LLVM 22.0.0git
ScalarEvolution.h
Go to the documentation of this file.
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The ScalarEvolution class is an LLVM pass which can be used to analyze and
10// categorize scalar expressions in loops. It specializes in recognizing
11// general induction variables, representing them with the abstract and opaque
12// SCEV class. Given this analysis, trip counts of loops and other important
13// properties can be obtained.
14//
15// This analysis is primarily useful for induction variable substitution and
16// strength reduction.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
22
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/SetVector.h"
34#include "llvm/IR/PassManager.h"
35#include "llvm/IR/ValueHandle.h"
36#include "llvm/IR/ValueMap.h"
37#include "llvm/Pass.h"
39#include <cassert>
40#include <cstdint>
41#include <memory>
42#include <optional>
43#include <utility>
44
45namespace llvm {
46
48class AssumptionCache;
49class BasicBlock;
50class Constant;
51class ConstantInt;
52class DataLayout;
53class DominatorTree;
54class GEPOperator;
55class LLVMContext;
56class Loop;
57class LoopInfo;
58class raw_ostream;
59class ScalarEvolution;
60class SCEVAddRecExpr;
61class SCEVUnknown;
62class StructType;
64class Type;
65enum SCEVTypes : unsigned short;
66
67LLVM_ABI extern bool VerifySCEV;
68
69/// This class represents an analyzed expression in the program. These are
70/// opaque objects that the client is not allowed to do much with directly.
71///
72class SCEV : public FoldingSetNode {
73 friend struct FoldingSetTrait<SCEV>;
74
75 /// A reference to an Interned FoldingSetNodeID for this node. The
76 /// ScalarEvolution's BumpPtrAllocator holds the data.
78
79 // The SCEV baseclass this node corresponds to
80 const SCEVTypes SCEVType;
81
82protected:
83 // Estimated complexity of this node's expression tree size.
84 const unsigned short ExpressionSize;
85
86 /// This field is initialized to zero and may be used in subclasses to store
87 /// miscellaneous information.
88 unsigned short SubclassData = 0;
89
90public:
91 /// NoWrapFlags are bitfield indices into SubclassData.
92 ///
93 /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
94 /// no-signed-wrap <NSW> properties, which are derived from the IR
95 /// operator. NSW is a misnomer that we use to mean no signed overflow or
96 /// underflow.
97 ///
98 /// AddRec expressions may have a no-self-wraparound <NW> property if, in
99 /// the integer domain, abs(step) * max-iteration(loop) <=
100 /// unsigned-max(bitwidth). This means that the recurrence will never reach
101 /// its start value if the step is non-zero. Computing the same value on
102 /// each iteration is not considered wrapping, and recurrences with step = 0
103 /// are trivially <NW>. <NW> is independent of the sign of step and the
104 /// value the add recurrence starts with.
105 ///
106 /// Note that NUW and NSW are also valid properties of a recurrence, and
107 /// either implies NW. For convenience, NW will be set for a recurrence
108 /// whenever either NUW or NSW are set.
109 ///
110 /// We require that the flag on a SCEV apply to the entire scope in which
111 /// that SCEV is defined. A SCEV's scope is set of locations dominated by
112 /// a defining location, which is in turn described by the following rules:
113 /// * A SCEVUnknown is at the point of definition of the Value.
114 /// * A SCEVConstant is defined at all points.
115 /// * A SCEVAddRec is defined starting with the header of the associated
116 /// loop.
117 /// * All other SCEVs are defined at the earlest point all operands are
118 /// defined.
119 ///
120 /// The above rules describe a maximally hoisted form (without regards to
121 /// potential control dependence). A SCEV is defined anywhere a
122 /// corresponding instruction could be defined in said maximally hoisted
123 /// form. Note that SCEVUDivExpr (currently the only expression type which
124 /// can trap) can be defined per these rules in regions where it would trap
125 /// at runtime. A SCEV being defined does not require the existence of any
126 /// instruction within the defined scope.
128 FlagAnyWrap = 0, // No guarantee.
129 FlagNW = (1 << 0), // No self-wrap.
130 FlagNUW = (1 << 1), // No unsigned wrap.
131 FlagNSW = (1 << 2), // No signed wrap.
132 NoWrapMask = (1 << 3) - 1
133 };
134
135 explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
136 unsigned short ExpressionSize)
137 : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
138 SCEV(const SCEV &) = delete;
139 SCEV &operator=(const SCEV &) = delete;
140
141 SCEVTypes getSCEVType() const { return SCEVType; }
142
143 /// Return the LLVM type of this SCEV expression.
144 LLVM_ABI Type *getType() const;
145
146 /// Return operands of this SCEV expression.
148
149 /// Return true if the expression is a constant zero.
150 LLVM_ABI bool isZero() const;
151
152 /// Return true if the expression is a constant one.
153 LLVM_ABI bool isOne() const;
154
155 /// Return true if the expression is a constant all-ones value.
156 LLVM_ABI bool isAllOnesValue() const;
157
158 /// Return true if the specified scev is negated, but not a constant.
159 LLVM_ABI bool isNonConstantNegative() const;
160
161 // Returns estimated size of the mathematical expression represented by this
162 // SCEV. The rules of its calculation are following:
163 // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
164 // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
165 // (1 + Size(Op1) + ... + Size(OpN)).
166 // This value gives us an estimation of time we need to traverse through this
167 // SCEV and all its operands recursively. We may use it to avoid performing
168 // heavy transformations on SCEVs of excessive size for sake of saving the
169 // compilation time.
170 unsigned short getExpressionSize() const {
171 return ExpressionSize;
172 }
173
174 /// Print out the internal representation of this scalar to the specified
175 /// stream. This should really only be used for debugging purposes.
176 LLVM_ABI void print(raw_ostream &OS) const;
177
178 /// This method is used for debugging.
179 LLVM_ABI void dump() const;
180};
181
182// Specialize FoldingSetTrait for SCEV to avoid needing to compute
183// temporary FoldingSetNodeID values.
