LLVM 22.0.0git
RegBankSelect.cpp
Go to the documentation of this file.
1//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the RegBankSelect class.
10//===----------------------------------------------------------------------===//
11
14#include "llvm/ADT/STLExtras.h"
32#include "llvm/Config/llvm-config.h"
33#include "llvm/IR/Function.h"
35#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
43#include <algorithm>
44#include <cassert>
45#include <cstdint>
46#include <limits>
47#include <memory>
48#include <utility>
49
50#define DEBUG_TYPE "regbankselect"
51
52using namespace llvm;
53
55 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
57 "Run the Fast mode (default mapping)"),
58 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
59 "Use the Greedy mode (best local mapping)")));
60
61char RegBankSelect::ID = 0;
62
64 "Assign register bank of generic virtual registers",
65 false, false);
70 "Assign register bank of generic virtual registers", false,
71 false)
72
74 : MachineFunctionPass(ID), OptMode(RunningMode) {
75 if (RegBankSelectMode.getNumOccurrences() != 0) {
76 OptMode = RegBankSelectMode;
77 if (RegBankSelectMode != RunningMode)
78 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
79 }
80}
81
84 assert(RBI && "Cannot work without RegisterBankInfo");
85 MRI = &MF.getRegInfo();
87 if (OptMode != Mode::Fast) {
90 } else {
91 MBFI = nullptr;
92 MBPI = nullptr;
93 }
94 MIRBuilder.setMF(MF);
95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
96}
97
99 if (OptMode != Mode::Fast) {
100 // We could preserve the information from these two analysis but
101 // the APIs do not allow to do so yet.
104 }
108}
109
111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112 bool &OnlyAssign) const {
113 // By default we assume we will have to repair something.
114 OnlyAssign = false;
115 // Each part of a break down needs to end up in a different register.
116 // In other word, Reg assignment does not match.
117 if (ValMapping.NumBreakDowns != 1)
118 return false;
119
120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
122 // Reg is free of assignment, a simple assignment will make the
123 // register bank to match.
124 OnlyAssign = CurRegBank == nullptr;
125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127 dbgs() << " against ";
128 assert(DesiredRegBank && "The mapping must be valid");
129 dbgs() << *DesiredRegBank << '\n';);
130 return CurRegBank == DesiredRegBank;
131}
132
134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
137
138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139 "need new vreg for each breakdown");
140
141 // An empty range of new register means no repairing.
142 assert(!NewVRegs.empty() && "We should not have to repair");
143
145 if (ValMapping.NumBreakDowns == 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 Register Src = MO.getReg();
149 Register Dst = *NewVRegs.begin();
150
151 // If we repair a definition, swap the source and destination for
152 // the repairing.
153 if (MO.isDef())
154 std::swap(Src, Dst);
155
156 assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) &&
157 "We are about to create several defs for Dst");
158
159 // Build the instruction used to repair, then clone it at the right
160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161 // same types because the type is a placeholder when this function is called.
162 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
163 .addDef(Dst)
164 .addUse(Src);
165 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':'
166 << printRegClassOrBank(Src, *MRI, TRI)
167 << " to: " << printReg(Dst) << ':'
168 << printRegClassOrBank(Dst, *MRI, TRI) << '\n');
169 } else {
170 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
171 // sequence.
172 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173
174 LLT RegTy = MRI->getType(MO.getReg());
175 if (MO.isDef()) {
176 unsigned MergeOp;
177 if (RegTy.isVector()) {
178 if (ValMapping.NumBreakDowns == RegTy.getNumElements())
179 MergeOp = TargetOpcode::G_BUILD_VECTOR;
180 else {
181 assert(
182 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
183 RegTy.getSizeInBits()) &&
184 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
185 0) &&
186 "don't understand this value breakdown");
187
188 MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189 }
190 } else
191 MergeOp = TargetOpcode::G_MERGE_VALUES;
192
193 auto MergeBuilder =
194 MIRBuilder.buildInstrNoInsert(MergeOp)
195 .addDef(MO.getReg());
196
197 for (Register SrcReg : NewVRegs)
198 MergeBuilder.addUse(SrcReg);
199
200 MI = MergeBuilder;
201 } else {
202 MachineInstrBuilder UnMergeBuilder =
203 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
204 for (Register DefReg : NewVRegs)
205 UnMergeBuilder.addDef(DefReg);
206
207 UnMergeBuilder.addUse(MO.getReg());
208 MI = UnMergeBuilder;
209 }
210 }
211
212 if (RepairPt.getNumInsertPoints() != 1)
213 report_fatal_error("need testcase to support multiple insertion points");
214
215 // TODO:
216 // Check if MI is legal. if not, we need to legalize all the
217 // instructions we are going to insert.
218 std::unique_ptr<MachineInstr *[]> NewInstrs(
219 new MachineInstr *[RepairPt.getNumInsertPoints()]);
220 bool IsFirst = true;
221 unsigned Idx = 0;
222 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
223 MachineInstr *CurMI;
224 if (IsFirst)
225 CurMI = MI;
226 else
227 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
228 InsertPt->insert(*CurMI);
229 NewInstrs[Idx++] = CurMI;
230 IsFirst = false;
231 }
232 // TODO:
233 // Legalize NewInstrs if need be.
