBlock *> {
5711 if (!EnableCodeSinking)
5712 return std::nullopt;
5713
5714 BasicBlock *BB = I->getParent();
5715 BasicBlock *UserParent = nullptr;
5716 unsigned NumUsers = 0;
5717
5718 for (Use &U : I->uses()) {
5719 User *User = U.getUser();
5720 if (User->isDroppable()) {
5721 // Do not sink if there are dereferenceable assumes that would be
5722 // removed.
5724 if (II->getIntrinsicID() != Intrinsic::assume ||
5725 !II->getOperandBundle("dereferenceable"))
5726 continue;
5727 }
5728
5729 if (NumUsers > MaxSinkNumUsers)
5730 return std::nullopt;
5731
5732 Instruction *UserInst = cast<Instruction>(User);
5733 // Special handling for Phi nodes - get the block the use occurs in.
5734 BasicBlock *UserBB = UserInst->getParent();
5735 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
5736 UserBB = PN->getIncomingBlock(U);
5737 // Bail out if we have uses in different blocks. We don't do any
5738 // sophisticated analysis (i.e finding NearestCommonDominator of these
5739 // use blocks).
5740 if (UserParent && UserParent != UserBB)
5741 return std::nullopt;
5742 UserParent = UserBB;
5743
5744 // Make sure these checks are done only once, naturally we do the checks
5745 // the first time we get the userparent, this will save compile time.
5746 if (NumUsers == 0) {
5747 // Try sinking to another block. If that block is unreachable, then do
5748 // not bother. SimplifyCFG should handle it.
5749 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
5750 return std::nullopt;
5751
5752 auto *Term = UserParent->getTerminator();
5753 // See if the user is one of our successors that has only one
5754 // predecessor, so that we don't have to split the critical edge.
5755 // Another option where we can sink is a block that ends with a
5756 // terminator that does not pass control to other block (such as
5757 // return or unreachable or resume). In this case:
5758 // - I dominates the User (by SSA form);
5759 // - the User will be executed at most once.
5760 // So sinking I down to User is always profitable or neutral.
5761 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
5762 return std::nullopt;
5763
5764 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
5765 }
5766
5767 NumUsers++;
5768 }
5769
5770 // No user or only has droppable users.
5771 if (!UserParent)
5772 return std::nullopt;
5773
5774 return UserParent;
5775 };
5776
5777 auto OptBB = getOptionalSinkBlockForInst(I);
5778 if (OptBB) {
5779 auto *UserParent = *OptBB;
5780 // Okay, the CFG is simple enough, try to sink this instruction.
5781 if (tryToSinkInstruction(I, UserParent)) {
5782 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
5783 MadeIRChange = true;
5784 // We'll add uses of the sunk instruction below, but since
5785 // sinking can expose opportunities for it's *operands* add
5786 // them to the worklist
5787 for (Use &U : I->operands())
5788 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
5789 Worklist.push(OpI);
5790 }
5791 }
5792
5793 // Now that we have an instruction, try combining it to simplify it.
5794 Builder.SetInsertPoint(I);
5795 Builder.CollectMetadataToCopy(
5796 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5797
5798#ifndef NDEBUG
5799 std::string OrigI;
5800#endif
5801 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
5802 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
5803
5804 if (Instruction *Result = visit(*I)) {
5805 ++NumCombined;
5806 // Should we replace the old instruction with a new one?
5807 if (Result != I) {
5808 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
5809 << " New = " << *Result << '\n');
5810
5811 // We copy the old instruction's DebugLoc to the new instruction, unless
5812 // InstCombine already assigned a DebugLoc to it, in which case we
5813 // should trust the more specifically selected DebugLoc.
5814 Result->setDebugLoc(Result->getDebugLoc().orElse(I->getDebugLoc()));
5815 // We also copy annotation metadata to the new instruction.
5816 Result->copyMetadata(*I, LLVMContext::MD_annotation);
5817 // Everything uses the new instruction now.
5818 I->replaceAllUsesWith(Result);
5819
5820 // Move the name to the new instruction first.
