LLVM 22.0.0git
JumpThreading.cpp
Go to the documentation of this file.
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Jump Threading pass.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/MapVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/ScopeExit.h"
20#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/CFG.h"
30#include "llvm/Analysis/Loads.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/CFG.h"
39#include "llvm/IR/Constant.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DebugInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Intrinsics.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/MDBuilder.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/PassManager.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/Use.h"
60#include "llvm/IR/Value.h"
65#include "llvm/Support/Debug.h"
72#include <cassert>
73#include <cstdint>
74#include <iterator>
75#include <memory>
76#include <utility>
77
78using namespace llvm;
79using namespace jumpthreading;
80
81#define DEBUG_TYPE "jump-threading"
82
83STATISTIC(NumThreads, "Number of jumps threaded");
84STATISTIC(NumFolds, "Number of terminators folded");
85STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
86
88BBDuplicateThreshold("jump-threading-threshold",
89 cl::desc("Max block size to duplicate for jump threading"),
91
94 "jump-threading-implication-search-threshold",
95 cl::desc("The number of predecessors to search for a stronger "
96 "condition to use to thread over a weaker condition"),
98
100 "jump-threading-phi-threshold",
101 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
102 cl::Hidden);
103
105 "jump-threading-across-loop-headers",
106 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
107 cl::init(false), cl::Hidden);
108
110 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
111}
112
113// Update branch probability information according to conditional
114// branch probability. This is usually made possible for cloned branches
115// in inline instances by the context specific profile in the caller.
116// For instance,
117//
118// [Block PredBB]
119// [Branch PredBr]
120// if (t) {
121// Block A;
122// } else {
123// Block B;
124// }
125//
126// [Block BB]
127// cond = PN([true, %A], [..., %B]); // PHI node
128// [Branch CondBr]
129// if (cond) {
130// ... // P(cond == true) = 1%
131// }
132//
133// Here we know that when block A is taken, cond must be true, which means
134// P(cond == true | A) = 1
135//
136// Given that P(cond == true) = P(cond == true | A) * P(A) +
137// P(cond == true | B) * P(B)
138// we get:
139// P(cond == true ) = P(A) + P(cond == true | B) * P(B)
140//
141// which gives us:
142// P(A) is less than P(cond == true), i.e.
143// P(t == true) <= P(cond == true)
144//
145// In other words, if we know P(cond == true) is unlikely, we know
146// that P(t == true) is also unlikely.
147//
150 if (!CondBr)
151 return;
152
153 uint64_t TrueWeight, FalseWeight;
154 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
155 return;
156
157 if (TrueWeight + FalseWeight == 0)
158 // Zero branch_weights do not give a hint for getting branch probabilities.
159 // Technically it would result in division by zero denominator, which is
160 // TrueWeight + FalseWeight.
161 return;
162
163 // Returns the outgoing edge of the dominating predecessor block
164 // that leads to the PhiNode's incoming block:
165 auto GetPredOutEdge =
166 [](BasicBlock *IncomingBB,
167 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
168 auto *PredBB = IncomingBB;
169 auto *SuccBB = PhiBB;
171 while (true) {
172 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
173 if (PredBr && PredBr->isConditional())
174 return {PredBB, SuccBB};
175 Visited.insert(PredBB);
176 auto *SinglePredBB = PredBB->getSinglePredecessor();
177 if (!SinglePredBB)
178 return {nullptr, nullptr};
179
180 // Stop searching when SinglePredBB has been visited. It means we see
181 // an unreachable loop.
182 if (Visited.count(SinglePredBB))
183 return {nullptr, nullptr};
184
185 SuccBB = PredBB;
186 PredBB = SinglePredBB;
187 }
188 };
189
190 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
191 Value *PhiOpnd = PN->getIncomingValue(i);
192 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
193
194 if (!CI || !CI->getType()->isIntegerTy(1))
195 continue;
196
199 TrueWeight, TrueWeight + FalseWeight)
201 FalseWeight, TrueWeight + FalseWeight));
202
203 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
204 if (!PredOutEdge.first)
205 return;
206
207 BasicBlock *PredBB = PredOutEdge.first;
208 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
209 if (!PredBr)
210 return;
211
212 uint64_t PredTrueWeight, PredFalseWeight;
213 // FIXME: We currently only set the profile data when it is missing.
214 // With PGO, this can be used to refine even existing profile data with
215 // context information. This needs to be done after more performance
216 // testing.
217 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
218 continue;
219
220 // We can not infer anything useful when BP >= 50%, because BP is the
221 // upper bound probability value.
222 if (BP >= BranchProbability(50, 100))
223 continue;
224
225 uint32_t Weights[2];
226 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
227 Weights[0] = BP.getNumerator();
228 Weights[1] = BP.getCompl().getNumerator();
229 } else {
230 Weights[0] = BP.getCompl().getNumerator();
231 Weights[1] = BP.getNumerator();
232 }
233 setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr));
234 }
235}
236
239 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
240 // Jump Threading has no sense for the targets with divergent CF
241 if (TTI.hasBranchDivergence(&F))
242 return PreservedAnalyses::all();
243 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
244 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
245 auto &AA = AM.getResult<AAManager>(F);
246 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
247
248 bool Changed =
249 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
250 std::make_unique<DomTreeUpdater>(
251 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
252 nullptr, nullptr);
253
254 if (!Changed)
255 return PreservedAnalyses::all();
256
257
259
260#if defined(EXPENSIVE_CHECKS)
261 assert(getDomTreeUpdater()->getDomTree().verify(
262 DominatorTree::VerificationLevel::Full) &&
263 "DT broken after JumpThreading");
264 assert((!getDomTreeUpdater()->hasPostDomTree() ||
265 getDomTreeUpdater()->getPostDomTree().verify(
266 PostDominatorTree::VerificationLevel::Full)) &&
267 "PDT broken after JumpThreading");
268#else
269 assert(getDomTreeUpdater()->getDomTree().verify(
270 DominatorTree::VerificationLevel::Fast) &&
271 "DT broken after JumpThreading");
272 assert((!getDomTreeUpdater()->hasPostDomTree() ||
273 getDomTreeUpdater()->getPostDomTree().verify(
274 PostDominatorTree::VerificationLevel::Fast)) &&
275 "PDT broken after JumpThreading");
276#endif
277
278 return getPreservedAnalysis();
279}
280
282 TargetLibraryInfo *TLI_,
284 AliasAnalysis *AA_,
285 std::unique_ptr<DomTreeUpdater> DTU_,
286 BlockFrequencyInfo *BFI_,
287 BranchProbabilityInfo *BPI_) {
288 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
289 F = &F_;
290 FAM = FAM_;
291 TLI = TLI_;
292 TTI = TTI_;
293 LVI = LVI_;
294 AA = AA_;
295 DTU = std::move(DTU_);
296 BFI = BFI_;
297 BPI = BPI_;
298 auto *GuardDecl = Intrinsic::getDeclarationIfExists(
299 F->getParent(), Intrinsic::experimental_guard);
300 HasGuards = GuardDecl && !GuardDecl->use_empty();
301
302 // Reduce the number of instructions duplicated when optimizing strictly for
303 // size.
304 if (BBDuplicateThreshold.getNumOccurrences())
305 BBDupThreshold = BBDuplicateThreshold;
306 else if (F->hasMinSize())
307 BBDupThreshold = 3;
308 else
309 BBDupThreshold = DefaultBBDupThreshold;
310
311 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
312 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
313 DominatorTree &DT = DTU->getDomTree();
314
315 Unreachable.clear();
316 for (auto &BB : *F)
317 if (!DT.isReachableFromEntry(&BB))
318 Unreachable.insert(&BB);
319
321 findLoopHeaders(*F);
322
323 bool EverChanged = false;
324 bool Changed;
325 do {
326 Changed = false;
327 for (auto &BB : *F) {
328 if (Unreachable.count(&BB))
329 continue;
330 while (processBlock(&BB)) // Thread all of the branches we can over BB.
331 Changed = ChangedSinceLastAnalysisUpdate = true;
332
333 // Stop processing BB if it's the entry or is now deleted. The following
334 // routines attempt to eliminate BB and locating a suitable replacement
335 // for the entry is non-trivial.
336 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
337 continue;
338
339 if (pred_empty(&BB)) {
340 // When processBlock makes BB unreachable it doesn't bother to fix up
341 // the instructions in it. We must remove BB to prevent invalid IR.
342 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
343 << "' with terminator: " << *BB.getTerminator()
344 << '\n');
345 LoopHeaders.erase(&BB);
346 LVI->eraseBlock(&BB);
347 DeleteDeadBlock(&BB, DTU.get());
348 Changed = ChangedSinceLastAnalysisUpdate = true;
349 continue;
350 }
351
352 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
353 // is "almost empty", we attempt to merge BB with its sole successor.
354 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
355 if (BI && BI->isUnconditional()) {
356 BasicBlock *Succ = BI->getSuccessor(0);
357 if (
358 // The terminator must be the only non-phi instruction in BB.
359 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
360 // Don't alter Loop headers and latches to ensure another pass can
361 // detect and transform nested loops later.
362 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
364 // BB is valid for cleanup here because we passed in DTU. F remains
365 // BB's parent until a DTU->getDomTree() event.
366 LVI->eraseBlock(&BB);
367 Changed = ChangedSinceLastAnalysisUpdate = true;
368 }
369 }
370 }
371 EverChanged |= Changed;
372 } while (Changed);
373
374 // Jump threading may have introduced redundant debug values into F which
375 // should be removed.
376 if (EverChanged)
377 for (auto &BB : *F) {
379 }
380
381 LoopHeaders.clear();
382 return EverChanged;
383}
384
385// Replace uses of Cond with ToVal when safe to do so. If all uses are
386// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
387// because we may incorrectly replace uses when guards/assumes are uses of
388// of `Cond` and we used the guards/assume to reason about the `Cond` value
389// at the end of block. RAUW unconditionally replaces all uses
390// including the guards/assumes themselves and the uses before the
391// guard/assume.
393 BasicBlock *KnownAtEndOfBB) {
394 bool Changed = false;
395 assert(Cond->getType() == ToVal->getType());
396 // We can unconditionally replace all uses in non-local blocks (i.e. uses
397 // strictly dominated by BB), since LVI information is true from the
398 // terminator of BB.
399 if (Cond->getParent() == KnownAtEndOfBB)
401 for (Instruction &I : reverse(*KnownAtEndOfBB)) {
402 // Replace any debug-info record users of Cond with ToVal.
403 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
404 DVR.replaceVariableLocationOp(Cond, ToVal, true);
405
406 // Reached the Cond whose uses we are trying to replace, so there are no
407 // more uses.
408 if (&I == Cond)
409 break;
410 // We only replace uses in instructions that are guaranteed to reach the end
411 // of BB, where we know Cond is ToVal.
413 break;
414 Changed |= I.replaceUsesOfWith(Cond, ToVal);
415 }
416 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
417 Cond->eraseFromParent();
418 Changed = true;
419 }
420 return Changed;
421}
422
423/// Return the cost of duplicating a piece of this block from first non-phi
424/// and before StopAt instruction to thread across it. Stop scanning the block
425/// when exceeding the threshold. If duplication is impossible, returns ~0U.
427 BasicBlock *BB,
429 unsigned Threshold) {
430 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
431
432 // Do not duplicate the BB if it has a lot of PHI nodes.
433 // If a threadable chain is too long then the number of PHI nodes can add up,
434 // leading to a substantial increase in compile time when rewriting the SSA.
435 unsigned PhiCount = 0;
436 Instruction *FirstNonPHI = nullptr;
437 for (Instruction &I : *BB) {
438 if (!isa<PHINode>(&I)) {
439 FirstNonPHI = &I;
440 break;
441 }
442 if (++PhiCount > PhiDuplicateThreshold)
443 return ~0U;
444 }
445
446 /// Ignore PHI nodes, these will be flattened when duplication happens.
447 BasicBlock::const_iterator I(FirstNonPHI);
448
449 // FIXME: THREADING will delete values that are just used to compute the
450 // branch, so they shouldn't count against the duplication cost.
451
452 unsigned Bonus = 0;
453 if (BB->getTerminator() == StopAt) {
454 // Threading through a switch statement is particularly profitable. If this
455 // block ends in a switch, decrease its cost to make it more likely to
456 // happen.
458 Bonus = 6;
459
460 // The same holds for indirect branches, but slightly more so.
462 Bonus = 8;
463 }
464
465 // Bump the threshold up so the early exit from the loop doesn't skip the
466 // terminator-based Size adjustment at the end.
467 Threshold += Bonus;
468
469 // Sum up the cost of each instruction until we get to the terminator. Don't
470 // include the terminator because the copy won't include it.
471 unsigned Size = 0;
472 for (; &*I != StopAt; ++I) {
473
474 // Stop scanning the block if we've reached the threshold.
475 if (Size > Threshold)
476 return Size;
477
478 // Bail out if this instruction gives back a token type, it is not possible
479 // to duplicate it if it is used outside this BB.
480 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
481 return ~0U;
482
483 // Blocks with NoDuplicate are modelled as having infinite cost, so they
484 // are never duplicated.
485 if (const CallInst *CI = dyn_cast<CallInst>(I))
486 if (CI->cannotDuplicate() || CI->isConvergent())
487 return ~0U;
488
489 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
491 continue;
492
493 // All other instructions count for at least one unit.
494 ++Size;
495
496 // Calls are more expensive. If they are non-intrinsic calls, we model them
497 // as having cost of 4. If they are a non-vector intrinsic, we model them
498 // as having cost of 2 total, and if they are a vector intrinsic, we model
499 // them as having cost 1.
500 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
501 if (!isa<IntrinsicInst>(CI))
502 Size += 3;
503 else if (!CI->getType()->isVectorTy())
504 Size += 1;
505 }
506 }
507
508 return Size > Bonus ? Size - Bonus : 0;
509}
510
511/// findLoopHeaders - We do not want jump threading to turn proper loop
512/// structures into irreducible loops. Doing this breaks up the loop nesting
513/// hierarchy and pessimizes later transformations. To prevent this from
514/// happening, we first have to find the loop headers. Here we approximate this
515/// by finding targets of backedges in the CFG.
516///
517/// Note that there definitely are cases when we want to allow threading of
518/// edges across a loop header. For example, threading a jump from outside the
519/// loop (the preheader) to an exit block of the loop is definitely profitable.