234 return true;
235}
236
238 const MachineOperand &MO,
239 const RegisterBankInfo::ValueMapping &ValMapping) const {
240 assert(MO.isReg() && "We should only repair register operand");
241 assert(ValMapping.NumBreakDowns && "Nothing to map??");
242
243 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
244 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
245 // If MO does not have a register bank, we should have just been
246 // able to set one unless we have to break the value down.
247 assert(CurRegBank || MO.isDef());
248
249 // Def: Val <- NewDefs
250 // Same number of values: copy
251 // Different number: Val = build_sequence Defs1, Defs2, ...
252 // Use: NewSources <- Val.
253 // Same number of values: copy.
254 // Different number: Src1, Src2, ... =
255 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256 // We should remember that this value is available somewhere else to
257 // coalesce the value.
258
259 if (ValMapping.NumBreakDowns != 1)
260 return RBI->getBreakDownCost(ValMapping, CurRegBank);
261
262 if (IsSameNumOfValues) {
263 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
264 // If we repair a definition, swap the source and destination for
265 // the repairing.
266 if (MO.isDef())
267 std::swap(CurRegBank, DesiredRegBank);
268 // TODO: It may be possible to actually avoid the copy.
269 // If we repair something where the source is defined by a copy
270 // and the source of that copy is on the right bank, we can reuse
271 // it for free.
272 // E.g.,
273 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274 // = op RegToRepair<BankA>
275 // We can simply propagate AlternativeSrc instead of copying RegToRepair
276 // into a new virtual register.
277 // We would also need to propagate this information in the
278 // repairing placement.
279 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
280 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
281 // TODO: use a dedicated constant for ImpossibleCost.
282 if (Cost != std::numeric_limits<unsigned>::max())
283 return Cost;
284 // Return the legalization cost of that repairing.
285 }
286 return std::numeric_limits<unsigned>::max();
287}
288
292 assert(!PossibleMappings.empty() &&
293 "Do not know how to map this instruction");
294
295 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
298 for (const RegisterBankInfo::InstructionMapping *CurMapping :
299 PossibleMappings) {
300 MappingCost CurCost =
301 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
302 if (CurCost < Cost) {
303 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
304 Cost = CurCost;
305 BestMapping = CurMapping;
306 RepairPts.clear();
307 for (RepairingPlacement &RepairPt : LocalRepairPts)
308 RepairPts.emplace_back(std::move(RepairPt));
309 }
310 }
311 if (!BestMapping && MI.getMF()->getTarget().Options.GlobalISelAbort !=
313 // If none of the mapping worked that means they are all impossible.
314 // Thus, pick the first one and set an impossible repairing point.
315 // It will trigger the failed isel mode.
316 BestMapping = *PossibleMappings.begin();
317 RepairPts.emplace_back(
319 } else
320 assert(BestMapping && "No suitable mapping for instruction");
321 return *BestMapping;
322}
323
326 const RegisterBankInfo::ValueMapping &ValMapping) const {
327 const MachineInstr &MI = *MO.getParent();
328 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
329 // Splitting should only occur for PHIs or between terminators,
330 // because we only do local repairing.
331 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
332
333 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
334 "Repairing placement does not match operand");
335
336 // If we need splitting for phis, that means it is because we
337 // could not find an insertion point before the terminators of
338 // the predecessor block for this argument. In other words,
339 // the input value is defined by one of the terminators.
340 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
341
342 // We split to repair the use of a phi or a terminator.
343 if (!MO.isDef()) {
344 if (MI.isTerminator()) {
345 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
346 "Need to split for the first terminator?!");
347 } else {
348 // For the PHI case, the split may not be actually required.
349 // In the copy case, a phi is already a copy on the incoming edge,
350 // therefore there is no need to split.
351 if (ValMapping.NumBreakDowns == 1)
352 // This is a already a copy, there is nothing to do.
354 }
355 return;
356 }
357
358 // At this point, we need to repair a defintion of a terminator.
359
360 // Technically we need to fix the def of MI on all outgoing
361 // edges of MI to keep the repairing local. In other words, we
362 // will create several definitions of the same register. This
363 // does not work for SSA unless that definition is a physical
364 // register.
365 // However, there are other cases where we can get away with
366 // that while still keeping the repairing local.
367 assert(MI.isTerminator() && MO.isDef() &&
368 "This code is for the def of a terminator");
369
370 // Since we use RPO traversal, if we need to repair a definition
371 // this means this definition could be:
372 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
373 // uses of a phi.), or
374 // 2. Part of a target specific instruction (i.e., the target applied
375 // some register class constraints when creating the instruction.)
376 // If the constraints come for #2, the target said that another mapping
377 // is supported so we may just drop them. Indeed, if we do not change
378 // the number of registers holding that value, the uses will get fixed
379 // when we get to them.
380 // Uses in PHIs may have already been proceeded though.