5821 Result->takeName(I);
5822
5823 // Insert the new instruction into the basic block...
5824 BasicBlock *InstParent = I->getParent();
5825 BasicBlock::iterator InsertPos = I->getIterator();
5826
5827 // Are we replace a PHI with something that isn't a PHI, or vice versa?
5828 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5829 // We need to fix up the insertion point.
5830 if (isa<PHINode>(I)) // PHI -> Non-PHI
5831 InsertPos = InstParent->getFirstInsertionPt();
5832 else // Non-PHI -> PHI
5833 InsertPos = InstParent->getFirstNonPHIIt();
5834 }
5835
5836 Result->insertInto(InstParent, InsertPos);
5837
5838 // Push the new instruction and any users onto the worklist.
5839 Worklist.pushUsersToWorkList(*Result);
5840 Worklist.push(Result);
5841
5843 } else {
5844 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5845 << " New = " << *I << '\n');
5846
5847 // If the instruction was modified, it's possible that it is now dead.
5848 // if so, remove it.
5851 } else {
5852 Worklist.pushUsersToWorkList(*I);
5853 Worklist.push(I);
5854 }
5855 }
5856 MadeIRChange = true;
5857 }
5858 }
5859
5860 Worklist.zap();
5861 return MadeIRChange;
5862}
5863
5864// Track the scopes used by !alias.scope and !noalias. In a function, a
5865// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5866// by both sets. If not, the declaration of the scope can be safely omitted.
5867// The MDNode of the scope can be omitted as well for the instructions that are
5868// part of this function. We do not do that at this point, as this might become
5869// too time consuming to do.
5871 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5872 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5873
5874public:
5876 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5877 if (!I->hasMetadataOtherThanDebugLoc())
5878 return;
5879
5880 auto Track = [](Metadata *ScopeList, auto &Container) {
5881 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5882 if (!MDScopeList || !Container.insert(MDScopeList).second)
5883 return;
5884 for (const auto &MDOperand : MDScopeList->operands())
5885 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5886 Container.insert(MDScope);
5887 };
5888
5889 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5890 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5891 }
5892
5895 if (!Decl)
5896 return false;
5897
5898 assert(Decl->use_empty() &&
5899 "llvm.experimental.noalias.scope.decl in use ?");
5900 const MDNode *MDSL = Decl->getScopeList();
5901 assert(MDSL->getNumOperands() == 1 &&
5902 "llvm.experimental.noalias.scope should refer to a single scope");
5903 auto &MDOperand = MDSL->getOperand(0);
5904 if (auto *MD = dyn_cast<MDNode>(MDOperand))
5905 return !UsedAliasScopesAndLists.contains(MD) ||
5906 !UsedNoAliasScopesAndLists.contains(MD);
5907
5908 // Not an MDNode ? throw away.
5909 return true;
5910 }
5911};
5912
5913/// Populate the IC worklist from a function, by walking it in reverse
5914/// post-order and adding all reachable code to the worklist.
5915///
5916/// This has a couple of tricks to make the code faster and more powerful. In
5917/// particular, we constant fold and DCE instructions as we go, to avoid adding
5918/// them to the worklist (this significantly speeds up instcombine on code where
5919/// many instructions are dead or constant). Additionally, if we find a branch
5920/// whose condition is a known constant, we only visit the reachable successors.
5922 bool MadeIRChange = false;
5924 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5925 DenseMap<Constant *, Constant *> FoldedConstants;
5926 AliasScopeTracker SeenAliasScopes;
5927
5928 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5929 for (BasicBlock *Succ : successors(BB))
5930 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5931 for (PHINode &PN : Succ->phis())
5932 for (Use &U : PN.incoming_values())
5933 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5934 U.set(PoisonValue::get(PN.getType()));
5935 MadeIRChange = true;
5936 }
5937 };
5938
5939 for (BasicBlock *BB : RPOT) {
5940 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5941 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5942 })) {
5943 HandleOnlyLiveSuccessor(BB, nullptr);
5944 continue;
5945 }
5946 LiveBlocks.insert(BB);
5947
5948 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5949 // ConstantProp instruction if trivially constant.