184template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
185 static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
186
187 static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
188 FoldingSetNodeID &TempID) {
189 return ID == X.FastID;
190 }
191
192 static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
193 return X.FastID.ComputeHash();
194 }
195};
196
197inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
198 S.print(OS);
199 return OS;
200}
201
202/// An object of this class is returned by queries that could not be answered.
203/// For example, if you ask for the number of iterations of a linked-list
204/// traversal loop, you will get one of these. None of the standard SCEV
205/// operations are valid on this class, it is just a marker.
206struct SCEVCouldNotCompute : public SCEV {
208
209 /// Methods for support type inquiry through isa, cast, and dyn_cast:
210 LLVM_ABI static bool classof(const SCEV *S);
211};
212
213/// This class represents an assumption made using SCEV expressions which can
214/// be checked at run-time.
216 friend struct FoldingSetTrait<SCEVPredicate>;
217
218 /// A reference to an Interned FoldingSetNodeID for this node. The
219 /// ScalarEvolution's BumpPtrAllocator holds the data.
220 FoldingSetNodeIDRef FastID;
221
222public:
224
225protected:
227 ~SCEVPredicate() = default;
228 SCEVPredicate(const SCEVPredicate &) = default;
230
231public:
233
234 SCEVPredicateKind getKind() const { return Kind; }
235
236 /// Returns the estimated complexity of this predicate. This is roughly
237 /// measured in the number of run-time checks required.
238 virtual unsigned getComplexity() const { return 1; }
239
240 /// Returns true if the predicate is always true. This means that no
241 /// assumptions were made and nothing needs to be checked at run-time.
242 virtual bool isAlwaysTrue() const = 0;
243
244 /// Returns true if this predicate implies \p N.
245 virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const = 0;
246
247 /// Prints a textual representation of this predicate with an indentation of
248 /// \p Depth.
249 virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
250};
251
253 P.print(OS);
254 return OS;
255}
256
257// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
258// temporary FoldingSetNodeID values.
259template <>
261 static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
262 ID = X.FastID;
263 }
264
265 static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
266 unsigned IDHash, FoldingSetNodeID &TempID) {
267 return ID == X.FastID;
268 }
269
270 static unsigned ComputeHash(const SCEVPredicate &X,
271 FoldingSetNodeID &TempID) {
272 return X.FastID.ComputeHash();
273 }
274};
275
276/// This class represents an assumption that the expression LHS Pred RHS
277/// evaluates to true, and this can be checked at run-time.
279 /// We assume that LHS Pred RHS is true.
280 const ICmpInst::Predicate Pred;
281 const SCEV *LHS;
282 const SCEV *RHS;
283
284public:
286 const ICmpInst::Predicate Pred,
287 const SCEV *LHS, const SCEV *RHS);
288
289 /// Implementation of the SCEVPredicate interface
290 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
291 void print(raw_ostream &OS, unsigned Depth = 0) const override;
292 bool isAlwaysTrue() const override;
293
294 ICmpInst::Predicate getPredicate() const { return Pred; }
295
296 /// Returns the left hand side of the predicate.
297 const SCEV *getLHS() const { return LHS; }
298
299 /// Returns the right hand side of the predicate.
300 const SCEV *getRHS() const { return RHS; }
301
302 /// Methods for support type inquiry through isa, cast, and dyn_cast:
303 static bool classof(const SCEVPredicate *P) {
304 return P->getKind() == P_Compare;
305 }
306};
307
308/// This class represents an assumption made on an AddRec expression. Given an
309/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
310/// flags (defined below) in the first X iterations of the loop, where X is a
311/// SCEV expression returned by getPredicatedBackedgeTakenCount).
312///
313/// Note that this does not imply that X is equal to the backedge taken
314/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
315/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
316/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
317/// have more than X iterations.
319public:
320 /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
321 /// for FlagNUSW. The increment is considered to be signed, and a + b
322 /// (where b is the increment) is considered to wrap if:
323 /// zext(a + b) != zext(a) + sext(b)
324 ///
325 /// If Signed is a function that takes an n-bit tuple and maps to the
326 /// integer domain as the tuples value interpreted as twos complement,
327 /// and Unsigned a function that takes an n-bit tuple and maps to the
328 /// integer domain as the base two value of input tuple, then a + b
329 /// has IncrementNUSW iff:
330 ///
331 /// 0 <= Unsigned(a) + Signed(b) < 2^n
332 ///
333 /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
334 ///
335 /// Note that the IncrementNUSW flag is not commutative: if base + inc
336 /// has IncrementNUSW, then inc + base doesn't neccessarily have this
337 /// property. The reason for this is that this is used for sign/zero
338 /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
339 /// assumed. A {base,+,inc} expression is already non-commutative with
340 /// regards to base and inc, since it is interpreted as:
341 /// (((base + inc) + inc) + inc) ...
343 IncrementAnyWrap = 0, // No guarantee.
344 IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
345 IncrementNSSW = (1 << 1), // No signed with signed increment wrap
346 // (equivalent with SCEV::NSW)
347 IncrementNoWrapMask = (1 << 2) - 1
348 };
349
350 /// Convenient IncrementWrapFlags manipulation methods.
351 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
354 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
355 assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
356 "Invalid flags value!");
357 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
358 }
359
360 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
362 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
363 assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
364
365 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
366 }
367
368 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
371 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
372 assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
373 "Invalid flags value!");
374
375 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
376 }
377
378 /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
379 /// SCEVAddRecExpr.
380 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
381 getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
382
383private:
384 const SCEVAddRecExpr *AR;
385 IncrementWrapFlags Flags;
386
387public:
389 const SCEVAddRecExpr *AR,
390 IncrementWrapFlags Flags);
391
392 /// Returns the set assumed no overflow flags.
393 IncrementWrapFlags getFlags() const { return Flags; }
394
395 /// Implementation of the SCEVPredicate interface
396 const SCEVAddRecExpr *getExpr() const;
397 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
398 void print(raw_ostream &OS, unsigned Depth = 0) const override;
399 bool isAlwaysTrue() const override;
400
401 /// Methods for support type inquiry through isa, cast, and dyn_cast:
402 static bool classof(const SCEVPredicate *P) {
403 return P->getKind() == P_Wrap;
404 }
405};
406
407/// This class represents a composition of other SCEV predicates, and is the
408/// class that most clients will interact with. This is equivalent to a
409/// logical "AND" of all the predicates in the union.