381 // If the constraints come for #1, then, those are weak constraints and
382 // no actual uses may rely on them. However, the problem remains mainly
383 // the same as for #2. If the value stays in one register, we could
384 // just switch the register bank of the definition, but we would need to
385 // account for a repairing cost for each phi we silently change.
386 //
387 // In any case, if the value needs to be broken down into several
388 // registers, the repairing is not local anymore as we need to patch
389 // every uses to rebuild the value in just one register.
390 //
391 // To summarize:
392 // - If the value is in a physical register, we can do the split and
393 // fix locally.
394 // Otherwise if the value is in a virtual register:
395 // - If the value remains in one register, we do not have to split
396 // just switching the register bank would do, but we need to account
397 // in the repairing cost all the phi we changed.
398 // - If the value spans several registers, then we cannot do a local
399 // repairing.
400
401 // Check if this is a physical or virtual register.
402 Register Reg = MO.getReg();
403 if (Reg.isPhysical()) {
404 // We are going to split every outgoing edges.
405 // Check that this is possible.
406 // FIXME: The machine representation is currently broken
407 // since it also several terminators in one basic block.
408 // Because of that we would technically need a way to get
409 // the targets of just one terminator to know which edges
410 // we have to split.
411 // Assert that we do not hit the ill-formed representation.
412
413 // If there are other terminators before that one, some of
414 // the outgoing edges may not be dominated by this definition.
415 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
416 "Do not know which outgoing edges are relevant");
417 const MachineInstr *Next = MI.getNextNode();
418 assert((!Next || Next->isUnconditionalBranch()) &&
419 "Do not know where each terminator ends up");
420 if (Next)
421 // If the next terminator uses Reg, this means we have
422 // to split right after MI and thus we need a way to ask
423 // which outgoing edges are affected.
424 assert(!Next->readsRegister(Reg, /*TRI=*/nullptr) &&
425 "Need to split between terminators");
426 // We will split all the edges and repair there.
427 } else {
428 // This is a virtual register defined by a terminator.
429 if (ValMapping.NumBreakDowns == 1) {
430 // There is nothing to repair, but we may actually lie on
431 // the repairing cost because of the PHIs already proceeded
432 // as already stated.
433 // Though the code will be correct.
434 assert(false && "Repairing cost may not be accurate");
435 } else {
436 // We need to do non-local repairing. Basically, patch all
437 // the uses (i.e., phis) that we already proceeded.
438 // For now, just say this mapping is not possible.
440 }
441 }
442}
443
447 const RegBankSelect::MappingCost *BestCost) {
448 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
449
450 if (!InstrMapping.isValid())
452
453 // If mapped with InstrMapping, MI will have the recorded cost.
454 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent())
455 : BlockFrequency(1));
456 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
457 assert(!Saturated && "Possible mapping saturated the cost");
458 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
459 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
460 RepairPts.clear();
461 if (BestCost && Cost > *BestCost) {
462 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
463 return Cost;
464 }
465 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
466
467 // Moreover, to realize this mapping, the register bank of each operand must
468 // match this mapping. In other words, we may need to locally reassign the
469 // register banks. Account for that repairing cost as well.
470 // In this context, local means in the surrounding of MI.
471 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
472 OpIdx != EndOpIdx; ++OpIdx) {
473 const MachineOperand &MO = MI.getOperand(OpIdx);
474 if (!MO.isReg())
475 continue;
476 Register Reg = MO.getReg();
477 if (!Reg)
478 continue;
479 LLT Ty = MRI.getType(Reg);
480 if (!Ty.isValid())
481 continue;
482
483 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
484 const RegisterBankInfo::ValueMapping &ValMapping =
485 InstrMapping.getOperandMapping(OpIdx);
486 // If Reg is already properly mapped, this is free.
487 bool Assign;
488 if (assignmentMatch(Reg, ValMapping, Assign)) {
489 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
490 continue;
491 }
492 if (Assign) {
493 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
494 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
496 continue;
497 }
498
499 // Find the insertion point for the repairing code.
500 RepairPts.emplace_back(
502 RepairingPlacement &RepairPt = RepairPts.back();
503
504 // If we need to split a basic block to materialize this insertion point,
505 // we may give a higher cost to this mapping.
506 // Nevertheless, we may get away with the split, so try that first.
507 if (RepairPt.hasSplit())
508 tryAvoidingSplit(RepairPt, MO, ValMapping);
509
510 // Check that the materialization of the repairing is possible.
511 if (!RepairPt.canMaterialize()) {
512 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
514 }
515
516 // Account for the split cost and repair cost.
517 // Unless the cost is already saturated or we do not care about the cost.
518 if (!BestCost || Saturated)
519 continue;
520
521 // To get accurate information we need MBFI and MBPI.
522 // Thus, if we end up here this information should be here.
523 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
524
525 // FIXME: We will have to rework the repairing cost model.
526 // The repairing cost depends on the register bank that MO has.
527 // However, when we break down the value into different values,
528 // MO may not have a register bank while still needing repairing.
529 // For the fast mode, we don't compute the cost so that is fine,
530 // but still for the repairing code, we will have to make a choice.
