71#define DEBUG_TYPE "loop-accesses"
75 cl::desc(
"Sets the SIMD width. Zero is autoselect."),
81 cl::desc(
"Sets the vectorization interleave count. "
82 "Zero is autoselect."),
89 cl::desc(
"When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
97 cl::desc(
"Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
107 cl::desc(
"Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
124 cl::desc(
"Enable symbolic stride memory access versioning"));
129 "store-to-load-forwarding-conflict-detection",
cl::Hidden,
130 cl::desc(
"Enable conflict detection in loop-access analysis"),
135 cl::desc(
"Maximum recursion depth when finding forked SCEVs (default = 5)"),
140 cl::desc(
"Speculate that non-constant strides are unit in LAA"),
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
151 return ::VectorizationInterleave.getNumOccurrences() > 0;
162 if (SI == PtrToStride.
end())
166 const SCEV *StrideSCEV = SI->second;
171 assert(isa<SCEVUnknown>(StrideSCEV) &&
"shouldn't be in map");
179 <<
" by: " << *Expr <<
"\n");
185 :
High(RtCheck.Pointers[Index].
End),
Low(RtCheck.Pointers[Index].Start),
189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
194 const Loop *Lp,
const SCEV *PtrExpr,
Type *AccessTy,
const SCEV *MaxBECount,
196 DenseMap<std::pair<const SCEV *, Type *>,
198 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
201 {{PtrExpr, AccessTy},
205 PtrBoundsPair = &Iter->second;
212 ScStart = ScEnd = PtrExpr;
213 }
else if (
auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
214 ScStart = AR->getStart();
215 ScEnd = AR->evaluateAtIteration(MaxBECount, *SE);
216 const SCEV *Step = AR->getStepRecurrence(*SE);
220 if (
const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
221 if (CStep->getValue()->isNegative())
242 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
244 *PtrBoundsPair = Res;
251 Type *AccessTy,
bool WritePtr,
252 unsigned DepSetId,
unsigned ASId,
258 assert(!isa<SCEVCouldNotCompute>(ScStart) &&
259 !isa<SCEVCouldNotCompute>(ScEnd) &&
260 "must be able to compute both start and end expressions");
261 Pointers.emplace_back(
Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
265bool RuntimePointerChecking::tryToCreateDiffCheck(
288 if (AccSrc.
size() != 1 || AccSink.
size() != 1)
292 if (AccSink[0] < AccSrc[0])
295 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
296 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
307 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
311 SinkAR->getLoop()->getHeader()->getDataLayout();
313 std::max(
DL.getTypeAllocSize(SrcTy),
DL.getTypeAllocSize(DstTy));
318 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
319 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
320 Step->getAPInt().abs() != AllocSize)
328 if (Step->getValue()->isNegative())
333 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
334 isa<SCEVCouldNotCompute>(SrcStartInt))
337 const Loop *InnerLoop = SrcAR->getLoop();
343 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
344 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
345 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
346 const Loop *StartARLoop = SrcStartAR->getLoop();
347 if (StartARLoop == SinkStartAR->getLoop() &&
352 SrcStartAR->getStepRecurrence(*SE) !=
353 SinkStartAR->getStepRecurrence(*SE)) {
354 LLVM_DEBUG(
dbgs() <<
"LAA: Not creating diff runtime check, since these "
355 "cannot be hoisted out of the outer loop\n");
361 <<
"SrcStart: " << *SrcStartInt <<
'\n'
362 <<
"SinkStartInt: " << *SinkStartInt <<
'\n');
363 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
364 Src->NeedsFreeze ||
Sink->NeedsFreeze);
377 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
385void RuntimePointerChecking::generateChecks(
388 groupChecks(DepCands, UseDependencies);
394 for (
const auto &
I : M.Members)
395 for (
const auto &J :
N.Members)
408 return Diff->isNegative() ? J :
I;
415 RtCheck.
Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
416 RtCheck.
Pointers[Index].NeedsFreeze, *RtCheck.SE);
424 "all pointers in a checking group must be in the same address space");
450void RuntimePointerChecking::groupChecks(
496 if (!UseDependencies) {
502 unsigned TotalComparisons = 0;
505 for (
unsigned Index = 0; Index <
Pointers.size(); ++Index)
506 PositionMap[
Pointers[Index].PointerValue].push_back(Index);
534 auto PointerI = PositionMap.
find(
MI->getPointer());
536 "pointer in equivalence class not found in PositionMap");
537 for (
unsigned Pointer : PointerI->second) {
554 if (Group.addPointer(Pointer, *
this)) {
564 Groups.emplace_back(Pointer, *
this);
577 return (PtrToPartition[PtrIdx1] != -1 &&
578 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
599 unsigned Depth)
const {
601 for (
const auto &[Check1, Check2] : Checks) {
602 const auto &
First = Check1->Members, &Second = Check2->Members;
606 OS.
indent(
Depth + 2) <<
"Comparing group (" << Check1 <<
"):\n";
607 for (
unsigned K :
First)
610 OS.
indent(
Depth + 2) <<
"Against group (" << Check2 <<
"):\n";
611 for (
unsigned K : Second)