520/// It is also almost always profitable to thread backedges from within the loop
521/// to exit blocks, and is often profitable to thread backedges to other blocks
522/// within the loop (forming a nested loop). This simple analysis is not rich
523/// enough to track all of these properties and keep it up-to-date as the CFG
524/// mutates, so we don't allow any of these transformations.
530
531/// getKnownConstant - Helper method to determine if we can thread over a
532/// terminator with the given value as its condition, and if so what value to
533/// use for that. What kind of value this is depends on whether we want an
534/// integer or a block address, but an undef is always accepted.
535/// Returns null if Val is null or not an appropriate constant.
537 if (!Val)
538 return nullptr;
539
540 // Undef is "known" enough.
541 if (UndefValue *U = dyn_cast<UndefValue>(Val))
542 return U;
543
544 if (Preference == WantBlockAddress)
546
547 return dyn_cast<ConstantInt>(Val);
548}
549
550/// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
551/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
552/// in any of our predecessors. If so, return the known list of value and pred
553/// BB in the result vector.
554///
555/// This returns true if there were any known values.
557 Value *V, BasicBlock *BB, PredValueInfo &Result,
558 ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet,
559 Instruction *CxtI) {
560 const DataLayout &DL = BB->getDataLayout();
561
562 // This method walks up use-def chains recursively. Because of this, we could
563 // get into an infinite loop going around loops in the use-def chain. To
564 // prevent this, keep track of what (value, block) pairs we've already visited
565 // and terminate the search if we loop back to them
566 if (!RecursionSet.insert(V).second)
567 return false;
568
569 // If V is a constant, then it is known in all predecessors.
570 if (Constant *KC = getKnownConstant(V, Preference)) {
571 for (BasicBlock *Pred : predecessors(BB))
572 Result.emplace_back(KC, Pred);
573
574 return !Result.empty();
575 }
576
577 // If V is a non-instruction value, or an instruction in a different block,
578 // then it can't be derived from a PHI.
580 if (!I || I->getParent() != BB) {
581
582 // Okay, if this is a live-in value, see if it has a known value at the any
583 // edge from our predecessors.
584 for (BasicBlock *P : predecessors(BB)) {
585 using namespace PatternMatch;
586 // If the value is known by LazyValueInfo to be a constant in a
587 // predecessor, use that information to try to thread this block.
588 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
589 // If I is a non-local compare-with-constant instruction, use more-rich
590 // 'getPredicateOnEdge' method. This would be able to handle value
591 // inequalities better, for example if the compare is "X < 4" and "X < 3"
592 // is known true but "X < 4" itself is not available.
593 CmpPredicate Pred;
594 Value *Val;
595 Constant *Cst;
596 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst))))
597 PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
598 if (Constant *KC = getKnownConstant(PredCst, Preference))
599 Result.emplace_back(KC, P);
600 }
601
602 return !Result.empty();
603 }
604
605 /// If I is a PHI node, then we know the incoming values for any constants.
606 if (PHINode *PN = dyn_cast<PHINode>(I)) {
607 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
608 Value *InVal = PN->getIncomingValue(i);
609 if (Constant *KC = getKnownConstant(InVal, Preference)) {
610 Result.emplace_back(KC, PN->getIncomingBlock(i));
611 } else {
612 Constant *CI = LVI->getConstantOnEdge(InVal,
613 PN->getIncomingBlock(i),
614 BB, CxtI);
615 if (Constant *KC = getKnownConstant(CI, Preference))
616 Result.emplace_back(KC, PN->getIncomingBlock(i));
617 }
618 }
619
620 return !Result.empty();
621 }
622
623 // Handle Cast instructions.
624 if (CastInst *CI = dyn_cast<CastInst>(I)) {
625 Value *Source = CI->getOperand(0);
626 PredValueInfoTy Vals;
627 computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
628 RecursionSet, CxtI);
629 if (Vals.empty())
630 return false;
631
632 // Convert the known values.
633 for (auto &Val : Vals)
634 if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
635 CI->getType(), DL))
636 Result.emplace_back(Folded, Val.second);
637
638 return !Result.empty();
639 }
640
641 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
642 Value *Source = FI->getOperand(0);
643 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
644 RecursionSet, CxtI);
645
646 erase_if(Result, [](auto &Pair) {
647 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
648 });
649
650 return !Result.empty();
651 }
652
653 // Handle some boolean conditions.
654 if (I->getType()->getPrimitiveSizeInBits() == 1) {
655 using namespace PatternMatch;
656 if (Preference != WantInteger)
657 return false;
658 // X | true -> true
659 // X & false -> false
660 Value *Op0, *Op1;
661 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
662 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
663 PredValueInfoTy LHSVals, RHSVals;
664
666 RecursionSet, CxtI);
668 RecursionSet, CxtI);
669
670 if (LHSVals.empty() && RHSVals.empty())
671 return false;
672
673 ConstantInt *InterestingVal;
674 if (match(I, m_LogicalOr()))
675 InterestingVal = ConstantInt::getTrue(I->getContext());
676 else
677 InterestingVal = ConstantInt::getFalse(I->getContext());
678
679 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
680
681 // Scan for the sentinel. If we find an undef, force it to the
682 // interesting value: x|undef -> true and x&undef -> false.
683 for (const auto &LHSVal : LHSVals)
684 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
685 Result.emplace_back(InterestingVal, LHSVal.second);
686 LHSKnownBBs.insert(LHSVal.second);
687 }
688 for (const auto &RHSVal : RHSVals)
689 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
690 // If we already inferred a value for this block on the LHS, don't
691 // re-add it.
692 if (!LHSKnownBBs.count(RHSVal.second))
693 Result.emplace_back(InterestingVal, RHSVal.second);
694 }
695
696 return !Result.empty();
697 }
698
699 // Handle the NOT form of XOR.
700 if (I->getOpcode() == Instruction::Xor &&
701 isa<ConstantInt>(I->getOperand(1)) &&
702 cast<ConstantInt>(I->getOperand(1))->isOne()) {
703 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
704 WantInteger, RecursionSet, CxtI);
705 if (Result.empty())
706 return false;
707
708 // Invert the known values.
709 for (auto &R : Result)
710 R.first = ConstantExpr::getNot(R.first);
711
712 return true;
713 }
714
715 // Try to simplify some other binary operator values.
716 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
717 if (Preference != WantInteger)
718 return false;
719 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
720 PredValueInfoTy LHSVals;
721 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
722 WantInteger, RecursionSet, CxtI);
723
724 // Try to use constant folding to simplify the binary operator.
725 for (const auto &LHSVal : LHSVals) {
726 Constant *V = LHSVal.first;
727 Constant *Folded =
728 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
729
730 if (Constant *KC = getKnownConstant(Folded, WantInteger))
731 Result.emplace_back(KC, LHSVal.second);
732 }
733 }
734
735 return !Result.empty();
736 }
737
738 // Handle compare with phi operand, where the PHI is defined in this block.
739 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
740 if (Preference != WantInteger)
741 return false;
742 Type *CmpType = Cmp->getType();
743 Value *CmpLHS = Cmp->getOperand(0);
744 Value *CmpRHS = Cmp->getOperand(1);
745 CmpInst::Predicate Pred = Cmp->getPredicate();
746
747 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
748 if (!PN)
749 PN = dyn_cast<PHINode>(CmpRHS);
750 // Do not perform phi translation across a loop header phi, because this
751 // may result in comparison of values from two different loop iterations.
752 // FIXME: This check is broken if LoopHeaders is not populated.
753 if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
754 const DataLayout &DL = PN->getDataLayout();
755 // We can do this simplification if any comparisons fold to true or false.
756 // See if any do.
757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
758 BasicBlock *PredBB = PN->getIncomingBlock(i);
759 Value *LHS, *RHS;
760 if (PN == CmpLHS) {
761 LHS = PN->getIncomingValue(i);
762 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
763 } else {
764 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
765 RHS = PN->getIncomingValue(i);
766 }
767 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
768 if (!Res) {
769 if (!isa<Constant>(RHS))
770 continue;
771
772 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
773 auto LHSInst = dyn_cast<Instruction>(LHS);
774 if (LHSInst && LHSInst->getParent() == BB)
775 continue;
776
777 Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB,
778 BB, CxtI ? CxtI : Cmp);
779 }
780
781 if (Constant *KC = getKnownConstant(Res, WantInteger))
782 Result.emplace_back(KC, PredBB);
783 }
784
785 return !Result.empty();
786 }
787
788 // If comparing a live-in value against a constant, see if we know the
789 // live-in value on any predecessors.
790 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
791 Constant *CmpConst = cast<Constant>(CmpRHS);
792
793 if (!isa<Instruction>(CmpLHS) ||
794 cast<Instruction>(CmpLHS)->getParent() != BB) {
795 for (BasicBlock *P : predecessors(BB)) {
796 // If the value is known by LazyValueInfo to be a constant in a
797 // predecessor, use that information to try to thread this block.
798 Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB,
799 CxtI ? CxtI : Cmp);
800 if (Constant *KC = getKnownConstant(Res, WantInteger))
801 Result.emplace_back(KC, P);
802 }
803
804 return !Result.empty();
805 }
806
807 // InstCombine can fold some forms of constant range checks into
808 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
809 // x as a live-in.
810 {
811 using namespace PatternMatch;
812
813 Value *AddLHS;
814 ConstantInt *AddConst;
815 if (isa<ConstantInt>(CmpConst) &&
816 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
817 if (!isa<Instruction>(AddLHS) ||
818 cast<Instruction>(AddLHS)->getParent() != BB) {
819 for (BasicBlock *P : predecessors(BB)) {
820 // If the value is known by LazyValueInfo to be a ConstantRange in
821 // a predecessor, use that information to try to thread this
822 // block.
823 ConstantRange CR = LVI->getConstantRangeOnEdge(
824 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
825 // Propagate the range through the addition.
826 CR = CR.add(AddConst->getValue());
827
828 // Get the range where the compare returns true.
830 Pred, cast<ConstantInt>(CmpConst)->getValue());
831
832 Constant *ResC;
833 if (CmpRange.contains(CR))
834 ResC = ConstantInt::getTrue(CmpType);
835 else if (CmpRange.inverse().contains(CR))
836 ResC = ConstantInt::getFalse(CmpType);
837 else
838 continue;
839
840 Result.emplace_back(ResC, P);
841 }
842
843 return !Result.empty();
844 }
845 }
846 }
847
848 // Try to find a constant value for the LHS of a comparison,
849 // and evaluate it statically if we can.
850 PredValueInfoTy LHSVals;
851 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
852 WantInteger, RecursionSet, CxtI);
853
854 for (const auto &LHSVal : LHSVals) {
855 Constant *V = LHSVal.first;
856 Constant *Folded =
857 ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL);
858 if (Constant *KC = getKnownConstant(Folded, WantInteger))
859 Result.emplace_back(KC, LHSVal.second);
860 }
861
862 return !Result.empty();
863 }
864 }
865
867 // Handle select instructions where at least one operand is a known constant
868 // and we can figure out the condition value for any predecessor block.
869 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
870 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
871 PredValueInfoTy Conds;
872 if ((TrueVal || FalseVal) &&
873 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
874 WantInteger, RecursionSet, CxtI)) {
875 for (auto &C : Conds) {
876 Constant *Cond = C.first;
877
878 // Figure out what value to use for the condition.
879 bool KnownCond;
881 // A known boolean.
882 KnownCond = CI->isOne();
883 } else {
884 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
885 // Either operand will do, so be sure to pick the one that's a known
886 // constant.
887 // FIXME: Do this more cleverly if both values are known constants?
888 KnownCond = (TrueVal != nullptr);
889 }
890
891 // See if the select has a known constant value for this predecessor.
892 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
893 Result.emplace_back(Val, C.second);
894 }
895
896 return !Result.empty();
897 }
898 }
899
900 // If all else fails, see if LVI can figure out a constant value for us.
901 assert(CxtI->getParent() == BB && "CxtI should be in BB");
902 Constant *CI = LVI->getConstant(V, CxtI);
903 if (Constant *KC = getKnownConstant(CI, Preference)) {
904 for (BasicBlock *Pred : predecessors(BB))
905 Result.emplace_back(KC, Pred);
906 }
907
908 return !Result.empty();
909}
910
911/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
912/// in an undefined jump, decide which block is best to revector to.
913///
914/// Since we can pick an arbitrary destination, we pick the successor with the
915/// fewest predecessors. This should reduce the in-degree of the others.
917 Instruction *BBTerm = BB->getTerminator();
918 unsigned MinSucc = 0;
919 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
920 // Compute the successor with the minimum number of predecessors.
921 unsigned MinNumPreds = pred_size(TestBB);
922 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
923 TestBB = BBTerm->getSuccessor(i);
924 unsigned NumPreds = pred_size(TestBB);
925 if (NumPreds < MinNumPreds) {
926 MinSucc = i;
927 MinNumPreds = NumPreds;
928 }
929 }
930
931 return MinSucc;
932}
933
935 if (!BB->hasAddressTaken()) return false;
936
937 // If the block has its address taken, it may be a tree of dead constants
938 // hanging off of it. These shouldn't keep the block alive.
941 return !BA->use_empty();
942}
943
944/// processBlock - If there are any predecessors whose control can be threaded
945/// through to a successor, transform them now.
947 // If the block is trivially dead, just return and let the caller nuke it.
948 // This simplifies other transformations.
949 if (DTU->isBBPendingDeletion(BB) ||
950 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
951 return false;
952
953 // If this block has a single predecessor, and if that pred has a single
954 // successor, merge the blocks. This encourages recursive jump threading
955 // because now the condition in this block can be threaded through
956 // predecessors of our predecessor block.
958 return true;
959
961 return true;
962
963 // Look if we can propagate guards to predecessors.
964 if (HasGuards && processGuards(BB))
965 return true;
966
967 // What kind of constant we're looking for.
968 ConstantPreference Preference = WantInteger;
969
970 // Look to see if the terminator is a conditional branch, switch or indirect
971 // branch, if not we can't thread it.
972 Value *Condition;
973 Instruction *Terminator = BB->getTerminator();
974 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
975 // Can't thread an unconditional jump.
976 if (BI->isUnconditional()) return false;
977 Condition = BI->getCondition();
978 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
979 Condition = SI->getCondition();
980 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
981 // Can't thread indirect branch with no successors.
982 if (IB->getNumSuccessors() == 0) return false;
983 Condition = IB->getAddress()->stripPointerCasts();
984 Preference = WantBlockAddress;
985 } else {
986 return false; // Must be an invoke or callbr.
987 }
988
989 // Keep track if we constant folded the condition in this invocation.
990 bool ConstantFolded = false;
991
992 // Run constant folding to see if we can reduce the condition to a simple
993 // constant.