531 // For the greedy mode, we should choose greedily what is the best
532 // choice based on the next use of MO.
533
534 // Sums up the repairing cost of MO at each insertion point.
535 uint64_t RepairCost = getRepairCost(MO, ValMapping);
536
537 // This is an impossible to repair cost.
538 if (RepairCost == std::numeric_limits<unsigned>::max())
540
541 // Bias used for splitting: 5%.
542 const uint64_t PercentageForBias = 5;
543 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
544 // We should not need more than a couple of instructions to repair
545 // an assignment. In other words, the computation should not
546 // overflow because the repairing cost is free of basic block
547 // frequency.
548 assert(((RepairCost < RepairCost * PercentageForBias) &&
549 (RepairCost * PercentageForBias <
550 RepairCost * PercentageForBias + 99)) &&
551 "Repairing involves more than a billion of instructions?!");
552 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
553 assert(InsertPt->canMaterialize() && "We should not have made it here");
554 // We will applied some basic block frequency and those uses uint64_t.
555 if (!InsertPt->isSplit())
556 Saturated = Cost.addLocalCost(RepairCost);
557 else {
558 uint64_t CostForInsertPt = RepairCost;
559 // Again we shouldn't overflow here givent that
560 // CostForInsertPt is frequency free at this point.
561 assert(CostForInsertPt + Bias > CostForInsertPt &&
562 "Repairing + split bias overflows");
563 CostForInsertPt += Bias;
564 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
565 // Check if we just overflowed.
566 if ((Saturated = PtCost < CostForInsertPt))
567 Cost.saturate();
568 else
569 Saturated = Cost.addNonLocalCost(PtCost);
570 }
571
572 // Stop looking into what it takes to repair, this is already
573 // too expensive.
574 if (BestCost && Cost > *BestCost) {
575 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
576 return Cost;
577 }
578
579 // No need to accumulate more cost information.
580 // We need to still gather the repairing information though.
581 if (Saturated)
582 break;
583 }
584 }
585 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
586 return Cost;
587}
588
592 // OpdMapper will hold all the information needed for the rewriting.
593 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
594
595 // First, place the repairing code.
596 for (RepairingPlacement &RepairPt : RepairPts) {
597 if (!RepairPt.canMaterialize() ||
598 RepairPt.getKind() == RepairingPlacement::Impossible)
599 return false;
600 assert(RepairPt.getKind() != RepairingPlacement::None &&
601 "This should not make its way in the list");
602 unsigned OpIdx = RepairPt.getOpIdx();
603 MachineOperand &MO = MI.getOperand(OpIdx);
604 const RegisterBankInfo::ValueMapping &ValMapping =
605 InstrMapping.getOperandMapping(OpIdx);
606 Register Reg = MO.getReg();
607
608 switch (RepairPt.getKind()) {
610 assert(ValMapping.NumBreakDowns == 1 &&
611 "Reassignment should only be for simple mapping");
612 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
613 break;
615 // Don't insert additional instruction for debug instruction.
616 if (MI.isDebugInstr())
617 break;
618 OpdMapper.createVRegs(OpIdx);
619 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
620 return false;
621 break;
622 default:
623 llvm_unreachable("Other kind should not happen");
624 }
625 }
626
627 // Second, rewrite the instruction.
628 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
629 RBI->applyMapping(MIRBuilder, OpdMapper);
630
631 return true;
632}
633
635 LLVM_DEBUG(dbgs() << "Assign: " << MI);
636
637 unsigned Opc = MI.getOpcode();
639 assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
640 Opc == TargetOpcode::G_ASSERT_SEXT ||
641 Opc == TargetOpcode::G_ASSERT_ALIGN) &&
642 "Unexpected hint opcode!");
643 // The only correct mapping for these is to always use the source register
644 // bank.
645 const RegisterBank *RB =
646 RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
647 // We can assume every instruction above this one has a selected register
648 // bank.
649 assert(RB && "Expected source register to have a register bank?");
650 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
651 MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
652 return true;
653 }
654
655 // Remember the repairing placement for all the operands.
657
658 const RegisterBankInfo::InstructionMapping *BestMapping;
660 BestMapping = &RBI->getInstrMapping(MI);
661 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
662 (void)DefaultCost;
663 if (DefaultCost == MappingCost::ImpossibleCost())
664 return false;
665 } else {
667 RBI->getInstrPossibleMappings(MI);
668 if (PossibleMappings.empty())
669 return false;
670 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
671 }
672 // Make sure the mapping is valid for MI.
673 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
674
675 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
676
677 // After this call, MI may not be valid anymore.
678 // Do not use it.
679 return applyMapping(MI, *BestMapping, RepairPts);
680}
681
683 // Walk the function and assign register banks to all operands.
684 // Use a RPOT to make sure all registers are assigned before we choose
685 // the best mapping of the current instruction.
687 for (MachineBasicBlock *MBB : RPOT) {
688 // Set a sensible insertion point so that subsequent calls to
689 // MIRBuilder.