624 OS.
indent(
Depth + 4) <<
"(Low: " << *CG.Low <<
" High: " << *CG.High
626 for (
unsigned Member : CG.Members) {
638class AccessAnalysis {
648 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
649 LoopAliasScopes(LoopAliasScopes) {
651 BAA.enableCrossIterationMode();
657 AST.add(adjustLoc(Loc));
658 Accesses[MemAccessInfo(
Ptr,
false)].insert(AccessTy);
660 ReadOnlyPtr.insert(
Ptr);
666 AST.add(adjustLoc(Loc));
667 Accesses[MemAccessInfo(
Ptr,
true)].insert(AccessTy);
681 Loop *TheLoop,
unsigned &RunningDepId,
682 unsigned ASId,
bool ShouldCheckStride,
bool Assume);
691 Value *&UncomputablePtr,
bool ShouldCheckWrap =
false);
695 void buildDependenceSets() {
696 processMemAccesses();
704 bool isDependencyCheckNeeded()
const {
return !CheckDeps.empty(); }
712 const MemAccessInfoList &getDependenciesToCheck()
const {
return CheckDeps; }
736 return LoopAliasScopes.contains(cast<MDNode>(Scope));
745 void processMemAccesses();
749 PtrAccessMap Accesses;
755 MemAccessInfoList CheckDeps;
782 bool IsRTCheckAnalysisNeeded =
false;
800 const SCEV *PtrScev,
Loop *L,
bool Assume) {
819 Type *AccessTy,
Loop *L,
bool Assume) {
824 return getPtrStride(PSE, AccessTy,
Ptr, L, Strides, Assume).has_value() ||
834 while (!WorkList.
empty()) {
838 auto *PN = dyn_cast<PHINode>(
Ptr);
842 if (PN && InnermostLoop.
contains(PN->getParent()) &&
843 PN->getParent() != InnermostLoop.
getHeader()) {
844 for (
const Use &Inc : PN->incoming_values())
877 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(
Ptr) ||
878 !isa<Instruction>(
Ptr) ||
Depth == 0) {
889 auto GetBinOpExpr = [&SE](
unsigned Opcode,
const SCEV *L,
const SCEV *R) {
891 case Instruction::Add:
893 case Instruction::Sub:
901 unsigned Opcode =
I->getOpcode();
903 case Instruction::GetElementPtr: {
904 auto *
GEP = cast<GetElementPtrInst>(
I);
905 Type *SourceTy =
GEP->getSourceElementType();
908 if (
I->getNumOperands() != 2 || SourceTy->
isVectorTy()) {
918 bool NeedsFreeze =
any_of(BaseScevs, UndefPoisonCheck) ||
919 any_of(OffsetScevs, UndefPoisonCheck);
924 if (OffsetScevs.
size() == 2 && BaseScevs.
size() == 1)
926 else if (BaseScevs.
size() == 2 && OffsetScevs.
size() == 1)
929 ScevList.emplace_back(Scev, NeedsFreeze);
947 ScevList.emplace_back(SE->
getAddExpr(get<0>(BaseScevs[0]), Scaled1),
949 ScevList.emplace_back(SE->
getAddExpr(get<0>(BaseScevs[1]), Scaled2),
953 case Instruction::Select: {
960 if (ChildScevs.
size() == 2) {
961 ScevList.push_back(ChildScevs[0]);
962 ScevList.push_back(ChildScevs[1]);
967 case Instruction::PHI: {
972 if (
I->getNumOperands() == 2) {
976 if (ChildScevs.
size() == 2) {
977 ScevList.push_back(ChildScevs[0]);
978 ScevList.push_back(ChildScevs[1]);
983 case Instruction::Add:
984 case Instruction::Sub: {
992 any_of(LScevs, UndefPoisonCheck) ||
any_of(RScevs, UndefPoisonCheck);
997 if (LScevs.
size() == 2 && RScevs.
size() == 1)
999 else if (RScevs.
size() == 2 && LScevs.
size() == 1)
1002 ScevList.emplace_back(Scev, NeedsFreeze);
1006 ScevList.emplace_back(
1007 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1009 ScevList.emplace_back(
1010 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1016 LLVM_DEBUG(
dbgs() <<
"ForkedPtr unhandled instruction: " << *
I <<
"\n");
1033 if (Scevs.
size() == 2 &&
1034 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1036 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1051 Loop *TheLoop,
unsigned &RunningDepId,
1052 unsigned ASId,
bool ShouldCheckWrap,
1059 for (
const auto &
P : TranslatedPtrs) {
1060 const SCEV *PtrExpr = get<0>(
P);
1066 if (ShouldCheckWrap) {
1068 if (TranslatedPtrs.size() > 1)
1071 if (!
