LLVM 22.0.0git
RISCVTargetTransformInfo.h
Go to the documentation of this file.
1//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file defines a TargetTransformInfoImplBase conforming object specific
10/// to the RISC-V target machine. It uses the target's detailed information to
11/// provide more precise answers to certain TTI queries, while letting the
12/// target independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
17#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
18
19#include "RISCVSubtarget.h"
20#include "RISCVTargetMachine.h"
23#include "llvm/IR/Function.h"
24#include <optional>
25
26namespace llvm {
27
28class RISCVTTIImpl final : public BasicTTIImplBase<RISCVTTIImpl> {
30 using TTI = TargetTransformInfo;
31
32 friend BaseT;
33
34 const RISCVSubtarget *ST;
35 const RISCVTargetLowering *TLI;
36
37 const RISCVSubtarget *getST() const { return ST; }
38 const RISCVTargetLowering *getTLI() const { return TLI; }
39
40 /// This function returns an estimate for VL to be used in VL based terms
41 /// of the cost model. For fixed length vectors, this is simply the
42 /// vector length. For scalable vectors, we return results consistent
43 /// with getVScaleForTuning under the assumption that clients are also
44 /// using that when comparing costs between scalar and vector representation.
45 /// This does unfortunately mean that we can both undershoot and overshot
46 /// the true cost significantly if getVScaleForTuning is wildly off for the
47 /// actual target hardware.
48 unsigned getEstimatedVLFor(VectorType *Ty) const;
49
50 /// This function calculates the costs for one or more RVV opcodes based
51 /// on the vtype and the cost kind.
52 /// \param Opcodes A list of opcodes of the RVV instruction to evaluate.
53 /// \param VT The MVT of vtype associated with the RVV instructions.
54 /// For widening/narrowing instructions where the result and source types
55 /// differ, it is important to check the spec to determine whether the vtype
56 /// refers to the result or source type.
57 /// \param CostKind The type of cost to compute.
58 InstructionCost getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
60
61 /// Return the cost of accessing a constant pool entry of the specified
62 /// type.
63 InstructionCost getConstantPoolLoadCost(Type *Ty,
65
66 /// If this shuffle can be lowered as a masked slide pair (at worst),
67 /// return a cost for it.
68 InstructionCost getSlideCost(FixedVectorType *Tp, ArrayRef<int> Mask,
70
71public:
72 explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
73 : BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
74 TLI(ST->getTargetLowering()) {}
75
76 /// Return the cost of materializing an immediate for a value operand of
77 /// a store instruction.
80
82 TTI::TargetCostKind CostKind) const override;
83 InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
84 const APInt &Imm, Type *Ty,
86 Instruction *Inst = nullptr) const override;
88 getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
89 Type *Ty, TTI::TargetCostKind CostKind) const override;
90
91 /// \name EVL Support for predicated vectorization.
92 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
93 /// in hardware. (see LLVM Language Reference - "Vector Predication
94 /// Intrinsics",
95 /// https://llvm.org/docs/LangRef.html#vector-predication-intrinsics and
96 /// "IR-level VP intrinsics",
97 /// https://llvm.org/docs/Proposals/VectorPredication.html#ir-level-vp-intrinsics).
98 bool hasActiveVectorLength() const override;
99
101 getPopcntSupport(unsigned TyWidth) const override;
102
104 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
106 TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
107 TTI::TargetCostKind CostKind) const override;
108
109 bool shouldExpandReduction(const IntrinsicInst *II) const override;
110 bool supportsScalableVectors() const override {
111 return ST->hasVInstructions();
112 }
113 bool enableOrderedReductions() const override { return true; }
114 bool enableScalableVectorization() const override {
115 return ST->hasVInstructions();
116 }
118 return ST->hasVInstructions();
119 }
121 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override {
122 return ST->hasVInstructions() ? TailFoldingStyle::DataWithEVL
124 }
125 std::optional<unsigned> getMaxVScale() const override;
126 std::optional<unsigned> getVScaleForTuning() const override;
127
130
131 unsigned getRegUsageForType(Type *Ty) const override;
132
133 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override;
134
135 bool preferAlternateOpcodeVectorization() const override;
136
137 bool preferEpilogueVectorization() const override {
138 // Epilogue vectorization is usually unprofitable - tail folding or
139 // a smaller VF would have been better. This a blunt hammer - we
140 // should re-examine this once vectorization is better tuned.