410///
411/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
412/// ScalarEvolution::Preds folding set. This is why the \c add function is sound.
414private:
415 using PredicateMap =
417
418 /// Vector with references to all predicates in this union.
420
421 /// Adds a predicate to this union.
422 void add(const SCEVPredicate *N, ScalarEvolution &SE);
423
424public:
426 ScalarEvolution &SE);
427
429
430 /// Returns a new SCEVUnionPredicate that is the union of this predicate
431 /// and the given predicate \p N.
433 ScalarEvolution &SE) const {
434 SCEVUnionPredicate Result(Preds, SE);
435 Result.add(N, SE);
436 return Result;
437 }
438
439 /// Implementation of the SCEVPredicate interface
440 bool isAlwaysTrue() const override;
441 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
442 void print(raw_ostream &OS, unsigned Depth) const override;
443
444 /// We estimate the complexity of a union predicate as the size number of
445 /// predicates in the union.
446 unsigned getComplexity() const override { return Preds.size(); }
447
448 /// Methods for support type inquiry through isa, cast, and dyn_cast:
449 static bool classof(const SCEVPredicate *P) {
450 return P->getKind() == P_Union;
451 }
452};
453
454/// The main scalar evolution driver. Because client code (intentionally)
455/// can't do much with the SCEV objects directly, they must ask this class
456/// for services.
459
460public:
461 /// An enum describing the relationship between a SCEV and a loop.
463 LoopVariant, ///< The SCEV is loop-variant (unknown).
464 LoopInvariant, ///< The SCEV is loop-invariant.
465 LoopComputable ///< The SCEV varies predictably with the loop.
466 };
467
468 /// An enum describing the relationship between a SCEV and a basic block.
470 DoesNotDominateBlock, ///< The SCEV does not dominate the block.
471 DominatesBlock, ///< The SCEV dominates the block.
472 ProperlyDominatesBlock ///< The SCEV properly dominates the block.
473 };
474
475 /// Convenient NoWrapFlags manipulation that hides enum casts and is
476 /// visible in the ScalarEvolution name space.
478 int Mask) {
479 return (SCEV::NoWrapFlags)(Flags & Mask);
480 }
481 [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
482 SCEV::NoWrapFlags OnFlags) {
483 return (SCEV::NoWrapFlags)(Flags | OnFlags);
484 }
485 [[nodiscard]] static SCEV::NoWrapFlags
487 return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
488 }
489 [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
490 SCEV::NoWrapFlags TestFlags) {
491 return TestFlags == maskFlags(Flags, TestFlags);
492 };
493
496 LoopInfo &LI);
499
500 LLVMContext &getContext() const { return F.getContext(); }
501
502 /// Test if values of the given type are analyzable within the SCEV
503 /// framework. This primarily includes integer types, and it can optionally
504 /// include pointer types if the ScalarEvolution class has access to
505 /// target-specific information.
506 LLVM_ABI bool isSCEVable(Type *Ty) const;
507
508 /// Return the size in bits of the specified type, for which isSCEVable must
509 /// return true.
511
512 /// Return a type with the same bitwidth as the given type and which
513 /// represents how SCEV will treat the given type, for which isSCEVable must
514 /// return true. For pointer types, this is the pointer-sized integer type.
516
517 // Returns a wider type among {Ty1, Ty2}.
518 LLVM_ABI Type *getWiderType(Type *Ty1, Type *Ty2) const;
519
520 /// Return true if there exists a point in the program at which both
521 /// A and B could be operands to the same instruction.
522 /// SCEV expressions are generally assumed to correspond to instructions
523 /// which could exists in IR. In general, this requires that there exists
524 /// a use point in the program where all operands dominate the use.
525 ///
526 /// Example:
527 /// loop {
528 /// if
529 /// loop { v1 = load @global1; }
530 /// else
531 /// loop { v2 = load @global2; }
532 /// }
533 /// No SCEV with operand V1, and v2 can exist in this program.
535
536 /// Return true if the SCEV is a scAddRecExpr or it contains
537 /// scAddRecExpr. The result will be cached in HasRecMap.
538 LLVM_ABI bool containsAddRecurrence(const SCEV *S);
539
540 /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
541 /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
542 /// no-overflow fact should be true in the context of this instruction.
544 const SCEV *LHS, const SCEV *RHS,
545 const Instruction *CtxI = nullptr);
546
547 /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
548 /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
549 /// Does not mutate the original instruction. Returns std::nullopt if it could
550 /// not deduce more precise flags than the instruction already has, otherwise
551 /// returns proven flags.
552 LLVM_ABI std::optional<SCEV::NoWrapFlags>
554
555 /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
557
558 /// Return true if the SCEV expression contains an undef value.
559 LLVM_ABI bool containsUndefs(const SCEV *S) const;
560
561 /// Return true if the SCEV expression contains a Value that has been
562 /// optimised out and is now a nullptr.
563 LLVM_ABI bool containsErasedValue(const SCEV *S) const;
564
565 /// Return a SCEV expression for the full generality of the specified
566 /// expression.
567 LLVM_ABI const SCEV *getSCEV(Value *V);
568
569 /// Return an existing SCEV for V if there is one, otherwise return nullptr.