isNoWrap(PSE, StridesMap,
Ptr, AccessTy, TheLoop, Assume))
1076 if (TranslatedPtrs.size() == 1)
1081 for (
auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1085 if (isDependencyCheckNeeded()) {
1087 unsigned &LeaderId = DepSetId[Leader];
1089 LeaderId = RunningDepId++;
1093 DepId = RunningDepId++;
1095 bool IsWrite =
Access.getInt();
1096 RtCheck.
insert(TheLoop,
Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1107 Value *&UncomputablePtr,
bool ShouldCheckWrap) {
1110 bool CanDoRT =
true;
1112 bool MayNeedRTCheck =
false;
1113 if (!IsRTCheckAnalysisNeeded)
return true;
1115 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1120 for (
const auto &AS : AST) {
1121 int NumReadPtrChecks = 0;
1122 int NumWritePtrChecks = 0;
1123 bool CanDoAliasSetRT =
true;
1125 auto ASPointers = AS.getPointers();
1129 unsigned RunningDepId = 1;
1137 for (
const Value *ConstPtr : ASPointers) {
1139 bool IsWrite = Accesses.count(MemAccessInfo(
Ptr,
true));
1141 ++NumWritePtrChecks;
1149 if (NumWritePtrChecks == 0 ||
1150 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1151 assert((ASPointers.size() <= 1 ||
1154 MemAccessInfo AccessWrite(
const_cast<Value *
>(
Ptr),
1156 return DepCands.
findValue(AccessWrite) == DepCands.
end();
1158 "Can only skip updating CanDoRT below, if all entries in AS "
1159 "are reads or there is at most 1 entry");
1163 for (
auto &
Access : AccessInfos) {
1164 for (
const auto &AccessTy : Accesses[
Access]) {
1165 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1166 DepSetId, TheLoop, RunningDepId, ASId,
1167 ShouldCheckWrap,
false)) {
1169 << *
Access.getPointer() <<
'\n');
1171 CanDoAliasSetRT =
false;
1185 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.
empty();
1189 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1193 CanDoAliasSetRT =
true;
1194 for (
const auto &[
Access, AccessTy] : Retries) {
1195 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1196 DepSetId, TheLoop, RunningDepId, ASId,
1197 ShouldCheckWrap,
true)) {
1198 CanDoAliasSetRT =
false;
1199 UncomputablePtr =
Access.getPointer();
1205 CanDoRT &= CanDoAliasSetRT;
1206 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1215 unsigned NumPointers = RtCheck.
Pointers.size();
1216 for (
unsigned i = 0; i < NumPointers; ++i) {
1217 for (
unsigned j = i + 1;
j < NumPointers; ++
j) {
1219 if (RtCheck.
Pointers[i].DependencySetId ==
1220 RtCheck.
Pointers[j].DependencySetId)
1233 dbgs() <<
"LAA: Runtime check would require comparison between"
1234 " different address spaces\n");
1240 if (MayNeedRTCheck && CanDoRT)
1244 <<
" pointer comparisons.\n");
1251 bool CanDoRTIfNeeded = !RtCheck.
Need || CanDoRT;
1252 if (!CanDoRTIfNeeded)
1254 return CanDoRTIfNeeded;
1257void AccessAnalysis::processMemAccesses() {
1264 LLVM_DEBUG(
dbgs() <<
"LAA: Accesses(" << Accesses.size() <<
"):\n");
1266 for (
const auto &[
A,
_] : Accesses)
1267 dbgs() <<
"\t" << *
A.getPointer() <<
" ("
1268 << (
A.getInt() ?
"write"
1269 : (ReadOnlyPtr.count(
A.getPointer()) ?
"read-only"
1278 for (
const auto &AS : AST) {
1282 auto ASPointers = AS.getPointers();
1284 bool SetHasWrite =
false;
1288 UnderlyingObjToAccessMap ObjToLastAccess;
1291 PtrAccessMap DeferredAccesses;
1295 for (
int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1296 bool UseDeferred = SetIteration > 0;
1297 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1299 for (
const Value *ConstPtr : ASPointers) {
1304 for (
const auto &[AC,
_] : S) {
1305 if (AC.getPointer() !=
Ptr)
1308 bool IsWrite = AC.getInt();
1312 bool IsReadOnlyPtr = ReadOnlyPtr.count(
Ptr) && !IsWrite;
1313 if (UseDeferred && !IsReadOnlyPtr)
1317 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1318 S.count(MemAccessInfo(
Ptr,
false))) &&
1319 "Alias-set pointer not in the access set?");
1329 if (!UseDeferred && IsReadOnlyPtr) {
1332 DeferredAccesses.insert({
Access, {}});
1340 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1341 CheckDeps.push_back(
Access);
1342 IsRTCheckAnalysisNeeded =
true;
1351 ValueVector TempObjects;
1353 UnderlyingObjects[
Ptr] = {};
1357 <<
"Underlying objects for pointer " << *
Ptr <<
"\n");
1358 for (
const Value *UnderlyingObj : UOs) {
1361 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1367 UnderlyingObjToAccessMap::iterator Prev =
1368 ObjToLastAccess.find(UnderlyingObj);
1369 if (Prev != ObjToLastAccess.end())
1372 ObjToLastAccess[UnderlyingObj] =
Access;
1401 const auto *
GEP = dyn_cast<GetElementPtrInst>(
Ptr);
1402 if (!
GEP || !