141 return false;
142 }
143
144 bool shouldConsiderVectorizationRegPressure() const override { return true; }
145
148 TTI::TargetCostKind CostKind) const override;
149
152
155 const TTI::PointersChainInfo &Info, Type *AccessTy,
156 TTI::TargetCostKind CostKind) const override;
157
160 OptimizationRemarkEmitter *ORE) const override;
161
163 TTI::PeelingPreferences &PP) const override;
164
166 MemIntrinsicInfo &Info) const override;
167
168 unsigned getMinVectorRegisterBitWidth() const override {
169 return ST->useRVVForFixedLengthVectors() ? 16 : 0;
170 }
171
175 VectorType *SubTp, ArrayRef<const Value *> Args = {},
176 const Instruction *CxtI = nullptr) const override;
177
179 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
180 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
181 ArrayRef<Value *> VL = {}) const override;
182
184 getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
185 TTI::TargetCostKind CostKind) const override;
186
188 getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr,
189 TTI::TargetCostKind CostKind) const override;
190
192 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
193 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
194 bool UseMaskForCond = false, bool UseMaskForGaps = false) const override;
195
196 InstructionCost getGatherScatterOpCost(const MemIntrinsicCostAttributes &MICA,
198
200 getExpandCompressMemoryOpCost(const MemIntrinsicCostAttributes &MICA,
202
203 InstructionCost getStridedMemoryOpCost(const MemIntrinsicCostAttributes &MICA,
205
208
210 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
212 const Instruction *I = nullptr) const override;
213
215 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
216 TTI::TargetCostKind CostKind) const override;
217
219 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
220 std::optional<FastMathFlags> FMF,
221 TTI::TargetCostKind CostKind) const override;
222
224 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
225 VectorType *ValTy, std::optional<FastMathFlags> FMF,
226 TTI::TargetCostKind CostKind) const override;
227
229 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
232 const Instruction *I = nullptr) const override;
233
235 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
239 const Instruction *I = nullptr) const override;
240
242 const Instruction *I = nullptr) const override;
243
245 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
247 unsigned Index, const Value *Op0,
248 const Value *Op1) const override;
249
251 getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val,
253 unsigned Index) const override;
254
256 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
260 const Instruction *CxtI = nullptr) const override;
261
262 bool isElementTypeLegalForScalableVector(Type *Ty) const override {
263 return TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty));
264 }
265
266 bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const {
267 if (!ST->hasVInstructions())
268 return false;
269
270 EVT DataTypeVT = TLI->getValueType(DL, DataType);
271
272 // Only support fixed vectors if we know the minimum vector size.
273 if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
274 return false;
275
276 EVT ElemType = DataTypeVT.getScalarType();
277 if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
278 return false;
279
280 return TLI->isLegalElementTypeForRVV(ElemType);
281 }
282
283 bool isLegalMaskedLoad(Type *DataType, Align Alignment,
284 unsigned /*AddressSpace*/,
285 TTI::MaskKind /*MaskKind*/) const override {
286 return isLegalMaskedLoadStore(DataType, Alignment);
287 }
288 bool isLegalMaskedStore(Type *DataType, Align Alignment,
289 unsigned /*AddressSpace*/,
290 TTI::MaskKind /*MaskKind*/) const override {
291 return isLegalMaskedLoadStore(DataType, Alignment);
292 }
293
294 bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const {
295 if (!ST->hasVInstructions())
296 return false;
297
298 EVT DataTypeVT = TLI->getValueType(DL, DataType);
299
300 // Only support fixed vectors if we know the minimum vector size.
301 if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
302 return false;
303
304 // We also need to check if the vector of address is valid.