571
573 LLVM_ABI const SCEV *getConstant(const APInt &Val);
574 LLVM_ABI const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
576 unsigned Depth = 0);
577 LLVM_ABI const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
578 LLVM_ABI const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty,
579 unsigned Depth = 0);
580 LLVM_ABI const SCEV *getVScale(Type *Ty);
581 LLVM_ABI const SCEV *
584 LLVM_ABI const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty,
585 unsigned Depth = 0);
586 LLVM_ABI const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
587 unsigned Depth = 0);
588 LLVM_ABI const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty,
589 unsigned Depth = 0);
590 LLVM_ABI const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
591 unsigned Depth = 0);
592 LLVM_ABI const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
593 LLVM_ABI const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
596 unsigned Depth = 0);
597 const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
599 unsigned Depth = 0) {
601 return getAddExpr(Ops, Flags, Depth);
602 }
603 const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
605 unsigned Depth = 0) {
606 SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
607 return getAddExpr(Ops, Flags, Depth);
608 }
611 unsigned Depth = 0);
612 const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
614 unsigned Depth = 0) {
616 return getMulExpr(Ops, Flags, Depth);
617 }
618 const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
620 unsigned Depth = 0) {
621 SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
622 return getMulExpr(Ops, Flags, Depth);
623 }
624 LLVM_ABI const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
625 LLVM_ABI const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
626 LLVM_ABI const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
627 LLVM_ABI const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
628 const Loop *L, SCEV::NoWrapFlags Flags);
630 const Loop *L, SCEV::NoWrapFlags Flags);
632 const Loop *L, SCEV::NoWrapFlags Flags) {
633 SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
634 return getAddRecExpr(NewOp, L, Flags);
635 }
636
637 /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
638 /// Predicates. If successful return these <AddRecExpr, Predicates>;
639 /// The function is intended to be called from PSCEV (the caller will decide
640 /// whether to actually add the predicates and carry out the rewrites).
641 LLVM_ABI std::optional<
642 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
643 createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
644
645 /// Returns an expression for a GEP
646 ///
647 /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
648 /// instead we use IndexExprs.
649 /// \p IndexExprs The expressions for the indices.
651 ArrayRef<const SCEV *> IndexExprs);
652 LLVM_ABI const SCEV *getGEPExpr(const SCEV *BaseExpr,
653 ArrayRef<const SCEV *> IndexExprs,
654 Type *SrcElementTy,
656 LLVM_ABI const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
659 LLVM_ABI const SCEV *
662 LLVM_ABI const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
664 LLVM_ABI const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
666 LLVM_ABI const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
668 LLVM_ABI const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
669 bool Sequential = false);
671 bool Sequential = false);
672 LLVM_ABI const SCEV *getUnknown(Value *V);
674
675 /// Return a SCEV for the constant 0 of a specific type.
676 const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
677
678 /// Return a SCEV for the constant 1 of a specific type.
679 const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
680
681 /// Return a SCEV for the constant \p Power of two.
682 const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
683 assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
685 }
686
687 /// Return a SCEV for the constant -1 of a specific type.
688 const SCEV *getMinusOne(Type *Ty) {
689 return getConstant(Ty, -1, /*isSigned=*/true);
690 }
691
692 /// Return an expression for a TypeSize.
694
695 /// Return an expression for the alloc size of AllocTy that is type IntTy
696 LLVM_ABI const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
697
698 /// Return an expression for the store size of StoreTy that is type IntTy
699 LLVM_ABI const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
700
701 /// Return an expression for offsetof on the given field with type IntTy
702 LLVM_ABI const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy,
703 unsigned FieldNo);
704
705 /// Return the SCEV object corresponding to -V.
706 LLVM_ABI const SCEV *
708
709 /// Return the SCEV object corresponding to ~V.
710 LLVM_ABI const SCEV *getNotSCEV(const SCEV *V);
711
712 /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
713 ///
714 /// If the LHS and RHS are pointers which don't share a common base
715 /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
716 /// To compute the difference between two unrelated pointers, you can
717 /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
718 /// types that support it.
719 LLVM_ABI const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
721 unsigned Depth = 0);
722
723 /// Compute ceil(N / D). N and D are treated as unsigned values.
724 ///
725 /// Since SCEV doesn't have native ceiling division, this generates a
726 /// SCEV expression of the following form:
727 ///
728 /// umin(N, 1) + floor((N - umin(N, 1)) / D)
729 ///
730 /// A denominator of zero or poison is handled the same way as getUDivExpr().
731 LLVM_ABI const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
732
733 /// Return a SCEV corresponding to a conversion of the input value to the
734 /// specified type. If the type must be extended, it is zero extended.
735 LLVM_ABI const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
736 unsigned Depth = 0);
737
738 /// Return a SCEV corresponding to a conversion of the input value to the
739 /// specified type. If the type must be extended, it is sign extended.
740 LLVM_ABI const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
741 unsigned Depth = 0);
742
743 /// Return a SCEV corresponding to a conversion of the input value to the
744 /// specified type. If the type must be extended, it is zero extended. The
745 /// conversion must not be narrowing.
746 LLVM_ABI const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
747
748 /// Return a SCEV corresponding to a conversion of the input value to the
749 /// specified type. If the type must be extended, it is sign extended. The
750 /// conversion must not be narrowing.
751 LLVM_ABI const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
752
753 /// Return a SCEV corresponding to a conversion of the input value to the
754 /// specified type. If the type must be extended, it is extended with
755 /// unspecified bits. The conversion must not be narrowing.
756 LLVM_ABI const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
757
758 /// Return a SCEV corresponding to a conversion of the input value to the
759 /// specified type. The conversion must not be widening.
760 LLVM_ABI const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
761
762 /// Promote the operands to the wider of the types using zero-extension, and
763 /// then perform a umax operation with them.
765 const SCEV *RHS);
766
767 /// Promote the operands to the wider of the types using zero-extension, and
768 /// then perform a umin operation with them.
770 const SCEV *RHS,
771 bool Sequential = false);
772
773 /// Promote the operands to the wider of the types using zero-extension, and
774 /// then perform a umin operation with them. N-ary function.
775 LLVM_ABI const SCEV *
777 bool Sequential = false);
778
779 /// Transitively follow the chain of pointer-type operands until reaching a
780 /// SCEV that does not have a single pointer operand. This returns a
781 /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
782 /// cases do exist.
783 LLVM_ABI const SCEV *getPointerBase(const SCEV *V);
784
785 /// Compute an expression equivalent to S - getPointerBase(S).
786 LLVM_ABI const SCEV *removePointerBase(const SCEV *S);
787
788 /// Return a SCEV expression for the specified value at the specified scope
789 /// in the program. The L value specifies a loop nest to evaluate the
790 /// expression at, where null is the top-level or a specified loop is
791 /// immediately inside of the loop.