GEP->hasNoUnsignedSignedWrap())
1406 Value *NonConstIndex =
nullptr;
1407 for (
Value *Index :
GEP->indices())
1408 if (!isa<ConstantInt>(Index)) {
1411 NonConstIndex = Index;
1419 if (
auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1420 if (OBO->hasNoSignedWrap() &&
1423 isa<ConstantInt>(OBO->getOperand(1))) {
1424 const SCEV *OpScev = PSE.
getSCEV(OBO->getOperand(0));
1426 if (
auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1427 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(
SCEV::FlagNSW);
1434std::optional<int64_t>
1438 bool Assume,
bool ShouldCheckWrap) {
1445 if (isa<ScalableVectorType>(AccessTy)) {
1446 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Scalable object: " << *AccessTy
1448 return std::nullopt;
1457 <<
" SCEV: " << *PtrScev <<
"\n");
1458 return std::nullopt;
1463 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Not striding over innermost loop "
1464 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1465 return std::nullopt;
1475 <<
" SCEV: " << *AR <<
"\n");
1476 return std::nullopt;
1480 TypeSize AllocSize =
DL.getTypeAllocSize(AccessTy);
1482 const APInt &APStepVal =
C->getAPInt();
1486 return std::nullopt;
1491 int64_t Stride = StepVal /
Size;
1492 int64_t Rem = StepVal %
Size;
1494 return std::nullopt;
1496 if (!ShouldCheckWrap)
1509 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(
Ptr);
1510 GEP &&
GEP->hasNoUnsignedSignedWrap())
1518 (Stride == 1 || Stride == -1))
1524 <<
"LAA: Pointer: " << *
Ptr <<
"\n"
1525 <<
"LAA: SCEV: " << *AR <<
"\n"
1526 <<
"LAA: Added an overflow assumption\n");
1530 dbgs() <<
"LAA: Bad stride - Pointer may wrap in the address space "
1531 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1532 return std::nullopt;
1540 assert(PtrA && PtrB &&
"Expected non-nullptr pointers.");
1548 return std::nullopt;
1555 return std::nullopt;
1556 unsigned IdxWidth =
DL.getIndexSizeInBits(ASA);
1558 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1565 if (PtrA1 == PtrB1) {
1568 ASA = cast<PointerType>(PtrA1->
getType())->getAddressSpace();
1569 ASB = cast<PointerType>(PtrB1->
getType())->getAddressSpace();
1572 return std::nullopt;
1574 IdxWidth =
DL.getIndexSizeInBits(ASA);
1575 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1584 std::optional<APInt> Diff =
1587 return std::nullopt;
1588 Val = Diff->getSExtValue();
1590 int Size =
DL.getTypeStoreSize(ElemTyA);
1591 int Dist = Val /
Size;
1595 if (!StrictCheck || Dist *
Size == Val)
1597 return std::nullopt;
1605 "Expected list of pointer operands.");
1608 Value *Ptr0 = VL[0];
1610 using DistOrdPair = std::pair<int64_t, int>;
1612 std::set<DistOrdPair,
decltype(Compare)> Offsets(Compare);
1613 Offsets.emplace(0, 0);
1614 bool IsConsecutive =
true;
1623 auto [It, IsInserted] = Offsets.emplace(
Offset,
Idx);
1627 IsConsecutive &= std::next(It) == Offsets.end();
1629 SortedIndices.
clear();
1630 if (!IsConsecutive) {
1634 SortedIndices[
Idx] = Off.second;
1648 std::optional<int> Diff =
1651 return Diff && *Diff == 1;
1657 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1658 InstMap.push_back(SI);
1666 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1667 InstMap.push_back(LI);
1695 case ForwardButPreventsForwarding:
1697 case IndirectUnsafe:
1700 case BackwardVectorizable:
1702 case BackwardVectorizableButPreventsForwarding:
1715 case ForwardButPreventsForwarding:
1720 case BackwardVectorizable:
1722 case BackwardVectorizableButPreventsForwarding:
1723 case IndirectUnsafe:
1729bool MemoryDepChecker::couldPreventStoreLoadForward(
uint64_t Distance,
1743 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1745 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1749 for (
uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1753 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1754 MaxVFWithoutSLForwardIssues = (VF >> 1);
1759 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1761 dbgs() <<
"LAA: Distance " << Distance
1762 <<
" that could cause a store-load forwarding conflict\n");
1766 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1767 MaxVFWithoutSLForwardIssues !=
1769 MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1791 const SCEV &MaxBTC,
const SCEV &Dist,
1812 const uint64_t ByteStride = MaxStride * TypeByteSize;
1816 const SCEV *CastedDist = &Dist;
1817 const SCEV *CastedProduct = Product;
1824 if (DistTypeSizeBits > ProductTypeSizeBits)
1849 assert(Stride > 1 &&
"The stride must be greater than 1");
1850 assert(TypeByteSize > 0 &&
"The type size in byte must be non-zero");
1851 assert(Distance > 0 &&
"The distance must be non-zero");
1854 if (Distance % TypeByteSize)
1857 uint64_t ScaledDist = Distance / TypeByteSize;
1875 return ScaledDist % Stride;
1879 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1880MemoryDepChecker::getDependenceDistanceStrideAndSize(
1884 auto &SE = *PSE.