305 EVT PointerTypeVT = EVT(TLI->getPointerTy(DL));
306 if (DataTypeVT.isScalableVector() &&
307 !TLI->isLegalElementTypeForRVV(PointerTypeVT))
308 return false;
309
310 EVT ElemType = DataTypeVT.getScalarType();
311 if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
312 return false;
313
314 return TLI->isLegalElementTypeForRVV(ElemType);
315 }
316
317 bool isLegalMaskedGather(Type *DataType, Align Alignment) const override {
318 return isLegalMaskedGatherScatter(DataType, Alignment);
319 }
320 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override {
321 return isLegalMaskedGatherScatter(DataType, Alignment);
322 }
323
325 Align Alignment) const override {
326 // Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
327 return ST->is64Bit() && !ST->hasVInstructionsI64();
328 }
329
331 Align Alignment) const override {
332 // Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
333 return ST->is64Bit() && !ST->hasVInstructionsI64();
334 }
335
336 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override {
337 EVT DataTypeVT = TLI->getValueType(DL, DataType);
338 return TLI->isLegalStridedLoadStore(DataTypeVT, Alignment);
339 }
340
341 bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
342 Align Alignment,
343 unsigned AddrSpace) const override {
344 return TLI->isLegalInterleavedAccessType(VTy, Factor, Alignment, AddrSpace,
345 DL);
346 }
347
348 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override;
349
350 bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override;
351
352 bool isVScaleKnownToBeAPowerOfTwo() const override {
353 return TLI->isVScaleKnownToBeAPowerOfTwo();
354 }
355
356 /// \returns How the target needs this vector-predicated operation to be
357 /// transformed.
359 getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
361 if (!ST->hasVInstructions() ||
362 (PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
364 ->getElementType()
365 ->getIntegerBitWidth() != 1))
368 }
369
371 ElementCount VF) const override {
372 if (!VF.isScalable())
373 return true;
374
375 Type *Ty = RdxDesc.getRecurrenceType();
376 if (!TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty)))
377 return false;
378
379 switch (RdxDesc.getRecurrenceKind()) {
380 case RecurKind::Add:
381 case RecurKind::Sub:
383 case RecurKind::And:
384 case RecurKind::Or:
385 case RecurKind::Xor:
386 case RecurKind::SMin:
387 case RecurKind::SMax:
388 case RecurKind::UMin:
389 case RecurKind::UMax:
390 case RecurKind::FMin:
391 case RecurKind::FMax:
392 return true;
393 case RecurKind::AnyOf:
394 case RecurKind::FAdd:
396 // We can't promote f16/bf16 fadd reductions and scalable vectors can't be
397 // expanded.
398 if (Ty->isBFloatTy() || (Ty->isHalfTy() && !ST->hasVInstructionsF16()))
399 return false;
400 return true;
401 default:
402 return false;
403 }
404 }
405
406 unsigned getMaxInterleaveFactor(ElementCount VF) const override {
407 // Don't interleave if the loop has been vectorized with scalable vectors.
408 if (VF.isScalable())
409 return 1;
410 // If the loop will not be vectorized, don't interleave the loop.
411 // Let regular unroll to unroll the loop.
412 return VF.isScalar() ? 1 : ST->getMaxInterleaveFactor();
413 }
414
415 bool enableInterleavedAccessVectorization() const override { return true; }
416
418 return ST->hasVInstructions();
419 }
420
421 unsigned getMinTripCountTailFoldingThreshold() const override;
422
424 unsigned getNumberOfRegisters(unsigned ClassID) const override {
425 switch (ClassID) {
427 // 31 = 32 GPR - x0 (zero register)
428 // FIXME: Should we exclude fixed registers like SP, TP or GP?
429 return 31;
431 if (ST->hasStdExtF())
432 return 32;
433 return 0;
435 // Although there are 32 vector registers, v0 is special in that it is the
436 // only register that can be used to hold a mask.
437 // FIXME: Should we conservatively return 31 as the number of usable
438 // vector registers?