690 MIRBuilder.setMBB(*MBB);
692 make_pointer_range(reverse(MBB->instrs())));
693
694 while (!WorkList.empty()) {
695 MachineInstr &MI = *WorkList.pop_back_val();
696
697 // Ignore target-specific post-isel instructions: they should use proper
698 // regclasses.
699 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
700 continue;
701
702 // Ignore inline asm instructions: they should use physical
703 // registers/regclasses
704 if (MI.isInlineAsm())
705 continue;
706
707 // Ignore IMPLICIT_DEF which must have a regclass.
708 if (MI.isImplicitDef())
709 continue;
710
711 if (!assignInstr(MI)) {
712 reportGISelFailure(MF, *MORE, "gisel-regbankselect",
713 "unable to map instruction", MI);
714 return false;
715 }
716 }
717 }
718
719 return true;
720}
721
723#ifndef NDEBUG
725 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
726 reportGISelFailure(MF, *MORE, "gisel-regbankselect",
727 "instruction is not legal", *MI);
728 return false;
729 }
730 }
731#endif
732 return true;
733}
734
736 // If the ISel pipeline failed, do not bother running that pass.
737 if (MF.getProperties().hasFailedISel())
738 return false;
739
740 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
741 const Function &F = MF.getFunction();
742 Mode SaveOptMode = OptMode;
743 if (F.hasOptNone())
745 init(MF);
746
747#ifndef NDEBUG
748 if (!checkFunctionIsLegal(MF))
749 return false;
750#endif
751
753
754 OptMode = SaveOptMode;
755 return false;
756}
757
758//------------------------------------------------------------------------------
759// Helper Classes Implementation
760//------------------------------------------------------------------------------
762 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
764 // Default is, we are going to insert code to repair OpIdx.
765 : Kind(Kind), OpIdx(OpIdx),
766 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
767 const MachineOperand &MO = MI.getOperand(OpIdx);
768 assert(MO.isReg() && "Trying to repair a non-reg operand");
769
770 if (Kind != RepairingKind::Insert)
771 return;
772
773 // Repairings for definitions happen after MI, uses happen before.
774 bool Before = !MO.isDef();
775
776 // Check if we are done with MI.
777 if (!MI.isPHI() && !MI.isTerminator()) {
778 addInsertPoint(MI, Before);
779 // We are done with the initialization.
780 return;
781 }
782
783 // Now, look for the special cases.
784 if (MI.isPHI()) {
785 // - PHI must be the first instructions:
786 // * Before, we have to split the related incoming edge.
787 // * After, move the insertion point past the last phi.
788 if (!Before) {
789 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
790 if (It != MI.getParent()->end())
791 addInsertPoint(*It, /*Before*/ true);
792 else
793 addInsertPoint(*(--It), /*Before*/ false);
794 return;
795 }
796 // We repair a use of a phi, we may need to split the related edge.
797 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
798 // Check if we can move the insertion point prior to the
799 // terminators of the predecessor.
800 Register Reg = MO.getReg();
801 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
802 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
803 if (It->modifiesRegister(Reg, &TRI)) {
804 // We cannot hoist the repairing code in the predecessor.
805 // Split the edge.
806 addInsertPoint(Pred, *MI.getParent());
807 return;
808 }
809 // At this point, we can insert in Pred.
810
811 // - If It is invalid, Pred is empty and we can insert in Pred
812 // wherever we want.
813 // - If It is valid, It is the first non-terminator, insert after It.
814 if (It == Pred.end())
815 addInsertPoint(Pred, /*Beginning*/ false);
816 else
817 addInsertPoint(*It, /*Before*/ false);
818 } else {
819 // - Terminators must be the last instructions:
820 // * Before, move the insert point before the first terminator.
821 // * After, we have to split the outcoming edges.
822 if (Before) {
823 // Check whether Reg is defined by any terminator.
825 auto REnd = MI.getParent()->rend();
826
827 for (; It != REnd && It->isTerminator(); ++It) {
828 assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
829 "copy insertion in middle of terminators not handled");
830 }
831
832 if (It == REnd) {
833 addInsertPoint(*MI.getParent()->begin(), true);
834 return;
835 }
836
837 // We are sure to be right before the first terminator.
838 addInsertPoint(*It, /*Before*/ false);
839 return;
840 }
841 // Make sure Reg is not redefined by other terminators, otherwise
842 // we do not know how to split.
843 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
844 ++It != End;)
845 // The machine verifier should reject this kind of code.
846 assert(It->modifiesRegister(MO.getReg(), &TRI) &&
847 "Do not know where to split");
848 // Split each outcoming edges.
849 MachineBasicBlock &Src = *MI.getParent();
850 for (auto &Succ : Src.successors())
851 addInsertPoint(Src, Succ);
852 }
853}
854
859
864
869
872 CanMaterialize &= Point.canMaterialize();
873 HasSplit |= Point.isSplit();
874 InsertPoints.emplace_back(&Point);
875}
876
878 bool Before)
879 : Instr(Instr), Before(Before) {
880 // Since we do not support splitting, we do not need to update
881 // liveness and such, so do not do anything with P.