getSE();
1885 const auto &[APtr, AIsWrite] =
A;
1886 const auto &[BPtr, BIsWrite] =
B;
1889 if (!AIsWrite && !BIsWrite)
1896 if (APtr->getType()->getPointerAddressSpace() !=
1897 BPtr->getType()->getPointerAddressSpace())
1900 std::optional<int64_t> StrideAPtr =
1901 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides,
true,
true);
1902 std::optional<int64_t> StrideBPtr =
1903 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides,
true,
true);
1911 if (StrideAPtr && *StrideAPtr < 0) {
1920 LLVM_DEBUG(
dbgs() <<
"LAA: Src Scev: " << *Src <<
"Sink Scev: " << *Sink
1922 LLVM_DEBUG(
dbgs() <<
"LAA: Distance for " << *AInst <<
" to " << *BInst
1923 <<
": " << *Dist <<
"\n");
1936 if (!isa<SCEVCouldNotCompute>(SrcStart_) &&
1937 !isa<SCEVCouldNotCompute>(SrcEnd_) &&
1938 !isa<SCEVCouldNotCompute>(SinkStart_) &&
1939 !isa<SCEVCouldNotCompute>(SinkEnd_)) {
1962 if (!StrideAPtr || !StrideBPtr) {
1963 LLVM_DEBUG(
dbgs() <<
"Pointer access with non-constant stride\n");
1967 int64_t StrideAPtrInt = *StrideAPtr;
1968 int64_t StrideBPtrInt = *StrideBPtr;
1969 LLVM_DEBUG(
dbgs() <<
"LAA: Src induction step: " << StrideAPtrInt
1970 <<
" Sink induction step: " << StrideBPtrInt <<
"\n");
1973 if (!StrideAPtrInt || !StrideBPtrInt)
1978 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
1980 dbgs() <<
"Pointer access with strides in different directions\n");
1984 uint64_t TypeByteSize =
DL.getTypeAllocSize(ATy);
1986 DL.getTypeStoreSizeInBits(ATy) ==
DL.getTypeStoreSizeInBits(BTy);
1990 StrideAPtrInt = std::abs(StrideAPtrInt);
1991 StrideBPtrInt = std::abs(StrideBPtrInt);
1993 uint64_t MaxStride = std::max(StrideAPtrInt, StrideBPtrInt);
1995 std::optional<uint64_t> CommonStride;
1996 if (StrideAPtrInt == StrideBPtrInt)
1997 CommonStride = StrideAPtrInt;
2002 bool ShouldRetryWithRuntimeCheck = CommonStride.has_value();
2004 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2005 ShouldRetryWithRuntimeCheck, TypeByteSize,
2006 AIsWrite, BIsWrite);
2010MemoryDepChecker::isDependent(
const MemAccessInfo &
A,
unsigned AIdx,
2012 assert(AIdx < BIdx &&
"Must pass arguments in program order");
2017 getDependenceDistanceStrideAndSize(
A, InstMap[AIdx],
B, InstMap[BIdx]);
2018 if (std::holds_alternative<Dependence::DepType>(Res))
2019 return std::get<Dependence::DepType>(Res);
2021 auto &[Dist, MaxStride, CommonStride, ShouldRetryWithRuntimeCheck,
2022 TypeByteSize, AIsWrite, BIsWrite] =
2023 std::get<DepDistanceStrideAndSizeInfo>(Res);
2024 bool HasSameSize = TypeByteSize > 0;
2026 if (isa<SCEVCouldNotCompute>(Dist)) {
2029 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2030 LLVM_DEBUG(
dbgs() <<
"LAA: Dependence because of uncomputable distance.\n");
2044 *Dist, MaxStride, TypeByteSize))
2047 const SCEVConstant *ConstDist = dyn_cast<SCEVConstant>(Dist);
2055 if (Distance > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2074 LLVM_DEBUG(
dbgs() <<
"LAA: possibly zero dependence difference but "
2075 "different type sizes\n");
2079 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2094 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2098 couldPreventStoreLoadForward(
2101 dbgs() <<
"LAA: Forward but may prevent st->ld forwarding\n");
2112 if (MinDistance <= 0) {
2113 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2126 FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2130 LLVM_DEBUG(
dbgs() <<
"LAA: ReadWrite-Write positive dependency with "
2131 "different type sizes\n");
2144 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2177 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2178 if (MinDistanceNeeded >
static_cast<uint64_t>(MinDistance)) {
2186 LLVM_DEBUG(
dbgs() <<
"LAA: Failure because of positive minimum distance "
2187 << MinDistance <<
'\n');
2193 if (MinDistanceNeeded > MinDepDistBytes) {
2195 << MinDistanceNeeded <<
" size in bytes\n");
2216 std::min(
static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2218 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2219 uint64_t MinDepDistBytesOld = MinDepDistBytes;
2221 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2224 assert(MinDepDistBytes == MinDepDistBytesOld &&
2225 "An update to MinDepDistBytes requires an update to "
2226 "MaxSafeVectorWidthInBits");
2227 (void)MinDepDistBytesOld;
2233 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2234 LLVM_DEBUG(
dbgs() <<
"LAA: Positive min distance " << MinDistance
2235 <<
" with max VF = " << MaxVF <<
'\n');
2237 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2238 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2245 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2252 MinDepDistBytes = -1;
2255 if (Visited.
count(CurAccess))
2271 bool AIIsWrite = AI->getInt();
2275 (AIIsWrite ? AI : std::next(AI));
2278 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2279 I1E = Accesses[*AI].