439 return ST->hasVInstructions() ? 32 : 0;
440 }
441 llvm_unreachable("unknown register class");
442 }
443
445 getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override;
446
448 Type *Ty = nullptr) const override {
449 if (Vector)
451 if (!Ty)
453
454 Type *ScalarTy = Ty->getScalarType();
455 if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhmin()) ||
456 (ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
457 (ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
459 }
460
462 }
463
464 const char *getRegisterClassName(unsigned ClassID) const override {
465 switch (ClassID) {
467 return "RISCV::GPRRC";
469 return "RISCV::FPRRC";
471 return "RISCV::VRRC";
472 }
473 llvm_unreachable("unknown register class");
474 }
475
477 const TargetTransformInfo::LSRCost &C2) const override;
478
480 const Instruction &I,
481 bool &AllowPromotionWithoutCommonHeader) const override;
482 std::optional<unsigned> getMinPageSize() const override { return 4096; }
483 /// Return true if the (vector) instruction I will be lowered to an
484 /// instruction with a scalar splat operand for the given Operand number.
485 bool canSplatOperand(Instruction *I, int Operand) const;
486 /// Return true if a vector instruction will lower to a target instruction
487 /// able to splat the given operand.
488 bool canSplatOperand(unsigned Opcode, int Operand) const;
489
491 SmallVectorImpl<Use *> &Ops) const override;
492
494 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override;
495};
496
497} // end namespace llvm
498
499#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
uint64_t IntrinsicInst * II
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
Value * getArgOperand(unsigned i) const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Class to represent fixed width SIMD vectors.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Machine Value Type.
Information for memory intrinsic cost model.
The optimization diagnostic interface.
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
bool supportsScalableVectors() const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override
InstructionCost getStridedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
unsigned getMinTripCountTailFoldingThreshold() const override
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const override
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override
bool preferEpilogueVectorization() const override
InstructionCost getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const override
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo, TTI::TargetCostKind CostKind) const
Return the cost of materializing an immediate for a value operand of a store instruction.
bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned, TTI::MaskKind) const override
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const override
bool isElementTypeLegalForScalableVector(Type *Ty) const override
bool enableMaskedInterleavedAccessVectorization() const override
bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const override
std::optional< unsigned > getMinPageSize() const override
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const override
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const override
bool hasActiveVectorLength() const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
bool shouldConsiderVectorizationRegPressure() const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
bool forceScalarizeMaskedScatter(VectorType *VTy, Align Alignment) const override
const char * getRegisterClassName(unsigned ClassID) const override
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool canSplatOperand(Instruction *I, int Operand) const
Return true if the (vector) instruction I will be lowered to an instruction with a scalar splat opera...
bool enableInterleavedAccessVectorization() const override
bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const override
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override
unsigned getMinVectorRegisterBitWidth() const override
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override
unsigned getMaxInterleaveFactor(ElementCount VF) const override
InstructionCost getGatherScatterOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
bool enableOrderedReductions() const override
InstructionCost getExpandCompressMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
TargetTransformInfo::VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const override
bool preferAlternateOpcodeVectorization() const override
bool isVScaleKnownToBeAPowerOfTwo() const override
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Check if sinking I's operands to I's basic block is profitable, because the operands can be folded in...
unsigned getNumberOfRegisters(unsigned ClassID) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
std::optional< unsigned > getMaxVScale() const override
bool shouldExpandReduction(const IntrinsicInst *II) const override
std::optional< unsigned > getVScaleForTuning() const override
InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
Get memory intrinsic cost based on arguments.
bool isLegalMaskedGather(Type *DataType, Align Alignment) const override
bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned, TTI::MaskKind) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const override
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpdInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const override
bool enableScalableVectorization() const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
InstructionCost getMaskedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const override
See if I should be considered for address type promotion.
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
bool forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) const override
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Type * getRecurrenceType() const
Returns the type of the recurrence.
RecurKind getRecurrenceKind() const
The main scalar evolution driver.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
virtual const DataLayout & getDataLayout() const
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
MaskKind
Some targets only support masked load/store with a constant mask.
TargetCostKind
The kind of cost model.
PopcntSupportKind
Flags indicating the kind of support for population count.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
CastContextHint
Represents a hint about the context in which a cast is used.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition Type.h:142
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Base class of all SIMD vector types.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FAdd
Sum of floats.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
Information about a load/store intrinsic defined by the target.
Returns options for expansion of memcmp. IsZeroCmp is.
Describe known properties for a set of pointers.
Parameters that control the generic loop unrolling transformation.