994 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
995 Value *SimpleVal =
997 if (SimpleVal) {
998 I->replaceAllUsesWith(SimpleVal);
1000 I->eraseFromParent();
1001 Condition = SimpleVal;
1002 ConstantFolded = true;
1003 }
1004 }
1005
1006 // If the terminator is branching on an undef or freeze undef, we can pick any
1007 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1008 auto *FI = dyn_cast<FreezeInst>(Condition);
1009 if (isa<UndefValue>(Condition) ||
1010 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1011 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1012 std::vector<DominatorTree::UpdateType> Updates;
1013
1014 // Fold the branch/switch.
1015 Instruction *BBTerm = BB->getTerminator();
1016 Updates.reserve(BBTerm->getNumSuccessors());
1017 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1018 if (i == BestSucc) continue;
1019 BasicBlock *Succ = BBTerm->getSuccessor(i);
1020 Succ->removePredecessor(BB, true);
1021 Updates.push_back({DominatorTree::Delete, BB, Succ});
1022 }
1023
1024 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1025 << "' folding undef terminator: " << *BBTerm << '\n');
1026 Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator());
1027 NewBI->setDebugLoc(BBTerm->getDebugLoc());
1028 ++NumFolds;
1029 BBTerm->eraseFromParent();
1030 DTU->applyUpdatesPermissive(Updates);
1031 if (FI)
1032 FI->eraseFromParent();
1033 return true;
1034 }
1035
1036 // If the terminator of this block is branching on a constant, simplify the
1037 // terminator to an unconditional branch. This can occur due to threading in
1038 // other blocks.
1039 if (getKnownConstant(Condition, Preference)) {
1040 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1041 << "' folding terminator: " << *BB->getTerminator()
1042 << '\n');
1043 ++NumFolds;
1044 ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1045 if (auto *BPI = getBPI())
1046 BPI->eraseBlock(BB);
1047 return true;
1048 }
1049
1050 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1051
1052 // All the rest of our checks depend on the condition being an instruction.
1053 if (!CondInst) {
1054 // FIXME: Unify this with code below.
1055 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1056 return true;
1057 return ConstantFolded;
1058 }
1059
1060 // Some of the following optimization can safely work on the unfrozen cond.
1061 Value *CondWithoutFreeze = CondInst;
1062 if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1063 CondWithoutFreeze = FI->getOperand(0);
1064
1065 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1066 // If we're branching on a conditional, LVI might be able to determine
1067 // it's value at the branch instruction. We only handle comparisons
1068 // against a constant at this time.
1069 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1070 Constant *Res =
1071 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1072 CondConst, BB->getTerminator(),
1073 /*UseBlockValue=*/false);
1074 if (Res) {
1075 // We can safely replace *some* uses of the CondInst if it has
1076 // exactly one value as returned by LVI. RAUW is incorrect in the
1077 // presence of guards and assumes, that have the `Cond` as the use. This
1078 // is because we use the guards/assume to reason about the `Cond` value
1079 // at the end of block, but RAUW unconditionally replaces all uses
1080 // including the guards/assumes themselves and the uses before the
1081 // guard/assume.
1082 if (replaceFoldableUses(CondCmp, Res, BB))
1083 return true;
1084 }
1085
1086 // We did not manage to simplify this branch, try to see whether
1087 // CondCmp depends on a known phi-select pattern.
1088 if (tryToUnfoldSelect(CondCmp, BB))
1089 return true;
1090 }
1091 }
1092
1094 if (tryToUnfoldSelect(SI, BB))
1095 return true;
1096
1097 // Check for some cases that are worth simplifying. Right now we want to look
1098 // for loads that are used by a switch or by the condition for the branch. If
1099 // we see one, check to see if it's partially redundant. If so, insert a PHI
1100 // which can then be used to thread the values.
1101 Value *SimplifyValue = CondWithoutFreeze;
1102
1103 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1104 if (isa<Constant>(CondCmp->getOperand(1)))
1105 SimplifyValue = CondCmp->getOperand(0);
1106
1107 // TODO: There are other places where load PRE would be profitable, such as
1108 // more complex comparisons.
1109 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1111 return true;
1112
1113 // Before threading, try to propagate profile data backwards:
1114 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1115 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1117
1118 // Handle a variety of cases where we are branching on something derived from
1119 // a PHI node in the current block. If we can prove that any predecessors
1120 // compute a predictable value based on a PHI node, thread those predecessors.
1121 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1122 return true;
1123
1124 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1125 // the current block, see if we can simplify.
1126 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1127 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1128 return processBranchOnPHI(PN);
1129
1130 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1131 if (CondInst->getOpcode() == Instruction::Xor &&
1132 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1133 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1134
1135 // Search for a stronger dominating condition that can be used to simplify a
1136 // conditional branch leaving BB.
1138 return true;
1139
1140 return false;
1141}
1142
1144 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1145 if (!BI || !BI->isConditional())
1146 return false;
1147
1148 Value *Cond = BI->getCondition();
1149 // Assuming that predecessor's branch was taken, if pred's branch condition
1150 // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1151 // freeze(Cond) is either true or a nondeterministic value.
1152 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1153 // without affecting other instructions.
1154 auto *FICond = dyn_cast<FreezeInst>(Cond);
1155 if (FICond && FICond->hasOneUse())
1156 Cond = FICond->getOperand(0);
1157 else
1158 FICond = nullptr;
1159
1160 BasicBlock *CurrentBB = BB;
1161 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1162 unsigned Iter = 0;
1163
1164 auto &DL = BB->getDataLayout();
1165
1166 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1167 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1168 if (!PBI || !PBI->isConditional())
1169 return false;
1170 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1171 return false;
1172
1173 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1174 std::optional<bool> Implication =
1175 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1176
1177 // If the branch condition of BB (which is Cond) and CurrentPred are
1178 // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1179 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1180 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1181 FICond->getOperand(0))
1182 Implication = CondIsTrue;
1183 }
1184
1185 if (Implication) {
1186 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1187 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1188 RemoveSucc->removePredecessor(BB);
1189 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator());
1190 UncondBI->setDebugLoc(BI->getDebugLoc());
1191 ++NumFolds;
1192 BI->eraseFromParent();
1193 if (FICond)
1194 FICond->eraseFromParent();
1195
1196 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1197 if (auto *BPI = getBPI())
1198 BPI->eraseBlock(BB);
1199 return true;
1200 }
1201 CurrentBB = CurrentPred;
1202 CurrentPred = CurrentBB->getSinglePredecessor();
1203 }
1204
1205 return false;
1206}
1207
1208/// Return true if Op is an instruction defined in the given block.
1210 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1211 if (OpInst->getParent() == BB)
1212 return true;
1213 return false;
1214}
1215
1216/// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1217/// redundant load instruction, eliminate it by replacing it with a PHI node.
1218/// This is an important optimization that encourages jump threading, and needs
1219/// to be run interlaced with other jump threading tasks.
1221 // Don't hack volatile and ordered loads.
1222 if (!LoadI->isUnordered()) return false;
1223
1224 // If the load is defined in a block with exactly one predecessor, it can't be
1225 // partially redundant.
1226 BasicBlock *LoadBB = LoadI->getParent();
1227 if (LoadBB->getSinglePredecessor())
1228 return false;
1229
1230 // If the load is defined in an EH pad, it can't be partially redundant,
1231 // because the edges between the invoke and the EH pad cannot have other
1232 // instructions between them.
1233 if (LoadBB->isEHPad())
1234 return false;
1235
1236 Value *LoadedPtr = LoadI->getOperand(0);
1237
1238 // If the loaded operand is defined in the LoadBB and its not a phi,
1239 // it can't be available in predecessors.
1240 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1241 return false;
1242
1243 // Scan a few instructions up from the load, to see if it is obviously live at
1244 // the entry to its block.
1245 BasicBlock::iterator BBIt(LoadI);
1246 bool IsLoadCSE;
1247 BatchAAResults BatchAA(*AA);
1248 // The dominator tree is updated lazily and may not be valid at this point.
1249 BatchAA.disableDominatorTree();
1250 if (Value *AvailableVal = FindAvailableLoadedValue(
1251 LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
1252 // If the value of the load is locally available within the block, just use
1253 // it. This frequently occurs for reg2mem'd allocas.
1254
1255 if (IsLoadCSE) {
1256 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1257 combineMetadataForCSE(NLoadI, LoadI, false);
1258 LVI->forgetValue(NLoadI);
1259 };
1260
1261 // If the returned value is the load itself, replace with poison. This can
1262 // only happen in dead loops.
1263 if (AvailableVal == LoadI)
1264 AvailableVal = PoisonValue::get(LoadI->getType());
1265 if (AvailableVal->getType() != LoadI->getType()) {
1266 AvailableVal = CastInst::CreateBitOrPointerCast(
1267 AvailableVal, LoadI->getType(), "", LoadI->getIterator());
1268 cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc());
1269 }
1270 LoadI->replaceAllUsesWith(AvailableVal);
1271 LoadI->eraseFromParent();
1272 return true;
1273 }
1274
1275 // Otherwise, if we scanned the whole block and got to the top of the block,
1276 // we know the block is locally transparent to the load. If not, something
1277 // might clobber its value.
1278 if (BBIt != LoadBB->begin())
1279 return false;
1280
1281 // If all of the loads and stores that feed the value have the same AA tags,
1282 // then we can propagate them onto any newly inserted loads.
1283 AAMDNodes AATags = LoadI->getAAMetadata();
1284
1285 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1286
1287 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1288
1289 AvailablePredsTy AvailablePreds;
1290 BasicBlock *OneUnavailablePred = nullptr;
1292
1293 // If we got here, the loaded value is transparent through to the start of the
1294 // block. Check to see if it is available in any of the predecessor blocks.
1295 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1296 // If we already scanned this predecessor, skip it.
1297 if (!PredsScanned.insert(PredBB).second)
1298 continue;
1299
1300 BBIt = PredBB->end();
1301 unsigned NumScanedInst = 0;
1302 Value *PredAvailable = nullptr;
1303 // NOTE: We don't CSE load that is volatile or anything stronger than
1304 // unordered, that should have been checked when we entered the function.
1305 assert(LoadI->isUnordered() &&
1306 "Attempting to CSE volatile or atomic loads");
1307 // If this is a load on a phi pointer, phi-translate it and search
1308 // for available load/store to the pointer in predecessors.
1309 Type *AccessTy = LoadI->getType();
1310 const auto &DL = LoadI->getDataLayout();
1311 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1312 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1313 AATags);
1314 PredAvailable = findAvailablePtrLoadStore(
1315 Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1316 &BatchAA, &IsLoadCSE, &NumScanedInst);
1317
1318 // If PredBB has a single predecessor, continue scanning through the
1319 // single predecessor.
1320 BasicBlock *SinglePredBB = PredBB;
1321 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1322 NumScanedInst < DefMaxInstsToScan) {
1323 SinglePredBB = SinglePredBB->getSinglePredecessor();
1324 if (SinglePredBB) {
1325 BBIt = SinglePredBB->end();
1326 PredAvailable = findAvailablePtrLoadStore(
1327 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1328 (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
1329 &NumScanedInst);
1330 }
1331 }
1332
1333 if (!PredAvailable) {
1334 OneUnavailablePred = PredBB;
1335 continue;
1336 }
1337
1338 if (IsLoadCSE)
1339 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1340
1341 // If so, this load is partially redundant. Remember this info so that we
1342 // can create a PHI node.
1343 AvailablePreds.emplace_back(PredBB, PredAvailable);
1344 }
1345
1346 // If the loaded value isn't available in any predecessor, it isn't partially
1347 // redundant.
1348 if (AvailablePreds.empty()) return false;
1349
1350 // Okay, the loaded value is available in at least one (and maybe all!)
1351 // predecessors. If the value is unavailable in more than one unique
1352 // predecessor, we want to insert a merge block for those common predecessors.
1353 // This ensures that we only have to insert one reload, thus not increasing
1354 // code size.
1355 BasicBlock *UnavailablePred = nullptr;
1356
1357 // If the value is unavailable in one of predecessors, we will end up
1358 // inserting a new instruction into them. It is only valid if all the
1359 // instructions before LoadI are guaranteed to pass execution to its
1360 // successor, or if LoadI is safe to speculate.
1361 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1362 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1363 // It requires domination tree analysis, so for this simple case it is an
1364 // overkill.
1365 if (PredsScanned.size() != AvailablePreds.size() &&
1367 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1369 return false;
1370
1371 // If there is exactly one predecessor where the value is unavailable, the
1372 // already computed 'OneUnavailablePred' block is it. If it ends in an
1373 // unconditional branch, we know that it isn't a critical edge.
1374 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1375 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1376 UnavailablePred = OneUnavailablePred;
1377 } else if (PredsScanned.size() != AvailablePreds.size()) {
1378 // Otherwise, we had multiple unavailable predecessors or we had a critical
1379 // edge from the one.
1380 SmallVector<BasicBlock*, 8> PredsToSplit;
1381 SmallPtrSet<BasicBlock *, 8> AvailablePredSet(
1382 llvm::from_range, llvm::make_first_range(AvailablePreds));
1383
1384 // Add all the unavailable predecessors to the PredsToSplit list.
1385 for (BasicBlock *P : predecessors(LoadBB)) {
1386 // If the predecessor is an indirect goto, we can't split the edge.
1387 if (isa<IndirectBrInst>(P->getTerminator()))
1388 return false;
1389
1390 if (!AvailablePredSet.count(P))
1391 PredsToSplit.push_back(P);
1392 }
1393
1394 // Split them out to their own block.
1395 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1396 }
1397
1398 // If the value isn't available in all predecessors, then there will be
1399 // exactly one where it isn't available. Insert a load on that edge and add
1400 // it to the AvailablePreds list.
1401 if (UnavailablePred) {
1402 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1403 "Can't handle critical edge here!");
1404 LoadInst *NewVal = new LoadInst(
1405 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1406 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1407 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1408 UnavailablePred->getTerminator()->getIterator());
1409 NewVal->setDebugLoc(LoadI->getDebugLoc());
1410 if (AATags)
1411 NewVal->setAAMetadata(AATags);
1412
1413 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1414 }
1415
1416 // Now we know that each predecessor of this block has a value in
1417 // AvailablePreds, sort them for efficient access as we're walking the preds.
1418 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1419
1420 // Create a PHI node at the start of the block for the PRE'd load value.