end(); I1 != I1E; ++I1)
2282 for (std::vector<unsigned>::iterator
2283 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2284 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2286 auto A = std::make_pair(&*AI, *I1);
2287 auto B = std::make_pair(&*OI, *I2);
2294 isDependent(*
A.first,
A.second, *
B.first,
B.second);
2301 if (RecordDependences) {
2303 Dependences.emplace_back(
A.second,
B.second,
Type);
2306 RecordDependences =
false;
2307 Dependences.clear();
2309 <<
"Too many dependences, stopped recording\n");
2321 LLVM_DEBUG(
dbgs() <<
"Total Dependences: " << Dependences.size() <<
"\n");
2328 auto &IndexVector = Accesses.find(
Access)->second;
2332 std::back_inserter(Insts),
2333 [&](
unsigned Idx) {
return this->InstMap[
Idx]; });
2342 "ForwardButPreventsForwarding",
2344 "BackwardVectorizable",
2345 "BackwardVectorizableButPreventsForwarding"};
2355bool LoopAccessInfo::canAnalyzeLoop() {
2364 recordAnalysis(
"NotInnerMostLoop") <<
"loop is not the innermost loop";
2371 dbgs() <<
"LAA: loop control flow is not understood by analyzer\n");
2372 recordAnalysis(
"CFGNotUnderstood")
2373 <<
"loop control flow is not understood by analyzer";
2381 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2382 recordAnalysis(
"CantComputeNumberOfIterations")
2383 <<
"could not determine number of loop iterations";
2384 LLVM_DEBUG(
dbgs() <<
"LAA: SCEV could not compute the loop exit count.\n");
2402 unsigned NumReads = 0;
2403 unsigned NumReadWrites = 0;
2405 bool HasComplexMemInst =
false;
2408 HasConvergentOp =
false;
2410 PtrRtChecking->Pointers.
clear();
2411 PtrRtChecking->Need =
false;
2415 const bool EnableMemAccessVersioningOfLoop =
2427 if (
auto *Call = dyn_cast<CallBase>(&
I)) {
2428 if (
Call->isConvergent())
2429 HasConvergentOp =
true;
2434 if (HasComplexMemInst && HasConvergentOp)
2438 if (HasComplexMemInst)
2442 if (
auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&
I))
2443 for (
Metadata *
Op : Decl->getScopeList()->operands())
2444 LoopAliasScopes.
insert(cast<MDNode>(
Op));
2449 auto *
Call = dyn_cast<CallInst>(&
I);
2456 if (
I.mayReadFromMemory()) {
2457 auto hasPointerArgs = [](
CallBase *CB) {
2459 return Arg->getType()->isPointerTy();
2466 if (Call && !
Call->isNoBuiltin() &&
Call->getCalledFunction() &&
2470 auto *Ld = dyn_cast<LoadInst>(&
I);
2472 recordAnalysis(
"CantVectorizeInstruction", Ld)
2473 <<
"instruction cannot be vectorized";
2474 HasComplexMemInst =
true;
2477 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2478 recordAnalysis(
"NonSimpleLoad", Ld)
2479 <<
"read with atomic ordering or volatile read";
2481 HasComplexMemInst =
true;
2487 if (EnableMemAccessVersioningOfLoop)
2488 collectStridedAccess(Ld);
2493 if (
I.mayWriteToMemory()) {
2494 auto *St = dyn_cast<StoreInst>(&
I);
2496 recordAnalysis(
"CantVectorizeInstruction", St)
2497 <<
"instruction cannot be vectorized";
2498 HasComplexMemInst =
true;
2501 if (!St->isSimple() && !IsAnnotatedParallel) {
2502 recordAnalysis(
"NonSimpleStore", St)
2503 <<
"write with atomic ordering or volatile write";
2505 HasComplexMemInst =
true;
2511 if (EnableMemAccessVersioningOfLoop)
2512 collectStridedAccess(St);
2517 if (HasComplexMemInst)
2525 if (!Stores.
size()) {
2531 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2548 if (isInvariant(
Ptr)) {
2550 StoresToInvariantAddresses.push_back(ST);
2551 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2558 if (Seen.
insert({Ptr, AccessTy}).second) {
2565 if (blockNeedsPredication(
ST->getParent(), TheLoop, DT))
2569 [&Accesses, AccessTy, Loc](
Value *
Ptr) {
2570 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2571 Accesses.addStore(NewLoc, AccessTy);
2576 if (IsAnnotatedParallel) {
2578 dbgs() <<
"LAA: A loop annotated parallel, ignore memory dependency "
2593 bool IsReadOnlyPtr =
false;
2595 if (Seen.