5950 if (!Inst.use_empty() &&
5951 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5952 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5953 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5954 << '\n');
5955 Inst.replaceAllUsesWith(C);
5956 ++NumConstProp;
5957 if (isInstructionTriviallyDead(&Inst, &TLI))
5958 Inst.eraseFromParent();
5959 MadeIRChange = true;
5960 continue;
5961 }
5962
5963 // See if we can constant fold its operands.
5964 for (Use &U : Inst.operands()) {
5966 continue;
5967
5968 auto *C = cast<Constant>(U);
5969 Constant *&FoldRes = FoldedConstants[C];
5970 if (!FoldRes)
5971 FoldRes = ConstantFoldConstant(C, DL, &TLI);
5972
5973 if (FoldRes != C) {
5974 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5975 << "\n Old = " << *C
5976 << "\n New = " << *FoldRes << '\n');
5977 U = FoldRes;
5978 MadeIRChange = true;
5979 }
5980 }
5981
5982 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5983 // these call instructions consumes non-trivial amount of time and
5984 // provides no value for the optimization.
5985 if (!Inst.isDebugOrPseudoInst()) {
5986 InstrsForInstructionWorklist.push_back(&Inst);
5987 SeenAliasScopes.analyse(&Inst);
5988 }
5989 }
5990
5991 // If this is a branch or switch on a constant, mark only the single
5992 // live successor. Otherwise assume all successors are live.
5993 Instruction *TI = BB->getTerminator();
5994 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5995 if (isa<UndefValue>(BI->getCondition())) {
5996 // Branch on undef is UB.
5997 HandleOnlyLiveSuccessor(BB, nullptr);
5998 continue;
5999 }
6000 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
6001 bool CondVal = Cond->getZExtValue();
6002 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
6003 continue;
6004 }
6005 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
6006 if (isa<UndefValue>(SI->getCondition())) {
6007 // Switch on undef is UB.
6008 HandleOnlyLiveSuccessor(BB, nullptr);
6009 continue;
6010 }
6011 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
6012 HandleOnlyLiveSuccessor(BB,
6013 SI->findCaseValue(Cond)->getCaseSuccessor());
6014 continue;
6015 }
6016 }
6017 }
6018
6019 // Remove instructions inside unreachable blocks. This prevents the
6020 // instcombine code from having to deal with some bad special cases, and
6021 // reduces use counts of instructions.
6022 for (BasicBlock &BB : F) {
6023 if (LiveBlocks.count(&BB))
6024 continue;
6025
6026 unsigned NumDeadInstInBB;
6027 NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
6028
6029 MadeIRChange |= NumDeadInstInBB != 0;
6030 NumDeadInst += NumDeadInstInBB;
6031 }
6032
6033 // Once we've found all of the instructions to add to instcombine's worklist,
6034 // add them in reverse order. This way instcombine will visit from the top
6035 // of the function down. This jives well with the way that it adds all uses
6036 // of instructions to the worklist after doing a transformation, thus avoiding
6037 // some N^2 behavior in pathological cases.
6038 Worklist.reserve(InstrsForInstructionWorklist.size());
6039 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
6040 // DCE instruction if trivially dead. As we iterate in reverse program
6041 // order here, we will clean up whole chains of dead instructions.
6042 if (isInstructionTriviallyDead(Inst, &TLI) ||
6043 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
6044 ++NumDeadInst;
6045 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
6046 salvageDebugInfo(*Inst);
6047 Inst->eraseFromParent();
6048 MadeIRChange = true;
6049 continue;
6050 }
6051
6052 Worklist.push(Inst);
6053 }
6054
6055 return MadeIRChange;
6056}
6057
6059 // Collect backedges.
6061 for (BasicBlock *BB : RPOT) {
6062 Visited.insert(BB);
6063 for (BasicBlock *Succ : successors(BB))
6064 if (Visited.contains(Succ))
6065 BackEdges.insert({BB, Succ});
6066 }
6067 ComputedBackEdges = true;
6068}
6069
6075 const InstCombineOptions &Opts) {
6076 auto &DL = F.getDataLayout();
6077 bool VerifyFixpoint = Opts.VerifyFixpoint &&
6078 !F.hasFnAttribute("instcombine-no-verify-fixpoint");
6079
6080 /// Builder - This is an IRBuilder that automatically inserts new
6081 /// instructions into the worklist when they are created.