792 ///
793 /// This method can be used to compute the exit value for a variable defined
794 /// in a loop by querying what the value will hold in the parent loop.
795 ///
796 /// In the case that a relevant loop exit value cannot be computed, the
797 /// original value V is returned.
798 LLVM_ABI const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
799
800 /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
801 LLVM_ABI const SCEV *getSCEVAtScope(Value *V, const Loop *L);
802
803 /// Test whether entry to the loop is protected by a conditional between LHS
804 /// and RHS. This is used to help avoid max expressions in loop trip
805 /// counts, and to eliminate casts.
807 const SCEV *LHS, const SCEV *RHS);
808
809 /// Test whether entry to the basic block is protected by a conditional
810 /// between LHS and RHS.
812 CmpPredicate Pred,
813 const SCEV *LHS,
814 const SCEV *RHS);
815
816 /// Test whether the backedge of the loop is protected by a conditional
817 /// between LHS and RHS. This is used to eliminate casts.
819 const SCEV *LHS, const SCEV *RHS);
820
821 /// A version of getTripCountFromExitCount below which always picks an
822 /// evaluation type which can not result in overflow.
823 LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
824
825 /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
826 /// count". A "trip count" is the number of times the header of the loop
827 /// will execute if an exit is taken after the specified number of backedges
828 /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the
829 /// expression can overflow if ExitCount = UINT_MAX. If EvalTy is not wide
830 /// enough to hold the result without overflow, result unsigned wraps with
831 /// 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8)
832 LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
833 Type *EvalTy, const Loop *L);
834
835 /// Returns the exact trip count of the loop if we can compute it, and
836 /// the result is a small constant. '0' is used to represent an unknown
837 /// or non-constant trip count. Note that a trip count is simply one more
838 /// than the backedge taken count for the loop.
839 LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L);
840
841 /// Return the exact trip count for this loop if we exit through ExitingBlock.
842 /// '0' is used to represent an unknown or non-constant trip count. Note
843 /// that a trip count is simply one more than the backedge taken count for
844 /// the same exit.
845 /// This "trip count" assumes that control exits via ExitingBlock. More
846 /// precisely, it is the number of times that control will reach ExitingBlock
847 /// before taking the branch. For loops with multiple exits, it may not be
848 /// the number times that the loop header executes if the loop exits
849 /// prematurely via another branch.
850 LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L,
851 const BasicBlock *ExitingBlock);
852
853 /// Returns the upper bound of the loop trip count as a normal unsigned
854 /// value.
855 /// Returns 0 if the trip count is unknown, not constant or requires
856 /// SCEV predicates and \p Predicates is nullptr.
858 const Loop *L,
859 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
860
861 /// Returns the largest constant divisor of the trip count as a normal
862 /// unsigned value, if possible. This means that the actual trip count is
863 /// always a multiple of the returned value. Returns 1 if the trip count is
864 /// unknown or not guaranteed to be the multiple of a constant., Will also
865 /// return 1 if the trip count is very large (>= 2^32).
866 /// Note that the argument is an exit count for loop L, NOT a trip count.
868 const SCEV *ExitCount);
869
870 /// Returns the largest constant divisor of the trip count of the
871 /// loop. Will return 1 if no trip count could be computed, or if a
872 /// divisor could not be found.
873 LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L);
874
875 /// Returns the largest constant divisor of the trip count of this loop as a
876 /// normal unsigned value, if possible. This means that the actual trip
877 /// count is always a multiple of the returned value (don't forget the trip
878 /// count could very well be zero as well!). As explained in the comments
879 /// for getSmallConstantTripCount, this assumes that control exits the loop
880 /// via ExitingBlock.
881 LLVM_ABI unsigned
882 getSmallConstantTripMultiple(const Loop *L, const BasicBlock *ExitingBlock);
883
884 /// The terms "backedge taken count" and "exit count" are used
885 /// interchangeably to refer to the number of times the backedge of a loop
886 /// has executed before the loop is exited.
888 /// An expression exactly describing the number of times the backedge has
889 /// executed when a loop is exited.
891 /// A constant which provides an upper bound on the exact trip count.
893 /// An expression which provides an upper bound on the exact trip count.
895 };
896
897 /// Return the number of times the backedge executes before the given exit
898 /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
899 /// For a single exit loop, this value is equivelent to the result of
900 /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit)
901 /// before the backedge is executed (ExitCount + 1) times. Note that there
902 /// is no guarantee about *which* exit is taken on the exiting iteration.
903 LLVM_ABI const SCEV *getExitCount(const Loop *L,
904 const BasicBlock *ExitingBlock,
905 ExitCountKind Kind = Exact);
906
907 /// Same as above except this uses the predicated backedge taken info and
908 /// may require predicates.
909 LLVM_ABI const SCEV *
910 getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock,
912 ExitCountKind Kind = Exact);
913
914 /// If the specified loop has a predictable backedge-taken count, return it,
915 /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
916 /// the number of times the loop header will be branched to from within the
917 /// loop, assuming there are no abnormal exists like exception throws. This is
918 /// one less than the trip count of the loop, since it doesn't count the first
919 /// iteration, when the header is branched to from outside the loop.
920 ///
921 /// Note that it is not valid to call this method on a loop without a
922 /// loop-invariant backedge-taken count (see
923 /// hasLoopInvariantBackedgeTakenCount).
924 LLVM_ABI const SCEV *getBackedgeTakenCount(const Loop *L,
925 ExitCountKind Kind = Exact);
926
927 /// Similar to getBackedgeTakenCount, except it will add a set of
928 /// SCEV predicates to Predicates that are required to be true in order for
929 /// the answer to be correct. Predicates can be checked with run-time
930 /// checks and can be used to perform loop versioning.
932 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
933
934 /// When successful, this returns a SCEVConstant that is greater than or equal
935 /// to (i.e. a "conservative over-approximation") of the value returend by
936 /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
937 /// SCEVCouldNotCompute object.