1421 PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), "");
1422 PN->insertBefore(LoadBB->begin());
1423 PN->takeName(LoadI);
1424 PN->setDebugLoc(LoadI->getDebugLoc());
1425
1426 // Insert new entries into the PHI for each predecessor. A single block may
1427 // have multiple entries here.
1428 for (BasicBlock *P : predecessors(LoadBB)) {
1429 AvailablePredsTy::iterator I =
1430 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1431
1432 assert(I != AvailablePreds.end() && I->first == P &&
1433 "Didn't find entry for predecessor!");
1434
1435 // If we have an available predecessor but it requires casting, insert the
1436 // cast in the predecessor and use the cast. Note that we have to update the
1437 // AvailablePreds vector as we go so that all of the PHI entries for this
1438 // predecessor use the same bitcast.
1439 Value *&PredV = I->second;
1440 if (PredV->getType() != LoadI->getType()) {
1442 PredV, LoadI->getType(), "", P->getTerminator()->getIterator());
1443 // The new cast is producing the value used to replace the load
1444 // instruction, so uses the load's debug location. If P does not always
1445 // branch to the load BB however then the debug location must be dropped,
1446 // as it is hoisted past a conditional branch.
1447 DebugLoc DL = P->getTerminator()->getNumSuccessors() == 1
1448 ? LoadI->getDebugLoc()
1450 cast<CastInst>(PredV)->setDebugLoc(DL);
1451 }
1452
1453 PN->addIncoming(PredV, I->first);
1454 }
1455
1456 for (LoadInst *PredLoadI : CSELoads) {
1457 combineMetadataForCSE(PredLoadI, LoadI, true);
1458 LVI->forgetValue(PredLoadI);
1459 }
1460
1461 LoadI->replaceAllUsesWith(PN);
1462 LoadI->eraseFromParent();
1463
1464 return true;
1465}
1466
1467/// findMostPopularDest - The specified list contains multiple possible
1468/// threadable destinations. Pick the one that occurs the most frequently in
1469/// the list.
1470static BasicBlock *
1472 const SmallVectorImpl<std::pair<BasicBlock *,
1473 BasicBlock *>> &PredToDestList) {
1474 assert(!PredToDestList.empty());
1475
1476 // Determine popularity. If there are multiple possible destinations, we
1477 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1478 // blocks with known and real destinations to threading undef. We'll handle
1479 // them later if interesting.
1480 MapVector<BasicBlock *, unsigned> DestPopularity;
1481
1482 // Populate DestPopularity with the successors in the order they appear in the
1483 // successor list. This way, we ensure determinism by iterating it in the
1484 // same order in llvm::max_element below. We map nullptr to 0 so that we can
1485 // return nullptr when PredToDestList contains nullptr only.
1486 DestPopularity[nullptr] = 0;
1487 for (auto *SuccBB : successors(BB))
1488 DestPopularity[SuccBB] = 0;
1489
1490 for (const auto &PredToDest : PredToDestList)
1491 if (PredToDest.second)
1492 DestPopularity[PredToDest.second]++;
1493
1494 // Find the most popular dest.
1495 auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second());
1496
1497 // Okay, we have finally picked the most popular destination.
1498 return MostPopular->first;
1499}
1500
1501// Try to evaluate the value of V when the control flows from PredPredBB to
1502// BB->getSinglePredecessor() and then on to BB.
1504 BasicBlock *PredPredBB,
1505 Value *V,
1506 const DataLayout &DL) {
1508 return evaluateOnPredecessorEdge(BB, PredPredBB, V, DL, Visited);
1509}
1510
1512 BasicBlock *BB, BasicBlock *PredPredBB, Value *V, const DataLayout &DL,
1513 SmallPtrSet<Value *, 8> &Visited) {
1514 if (!Visited.insert(V).second)
1515 return nullptr;
1516 auto _ = make_scope_exit([&Visited, V]() { Visited.erase(V); });
1517
1518 BasicBlock *PredBB = BB->getSinglePredecessor();
1519 assert(PredBB && "Expected a single predecessor");
1520
1521 if (Constant *Cst = dyn_cast<Constant>(V)) {
1522 return Cst;
1523 }
1524
1525 // Consult LVI if V is not an instruction in BB or PredBB.
1527 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1528 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1529 }
1530
1531 // Look into a PHI argument.
1532 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1533 if (PHI->getParent() == PredBB)
1534 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1535 return nullptr;
1536 }
1537
1538 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1539 // Note that during the execution of the pass, phi nodes may become constant
1540 // and may be removed, which can lead to self-referencing instructions in
1541 // code that becomes unreachable. Consequently, we need to handle those
1542 // instructions in unreachable code and check before going into recursion.
1543 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1544 if (CondCmp->getParent() == BB) {
1546 BB, PredPredBB, CondCmp->getOperand(0), DL, Visited);
1548 BB, PredPredBB, CondCmp->getOperand(1), DL, Visited);
1549 if (Op0 && Op1) {
1550 return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0,
1551 Op1, DL);
1552 }
1553 }
1554 return nullptr;
1555 }
1556
1557 return nullptr;
1558}
1559
1561 ConstantPreference Preference,
1562 Instruction *CxtI) {
1563 // If threading this would thread across a loop header, don't even try to
1564 // thread the edge.
1565 if (LoopHeaders.count(BB))
1566 return false;
1567
1568 PredValueInfoTy PredValues;
1569 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1570 CxtI)) {
1571 // We don't have known values in predecessors. See if we can thread through
1572 // BB and its sole predecessor.
1574 }
1575
1576 assert(!PredValues.empty() &&
1577 "computeValueKnownInPredecessors returned true with no values");
1578
1579 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1580 for (const auto &PredValue : PredValues) {
1581 dbgs() << " BB '" << BB->getName()
1582 << "': FOUND condition = " << *PredValue.first
1583 << " for pred '" << PredValue.second->getName() << "'.\n";
1584 });
1585
1586 // Decide what we want to thread through. Convert our list of known values to
1587 // a list of known destinations for each pred. This also discards duplicate
1588 // predecessors and keeps track of the undefined inputs (which are represented
1589 // as a null dest in the PredToDestList).
1592
1593 BasicBlock *OnlyDest = nullptr;
1594 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1595 Constant *OnlyVal = nullptr;
1596 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1597
1598 for (const auto &PredValue : PredValues) {
1599 BasicBlock *Pred = PredValue.second;
1600 if (!SeenPreds.insert(Pred).second)
1601 continue; // Duplicate predecessor entry.
1602
1603 Constant *Val = PredValue.first;
1604
1605 BasicBlock *DestBB;
1606 if (isa<UndefValue>(Val))
1607 DestBB = nullptr;
1608 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1609 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1610 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1611 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1612 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1613 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1614 } else {
1616 && "Unexpected terminator");
1617 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1618 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1619 }
1620
1621 // If we have exactly one destination, remember it for efficiency below.
1622 if (PredToDestList.empty()) {
1623 OnlyDest = DestBB;
1624 OnlyVal = Val;
1625 } else {
1626 if (OnlyDest != DestBB)
1627 OnlyDest = MultipleDestSentinel;
1628 // It possible we have same destination, but different value, e.g. default
1629 // case in switchinst.
1630 if (Val != OnlyVal)
1631 OnlyVal = MultipleVal;
1632 }
1633
1634 // If the predecessor ends with an indirect goto, we can't change its
1635 // destination.
1636 if (isa<IndirectBrInst>(Pred->getTerminator()))
1637 continue;
1638
1639 PredToDestList.emplace_back(Pred, DestBB);
1640 }
1641
1642 // If all edges were unthreadable, we fail.
1643 if (PredToDestList.empty())
1644 return false;
1645
1646 // If all the predecessors go to a single known successor, we want to fold,
1647 // not thread. By doing so, we do not need to duplicate the current block and
1648 // also miss potential opportunities in case we dont/cant duplicate.
1649 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1650 if (BB->hasNPredecessors(PredToDestList.size())) {
1651 bool SeenFirstBranchToOnlyDest = false;
1652 std::vector <DominatorTree::UpdateType> Updates;
1653 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1654 for (BasicBlock *SuccBB : successors(BB)) {
1655 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1656 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1657 } else {
1658 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1659 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1660 }
1661 }
1662
1663 // Finally update the terminator.
1664 Instruction *Term = BB->getTerminator();
1665 Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator());
1666 NewBI->setDebugLoc(Term->getDebugLoc());
1667 ++NumFolds;
1668 Term->eraseFromParent();
1669 DTU->applyUpdatesPermissive(Updates);
1670 if (auto *BPI = getBPI())
1671 BPI->eraseBlock(BB);
1672
1673 // If the condition is now dead due to the removal of the old terminator,
1674 // erase it.
1675 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1676 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1677 CondInst->eraseFromParent();
1678 // We can safely replace *some* uses of the CondInst if it has
1679 // exactly one value as returned by LVI. RAUW is incorrect in the
1680 // presence of guards and assumes, that have the `Cond` as the use. This
1681 // is because we use the guards/assume to reason about the `Cond` value
1682 // at the end of block, but RAUW unconditionally replaces all uses
1683 // including the guards/assumes themselves and the uses before the
1684 // guard/assume.
1685 else if (OnlyVal && OnlyVal != MultipleVal)
1686 replaceFoldableUses(CondInst, OnlyVal, BB);
1687 }
1688 return true;
1689 }
1690 }
1691
1692 // Determine which is the most common successor. If we have many inputs and
1693 // this block is a switch, we want to start by threading the batch that goes
1694 // to the most popular destination first. If we only know about one
1695 // threadable destination (the common case) we can avoid this.
1696 BasicBlock *MostPopularDest = OnlyDest;
1697
1698 if (MostPopularDest == MultipleDestSentinel) {
1699 // Remove any loop headers from the Dest list, threadEdge conservatively
1700 // won't process them, but we might have other destination that are eligible
1701 // and we still want to process.
1702 erase_if(PredToDestList,
1703 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1704 return LoopHeaders.contains(PredToDest.second);
1705 });
1706
1707 if (PredToDestList.empty())
1708 return false;
1709
1710 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1711 }
1712
1713 // Now that we know what the most popular destination is, factor all
1714 // predecessors that will jump to it into a single predecessor.
1715 SmallVector<BasicBlock*, 16> PredsToFactor;
1716 for (const auto &PredToDest : PredToDestList)
1717 if (PredToDest.second == MostPopularDest) {
1718 BasicBlock *Pred = PredToDest.first;
1719
1720 // This predecessor may be a switch or something else that has multiple
1721 // edges to the block. Factor each of these edges by listing them
1722 // according to # occurrences in PredsToFactor.
1723 for (BasicBlock *Succ : successors(Pred))
1724 if (Succ == BB)
1725 PredsToFactor.push_back(Pred);
1726 }
1727
1728 // If the threadable edges are branching on an undefined value, we get to pick
1729 // the destination that these predecessors should get to.
1730 if (!MostPopularDest)
1731 MostPopularDest = BB->getTerminator()->
1732 getSuccessor(getBestDestForJumpOnUndef(BB));
1733
1734 // Ok, try to thread it!
1735 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1736}
1737
1738/// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1739/// a PHI node (or freeze PHI) in the current block. See if there are any
1740/// simplifications we can do based on inputs to the phi node.
1742 BasicBlock *BB = PN->getParent();
1743
1744 // TODO: We could make use of this to do it once for blocks with common PHI
1745 // values.
1747 PredBBs.resize(1);
1748
1749 // If any of the predecessor blocks end in an unconditional branch, we can
1750 // *duplicate* the conditional branch into that block in order to further
1751 // encourage jump threading and to eliminate cases where we have branch on a
1752 // phi of an icmp (branch on icmp is much better).
1753 // This is still beneficial when a frozen phi is used as the branch condition
1754 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1755 // to br(icmp(freeze ...)).
1756 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1757 BasicBlock *PredBB = PN->getIncomingBlock(i);
1758 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1759 if (PredBr->isUnconditional()) {
1760 PredBBs[0] = PredBB;
1761 // Try to duplicate BB into PredBB.
1762 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1763 return true;
1764 }
1765 }
1766
1767 return false;
1768}
1769
1770/// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1771/// a xor instruction in the current block. See if there are any
1772/// simplifications we can do based on inputs to the xor.
1774 BasicBlock *BB = BO->getParent();
1775
1776 // If either the LHS or RHS of the xor is a constant, don't do this
1777 // optimization.
1778 if (isa<ConstantInt>(BO->getOperand(0)) ||
1780 return false;
1781
1782 // If the first instruction in BB isn't a phi, we won't be able to infer
1783 // anything special about any particular predecessor.
1784 if (!isa<PHINode>(BB->front()))
1785 return false;
1786
1787 // If this BB is a landing pad, we won't be able to split the edge into it.
1788 if (BB->isEHPad())
1789 return false;
1790
1791 // If we have a xor as the branch input to this block, and we know that the
1792 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1793 // the condition into the predecessor and fix that value to true, saving some
1794 // logical ops on that path and encouraging other paths to simplify.
1795 //
1796 // This copies something like this:
1797 //
1798 // BB:
1799 // %X = phi i1 [1], [%X']
1800 // %Y = icmp eq i32 %A, %B
1801 // %Z = xor i1 %X, %Y
1802 // br i1 %Z, ...
1803 //
1804 // Into:
1805 // BB':
1806 // %Y = icmp ne i32 %A, %B
1807 // br i1 %Y, ...
1808
1809 PredValueInfoTy XorOpValues;
1810 bool isLHS = true;
1811 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1812 WantInteger, BO)) {
1813 assert(XorOpValues.empty());
1814 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1815 WantInteger, BO))
1816 return false;
1817 isLHS = false;
1818 }
1819
1820 assert(!XorOpValues.empty() &&
1821 "computeValueKnownInPredecessors returned true with no values");
1822
1823 // Scan the information to see which is most popular: true or false. The
1824 // predecessors can be of the set true, false, or undef.
1825 unsigned NumTrue = 0, NumFalse = 0;
1826 for (const auto &XorOpValue : XorOpValues) {
1827 if (isa<UndefValue>(XorOpValue.first))
1828 // Ignore undefs for the count.
1829 continue;
1830 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1831 ++NumFalse;
1832 else
1833 ++NumTrue;
1834 }
1835
1836 // Determine which value to split on, true, false, or undef if neither.
1837 ConstantInt *SplitVal = nullptr;
1838 if (NumTrue > NumFalse)
1839 SplitVal = ConstantInt::getTrue(BB->getContext());
1840 else if (NumTrue != 0 || NumFalse != 0)
1841 SplitVal = ConstantInt::getFalse(BB->getContext());
1842
1843 // Collect all of the blocks that this can be folded into so that we can
1844 // factor this once and clone it once.