6083 F.getContext(), TargetFolder(DL),
6084 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
6085 Worklist.add(I);
6086 if (auto *Assume = dyn_cast<AssumeInst>(I))
6087 AC.registerAssumption(Assume);
6088 }));
6089
6091
6092 // Lower dbg.declare intrinsics otherwise their value may be clobbered
6093 // by instcombiner.
6094 bool MadeIRChange = false;
6096 MadeIRChange = LowerDbgDeclare(F);
6097
6098 // Iterate while there is work to do.
6099 unsigned Iteration = 0;
6100 while (true) {
6101 if (Iteration >= Opts.MaxIterations && !VerifyFixpoint) {
6102 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
6103 << " on " << F.getName()
6104 << " reached; stopping without verifying fixpoint\n");
6105 break;
6106 }
6107
6108 ++Iteration;
6109 ++NumWorklistIterations;
6110 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
6111 << F.getName() << "\n");
6112
6113 InstCombinerImpl IC(Worklist, Builder, F, AA, AC, TLI, TTI, DT, ORE, BFI,
6114 BPI, PSI, DL, RPOT);
6116 bool MadeChangeInThisIteration = IC.prepareWorklist(F);
6117 MadeChangeInThisIteration |= IC.run();
6118 if (!MadeChangeInThisIteration)
6119 break;
6120
6121 MadeIRChange = true;
6122 if (Iteration > Opts.MaxIterations) {
6124 "Instruction Combining on " + Twine(F.getName()) +
6125 " did not reach a fixpoint after " + Twine(Opts.MaxIterations) +
6126 " iterations. " +
6127 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
6128 "'instcombine-no-verify-fixpoint' to suppress this error.");
6129 }
6130 }
6131
6132 if (Iteration == 1)
6133 ++NumOneIteration;
6134 else if (Iteration == 2)
6135 ++NumTwoIterations;
6136 else if (Iteration == 3)
6137 ++NumThreeIterations;
6138 else
6139 ++NumFourOrMoreIterations;
6140
6141 return MadeIRChange;
6142}
6143
6145
6147 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
6148 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
6149 OS, MapClassName2PassName);
6150 OS << '<';
6151 OS << "max-iterations=" << Options.MaxIterations << ";";
6152 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
6153 OS << '>';
6154}
6155
6156char InstCombinePass::ID = 0;
6157
6160 auto &LRT = AM.getResult<LastRunTrackingAnalysis>(F);
6161 // No changes since last InstCombine pass, exit early.
6162 if (LRT.shouldSkip(&ID))
6163 return PreservedAnalyses::all();
6164
6165 auto &AC = AM.getResult<AssumptionAnalysis>(F);
6166 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6167 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
6169 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6170
6171 auto *AA = &AM.getResult<AAManager>(F);
6172 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
6173 ProfileSummaryInfo *PSI =
6174 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
6175 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6176 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
6178
6179 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6180 BFI, BPI, PSI, Options)) {
6181 // No changes, all analyses are preserved.
6182 LRT.update(&ID, /*Changed=*/false);
6183 return PreservedAnalyses::all();
6184 }
6185
6186 // Mark all the analyses that instcombine updates as preserved.
6188 LRT.update(&ID, /*Changed=*/true);
6191 return PA;
6192}
6193
6209
6211 if (skipFunction(F))
6212 return false;
6213
6214 // Required analyses.
6215 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6216 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6217 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
6219 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6221
6222 // Optional analyses.
6223 ProfileSummaryInfo *PSI =
6225 BlockFrequencyInfo *BFI =
6226 (PSI && PSI->hasProfileSummary()) ?