882 assert((!Before || !Instr.isPHI()) &&
883 "Splitting before phis requires more points");
884 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
885 "Splitting between phis does not make sense");
886}
887
889 if (isSplit()) {
890 // Slice and return the beginning of the new block.
891 // If we need to split between the terminators, we theoritically
892 // need to know where the first and second set of terminators end
893 // to update the successors properly.
894 // Now, in pratice, we should have a maximum of 2 branch
895 // instructions; one conditional and one unconditional. Therefore
896 // we know how to update the successor by looking at the target of
897 // the unconditional branch.
898 // If we end up splitting at some point, then, we should update
899 // the liveness information and such. I.e., we would need to
900 // access P here.
901 // The machine verifier should actually make sure such cases
902 // cannot happen.
903 llvm_unreachable("Not yet implemented");
904 }
905 // Otherwise the insertion point is just the current or next
906 // instruction depending on Before. I.e., there is nothing to do
907 // here.
908}
909
911 // If the insertion point is after a terminator, we need to split.
912 if (!Before)
913 return Instr.isTerminator();
914 // If we insert before an instruction that is after a terminator,
915 // we are still after a terminator.
916 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
917}
918
920 // Even if we need to split, because we insert between terminators,
921 // this split has actually the same frequency as the instruction.
922 const auto *MBFIWrapper =
923 P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>();
924 if (!MBFIWrapper)
925 return 1;
926 return MBFIWrapper->getMBFI().getBlockFreq(Instr.getParent()).getFrequency();
927}
928
930 const auto *MBFIWrapper =
931 P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>();
932 if (!MBFIWrapper)
933 return 1;
935}
936
938 // If we end up repairing twice at the same place before materializing the
939 // insertion point, we may think we have to split an edge twice.
940 // We should have a factory for the insert point such that identical points
941 // are the same instance.
942 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
943 "This point has already been split");
944 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
945 assert(NewBB && "Invalid call to materialize");
946 // We reuse the destination block to hold the information of the new block.
947 DstOrSplit = NewBB;
948}
949
951 const auto *MBFIWrapper =
952 P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>();
953 if (!MBFIWrapper)
954 return 1;
955 const auto *MBFI = &MBFIWrapper->getMBFI();
956 if (WasMaterialized)
957 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
958
959 auto *MBPIWrapper =
960 P.getAnalysisIfAvailable<MachineBranchProbabilityInfoWrapperPass>();
962 MBPIWrapper ? &MBPIWrapper->getMBPI() : nullptr;
963 if (!MBPI)
964 return 1;
965 // The basic block will be on the edge.
966 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
967 .getFrequency();
968}
969
971 // If this is not a critical edge, we should not have used this insert
972 // point. Indeed, either the successor or the predecessor should
973 // have do.
974 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
975 "Edge is not critical");
976 return Src.canSplitCriticalEdge(DstOrSplit);
977}
978
979RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq)
980 : LocalFreq(LocalFreq.getFrequency()) {}
981
983 // Check if this overflows.
984 if (LocalCost + Cost < LocalCost) {
985 saturate();
986 return true;
987 }
988 LocalCost += Cost;
989 return isSaturated();
990}
991
993 // Check if this overflows.
994 if (NonLocalCost + Cost < NonLocalCost) {
995 saturate();
996 return true;
997 }
998 NonLocalCost += Cost;
999 return isSaturated();
1000}
1001
1002bool RegBankSelect::MappingCost::isSaturated() const {
1003 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
1004 LocalFreq == UINT64_MAX;
1005}
1006
1008 *this = ImpossibleCost();
1009 --LocalCost;
1010}
1011
1015
1016bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
1017 // Sort out the easy cases.
1018 if (*this == Cost)
1019 return false;
1020 // If one is impossible to realize the other is cheaper unless it is
1021 // impossible as well.
1022 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
1023 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
1024 // If one is saturated the other is cheaper, unless it is saturated
1025 // as well.
1026 if (isSaturated() || Cost.isSaturated())
1027 return isSaturated() < Cost.isSaturated();
1028 // At this point we know both costs hold sensible values.
1029
1030 // If both values have a different base frequency, there is no much
1031 // we can do but to scale everything.
1032 // However, if they have the same base frequency we can avoid making
1033 // complicated computation.
1034 uint64_t ThisLocalAdjust;
1035 uint64_t OtherLocalAdjust;
1036 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
1037
1038 // At this point, we know the local costs are comparable.
1039 // Do the case that do not involve potential overflow first.
1040 if (NonLocalCost == Cost.NonLocalCost)
1041 // Since the non-local costs do not discriminate on the result,
1042 // just compare the local costs.
1043 return LocalCost < Cost.LocalCost;
1044
1045 // The base costs are comparable so we may only keep the relative
1046 // value to increase our chances of avoiding overflows.
1047 ThisLocalAdjust = 0;
1048 OtherLocalAdjust = 0;
1049 if (LocalCost < Cost.LocalCost)
1050 OtherLocalAdjust = Cost.LocalCost - LocalCost;
1051 else
1052 ThisLocalAdjust = LocalCost - Cost.LocalCost;
1053 } else {
1054 ThisLocalAdjust = LocalCost;
1055 OtherLocalAdjust = Cost.LocalCost;
1056 }
1057
1058 // The non-local costs are comparable, just keep the relative value.