1845 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1846 for (const auto &XorOpValue : XorOpValues) {
1847 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1848 continue;
1849
1850 BlocksToFoldInto.push_back(XorOpValue.second);
1851 }
1852
1853 // If we inferred a value for all of the predecessors, then duplication won't
1854 // help us. However, we can just replace the LHS or RHS with the constant.
1855 if (BlocksToFoldInto.size() ==
1856 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1857 if (!SplitVal) {
1858 // If all preds provide undef, just nuke the xor, because it is undef too.
1860 BO->eraseFromParent();
1861 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1862 // If all preds provide 0, replace the xor with the other input.
1863 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1864 BO->eraseFromParent();
1865 } else {
1866 // If all preds provide 1, set the computed value to 1.
1867 BO->setOperand(!isLHS, SplitVal);
1868 }
1869
1870 return true;
1871 }
1872
1873 // If any of predecessors end with an indirect goto, we can't change its
1874 // destination.
1875 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1876 return isa<IndirectBrInst>(Pred->getTerminator());
1877 }))
1878 return false;
1879
1880 // Try to duplicate BB into PredBB.
1881 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1882}
1883
1884/// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1885/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1886/// NewPred using the entries from OldPred (suitably mapped).
1888 BasicBlock *OldPred,
1889 BasicBlock *NewPred,
1891 for (PHINode &PN : PHIBB->phis()) {
1892 // Ok, we have a PHI node. Figure out what the incoming value was for the
1893 // DestBlock.
1894 Value *IV = PN.getIncomingValueForBlock(OldPred);
1895
1896 // Remap the value if necessary.
1897 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1899 if (I != ValueMap.end())
1900 IV = I->second;
1901 }
1902
1903 PN.addIncoming(IV, NewPred);
1904 }
1905}
1906
1907/// Merge basic block BB into its sole predecessor if possible.
1909 BasicBlock *SinglePred = BB->getSinglePredecessor();
1910 if (!SinglePred)
1911 return false;
1912
1913 const Instruction *TI = SinglePred->getTerminator();
1914 if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1915 SinglePred == BB || hasAddressTakenAndUsed(BB))
1916 return false;
1917
1918 // MergeBasicBlockIntoOnlyPred may delete SinglePred, we need to avoid
1919 // deleting a BB pointer from Unreachable.
1920 if (Unreachable.count(SinglePred))
1921 return false;
1922
1923 // Don't merge if both the basic block and the predecessor contain loop or
1924 // entry convergent intrinsics, since there may only be one convergence token
1925 // per block.
1928 return false;
1929
1930 // If SinglePred was a loop header, BB becomes one.
1931 if (LoopHeaders.erase(SinglePred))
1932 LoopHeaders.insert(BB);
1933
1934 LVI->eraseBlock(SinglePred);
1935 MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1936
1937 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1938 // BB code within one basic block `BB`), we need to invalidate the LVI
1939 // information associated with BB, because the LVI information need not be
1940 // true for all of BB after the merge. For example,
1941 // Before the merge, LVI info and code is as follows:
1942 // SinglePred: <LVI info1 for %p val>
1943 // %y = use of %p
1944 // call @exit() // need not transfer execution to successor.
1945 // assume(%p) // from this point on %p is true
1946 // br label %BB
1947 // BB: <LVI info2 for %p val, i.e. %p is true>
1948 // %x = use of %p
1949 // br label exit
1950 //
1951 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1952 // (info2 and info1 respectively). After the merge and the deletion of the
1953 // LVI info1 for SinglePred. We have the following code:
1954 // BB: <LVI info2 for %p val>
1955 // %y = use of %p
1956 // call @exit()
1957 // assume(%p)
1958 // %x = use of %p <-- LVI info2 is correct from here onwards.
1959 // br label exit
1960 // LVI info2 for BB is incorrect at the beginning of BB.
1961
1962 // Invalidate LVI information for BB if the LVI is not provably true for
1963 // all of BB.
1965 LVI->eraseBlock(BB);
1966 return true;
1967}
1968
1969/// Update the SSA form. NewBB contains instructions that are copied from BB.
1970/// ValueMapping maps old values in BB to new ones in NewBB.
1972 ValueToValueMapTy &ValueMapping) {
1973 // If there were values defined in BB that are used outside the block, then we
1974 // now have to update all uses of the value to use either the original value,
1975 // the cloned value, or some PHI derived value. This can require arbitrary
1976 // PHI insertion, of which we are prepared to do, clean these up now.
1977 SSAUpdater SSAUpdate;
1978 SmallVector<Use *, 16> UsesToRename;
1979 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1980
1981 for (Instruction &I : *BB) {
1982 // Scan all uses of this instruction to see if it is used outside of its
1983 // block, and if so, record them in UsesToRename.
1984 for (Use &U : I.uses()) {
1985 Instruction *User = cast<Instruction>(U.getUser());
1986 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1987 if (UserPN->getIncomingBlock(U) == BB)
1988 continue;
1989 } else if (User->getParent() == BB)
1990 continue;
1991
1992 UsesToRename.push_back(&U);
1993 }
1994
1995 // Find debug values outside of the block
1996 findDbgValues(&I, DbgVariableRecords);
1997 llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) {
1998 return DbgVarRec->getParent() == BB;
1999 });
2000
2001 // If there are no uses outside the block, we're done with this instruction.
2002 if (UsesToRename.empty() && DbgVariableRecords.empty())
2003 continue;
2004 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2005
2006 // We found a use of I outside of BB. Rename all uses of I that are outside
2007 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2008 // with the two values we know.
2009 SSAUpdate.Initialize(I.getType(), I.getName());
2010 SSAUpdate.AddAvailableValue(BB, &I);
2011 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2012
2013 while (!UsesToRename.empty())
2014 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2015 if (!DbgVariableRecords.empty()) {
2016 SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords);
2017 DbgVariableRecords.clear();
2018 }
2019
2020 LLVM_DEBUG(dbgs() << "\n");
2021 }
2022}
2023
2026 if (VM.AtomMap.empty())
2027 return;
2028 for (auto It = Begin; It != End; ++It)
2029 RemapSourceAtom(&*It, VM);
2030}
2031
2032/// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2033/// arguments that come from PredBB. Return the map from the variables in the
2034/// source basic block to the variables in the newly created basic block.
2035
2039 BasicBlock *NewBB,
2040 BasicBlock *PredBB) {
2041 // We are going to have to map operands from the source basic block to the new
2042 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2043 // block, evaluate them to account for entry from PredBB.
2044
2045 // Retargets dbg.value to any renamed variables.
2046 auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) {
2047 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2048 for (auto *Op : DVR->location_ops()) {
2050 if (!OpInst)
2051 continue;
2052
2053 auto I = ValueMapping.find(OpInst);
2054 if (I != ValueMapping.end())
2055 OperandsToRemap.insert({OpInst, I->second});
2056 }
2057
2058 for (auto &[OldOp, MappedOp] : OperandsToRemap)
2059 DVR->replaceVariableLocationOp(OldOp, MappedOp);
2060 };
2061
2062 BasicBlock *RangeBB = BI->getParent();
2063
2064 // Clone the phi nodes of the source basic block into NewBB. The resulting
2065 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2066 // might need to rewrite the operand of the cloned phi.
2067 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2068 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2069 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2070 ValueMapping[PN] = NewPN;
2071 if (const DebugLoc &DL = PN->getDebugLoc())
2072 mapAtomInstance(DL, ValueMapping);
2073 }
2074
2075 // Clone noalias scope declarations in the threaded block. When threading a
2076 // loop exit, we would otherwise end up with two idential scope declarations
2077 // visible at the same time.
2078 SmallVector<MDNode *> NoAliasScopes;
2079 DenseMap<MDNode *, MDNode *> ClonedScopes;
2080 LLVMContext &Context = PredBB->getContext();
2081 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2082 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2083
2084 auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2085 auto DVRRange = NewInst->cloneDebugInfoFrom(From);
2086 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2087 RetargetDbgVariableRecordIfPossible(&DVR);
2088 };
2089
2090 // Clone the non-phi instructions of the source basic block into NewBB,
2091 // keeping track of the mapping and using it to remap operands in the cloned
2092 // instructions.
2093 for (; BI != BE; ++BI) {
2094 Instruction *New = BI->clone();
2095 New->setName(BI->getName());
2096 New->insertInto(NewBB, NewBB->end());
2097 ValueMapping[&*BI] = New;
2098 adaptNoAliasScopes(New, ClonedScopes, Context);
2099
2100 CloneAndRemapDbgInfo(New, &*BI);
2101 if (const DebugLoc &DL = New->getDebugLoc())
2102 mapAtomInstance(DL, ValueMapping);
2103
2104 // Remap operands to patch up intra-block references.
2105 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2106 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2107 ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2108 if (I != ValueMapping.end())
2109 New->setOperand(i, I->second);
2110 }
2111 }
2112
2113 // There may be DbgVariableRecords on the terminator, clone directly from
2114 // marker to marker as there isn't an instruction there.
2115 if (BE != RangeBB->end() && BE->hasDbgRecords()) {
2116 // Dump them at the end.
2117 DbgMarker *Marker = RangeBB->getMarker(BE);
2118 DbgMarker *EndMarker = NewBB->createMarker(NewBB->end());
2119 auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2120 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2121 RetargetDbgVariableRecordIfPossible(&DVR);
2122 }
2123}
2124
2125/// Attempt to thread through two successive basic blocks.
2127 Value *Cond) {
2128 // Consider:
2129 //
2130 // PredBB:
2131 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2132 // %tobool = icmp eq i32 %cond, 0
2133 // br i1 %tobool, label %BB, label ...
2134 //
2135 // BB:
2136 // %cmp = icmp eq i32* %var, null
2137 // br i1 %cmp, label ..., label ...
2138 //
2139 // We don't know the value of %var at BB even if we know which incoming edge
2140 // we take to BB. However, once we duplicate PredBB for each of its incoming
2141 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2142 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2143
2144 // Require that BB end with a Branch for simplicity.
2146 if (!CondBr)
2147 return false;
2148
2149 // BB must have exactly one predecessor.
2150 BasicBlock *PredBB = BB->getSinglePredecessor();
2151 if (!PredBB)
2152 return false;
2153
2154 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2155 // unconditional branch, we should be merging PredBB and BB instead. For
2156 // simplicity, we don't deal with a switch.
2157 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2158 if (!PredBBBranch || PredBBBranch->isUnconditional())
2159 return false;
2160
2161 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2162 // PredBB.
2163 if (PredBB->getSinglePredecessor())
2164 return false;
2165
2166 // Don't thread through PredBB if it contains a successor edge to itself, in
2167 // which case we would infinite loop. Suppose we are threading an edge from
2168 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2169 // successor edge to itself. If we allowed jump threading in this case, we
2170 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2171 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2172 // with another jump threading opportunity from PredBB.thread through PredBB
2173 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2174 // would keep peeling one iteration from PredBB.
2175 if (llvm::is_contained(successors(PredBB), PredBB))
2176 return false;
2177
2178 // Don't thread across a loop header.
2179 if (LoopHeaders.count(PredBB))
2180 return false;
2181
2182 // Avoid complication with duplicating EH pads.
2183 if (PredBB->isEHPad())
2184 return false;
2185
2186 // Find a predecessor that we can thread. For simplicity, we only consider a
2187 // successor edge out of BB to which we thread exactly one incoming edge into
2188 // PredBB.
2189 unsigned ZeroCount = 0;
2190 unsigned OneCount = 0;
2191 BasicBlock *ZeroPred = nullptr;
2192 BasicBlock *OnePred = nullptr;
2193 const DataLayout &DL = BB->getDataLayout();
2194 for (BasicBlock *P : predecessors(PredBB)) {
2195 // If PredPred ends with IndirectBrInst, we can't handle it.
2196 if (isa<IndirectBrInst>(P->getTerminator()))
2197 continue;
2200 if (CI->isZero()) {
2201 ZeroCount++;
2202 ZeroPred = P;
2203 } else if (CI->isOne()) {
2204 OneCount++;
2205 OnePred = P;
2206 }
2207 }
2208 }
2209
2210 // Disregard complicated cases where we have to thread multiple edges.
2211 BasicBlock *PredPredBB;
2212 if (ZeroCount == 1) {
2213 PredPredBB = ZeroPred;
2214 } else if (OneCount == 1) {
2215 PredPredBB = OnePred;
2216 } else {
2217 return false;
2218 }
2219
2220 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2221
2222 // If threading to the same block as we come from, we would infinite loop.
2223 if (SuccBB == BB) {
2224 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2225 << "' - would thread to self!\n");
2226 return false;
2227 }
2228
2229 // If threading this would thread across a loop header, don't thread the edge.
2230 // See the comments above findLoopHeaders for justifications and caveats.
2231 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2232 LLVM_DEBUG({
2233 bool BBIsHeader = LoopHeaders.count(BB);
2234 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2235 dbgs() << " Not threading across "
2236 << (BBIsHeader ? "loop header BB '" : "block BB '")
2237 << BB->getName() << "' to dest "
2238 << (SuccIsHeader ? "loop header BB '" : "block BB '")
2239 << SuccBB->getName()
2240 << "' - it might create an irreducible loop!\n";
2241 });
2242 return false;
2243 }
2244
2245 // Compute the cost of duplicating BB and PredBB.
2246 unsigned BBCost = getJumpThreadDuplicationCost(
2247 TTI, BB, BB->getTerminator(), BBDupThreshold);
2248 unsigned PredBBCost = getJumpThreadDuplicationCost(
2249 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2250
2251 // Give up if costs are too high. We need to check BBCost and PredBBCost
2252 // individually before checking their sum because getJumpThreadDuplicationCost
2253 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2254 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2255 BBCost + PredBBCost > BBDupThreshold) {
2256 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2257 << "' - Cost is too high: " << PredBBCost
2258 << " for PredBB, " << BBCost << "for BB\n");
2259 return false;
2260 }
2261
2262 // Now we are ready to duplicate PredBB.
2263 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2264 return true;
2265}
2266
2268 BasicBlock *PredBB,
2269 BasicBlock *BB,
2270 BasicBlock *SuccBB) {
2271 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"
2272 << BB->getName() << "'\n");
2273
2274 // Build BPI/BFI before any changes are made to IR.