6228 nullptr;
6229 BranchProbabilityInfo *BPI = nullptr;
6230 if (auto *WrapperPass =
6232 BPI = &WrapperPass->getBPI();
6233
6234 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6235 BFI, BPI, PSI, InstCombineOptions());
6236}
6237
6239
6243
6245 "Combine redundant instructions", false, false)
6256 "Combine redundant instructions", false, false)
6257
6258// Initialization Routines
6262
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
DXIL Resource Access
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static Constant * constantFoldBinOpWithSplat(unsigned Opcode, Constant *Vector, Constant *Splat, bool SplatLHS, const DataLayout &DL)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file contains the declarations for metadata subclasses.
#define T
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
unsigned OpIndex
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
The Input class is used to parse a yaml document into in-memory structs and vectors.
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:213
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1769
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition APInt.cpp:1901
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1497
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1939
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition APInt.h:406
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1952
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:219
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:223
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:539
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:493
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
size_t size() const
Definition BasicBlock.h:491
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
Definition Constants.h:438
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition Constants.h:781
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
Definition Constants.h:522
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
Definition Constant.h:222
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(CounterInfo &Counter)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
bool empty() const
Definition DenseMap.h:109
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:321
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
idx_iterator idx_begin() const
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
FunctionPass(char &pid)
Definition Pass.h:316
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition Pass.cpp:188
const BasicBlock & getEntryBlock() const
Definition Function.h:807
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
bool isInBounds() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
Definition Operator.h:425
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2007
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition IRBuilder.h:538
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
Definition IRBuilder.h:75
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2762
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
Instruction * foldBinOpSelectBinOp(BinaryOperator &Op)
In some cases it is beneficial to fold a select into a binary operator.
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
bool SimplifyDemandedFPClass(Instruction *I, unsigned Op, FPClassTest DemandedMask, KnownFPClass &Known, unsigned Depth=0)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
SimplifyQuery SQ
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
TargetLibraryInfo & TLI
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
const DataLayout & DL
DomConditionCache DC
const bool MinimizeSize
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
DominatorTree & DT
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
BuilderTy & Builder
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
Definition InstVisitor.h:87
The legacy pass manager's instcombine pass.
Definition InstCombine.h:68
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
bool isIntDivRem() const
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
A wrapper class for inspecting calls to intrinsic functions.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
Root of the metadata hierarchy.
Definition Metadata.h:64
Value * getLHS() const
Value * getRHS() const
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
MDNode * getScopeList() const
OptimizationRemarkEmitter legacy analysis pass.
The optimization diagnostic interface.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
Definition Constants.h:1478
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:42
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
This instruction constructs a fixed permutation of two input vectors.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Multiway switch.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
Definition Type.cpp:61
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Use * op_iterator
Definition User.h:280
op_range operands()
Definition User.h:293
op_iterator op_begin()
Definition User.h:285
const Use & getOperandUse(unsigned i) const
Definition User.h:246
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
Definition User.cpp:119
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:25
Value * getOperand(unsigned i) const
Definition User.h:233
unsigned getNumOperands() const
Definition User.h:255
op_iterator op_end()
Definition User.h:287
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition Value.h:759
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasUseList() const
Check if this Value has a use-list.
Definition Value.h:344
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition Value.cpp:150
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:888
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:403
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
Splat_match< T > m_ConstantSplat(const T &SubPattern)
Match a constant splat. TODO: Extend this to non-constant splats.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_VectorInsert(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2106
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
Definition Local.cpp:2485
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
Definition CFG.h:257
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2544
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1731
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1618
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
Definition Local.cpp:2468
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition Local.cpp:22
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
Definition Local.cpp:1795
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
Definition Local.cpp:1662
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
Definition Local.cpp:2037
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
Definition Local.cpp:2414
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Definition ModRef.h:28
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
@ ModRef
The access may reference and may modify the value stored in memory.
Definition ModRef.h:36
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
@ NoModRef
The access neither references nor modifies the value stored in memory.
Definition ModRef.h:30
TargetTransformInfo TTI
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:2009
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
Definition Metadata.cpp:64
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2136
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
Definition ModRef.h:52
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:177
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition KnownBits.h:254
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:251
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
SimplifyQuery getWithInstruction(const Instruction *I) const