941
942 /// Similar to getConstantMaxBackedgeTakenCount, except it will add a set of
943 /// SCEV predicates to Predicates that are required to be true in order for
944 /// the answer to be correct. Predicates can be checked with run-time
945 /// checks and can be used to perform loop versioning.
947 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
948
949 /// When successful, this returns a SCEV that is greater than or equal
950 /// to (i.e. a "conservative over-approximation") of the value returend by
951 /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
952 /// SCEVCouldNotCompute object.
956
957 /// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of
958 /// SCEV predicates to Predicates that are required to be true in order for
959 /// the answer to be correct. Predicates can be checked with run-time
960 /// checks and can be used to perform loop versioning.
962 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
963
964 /// Return true if the backedge taken count is either the value returned by
965 /// getConstantMaxBackedgeTakenCount or zero.
967
968 /// Return true if the specified loop has an analyzable loop-invariant
969 /// backedge-taken count.
971
972 // This method should be called by the client when it made any change that
973 // would invalidate SCEV's answers, and the client wants to remove all loop
974 // information held internally by ScalarEvolution. This is intended to be used
975 // when the alternative to forget a loop is too expensive (i.e. large loop
976 // bodies).
978
979 /// This method should be called by the client when it has changed a loop in
980 /// a way that may effect ScalarEvolution's ability to compute a trip count,
981 /// or if the loop is deleted. This call is potentially expensive for large
982 /// loop bodies.
983 LLVM_ABI void forgetLoop(const Loop *L);
984
985 // This method invokes forgetLoop for the outermost loop of the given loop
986 // \p L, making ScalarEvolution forget about all this subtree. This needs to
987 // be done whenever we make a transform that may affect the parameters of the
988 // outer loop, such as exit counts for branches.
989 LLVM_ABI void forgetTopmostLoop(const Loop *L);
990
991 /// This method should be called by the client when it has changed a value
992 /// in a way that may effect its value, or which may disconnect it from a
993 /// def-use chain linking it to a loop.
994 LLVM_ABI void forgetValue(Value *V);
995
996 /// Forget LCSSA phi node V of loop L to which a new predecessor was added,
997 /// such that it may no longer be trivial.
999
1000 /// Called when the client has changed the disposition of values in
1001 /// this loop.
1002 ///
1003 /// We don't have a way to invalidate per-loop dispositions. Clear and
1004 /// recompute is simpler.
1006
1007 /// Called when the client has changed the disposition of values in
1008 /// a loop or block.
1009 ///
1010 /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
1011 /// and recompute is simpler.
1013
1014 /// Determine the minimum number of zero bits that S is guaranteed to end in
1015 /// (at every loop iteration). It is, at the same time, the minimum number
1016 /// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
1017 /// If S is guaranteed to be 0, it returns the bitwidth of S.
1018 /// If \p CtxI is not nullptr, return a constant multiple valid at \p CtxI.
1020 const Instruction *CtxI = nullptr);
1021
1022 /// Returns the max constant multiple of S. If \p CtxI is not nullptr, return
1023 /// a constant multiple valid at \p CtxI.
1025 const Instruction *CtxI = nullptr);
1026
1027 // Returns the max constant multiple of S. If S is exactly 0, return 1.
1029
1030 /// Determine the unsigned range for a particular SCEV.
1031 /// NOTE: This returns a copy of the reference returned by getRangeRef.
1033 return getRangeRef(S, HINT_RANGE_UNSIGNED);
1034 }
1035
1036 /// Determine the min of the unsigned range for a particular SCEV.
1038 return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
1039 }
1040
1041 /// Determine the max of the unsigned range for a particular SCEV.
1043 return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
1044 }
1045
1046 /// Determine the signed range for a particular SCEV.
1047 /// NOTE: This returns a copy of the reference returned by getRangeRef.
1049 return getRangeRef(S, HINT_RANGE_SIGNED);
1050 }
1051
1052 /// Determine the min of the signed range for a particular SCEV.
1054 return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
1055 }
1056
1057 /// Determine the max of the signed range for a particular SCEV.
1059 return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
1060 }
1061
1062 /// Test if the given expression is known to be negative.
1063 LLVM_ABI bool isKnownNegative(const SCEV *S);
1064
1065 /// Test if the given expression is known to be positive.
1066 LLVM_ABI bool isKnownPositive(const SCEV *S);
1067
1068 /// Test if the given expression is known to be non-negative.
1069 LLVM_ABI bool isKnownNonNegative(const SCEV *S);
1070
1071 /// Test if the given expression is known to be non-positive.
1072 LLVM_ABI bool isKnownNonPositive(const SCEV *S);
1073
1074 /// Test if the given expression is known to be non-zero.
1075 LLVM_ABI bool isKnownNonZero(const SCEV *S);
1076
1077 /// Test if the given expression is known to be a power of 2. OrNegative
1078 /// allows matching negative power of 2s, and OrZero allows matching 0.
1079 LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero = false,
1080 bool OrNegative = false);
1081
1082 /// Check that \p S is a multiple of \p M. When \p S is an AddRecExpr, \p S is
1083 /// a multiple of \p M if \p S starts with a multiple of \p M and at every
1084 /// iteration step \p S only adds multiples of \p M. \p Assumptions records
1085 /// the runtime predicates under which \p S is a multiple of \p M.
1086 LLVM_ABI bool
1087 isKnownMultipleOf(const SCEV *S, uint64_t M,
1089
1090 /// Return true if we know that S1 and S2 must have the same sign.
1091 LLVM_ABI bool haveSameSign(const SCEV *S1, const SCEV *S2);
1092
1093 /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1094 /// \p S by substitution of all AddRec sub-expression related to loop \p L
1095 /// with initial value of that SCEV. The second is obtained from \p S by
1096 /// substitution of all AddRec sub-expressions related to loop \p L with post
1097 /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1098 /// sub-expressions (not related to \p L) remain the same.
1099 /// If the \p S contains non-invariant unknown SCEV the function returns
1100 /// CouldNotCompute SCEV in both values of std::pair.
1101 /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1102 /// the function returns pair:
1103 /// first = {0, +, 1}<L2>
1104 /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1105 /// We can see that for the first AddRec sub-expression it was replaced with
1106 /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1107 /// increment value) for the second one. In both cases AddRec expression
1108 /// related to L2 remains the same.