insert({Ptr, AccessTy}).second ||
2598 IsReadOnlyPtr =
true;
2604 LLVM_DEBUG(
dbgs() <<
"LAA: Found an unsafe dependency between a uniform "
2605 "load and uniform store to the same address!\n");
2606 HasLoadStoreDependenceInvolvingLoopInvariantAddress =
true;
2613 if (blockNeedsPredication(
LD->getParent(), TheLoop, DT))
2617 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](
Value *
Ptr) {
2618 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2619 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2625 if (NumReadWrites == 1 && NumReads == 0) {
2632 Accesses.buildDependenceSets();
2636 Value *UncomputablePtr =
nullptr;
2637 bool CanDoRTIfNeeded =
2638 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->
getSE(), TheLoop,
2639 SymbolicStrides, UncomputablePtr,
false);
2640 if (!CanDoRTIfNeeded) {
2641 const auto *
I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2642 recordAnalysis(
"CantIdentifyArrayBounds",
I)
2643 <<
"cannot identify array bounds";
2644 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because we can't find "
2645 <<
"the array bounds.\n");
2650 dbgs() <<
"LAA: May be able to perform a memory runtime check if needed.\n");
2652 bool DepsAreSafe =
true;
2653 if (Accesses.isDependencyCheckNeeded()) {
2655 DepsAreSafe = DepChecker->
areDepsSafe(DependentAccesses,
2656 Accesses.getDependenciesToCheck());
2662 Accesses.resetDepChecks(*DepChecker);
2664 PtrRtChecking->reset();
2665 PtrRtChecking->Need =
true;
2667 auto *SE = PSE->
getSE();
2668 UncomputablePtr =
nullptr;
2669 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2670 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr,
true);
2673 if (!CanDoRTIfNeeded) {
2674 auto *
I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2675 recordAnalysis(
"CantCheckMemDepsAtRunTime",
I)
2676 <<
"cannot check memory dependencies at runtime";
2677 LLVM_DEBUG(
dbgs() <<
"LAA: Can't vectorize with memory checks\n");
2684 if (HasConvergentOp) {
2685 recordAnalysis(
"CantInsertRuntimeCheckWithConvergent")
2686 <<
"cannot add control dependency to convergent operation";
2687 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because a runtime check "
2688 "would be needed with a convergent operation\n");
2694 dbgs() <<
"LAA: No unsafe dependent memory operations in loop. We"
2695 << (PtrRtChecking->Need ?
"" :
" don't")
2696 <<
" need runtime memory checks.\n");
2700 emitUnsafeDependenceRemark();
2704void LoopAccessInfo::emitUnsafeDependenceRemark() {
2705 const auto *Deps = getDepChecker().getDependences();
2713 if (Found == Deps->end())
2717 LLVM_DEBUG(
dbgs() <<
"LAA: unsafe dependent memory operations in loop\n");
2720 bool HasForcedDistribution =
false;
2721 std::optional<const MDOperand *>
Value =
2725 assert(
Op && mdconst::hasa<ConstantInt>(*
Op) &&
"invalid metadata");
2726 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2729 const std::string
Info =
2730 HasForcedDistribution
2731 ?
"unsafe dependent memory operations in loop."
2732 :
"unsafe dependent memory operations in loop. Use "
2733 "#pragma clang loop distribute(enable) to allow loop distribution "
2734 "to attempt to isolate the offending operations into a separate "
2745 R <<
"\nBackward loop carried data dependence.";
2748 R <<
"\nForward loop carried data dependence that prevents "
2749 "store-to-load forwarding.";
2752 R <<
"\nBackward loop carried data dependence that prevents "
2753 "store-to-load forwarding.";
2756 R <<
"\nUnsafe indirect dependence.";
2759 R <<
"\nUnknown data dependence.";
2766 SourceLoc = DD->getDebugLoc();
2768 R <<
" Memory location is the same as accessed at "
2769 <<
ore::NV(
"Location", SourceLoc);
2784 assert(!Report &&
"Multiple reports generated");
2790 CodeRegion =
I->getParent();
2793 if (
I->getDebugLoc())
2794 DL =
I->getDebugLoc();
2797 Report = std::make_unique<OptimizationRemarkAnalysis>(
DEBUG_TYPE, RemarkName,
DL,
2803 auto *SE = PSE->
getSE();
2824 std::advance(GEPTI, LastOperand - 2);
2831 if (ElemSize != GEPAllocSize)
2843 auto *
GEP = dyn_cast<GetElementPtrInst>(
Ptr);
2851 for (
unsigned I = 0, E =
GEP->getNumOperands();
I != E; ++
I)
2852 if (
I != InductionOperand &&
2855 return GEP->getOperand(InductionOperand);
2861 auto *PtrTy = dyn_cast<PointerType>(
Ptr->getType());
2862 if (!PtrTy || PtrTy->isAggregateType())
2871 int64_t PtrAccessSize = 1;
2879 V =
C->getOperand();
2896 if (OrigPtr ==
Ptr) {
2897 if (
const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2898 if (M->getOperand(0)->getSCEVType() !=
scConstant)
2901 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2908 if (PtrAccessSize != StepVal)
2910 V = M->getOperand(1);
2920 if (isa<SCEVUnknown>(V))
2923 if (
const auto *
C = dyn_cast<SCEVIntegralCastExpr>(V))
2924 if (isa<SCEVUnknown>(
C->getOperand()))
2930void LoopAccessInfo::collectStridedAccess(
Value *MemAccess) {
2945 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that is a candidate for "
2950 LLVM_DEBUG(
dbgs() <<
" Chose not to due to -laa-speculate-unit-stride\n");
2975 const SCEV *CastedStride = StrideExpr;
2976 const SCEV *CastedBECount = MaxBTC;
2978 if (BETypeSizeBits >= StrideTypeSizeBits)
2982 const SCEV *StrideMinusBETaken = SE->
getMinusSCEV(CastedStride, CastedBECount);
2988 dbgs() <<
"LAA: Stride>=TripCount; No point in versioning as the "
2989 "Stride==1 predicate will imply that the loop executes "
2993 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that we can version.\n");
2997 const SCEV *StrideBase = StrideExpr;
2998 if (
const auto *
C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2999 StrideBase =
C->getOperand();
3000 SymbolicStrides[
Ptr] = cast<SCEVUnknown>(StrideBase);
3008 PtrRtChecking(nullptr), TheLoop(L) {
3009 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3016 MaxTargetVectorWidthInBits = FixedWidth.