2275 bool HasProfile = doesBlockHaveProfileData(BB);
2276 auto *BFI = getOrCreateBFI(HasProfile);
2277 auto *BPI = getOrCreateBPI(BFI != nullptr);
2278
2279 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2280 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2281
2282 BasicBlock *NewBB =
2283 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2284 PredBB->getParent(), PredBB);
2285 NewBB->moveAfter(PredBB);
2286
2287 // Set the block frequency of NewBB.
2288 if (BFI) {
2289 assert(BPI && "It's expected BPI to exist along with BFI");
2290 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2291 BPI->getEdgeProbability(PredPredBB, PredBB);
2292 BFI->setBlockFreq(NewBB, NewBBFreq);
2293 }
2294
2295 // We are going to have to map operands from the original BB block to the new
2296 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2297 // to account for entry from PredPredBB.
2298 ValueToValueMapTy ValueMapping;
2299 cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB,
2300 PredPredBB);
2301
2302 // Copy the edge probabilities from PredBB to NewBB.
2303 if (BPI)
2304 BPI->copyEdgeProbabilities(PredBB, NewBB);
2305
2306 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2307 // This eliminates predecessors from PredPredBB, which requires us to simplify
2308 // any PHI nodes in PredBB.
2309 Instruction *PredPredTerm = PredPredBB->getTerminator();
2310 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2311 if (PredPredTerm->getSuccessor(i) == PredBB) {
2312 PredBB->removePredecessor(PredPredBB, true);
2313 PredPredTerm->setSuccessor(i, NewBB);
2314 }
2315
2316 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2317 ValueMapping);
2318 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2319 ValueMapping);
2320
2321 DTU->applyUpdatesPermissive(
2322 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2323 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2324 {DominatorTree::Insert, PredPredBB, NewBB},
2325 {DominatorTree::Delete, PredPredBB, PredBB}});
2326
2327 // Remap source location atoms beacuse we're duplicating control flow.
2328 remapSourceAtoms(ValueMapping, NewBB->begin(), NewBB->end());
2329
2330 updateSSA(PredBB, NewBB, ValueMapping);
2331
2332 // Clean up things like PHI nodes with single operands, dead instructions,
2333 // etc.
2334 SimplifyInstructionsInBlock(NewBB, TLI);
2335 SimplifyInstructionsInBlock(PredBB, TLI);
2336
2337 SmallVector<BasicBlock *, 1> PredsToFactor;
2338 PredsToFactor.push_back(NewBB);
2339 threadEdge(BB, PredsToFactor, SuccBB);
2340}
2341
2342/// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2344 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2345 BasicBlock *SuccBB) {
2346 // If threading to the same block as we come from, we would infinite loop.
2347 if (SuccBB == BB) {
2348 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2349 << "' - would thread to self!\n");
2350 return false;
2351 }
2352
2353 // If threading this would thread across a loop header, don't thread the edge.
2354 // See the comments above findLoopHeaders for justifications and caveats.
2355 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2356 LLVM_DEBUG({
2357 bool BBIsHeader = LoopHeaders.count(BB);
2358 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2359 dbgs() << " Not threading across "
2360 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2361 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2362 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2363 });
2364 return false;
2365 }
2366
2367 unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2368 TTI, BB, BB->getTerminator(), BBDupThreshold);
2369 if (JumpThreadCost > BBDupThreshold) {
2370 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2371 << "' - Cost is too high: " << JumpThreadCost << "\n");
2372 return false;
2373 }
2374
2375 threadEdge(BB, PredBBs, SuccBB);
2376 return true;
2377}
2378
2379/// threadEdge - We have decided that it is safe and profitable to factor the
2380/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2381/// across BB. Transform the IR to reflect this change.
2383 const SmallVectorImpl<BasicBlock *> &PredBBs,
2384 BasicBlock *SuccBB) {
2385 assert(SuccBB != BB && "Don't create an infinite loop");
2386
2387 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2388 "Don't thread across loop headers");
2389
2390 // Build BPI/BFI before any changes are made to IR.
2391 bool HasProfile = doesBlockHaveProfileData(BB);
2392 auto *BFI = getOrCreateBFI(HasProfile);
2393 auto *BPI = getOrCreateBPI(BFI != nullptr);
2394
2395 // And finally, do it! Start by factoring the predecessors if needed.
2396 BasicBlock *PredBB;
2397 if (PredBBs.size() == 1)
2398 PredBB = PredBBs[0];
2399 else {
2400 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2401 << " common predecessors.\n");
2402 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2403 }
2404
2405 // And finally, do it!
2406 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
2407 << "' to '" << SuccBB->getName()
2408 << ", across block:\n " << *BB << "\n");
2409
2410 LVI->threadEdge(PredBB, BB, SuccBB);
2411
2413 BB->getName()+".thread",
2414 BB->getParent(), BB);
2415 NewBB->moveAfter(PredBB);
2416
2417 // Set the block frequency of NewBB.
2418 if (BFI) {
2419 assert(BPI && "It's expected BPI to exist along with BFI");
2420 auto NewBBFreq =
2421 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2422 BFI->setBlockFreq(NewBB, NewBBFreq);
2423 }
2424
2425 // Copy all the instructions from BB to NewBB except the terminator.
2426 ValueToValueMapTy ValueMapping;
2427 cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB,
2428 PredBB);
2429
2430 // We didn't copy the terminator from BB over to NewBB, because there is now
2431 // an unconditional jump to SuccBB. Insert the unconditional jump.
2432 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2433 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2434
2435 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2436 // PHI nodes for NewBB now.
2437 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2438
2439 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2440 // eliminates predecessors from BB, which requires us to simplify any PHI
2441 // nodes in BB.
2442 Instruction *PredTerm = PredBB->getTerminator();
2443 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2444 if (PredTerm->getSuccessor(i) == BB) {
2445 BB->removePredecessor(PredBB, true);
2446 PredTerm->setSuccessor(i, NewBB);
2447 }
2448
2449 // Enqueue required DT updates.
2450 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2451 {DominatorTree::Insert, PredBB, NewBB},
2452 {DominatorTree::Delete, PredBB, BB}});
2453
2454 remapSourceAtoms(ValueMapping, NewBB->begin(), NewBB->end());
2455 updateSSA(BB, NewBB, ValueMapping);
2456
2457 // At this point, the IR is fully up to date and consistent. Do a quick scan
2458 // over the new instructions and zap any that are constants or dead. This
2459 // frequently happens because of phi translation.
2460 SimplifyInstructionsInBlock(NewBB, TLI);
2461
2462 // Update the edge weight from BB to SuccBB, which should be less than before.
2463 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2464
2465 // Threaded an edge!
2466 ++NumThreads;
2467}
2468
2469/// Create a new basic block that will be the predecessor of BB and successor of
2470/// all blocks in Preds. When profile data is available, update the frequency of
2471/// this new block.
2472BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2474 const char *Suffix) {
2476
2477 // Collect the frequencies of all predecessors of BB, which will be used to
2478 // update the edge weight of the result of splitting predecessors.
2480 auto *BFI = getBFI();
2481 if (BFI) {
2482 auto *BPI = getOrCreateBPI(true);
2483 for (auto *Pred : Preds)
2484 FreqMap.insert(std::make_pair(
2485 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2486 }
2487
2488 // In the case when BB is a LandingPad block we create 2 new predecessors
2489 // instead of just one.
2490 if (BB->isLandingPad()) {
2491 std::string NewName = std::string(Suffix) + ".split-lp";
2492 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2493 } else {
2494 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2495 }
2496
2497 std::vector<DominatorTree::UpdateType> Updates;
2498 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2499 for (auto *NewBB : NewBBs) {
2500 BlockFrequency NewBBFreq(0);
2501 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2502 for (auto *Pred : predecessors(NewBB)) {
2503 Updates.push_back({DominatorTree::Delete, Pred, BB});
2504 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2505 if (BFI) // Update frequencies between Pred -> NewBB.
2506 NewBBFreq += FreqMap.lookup(Pred);
2507 }
2508 if (BFI) // Apply the summed frequency to NewBB.
2509 BFI->setBlockFreq(NewBB, NewBBFreq);
2510 }
2511
2512 DTU->applyUpdatesPermissive(Updates);
2513 return NewBBs[0];
2514}
2515
2516bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2517 const Instruction *TI = BB->getTerminator();
2518 if (!TI || TI->getNumSuccessors() < 2)
2519 return false;
2520
2521 return hasValidBranchWeightMD(*TI);
2522}
2523
2524/// Update the block frequency of BB and branch weight and the metadata on the
2525/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2526/// Freq(PredBB->BB) / Freq(BB->SuccBB).
2527void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2528 BasicBlock *BB,
2529 BasicBlock *NewBB,
2530 BasicBlock *SuccBB,
2531 BlockFrequencyInfo *BFI,
2533 bool HasProfile) {
2534 assert(((BFI && BPI) || (!BFI && !BFI)) &&
2535 "Both BFI & BPI should either be set or unset");
2536
2537 if (!BFI) {
2538 assert(!HasProfile &&
2539 "It's expected to have BFI/BPI when profile info exists");
2540 return;
2541 }
2542
2543 // As the edge from PredBB to BB is deleted, we have to update the block
2544 // frequency of BB.
2545 auto BBOrigFreq = BFI->getBlockFreq(BB);
2546 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2547 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2548 BFI->setBlockFreq(BB, BBNewFreq);
2549
2550 // Collect updated outgoing edges' frequencies from BB and use them to update
2551 // edge probabilities.
2552 SmallVector<uint64_t, 4> BBSuccFreq;
2553 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
2554 auto BB2SuccBBFreq =
2555 BBOrigFreq * BPI->getEdgeProbability(BB, I.getSuccessorIndex());
2556 auto SuccFreq = (*I == SuccBB) ? BB2SuccBBFreq - NewBBFreq : BB2SuccBBFreq;
2557 BBSuccFreq.push_back(SuccFreq.getFrequency());
2558 }
2559
2560 uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq);
2561
2563 if (MaxBBSuccFreq == 0)
2564 BBSuccProbs.assign(BBSuccFreq.size(),
2565 {1, static_cast<unsigned>(BBSuccFreq.size())});
2566 else {
2567 for (uint64_t Freq : BBSuccFreq)
2568 BBSuccProbs.push_back(
2569 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2570 // Normalize edge probabilities so that they sum up to one.
2572 BBSuccProbs.end());
2573 }
2574
2575 // Update edge probabilities in BPI.
2576 BPI->setEdgeProbability(BB, BBSuccProbs);
2577
2578 // Update the profile metadata as well.
2579 //
2580 // Don't do this if the profile of the transformed blocks was statically
2581 // estimated. (This could occur despite the function having an entry
2582 // frequency in completely cold parts of the CFG.)
2583 //
2584 // In this case we don't want to suggest to subsequent passes that the
2585 // calculated weights are fully consistent. Consider this graph:
2586 //
2587 // check_1
2588 // 50% / |
2589 // eq_1 | 50%
2590 // \ |
2591 // check_2
2592 // 50% / |
2593 // eq_2 | 50%
2594 // \ |
2595 // check_3
2596 // 50% / |
2597 // eq_3 | 50%
2598 // \ |
2599 //
2600 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2601 // the overall probabilities are inconsistent; the total probability that the
2602 // value is either 1, 2 or 3 is 150%.
2603 //
2604 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2605 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2606 // the loop exit edge. Then based solely on static estimation we would assume
2607 // the loop was extremely hot.
2608 //
2609 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2610 // shouldn't make edges extremely likely or unlikely based solely on static
2611 // estimation.
2612 if (BBSuccProbs.size() >= 2 && HasProfile) {
2613 SmallVector<uint32_t, 4> Weights;
2614 for (auto Prob : BBSuccProbs)
2615 Weights.push_back(Prob.getNumerator());
2616
2617 auto TI = BB->getTerminator();
2618 setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI));
2619 }
2620}
2621
2622/// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2623/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2624/// If we can duplicate the contents of BB up into PredBB do so now, this
2625/// improves the odds that the branch will be on an analyzable instruction like
2626/// a compare.
2628 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2629 assert(!PredBBs.empty() && "Can't handle an empty set");
2630
2631 // If BB is a loop header, then duplicating this block outside the loop would
2632 // cause us to transform this into an irreducible loop, don't do this.
2633 // See the comments above findLoopHeaders for justifications and caveats.
2634 if (LoopHeaders.count(BB)) {
2635 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2636 << "' into predecessor block '" << PredBBs[0]->getName()
2637 << "' - it might create an irreducible loop!\n");
2638 return false;
2639 }
2640
2641 unsigned DuplicationCost = getJumpThreadDuplicationCost(
2642 TTI, BB, BB->getTerminator(), BBDupThreshold);
2643 if (DuplicationCost > BBDupThreshold) {
2644 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2645 << "' - Cost is too high: " << DuplicationCost << "\n");
2646 return false;
2647 }
2648
2649 // And finally, do it! Start by factoring the predecessors if needed.
2650 std::vector<DominatorTree::UpdateType> Updates;
2651 BasicBlock *PredBB;
2652 if (PredBBs.size() == 1)
2653 PredBB = PredBBs[0];
2654 else {
2655 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2656 << " common predecessors.\n");
2657 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2658 }
2659 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2660
2661 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2662 // of PredBB.
2663 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2664 << "' into end of '" << PredBB->getName()
2665 << "' to eliminate branch on phi. Cost: "
2666 << DuplicationCost << " block is:" << *BB << "\n");
2667
2668 // Unless PredBB ends with an unconditional branch, split the edge so that we
2669 // can just clone the bits from BB into the end of the new PredBB.
2670 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2671
2672 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2673 BasicBlock *OldPredBB = PredBB;
2674 PredBB = SplitEdge(OldPredBB, BB);
2675 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2676 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2677 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2678 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2679 }
2680
2681 // We are going to have to map operands from the original BB block into the
2682 // PredBB block. Evaluate PHI nodes in BB.
2683 ValueToValueMapTy ValueMapping;
2684
2685 // Remember the position before the inserted instructions.
2686 auto RItBeforeInsertPt = std::next(OldPredBranch->getReverseIterator());
2687
2688 BasicBlock::iterator BI = BB->begin();
2689 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2690 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2691 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2692 // mapping and using it to remap operands in the cloned instructions.
2693 for (; BI != BB->end(); ++BI) {
2694 Instruction *New = BI->clone();
2695 New->insertInto(PredBB, OldPredBranch->getIterator());
2696
2697 // Remap operands to patch up intra-block references.
2698 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2699 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2700 ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2701 if (I != ValueMapping.end())
2702 New->setOperand(i, I->second);
2703 }
2704
2705 // Remap debug variable operands.