1109 LLVM_ABI std::pair<const SCEV *, const SCEV *>
1110 SplitIntoInitAndPostInc(const Loop *L, const SCEV *S);
1111
1112 /// We'd like to check the predicate on every iteration of the most dominated
1113 /// loop between loops used in LHS and RHS.
1114 /// To do this we use the following list of steps:
1115 /// 1. Collect set S all loops on which either LHS or RHS depend.
1116 /// 2. If S is non-empty
1117 /// a. Let PD be the element of S which is dominated by all other elements.
1118 /// b. Let E(LHS) be value of LHS on entry of PD.
1119 /// To get E(LHS), we should just take LHS and replace all AddRecs that are
1120 /// attached to PD on with their entry values.
1121 /// Define E(RHS) in the same way.
1122 /// c. Let B(LHS) be value of L on backedge of PD.
1123 /// To get B(LHS), we should just take LHS and replace all AddRecs that are
1124 /// attached to PD on with their backedge values.
1125 /// Define B(RHS) in the same way.
1126 /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1127 /// so we can assert on that.
1128 /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1129 /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1131 const SCEV *RHS);
1132
1133 /// Test if the given expression is known to satisfy the condition described
1134 /// by Pred, LHS, and RHS.
1135 LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS,
1136 const SCEV *RHS);
1137
1138 /// Check whether the condition described by Pred, LHS, and RHS is true or
1139 /// false. If we know it, return the evaluation of this condition. If neither
1140 /// is proved, return std::nullopt.
1141 LLVM_ABI std::optional<bool>
1142 evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS);
1143
1144 /// Test if the given expression is known to satisfy the condition described
1145 /// by Pred, LHS, and RHS in the given Context.
1147 const SCEV *RHS, const Instruction *CtxI);
1148
1149 /// Check whether the condition described by Pred, LHS, and RHS is true or
1150 /// false in the given \p Context. If we know it, return the evaluation of
1151 /// this condition. If neither is proved, return std::nullopt.
1152 LLVM_ABI std::optional<bool> evaluatePredicateAt(CmpPredicate Pred,
1153 const SCEV *LHS,
1154 const SCEV *RHS,
1155 const Instruction *CtxI);
1156
1157 /// Test if the condition described by Pred, LHS, RHS is known to be true on
1158 /// every iteration of the loop of the recurrency LHS.
1160 const SCEVAddRecExpr *LHS,
1161 const SCEV *RHS);
1162
1163 /// Information about the number of loop iterations for which a loop exit's
1164 /// branch condition evaluates to the not-taken path. This is a temporary
1165 /// pair of exact and max expressions that are eventually summarized in
1166 /// ExitNotTakenInfo and BackedgeTakenInfo.
1167 struct ExitLimit {
1168 const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1169 const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1170 // times
1172
1173 // Not taken either exactly ConstantMaxNotTaken or zero times
1174 bool MaxOrZero = false;
1175
1176 /// A vector of predicate guards for this ExitLimit. The result is only
1177 /// valid if all of the predicates in \c Predicates evaluate to 'true' at
1178 /// run-time.
1180
1181 /// Construct either an exact exit limit from a constant, or an unknown
1182 /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed
1183 /// as arguments and asserts enforce that internally.
1184 /*implicit*/ LLVM_ABI ExitLimit(const SCEV *E);
1185
1186 LLVM_ABI
1187 ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1188 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1190
1192 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1194
1195 /// Test whether this ExitLimit contains any computed information, or
1196 /// whether it's all SCEVCouldNotCompute values.
1201
1202 /// Test whether this ExitLimit contains all information.
1203 bool hasFullInfo() const {
1205 }
1206 };
1207
1208 /// Compute the number of times the backedge of the specified loop will
1209 /// execute if its exit condition were a conditional branch of ExitCond.
1210 ///
1211 /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
1212 /// branch. In this case, we can assume that the loop exits only if the
1213 /// condition is true and can infer that failing to meet the condition prior
1214 /// to integer wraparound results in undefined behavior.
1215 ///
1216 /// If \p AllowPredicates is set, this call will try to use a minimal set of
1217 /// SCEV predicates in order to return an exact answer.
1218 LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1219 bool ExitIfTrue,
1220 bool ControlsOnlyExit,
1221 bool AllowPredicates = false);
1222
1223 /// A predicate is said to be monotonically increasing if may go from being
1224 /// false to being true as the loop iterates, but never the other way
1225 /// around. A predicate is said to be monotonically decreasing if may go
1226 /// from being true to being false as the loop iterates, but never the other
1227 /// way around.
1232
1233 /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1234 /// monotonically increasing or decreasing, returns
1235 /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1236 /// respectively. If we could not prove either of these facts, returns
1237 /// std::nullopt.
1238 LLVM_ABI std::optional<MonotonicPredicateType>
1240 ICmpInst::Predicate Pred);
1241
1250 /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1251 /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1252 /// invariants, available at L's entry. Otherwise, return std::nullopt.
1253 LLVM_ABI std::optional<LoopInvariantPredicate>
1255 const Loop *L, const Instruction *CtxI = nullptr);
1256
1257 /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1258 /// respect to L at given Context during at least first MaxIter iterations,
1259 /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1260 /// available at L's entry. Otherwise, return std::nullopt. The predicate
1261 /// should be the loop's exit condition.
1262 LLVM_ABI std::optional<LoopInvariantPredicate>
1264 const SCEV *LHS,
1265 const SCEV *RHS, const Loop *L,
1266 const Instruction *CtxI,
1267 const SCEV *MaxIter);
1268
1269 LLVM_ABI std::optional<LoopInvariantPredicate>
1271 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1272 const Instruction *CtxI, const SCEV *MaxIter);
1273
1274 /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1275 /// iff any changes were made. If the operands are provably equal or
1276 /// unequal, LHS and RHS are set to the same value and Pred is set to either
1277 /// ICMP_EQ or ICMP_NE.