1059 uint64_t ThisNonLocalAdjust = 0;
1060 uint64_t OtherNonLocalAdjust = 0;
1061 if (NonLocalCost < Cost.NonLocalCost)
1062 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1063 else
1064 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1065 // Scale everything to make them comparable.
1066 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1067 // Check for overflow on that operation.
1068 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1069 ThisScaledCost < LocalFreq);
1070 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1071 // Check for overflow on the last operation.
1072 bool OtherOverflows =
1073 OtherLocalAdjust &&
1074 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1075 // Add the non-local costs.
1076 ThisOverflows |= ThisNonLocalAdjust &&
1077 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1078 ThisScaledCost += ThisNonLocalAdjust;
1079 OtherOverflows |= OtherNonLocalAdjust &&
1080 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1081 OtherScaledCost += OtherNonLocalAdjust;
1082 // If both overflows, we cannot compare without additional
1083 // precision, e.g., APInt. Just give up on that case.
1084 if (ThisOverflows && OtherOverflows)
1085 return false;
1086 // If one overflows but not the other, we can still compare.
1087 if (ThisOverflows || OtherOverflows)
1088 return ThisOverflows < OtherOverflows;
1089 // Otherwise, just compare the values.
1090 return ThisScaledCost < OtherScaledCost;
1091}
1092
1093bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1094 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1095 LocalFreq == Cost.LocalFreq;
1096}
1097
1098#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1100 print(dbgs());
1101 dbgs() << '\n';
1102}
1103#endif
1104
1106 if (*this == ImpossibleCost()) {
1107 OS << "impossible";
1108 return;
1109 }
1110 if (isSaturated()) {
1111 OS << "saturated";
1112 return;
1113 }
1114 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1115}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
#define DEBUG_TYPE
IRTranslator LLVM IR MI
Interface for Targets to specify which operations they can successfully select and how the others sho...
#define F(x, y, z)
Definition MD5.cpp:54
===- MachineOptimizationRemarkEmitter.h - Opt Diagnostics -*- C++ -*-—===//
MachineInstr unsigned OpIdx
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
static cl::opt< RegBankSelect::Mode > RegBankSelectMode(cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", "Run the Fast mode (default mapping)"), clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", "Use the Greedy mode (best local mapping)")))
This file describes the interface of the MachineFunctionPass responsible for assigning the generic vi...
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
Target-Independent Code Generator Pass Configuration Options pass.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
constexpr unsigned getScalarSizeInBits() const
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
const MachineBlockFrequencyInfo & getMBFI() const
Definition MBFIWrapper.h:37
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, std::vector< SparseBitVector<> > *LiveInSets=nullptr, MachineDomTreeUpdater *MDTU=nullptr)
MachineInstrBundleIterator< MachineInstr, true > reverse_iterator
MachineInstrBundleIterator< MachineInstr > iterator
LLVM_ABI BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const
getblockFreq - Return block frequency.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineFunctionProperties & getProperties() const
Get the function properties.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
Insertion point on an edge.
uint64_t frequency(const Pass &P) const override
Frequency of the insertion point.
bool canMaterialize() const override
Check whether this insertion point can be materialized.
Abstract class used to represent an insertion point in a CFG.
bool WasMaterialized
Tell if the insert point has already been materialized.
virtual void materialize()=0
Materialize the insertion point.
virtual bool canMaterialize() const
Check whether this insertion point can be materialized.
virtual bool isSplit() const
Does this point involve splitting an edge or block?
Insertion point before or after an instruction.
InstrInsertPoint(MachineInstr &Instr, bool Before=true)
Create an insertion point before (Before=true) or after Instr.
bool isSplit() const override
Does this point involve splitting an edge or block?
uint64_t frequency(const Pass &P) const override
Frequency of the insertion point.
Insertion point at the beginning or end of a basic block.
uint64_t frequency(const Pass &P) const override
Frequency of the insertion point.
Helper class used to represent the cost for mapping an instruction.
void saturate()
Saturate the cost to the maximal representable value.
bool operator==(const MappingCost &Cost) const
Check if this is equal to Cost.
bool addLocalCost(uint64_t Cost)
Add Cost to the local cost.
void dump() const
Print this on dbgs() stream.
static MappingCost ImpossibleCost()
Return an instance of MappingCost that represents an impossible mapping.
bool addNonLocalCost(uint64_t Cost)
Add Cost to the non-local cost.
bool operator<(const MappingCost &Cost) const
Check if this is less than Cost.
void print(raw_ostream &OS) const
Print this on OS;.
Struct used to represent the placement of a repairing point for a given operand.
RepairingPlacement(MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, RepairingKind Kind=RepairingKind::Insert)
Create a repairing placement for the OpIdx-th operand of MI.
RepairingKind
Define the kind of action this repairing needs.
@ Insert
Reparing code needs to happen before InsertPoints.
@ None
Nothing to repair, just drop this action.