2706 remapDebugVariable(ValueMapping, New);
2707 if (const DebugLoc &DL = New->getDebugLoc())
2708 mapAtomInstance(DL, ValueMapping);
2709
2710 // If this instruction can be simplified after the operands are updated,
2711 // just use the simplified value instead. This frequently happens due to
2712 // phi translation.
2714 New,
2715 {BB->getDataLayout(), TLI, nullptr, nullptr, New})) {
2716 ValueMapping[&*BI] = IV;
2717 if (!New->mayHaveSideEffects()) {
2718 New->eraseFromParent();
2719 New = nullptr;
2720 // Clone debug-info on the elided instruction to the destination
2721 // position.
2722 OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
2723 }
2724 } else {
2725 ValueMapping[&*BI] = New;
2726 }
2727 if (New) {
2728 // Otherwise, insert the new instruction into the block.
2729 New->setName(BI->getName());
2730 // Clone across any debug-info attached to the old instruction.
2731 New->cloneDebugInfoFrom(&*BI);
2732 // Update Dominance from simplified New instruction operands.
2733 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2734 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2735 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2736 }
2737 }
2738
2739 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2740 // add entries to the PHI nodes for branch from PredBB now.
2741 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2742 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2743 ValueMapping);
2744 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2745 ValueMapping);
2746
2747 // KeyInstructions: Remap the cloned instructions' atoms only.
2748 remapSourceAtoms(ValueMapping, std::prev(RItBeforeInsertPt)->getIterator(),
2749 OldPredBranch->getIterator());
2750
2751 updateSSA(BB, PredBB, ValueMapping);
2752
2753 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2754 // that we nuked.
2755 BB->removePredecessor(PredBB, true);
2756
2757 // Remove the unconditional branch at the end of the PredBB block.
2758 OldPredBranch->eraseFromParent();
2759 if (auto *BPI = getBPI())
2760 BPI->copyEdgeProbabilities(BB, PredBB);
2761 DTU->applyUpdatesPermissive(Updates);
2762
2763 ++NumDupes;
2764 return true;
2765}
2766
2767// Pred is a predecessor of BB with an unconditional branch to BB. SI is
2768// a Select instruction in Pred. BB has other predecessors and SI is used in
2769// a PHI node in BB. SI has no other use.
2770// A new basic block, NewBB, is created and SI is converted to compare and
2771// conditional branch. SI is erased from parent.
2773 SelectInst *SI, PHINode *SIUse,
2774 unsigned Idx) {
2775 // Expand the select.
2776 //
2777 // Pred --
2778 // | v
2779 // | NewBB
2780 // | |
2781 // |-----
2782 // v
2783 // BB
2784 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2785 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2786 BB->getParent(), BB);
2787 // Move the unconditional branch to NewBB.
2788 PredTerm->removeFromParent();
2789 PredTerm->insertInto(NewBB, NewBB->end());
2790 // Create a conditional branch and update PHI nodes.
2791 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2792 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2793 BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2794 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2795 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2796
2797 uint64_t TrueWeight = 1;
2798 uint64_t FalseWeight = 1;
2799 // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2800 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2801 (TrueWeight + FalseWeight) != 0) {
2804 TrueWeight, TrueWeight + FalseWeight));
2806 FalseWeight, TrueWeight + FalseWeight));
2807 // Update BPI if exists.
2808 if (auto *BPI = getBPI())
2809 BPI->setEdgeProbability(Pred, BP);
2810 }
2811 // Set the block frequency of NewBB.
2812 if (auto *BFI = getBFI()) {
2813 if ((TrueWeight + FalseWeight) == 0) {
2814 TrueWeight = 1;
2815 FalseWeight = 1;
2816 }
2818 TrueWeight, TrueWeight + FalseWeight);
2819 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2820 BFI->setBlockFreq(NewBB, NewBBFreq);
2821 }
2822
2823 // The select is now dead.
2824 SI->eraseFromParent();
2825 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2826 {DominatorTree::Insert, Pred, NewBB}});
2827
2828 // Update any other PHI nodes in BB.
2829 for (BasicBlock::iterator BI = BB->begin();
2830 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2831 if (Phi != SIUse)
2832 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2833}
2834
2836 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2837
2838 if (!CondPHI || CondPHI->getParent() != BB)
2839 return false;
2840
2841 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2842 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2844
2845 // The second and third condition can be potentially relaxed. Currently
2846 // the conditions help to simplify the code and allow us to reuse existing
2847 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2848 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2849 continue;
2850
2851 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2852 if (!PredTerm || !PredTerm->isUnconditional())
2853 continue;
2854
2855 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2856 return true;
2857 }
2858 return false;
2859}
2860
2861/// tryToUnfoldSelect - Look for blocks of the form
2862/// bb1:
2863/// %a = select
2864/// br bb2
2865///
2866/// bb2:
2867/// %p = phi [%a, %bb1] ...
2868/// %c = icmp %p
2869/// br i1 %c
2870///
2871/// And expand the select into a branch structure if one of its arms allows %c
2872/// to be folded. This later enables threading from bb1 over bb2.
2875 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2876 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2877
2878 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2879 CondLHS->getParent() != BB)
2880 return false;
2881
2882 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2883 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2885
2886 // Look if one of the incoming values is a select in the corresponding
2887 // predecessor.
2888 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2889 continue;
2890
2891 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2892 if (!PredTerm || !PredTerm->isUnconditional())
2893 continue;
2894
2895 // Now check if one of the select values would allow us to constant fold the
2896 // terminator in BB. We don't do the transform if both sides fold, those
2897 // cases will be threaded in any case.
2898 Constant *LHSRes =
2899 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2900 CondRHS, Pred, BB, CondCmp);
2901 Constant *RHSRes =
2902 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2903 CondRHS, Pred, BB, CondCmp);
2904 if ((LHSRes || RHSRes) && LHSRes != RHSRes) {
2905 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2906 return true;
2907 }
2908 }
2909 return false;
2910}
2911
2912/// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2913/// same BB in the form
2914/// bb:
2915/// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2916/// %s = select %p, trueval, falseval
2917///
2918/// or
2919///
2920/// bb:
2921/// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2922/// %c = cmp %p, 0
2923/// %s = select %c, trueval, falseval
2924///
2925/// And expand the select into a branch structure. This later enables
2926/// jump-threading over bb in this pass.
2927///
2928/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2929/// select if the associated PHI has at least one constant. If the unfolded
2930/// select is not jump-threaded, it will be folded again in the later
2931/// optimizations.
2933 // This transform would reduce the quality of msan diagnostics.
2934 // Disable this transform under MemorySanitizer.
2935 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2936 return false;
2937
2938 // If threading this would thread across a loop header, don't thread the edge.
2939 // See the comments above findLoopHeaders for justifications and caveats.
2940 if (LoopHeaders.count(BB))
2941 return false;
2942
2943 for (BasicBlock::iterator BI = BB->begin();
2944 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2945 // Look for a Phi having at least one constant incoming value.
2946 if (llvm::all_of(PN->incoming_values(),
2947 [](Value *V) { return !isa<ConstantInt>(V); }))
2948 continue;
2949
2950 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2951 using namespace PatternMatch;
2952
2953 // Check if SI is in BB and use V as condition.
2954 if (SI->getParent() != BB)
2955 return false;
2956 Value *Cond = SI->getCondition();
2957 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2958 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2959 };
2960
2961 SelectInst *SI = nullptr;
2962 for (Use &U : PN->uses()) {
2963 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2964 // Look for a ICmp in BB that compares PN with a constant and is the
2965 // condition of a Select.
2966 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2967 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2968 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2969 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2970 SI = SelectI;
2971 break;
2972 }
2973 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2974 // Look for a Select in BB that uses PN as condition.
2975 if (isUnfoldCandidate(SelectI, U.get())) {
2976 SI = SelectI;
2977 break;
2978 }
2979 }
2980 }
2981
2982 if (!SI)
2983 continue;
2984 // Expand the select.
2985 Value *Cond = SI->getCondition();
2986 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) {
2987 Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator());
2989 }
2990 MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2991 Instruction *Term =
2992 SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2993 BasicBlock *SplitBB = SI->getParent();
2994 BasicBlock *NewBB = Term->getParent();
2995 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator());
2996 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2997 NewPN->addIncoming(SI->getFalseValue(), BB);
2998 NewPN->setDebugLoc(SI->getDebugLoc());
2999 SI->replaceAllUsesWith(NewPN);
3000 SI->eraseFromParent();
3001 // NewBB and SplitBB are newly created blocks which require insertion.
3002 std::vector<DominatorTree::UpdateType> Updates;
3003 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
3004 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
3005 Updates.push_back({DominatorTree::Insert, BB, NewBB});
3006 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
3007 // BB's successors were moved to SplitBB, update DTU accordingly.
3008 for (auto *Succ : successors(SplitBB)) {
3009 Updates.push_back({DominatorTree::Delete, BB, Succ});
3010 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
3011 }
3012 DTU->applyUpdatesPermissive(Updates);
3013 return true;
3014 }
3015 return false;
3016}
3017
3018/// Try to propagate a guard from the current BB into one of its predecessors
3019/// in case if another branch of execution implies that the condition of this
3020/// guard is always true. Currently we only process the simplest case that
3021/// looks like:
3022///
3023/// Start:
3024/// %cond = ...
3025/// br i1 %cond, label %T1, label %F1
3026/// T1:
3027/// br label %Merge
3028/// F1:
3029/// br label %Merge
3030/// Merge:
3031/// %condGuard = ...
3032/// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3033///
3034/// And cond either implies condGuard or !condGuard. In this case all the
3035/// instructions before the guard can be duplicated in both branches, and the
3036/// guard is then threaded to one of them.
3038 using namespace PatternMatch;
3039
3040 // We only want to deal with two predecessors.
3041 BasicBlock *Pred1, *Pred2;
3042 auto PI = pred_begin(BB), PE = pred_end(BB);
3043 if (PI == PE)
3044 return false;
3045 Pred1 = *PI++;
3046 if (PI == PE)
3047 return false;
3048 Pred2 = *PI++;
3049 if (PI != PE)
3050 return false;
3051 if (Pred1 == Pred2)
3052 return false;
3053
3054 // Try to thread one of the guards of the block.
3055 // TODO: Look up deeper than to immediate predecessor?
3056 auto *Parent = Pred1->getSinglePredecessor();
3057 if (!Parent || Parent != Pred2->getSinglePredecessor())
3058 return false;
3059
3060 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3061 for (auto &I : *BB)
3062 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3063 return true;
3064
3065 return false;
3066}
3067
3068/// Try to propagate the guard from BB which is the lower block of a diamond
3069/// to one of its branches, in case if diamond's condition implies guard's
3070/// condition.
3072 BranchInst *BI) {
3073 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3074 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3075 Value *GuardCond = Guard->getArgOperand(0);
3076 Value *BranchCond = BI->getCondition();
3077 BasicBlock *TrueDest = BI->getSuccessor(0);
3078 BasicBlock *FalseDest = BI->getSuccessor(1);
3079
3080 auto &DL = BB->getDataLayout();
3081 bool TrueDestIsSafe = false;
3082 bool FalseDestIsSafe = false;
3083
3084 // True dest is safe if BranchCond => GuardCond.
3085 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3086 if (Impl && *Impl)
3087 TrueDestIsSafe = true;
3088 else {
3089 // False dest is safe if !BranchCond => GuardCond.
3090 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3091 if (Impl && *Impl)
3092 FalseDestIsSafe = true;
3093 }
3094
3095 if (!TrueDestIsSafe && !FalseDestIsSafe)
3096 return false;
3097
3098 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3099 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3100
3101 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3102 Instruction *AfterGuard = Guard->getNextNode();
3103 unsigned Cost =
3104 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3105 if (Cost > BBDupThreshold)
3106 return false;
3107 // Duplicate all instructions before the guard and the guard itself to the
3108 // branch where implication is not proved.
3110 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3111 assert(GuardedBlock && "Could not create the guarded block?");
3112 // Duplicate all instructions before the guard in the unguarded branch.
3113 // Since we have successfully duplicated the guarded block and this block
3114 // has fewer instructions, we expect it to succeed.
3116 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3117 assert(UnguardedBlock && "Could not create the unguarded block?");
3118 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3119 << GuardedBlock->getName() << "\n");
3120 // Some instructions before the guard may still have uses. For them, we need
3121 // to create Phi nodes merging their copies in both guarded and unguarded
3122 // branches. Those instructions that have no uses can be just removed.
3124 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3125 if (!isa<PHINode>(&*BI))
3126 ToRemove.push_back(&*BI);
3127
3129 assert(InsertionPoint != BB->end() && "Empty block?");
3130 // Substitute with Phis & remove.
3131 for (auto *Inst : reverse(ToRemove)) {
3132 if (!Inst->use_empty()) {
3133 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3134 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3135 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3136 NewPN->setDebugLoc(Inst->getDebugLoc());
3138 Inst->replaceAllUsesWith(NewPN);
3139 }
3140 Inst->dropDbgRecords();
3141 Inst->eraseFromParent();
3142 }
3143 return true;
3144}
3145
3146PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3150
3151 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3152 // TODO: Would be nice to verify BPI/BFI consistency as well.
3153 return PA;
3154}
3155
3156template <typename AnalysisT>
3157typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3158 assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3159
3160 // If there were no changes since last call to 'runExternalAnalysis' then all
3161 // analysis is either up to date or explicitly invalidated. Just go ahead and
3162 // run the "external" analysis.
3163 if (!ChangedSinceLastAnalysisUpdate) {
3164 assert(!DTU->hasPendingUpdates() &&
3165 "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3166 // Run the "external" analysis.
3167 return &FAM->getResult<AnalysisT>(*F);
3168 }
3169 ChangedSinceLastAnalysisUpdate = false;
3170
3171 auto PA = getPreservedAnalysis();
3172 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3173 // as preserved.
3174 PA.preserve<BranchProbabilityAnalysis>();
3175 PA.preserve<BlockFrequencyAnalysis>();
3176 // Report everything except explicitly preserved as invalid.
3177 FAM->invalidate(*F, PA);
3178 // Update DT/PDT.
3179 DTU->flush();
3180 // Make sure DT/PDT are valid before running "external" analysis.
3181 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3182 assert((!DTU->hasPostDomTree() ||
3183 DTU->getPostDomTree().verify(
3184 PostDominatorTree::VerificationLevel::Fast)));
3185 // Run the "external" analysis.
3186 auto *Result = &FAM->getResult<AnalysisT>(*F);
3187 // Update analysis JumpThreading depends on and not explicitly preserved.