getFixedValue() * 2;
3022 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3024 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3025 MaxTargetVectorWidthInBits);
3026 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3027 if (canAnalyzeLoop())
3028 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3036 OS <<
" with a maximum safe vector width of "
3038 if (PtrRtChecking->Need)
3039 OS <<
" with run-time checks";
3043 if (HasConvergentOp)
3051 for (
const auto &Dep : *Dependences) {
3059 PtrRtChecking->print(
OS,
Depth);
3063 <<
"Non vectorizable stores to invariant address were "
3064 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3065 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3068 <<
"found in loop.\n";
3080 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L,
nullptr});
3084 std::make_unique<LoopAccessInfo>(&L, &SE,
TTI, TLI, &AA, &DT, &LI);
3094 for (
const auto &[L, LAI] : LoopAccessInfoMap) {
3095 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3096 LAI->getPSE().getPredicate().isAlwaysTrue())
3102 LoopAccessInfoMap.erase(L);
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, const SCEV *PtrScev, Loop *L, bool Assume)
Check whether a pointer can participate in a runtime bounds check.
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep)
Find the operand of the GEP that should be checked for consecutive stores.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static bool isNoWrap(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &Strides, Value *Ptr, Type *AccessTy, Loop *L, bool Assume)
Check whether a pointer address cannot wrap.
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride, uint64_t TypeByteSize)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, PredicatedScalarEvolution &PSE, const Loop *L)
Return true if an AddRec pointer Ptr is unsigned non-wrapping, i.e.
static Value * stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If the argument is a GEP, then returns the operand identified by getGEPInductionOperand.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static SmallVector< PointerIntPair< const SCEV *, 1, bool > > findForkedPointer(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap, Value *Ptr, const Loop *L)
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
This header provides classes for managing per-loop analyses.
This file provides utility analysis objects describing memory locations.
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, const DataLayout &DL)
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
uint64_t getZExtValue() const
Get zero extended value.
APInt abs() const
Get the absolute value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
int64_t getSExtValue() const
Get sign extended value.
This templated class represents "all analyses that operate over <a particular IR unit>" (e....
API to communicate dependencies between analyses during invalidation.
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA)
Trigger the invalidation of some other analysis pass if not already handled and return whether it was...
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
@ ICMP_ULE
unsigned less or equal
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
iterator findValue(const ElemTy &V) const
findValue - Return an iterator to the specified value.
iterator insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
typename std::set< ECValue, ECValueComparator >::const_iterator iterator
iterator* - Provides a way to iterate over all values in the set.
member_iterator member_begin(iterator I) const
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Type * getResultElementType() const
PointerType * getType() const
Global values are always pointers.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
Result run(Function &F, FunctionAnalysisManager &AM)
bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
const LoopAccessInfo & getInfo(Loop &L)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI)
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
Represents a single loop in the control flow graph.
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
ArrayRef< MDOperand > operands() const
Tracking metadata reference owned by Metadata.
This class implements a map that also provides access to all stored values in a deterministic order.
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe.
const SmallVectorImpl< Instruction * > & getMemoryInstructions() const
The vector of memory access instructions.
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
const SmallVectorImpl< Dependence > * getDependences() const
Returns the memory dependences.
DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > & getPointerBounds()
SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
@ PossiblySafeWithRtChecks
bool shouldRetryWithRuntimeCheck() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
Representation for a specific memory location.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
static bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
This class represents a constant integer value.
const APInt & getAPInt() const
This is the base class for unary integral cast operator classes.
This node represents multiplication of some number of SCEVs.
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
const SCEV * getCouldNotCompute()
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr) const
Accumulate the constant offset this value has compared to a base pointer.
StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
constexpr bool isNonZero() const
An efficient, type-erasing, non-owning reference to a callable.
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
friend const_iterator end(StringRef path)
Get end iterator over path.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
std::optional< int > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
unsigned getPointerAddressSpace(const Type *T)
std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt copy(R &&Range, OutputIt Out)
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
gep_type_iterator gep_type_begin(const User *GEP)
void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *MaxBECount, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds)
Calculate Start and End points of memory access.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * TBAA
The tag for type-based alias analysis.
MDNode * NoAlias
The tag specifying the noalias scope.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Dependece between memory access instructions.
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
bool isForward() const
Lexically forward dependence.
bool isBackward() const
Lexically backward dependence.
void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
DepType
The type of the dependence.
@ BackwardVectorizableButPreventsForwarding
@ ForwardButPreventsForwarding
static const char * DepName[]
String version of the types.
static VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
unsigned AddressSpace
Address space of the involved pointers.
bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static const unsigned MaxVectorWidth
Maximum SIMD width.
static unsigned VectorizationFactor
VF as overridden by the user.
static unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...