@ Reassign
(Re)assign the register bank of the operand.
@ Impossible
Mark this repairing placement as impossible.
void switchTo(RepairingKind NewKind)
Change the type of this repairing placement to NewKind.
void addInsertPoint(MachineBasicBlock &MBB, bool Beginning)
This pass implements the reg bank selector pass used in the GlobalISel pipeline.
Mode
List of the modes supported by the RegBankSelect pass.
@ Fast
Assign the register banks as fast as possible (default).
@ Greedy
Greedily minimize the cost of assigning register banks.
bool checkFunctionIsLegal(MachineFunction &MF) const
Check that our input is fully legal: we require the function to have the Legalized property,...
MachineIRBuilder MIRBuilder
Helper class used for every code morphing.
MachineBlockFrequencyInfo * MBFI
Get the frequency of blocks.
Mode OptMode
Optimization mode of the pass.
const RegisterBankInfo::InstructionMapping & findBestMapping(MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, SmallVectorImpl< RepairingPlacement > &RepairPts)
Find the best mapping for MI from PossibleMappings.
bool assignInstr(MachineInstr &MI)
Assign the register bank of each operand of MI.
bool assignRegisterBanks(MachineFunction &MF)
Walk through MF and assign a register bank to every virtual register that are still mapped to nothing...
void init(MachineFunction &MF)
Initialize the field members using MF.
void tryAvoidingSplit(RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping) const
When RepairPt involves splitting to repair MO for the given ValMapping, try to change the way we repa...
const TargetRegisterInfo * TRI
Information on the register classes for the current function.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MachineBranchProbabilityInfo * MBPI
Get the frequency of the edges.
bool assignmentMatch(Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, bool &OnlyAssign) const
Check if Reg is already assigned what is described by ValMapping.
uint64_t getRepairCost(const MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping) const
Return the cost of the instruction needed to map MO to ValMapping.
MappingCost computeMapping(MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, SmallVectorImpl< RepairingPlacement > &RepairPts, const MappingCost *BestCost=nullptr)
Compute the cost of mapping MI with InstrMapping and compute the repairing placement for such mapping...
bool repairReg(MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, RegBankSelect::RepairingPlacement &RepairPt, const iterator_range< SmallVectorImpl< Register >::const_iterator > &NewVRegs)
Insert repairing code for Reg as specified by ValMapping.
MachineRegisterInfo * MRI
MRI contains all the register class/bank information that this pass uses and updates.
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const RegisterBankInfo * RBI
Interface to the target lowering info related to register banks.
std::unique_ptr< MachineOptimizationRemarkEmitter > MORE
Current optimization remark emitter. Used to report failures.
bool applyMapping(MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, SmallVectorImpl< RepairingPlacement > &RepairPts)
Apply Mapping to MI.
Helper class that represents how the value of an instruction may be mapped and what is the related co...
unsigned getNumOperands() const
Get the number of operands.
bool verify(const MachineInstr &MI) const
Verifiy that this mapping makes sense for MI.
bool isValid() const
Check whether this object is valid.
Helper class used to get/create the virtual registers that will be used to replace the MachineOperand...
void createVRegs(unsigned OpIdx)
Create as many new virtual registers as needed for the mapping of the OpIdx-th operand.
iterator_range< SmallVectorImpl< Register >::const_iterator > getVRegs(unsigned OpIdx, bool ForDebug=false) const
Get all the virtual registers required to map the OpIdx-th operand of the instruction.
SmallVector< const InstructionMapping *, 4 > InstructionMappings
Convenient type to represent the alternatives for mapping an instruction.
This class implements the register bank concept.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
typename SuperClass::const_iterator const_iterator
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Target-Independent Code Generator Pass Configuration Options.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const RegisterBankInfo * getRegBankInfo() const
If the information for the register banks is available, return it.
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define UINT64_MAX
Definition DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
This is an optimization pass for GlobalISel generic memory operations.
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
InstructionCost Cost
bool isPreISelGenericOptimizationHint(unsigned Opcode)
LLVM_ABI cl::opt< bool > DisableGISelLegalityCheck
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void reportGISelFailure(MachineFunction &MF, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R)
Report an ISel error as a missed optimization remark to the LLVMContext's diagnostic stream.
Definition Utils.cpp:259
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
LLVM_ABI Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI)
Create Printable object to print register classes or register banks on a raw_ostream.
const MachineInstr * machineFunctionIsIllegal(const MachineFunction &MF)
Checks that MIR is fully legal, returns an illegal instruction if it's not, nullptr otherwise.
LLVM_ABI void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU)
Modify analysis usage so it preserves passes required for the SelectionDAG fallback.
Definition Utils.cpp:1189
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
bool isTargetSpecificOpcode(unsigned Opcode)
Check whether the given Opcode is a target-specific opcode.
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
const RegisterBank * RegBank
Register bank where the partial value lives.
unsigned Length
Length of this mapping in bits.
Helper struct that represents how a value is mapped through different register banks.
unsigned NumBreakDowns
Number of partial mapping to break down this value.
const PartialMapping * BreakDown
How the value is broken down between the different register banks.