3188 TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3189 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3190 AA = &FAM->getResult<AAManager>(*F);
3191
3192 return Result;
3193}
3194
3195BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3196 if (!BPI) {
3197 assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3198 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3199 }
3200 return BPI;
3201}
3202
3203BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3204 if (!BFI) {
3205 assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3206 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3207 }
3208 return BFI;
3209}
3210
3211// Important note on validity of BPI/BFI. JumpThreading tries to preserve
3212// BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3213// Otherwise, new instance of BPI/BFI is created (up to date by definition).
3214BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3215 auto *Res = getBPI();
3216 if (Res)
3217 return Res;
3218
3219 if (Force)
3220 BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3221
3222 return BPI;
3223}
3224
3225BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3226 auto *Res = getBFI();
3227 if (Res)
3228 return Res;
3229
3230 if (Force)
3231 BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3232
3233 return BFI;
3234}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
ReachingDefInfo InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
static unsigned getBestDestForJumpOnUndef(BasicBlock *BB)
GetBestDestForBranchOnUndef - If we determine that the specified block ends in an undefined jump,...
static cl::opt< unsigned > PhiDuplicateThreshold("jump-threading-phi-threshold", cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), cl::Hidden)
static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, BasicBlock *KnownAtEndOfBB)
static cl::opt< unsigned > BBDuplicateThreshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden)
static cl::opt< bool > ThreadAcrossLoopHeaders("jump-threading-across-loop-headers", cl::desc("Allow JumpThreading to thread across loop headers, for testing"), cl::init(false), cl::Hidden)
static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, BasicBlock *BB, Instruction *StopAt, unsigned Threshold)
Return the cost of duplicating a piece of this block from first non-phi and before StopAt instruction...
static void remapSourceAtoms(ValueToValueMapTy &VM, BasicBlock::iterator Begin, BasicBlock::iterator End)
static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, BasicBlock *OldPred, BasicBlock *NewPred, ValueToValueMapTy &ValueMap)
addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new predecessor to the PHIBB block.
static BasicBlock * findMostPopularDest(BasicBlock *BB, const SmallVectorImpl< std::pair< BasicBlock *, BasicBlock * > > &PredToDestList)
findMostPopularDest - The specified list contains multiple possible threadable destinations.
static Constant * getKnownConstant(Value *Val, ConstantPreference Preference)
getKnownConstant - Helper method to determine if we can thread over a terminator with the given value...
static cl::opt< unsigned > ImplicationSearchThreshold("jump-threading-implication-search-threshold", cl::desc("The number of predecessors to search for a stronger " "condition to use to thread over a weaker condition"), cl::init(3), cl::Hidden)
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB)
Return true if Op is an instruction defined in the given block.
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB)
static bool hasAddressTakenAndUsed(BasicBlock *BB)
See the comments on JumpThreadingPass.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
#define P(N)
ppc ctr loops verify
FunctionAnalysisManager FAM
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI DbgMarker * createMarker(Instruction *I)
Attach a DbgMarker to the given instruction.
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition BasicBlock.h:690
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
LLVM_ABI bool hasNPredecessors(unsigned N) const
Return true if this block has exactly N predecessors.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI DbgMarker * getMarker(InstListType::iterator It)
Return the DbgMarker for the position given by It, so that DbgRecords can be inserted there.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
LLVM_ABI bool isLandingPad() const
Return true if this basic block is a landing pad.
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition BasicBlock.h:707
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
LLVM_ABI void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
void disableDominatorTree()
Disable the use of the dominator tree during alias analysis queries.
The address of a basic block.
Definition Constants.h:904
static LLVM_ABI BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
LLVM_ABI BlockFrequency getBlockFreq(const BasicBlock *BB) const
getblockFreq - Return block frequency.
Conditional or Unconditional Branch instruction.
bool isConditional() const
unsigned getNumSuccessors() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
uint32_t getNumerator() const
BranchProbability getCompl() const
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Value * getArgOperand(unsigned i) const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition InstrTypes.h:448
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:765
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getNot(Constant *C)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
Definition Constants.h:225
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:219
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Per-instruction record of debug-info.
LLVM_ABI iterator_range< simple_ilist< DbgRecord >::iterator > cloneDebugInfoFrom(DbgMarker *From, std::optional< simple_ilist< DbgRecord >::iterator > FromHere, bool InsertAtHead=false)
Clone all DbgMarkers from From into this marker.
LLVM_ABI const BasicBlock * getParent() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getDropped()
Definition DebugLoc.h:163
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
This class represents a freeze function that returns random concrete value if an operand is either a ...
const BasicBlock & getEntryBlock() const
Definition Function.h:807
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
LLVM_ABI iterator_range< simple_ilist< DbgRecord >::iterator > cloneDebugInfoFrom(const Instruction *From, std::optional< simple_ilist< DbgRecord >::iterator > FromHere=std::nullopt, bool InsertAtHead=false)
Clone any debug-info attached to From onto this instruction.
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
bool isSpecialTerminator() const
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
A wrapper class for inspecting calls to intrinsic functions.
LLVM_ABI bool simplifyPartiallyRedundantLoad(LoadInst *LI)
simplifyPartiallyRedundantLoad - If LoadI is an obviously partially redundant load instruction,...
LLVM_ABI bool processBranchOnXOR(BinaryOperator *BO)
processBranchOnXOR - We have an otherwise unthreadable conditional branch on a xor instruction in the...
LLVM_ABI bool processGuards(BasicBlock *BB)
Try to propagate a guard from the current BB into one of its predecessors in case if another branch o...
LLVM_ABI void updateSSA(BasicBlock *BB, BasicBlock *NewBB, ValueToValueMapTy &ValueMapping)
Update the SSA form.
bool computeValueKnownInPredecessors(Value *V, BasicBlock *BB, jumpthreading::PredValueInfo &Result, jumpthreading::ConstantPreference Preference, Instruction *CxtI=nullptr)
LLVM_ABI void findLoopHeaders(Function &F)
findLoopHeaders - We do not want jump threading to turn proper loop structures into irreducible loops...
LLVM_ABI bool maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB)
Merge basic block BB into its sole predecessor if possible.
LLVM_ABI JumpThreadingPass(int T=-1)
LLVM_ABI void cloneInstructions(ValueToValueMapTy &ValueMapping, BasicBlock::iterator BI, BasicBlock::iterator BE, BasicBlock *NewBB, BasicBlock *PredBB)
Clone instructions in range [BI, BE) to NewBB.
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI Constant * evaluateOnPredecessorEdge(BasicBlock *BB, BasicBlock *PredPredBB, Value *cond, const DataLayout &DL)
LLVM_ABI bool processBranchOnPHI(PHINode *PN)
processBranchOnPHI - We have an otherwise unthreadable conditional branch on a PHI node (or freeze PH...
LLVM_ABI bool maybethreadThroughTwoBasicBlocks(BasicBlock *BB, Value *Cond)
Attempt to thread through two successive basic blocks.
LLVM_ABI bool computeValueKnownInPredecessorsImpl(Value *V, BasicBlock *BB, jumpthreading::PredValueInfo &Result, jumpthreading::ConstantPreference Preference, SmallPtrSet< Value *, 4 > &RecursionSet, Instruction *CxtI=nullptr)
computeValueKnownInPredecessors - Given a basic block BB and a value V, see if we can infer that the ...
LLVM_ABI void unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, SelectInst *SI, PHINode *SIUse, unsigned Idx)
DomTreeUpdater * getDomTreeUpdater() const
LLVM_ABI bool runImpl(Function &F, FunctionAnalysisManager *FAM, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, LazyValueInfo *LVI, AAResults *AA, std::unique_ptr< DomTreeUpdater > DTU, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI)
LLVM_ABI bool processThreadableEdges(Value *Cond, BasicBlock *BB, jumpthreading::ConstantPreference Preference, Instruction *CxtI=nullptr)
LLVM_ABI bool processBlock(BasicBlock *BB)
processBlock - If there are any predecessors whose control can be threaded through to a successor,...
LLVM_ABI bool processImpliedCondition(BasicBlock *BB)
LLVM_ABI bool duplicateCondBranchOnPHIIntoPred(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &PredBBs)
duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch to BB which contains an i1...
LLVM_ABI void threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, BasicBlock *PredBB, BasicBlock *BB, BasicBlock *SuccBB)
LLVM_ABI bool tryThreadEdge(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &PredBBs, BasicBlock *SuccBB)
tryThreadEdge - Thread an edge if it's safe and profitable to do so.
LLVM_ABI bool tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB)
tryToUnfoldSelect - Look for blocks of the form bb1: a = select br bb2
LLVM_ABI bool tryToUnfoldSelectInCurrBB(BasicBlock *BB)
tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the same BB in the form bb: p = ...
LLVM_ABI void threadEdge(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &PredBBs, BasicBlock *SuccBB)
threadEdge - We have decided that it is safe and profitable to factor the blocks in PredBBs to one pr...
LLVM_ABI bool threadGuard(BasicBlock *BB, IntrinsicInst *Guard, BranchInst *BI)
Try to propagate the guard from BB which is the lower block of a diamond to one of its branches,...
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Analysis to compute lazy value information.
This pass computes, caches, and vends lazy value constraint information.
An instruction for reading from memory.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
bool isUnordered() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
static LocationSize precise(uint64_t Value)
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
Representation for a specific memory location.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition SSAUpdater.h:39
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
void UpdateDebugValues(Instruction *I)
Rewrite debug value intrinsics to conform to a new SSA form.
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
This class represents the LLVM 'select' instruction.
size_type size() const
Definition SmallPtrSet.h:99
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Multiway switch.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCC_Free
Expected to fold away in lowering.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
'undef' values are things that do not have specified contents.
Definition Constants.h:1430
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
See the file comment.
Definition ValueMap.h:84
iterator find(const KeyT &Val)
Definition ValueMap.h:160
iterator end()
Definition ValueMap.h:139
ValueMapIteratorImpl< MapT, const Value *, false > iterator
Definition ValueMap.h:135
DMAtomT AtomMap
Map {(InlinedAt, old atom number) -> new atom number}.
Definition ValueMap.h:123
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition Value.cpp:1091
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
Changed
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
A private "module" namespace for types and utilities used by JumpThreading.
SmallVector< std::pair< Constant *, BasicBlock * >, 8 > PredValueInfoTy
SmallVectorImpl< std::pair< Constant *, BasicBlock * > > PredValueInfo
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition Local.cpp:134
static cl::opt< unsigned long > StopAt("sbvec-stop-at", cl::init(StopAtDisabled), cl::Hidden, cl::desc("Vectorize if the invocation count is < than this. 0 " "disables vectorization."))
InstructionCost Cost
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
auto pred_end(const MachineBasicBlock *BB)
LLVM_ABI unsigned replaceNonLocalUsesWith(Instruction *From, Value *To)
Definition Local.cpp:3220
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
constexpr from_range_t from_range
LLVM_ABI MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
LLVM_ABI Value * findAvailablePtrLoadStore(const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst)
Scan backwards to see if we have the value of the given pointer available locally within a small numb...
Definition Loads.cpp:675
LLVM_ABI void remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst)
Remap the operands of the debug records attached to Inst, and the operands of Inst itself if it's a d...
Definition Local.cpp:3456
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
auto pred_size(const MachineBasicBlock *BB)
LLVM_ABI bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr)
Scan the specified basic block and try to simplify any instructions in it and recursively delete dead...
Definition Local.cpp:721
LLVM_ABI void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
LLVM_ABI Value * FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=DefMaxInstsToScan, BatchAAResults *AA=nullptr, bool *IsLoadCSE=nullptr, unsigned *NumScanedInst=nullptr)
Scan backwards to see if we have the value of the given load available locally within a small number ...
Definition Loads.cpp:542
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI bool hasBranchWeightOrigin(const Instruction &I)
Check if Branch Weight Metadata has an "expected" field from an llvm.expect* intrinsic.
LLVM_ABI BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
BB is known to contain an unconditional branch, and contains no instructions other than PHI nodes,...
Definition Local.cpp:1140
LLVM_ABI bool HasLoopOrEntryConvergenceToken(const BasicBlock *BB)
Check if the given basic block contains any loop or entry convergent intrinsic instructions.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI bool hasValidBranchWeightMD(const Instruction &I)
Checks if an instructions has valid Branch Weight Metadata.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
auto make_first_range(ContainerTy &&c)
Given a container of pairs, return a range over the first elements.
Definition STLExtras.h:1397
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI void cloneNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, DenseMap< MDNode *, MDNode * > &ClonedScopes, StringRef Ext, LLVMContext &Context)
Duplicate the specified list of noalias decl scopes.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI cl::opt< unsigned > DefMaxInstsToScan
The default number of maximum instructions to scan in the block, used by FindAvailableLoadedValue().
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method transforms the landing pad, OrigBB, by introducing two new basic blocks into the function...
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
LLVM_ABI void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
Definition Local.cpp:3094
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
TargetTransformInfo TTI
LLVM_ABI void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
BB is a block with one predecessor and its predecessor is known to have one successor (BB!...
Definition Local.cpp:761
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition STLExtras.h:2006
LLVM_ABI void adaptNoAliasScopes(llvm::Instruction *I, const DenseMap< MDNode *, MDNode * > &ClonedScopes, LLVMContext &Context)
Adapt the metadata for the specified instruction according to the provided mapping.
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
Definition STLExtras.h:2042
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
auto make_second_range(ContainerTy &&c)
Given a container of pairs, return a range over the second elements.
Definition STLExtras.h:1407
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
auto pred_begin(const MachineBasicBlock *BB)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2132
auto predecessors(const MachineBasicBlock *BB)
SuccIterator< Instruction, BasicBlock > succ_iterator
Definition CFG.h:244
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
LLVM_ABI Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition STLExtras.h:1594
LLVM_ABI void identifyNoAliasScopesToClone(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< MDNode * > &NoAliasDeclScopes)
Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified basic blocks and extract ...
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void FindFunctionBackedges(const Function &F, SmallVectorImpl< std::pair< const BasicBlock *, const BasicBlock * > > &Result)
Analyze the specified function to find all of the loop backedges in the function and return them.
Definition CFG.cpp:35
LLVM_ABI void RemapSourceAtom(Instruction *I, ValueToValueMapTy &VM)
Remap source location atom.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void mapAtomInstance(const DebugLoc &DL, ValueToValueMapTy &VMap)
Mark a cloned instruction as a new instance so that its source loc can be updated when remapped.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
Function object to check whether the second component of a container supported by std::get (like std:...
Definition STLExtras.h:1446