1279 const SCEV *&RHS, unsigned Depth = 0);
1280
1281 /// Return the "disposition" of the given SCEV with respect to the given
1282 /// loop.
1284
1285 /// Return true if the value of the given SCEV is unchanging in the
1286 /// specified loop.
1287 LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L);
1288
1289 /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1290 /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1291 /// the header of loop L.
1292 LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1293
1294 /// Return true if the given SCEV changes value in a known way in the
1295 /// specified loop. This property being true implies that the value is
1296 /// variant in the loop AND that we can emit an expression to compute the
1297 /// value of the expression at any particular loop iteration.
1298 LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1299
1300 /// Return the "disposition" of the given SCEV with respect to the given
1301 /// block.
1303 const BasicBlock *BB);
1304
1305 /// Return true if elements that makes up the given SCEV dominate the
1306 /// specified basic block.
1307 LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB);
1308
1309 /// Return true if elements that makes up the given SCEV properly dominate
1310 /// the specified basic block.
1311 LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1312
1313 /// Test whether the given SCEV has Op as a direct or indirect operand.
1314 LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const;
1315
1316 /// Return the size of an element read or written by Inst.
1318
1319 LLVM_ABI void print(raw_ostream &OS) const;
1320 LLVM_ABI void verify() const;
1322 FunctionAnalysisManager::Invalidator &Inv);
1323
1324 /// Return the DataLayout associated with the module this SCEV instance is
1325 /// operating on.
1326 const DataLayout &getDataLayout() const { return DL; }
1327
1329 const SCEV *RHS);
1331 const SCEV *LHS,
1332 const SCEV *RHS);
1333
1334 LLVM_ABI const SCEVPredicate *
1337
1338 /// Re-writes the SCEV according to the Predicates in \p A.
1339 LLVM_ABI const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1340 const SCEVPredicate &A);
1341 /// Tries to convert the \p S expression to an AddRec expression,
1342 /// adding additional predicates to \p Preds as required.
1344 const SCEV *S, const Loop *L,
1346
1347 /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1348 /// constant, and std::nullopt if it isn't.
1349 ///
1350 /// This is intended to be a cheaper version of getMinusSCEV. We can be
1351 /// frugal here since we just bail out of actually constructing and
1352 /// canonicalizing an expression in the cases where the result isn't going
1353 /// to be a constant.
1354 LLVM_ABI std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1355 const SCEV *RHS);
1356
1357 /// Update no-wrap flags of an AddRec. This may drop the cached info about
1358 /// this AddRec (such as range info) in case if new flags may potentially
1359 /// sharpen it.
1361
1362 class LoopGuards {
1365 bool PreserveNUW = false;
1366 bool PreserveNSW = false;
1367 ScalarEvolution &SE;
1368
1369 LoopGuards(ScalarEvolution &SE) : SE(SE) {}
1370
1371 /// Recursively collect loop guards in \p Guards, starting from
1372 /// block \p Block with predecessor \p Pred. The intended starting point
1373 /// is to collect from a loop header and its predecessor.
1374 static void
1375 collectFromBlock(ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
1376 const BasicBlock *Block, const BasicBlock *Pred,
1378 unsigned Depth = 0);
1379
1380 /// Collect loop guards in \p Guards, starting from PHINode \p
1381 /// Phi, by calling \p collectFromBlock on the incoming blocks of
1382 /// \Phi and trying to merge the found constraints into a single
1383 /// combined one for \p Phi.
1384 static void collectFromPHI(
1388 unsigned Depth);
1389
1390 public:
1391 /// Collect rewrite map for loop guards for loop \p L, together with flags
1392 /// indicating if NUW and NSW can be preserved during rewriting.
1393 LLVM_ABI static LoopGuards collect(const Loop *L, ScalarEvolution &SE);
1394
1395 /// Try to apply the collected loop guards to \p Expr.
1396 LLVM_ABI const SCEV *rewrite(const SCEV *Expr) const;
1397 };
1398
1399 /// Try to apply information from loop guards for \p L to \p Expr.
1400 LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1401 LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr,
1402 const LoopGuards &Guards);
1403
1404 /// Return true if the loop has no abnormal exits. That is, if the loop
1405 /// is not infinite, it must exit through an explicit edge in the CFG.
1406 /// (As opposed to either a) throwing out of the function or b) entering a
1407 /// well defined infinite loop in some callee.)
1409 return getLoopProperties(L).HasNoAbnormalExits;
1410 }
1411
1412 /// Return true if this loop is finite by assumption. That is,
1413 /// to be infinite, it must also be undefined.
1414 LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L);
1415
1416 /// Return the set of Values that, if poison, will definitively result in S
1417 /// being poison as well. The returned set may be incomplete, i.e. there can
1418 /// be additional Values that also result in S being poison.
1419 LLVM_ABI void
1421 const SCEV *S);
1422
1423 /// Check whether it is poison-safe to represent the expression S using the
1424 /// instruction I. If such a replacement is performed, the poison flags of
1425 /// instructions in DropPoisonGeneratingInsts must be dropped.
1427 const SCEV *S, Instruction *I,
1428 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
1429
1430 class FoldID {
1431 const SCEV *Op = nullptr;
1432 const Type *Ty = nullptr;
1433 unsigned short C;
1434
1435 public:
1436 FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
1437 assert(Op);
1438 assert(Ty);
1439 }
1440
1441 FoldID(unsigned short C) : C(C) {}
1442
1443 unsigned computeHash() const {
1445 C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
1446 reinterpret_cast<uintptr_t>(Ty)));
1447 }
1448
1449 bool operator==(const FoldID &RHS) const {
1450 return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
1451 }
1452 };
1453
1454private:
1455 /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1456 /// Value is deleted.
1457 class LLVM_ABI SCEVCallbackVH final : public CallbackVH {
1458 ScalarEvolution *SE;
1459
1460 void deleted() override;
1461 void allUsesReplacedWith(Value *New) override;
1462
1463 public:
1464 SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1465 };
1466
1467 friend class SCEVCallbackVH;
1468 friend class SCEVExpander;
1469 friend class SCEVUnknown;
1470
1471 /// The function we are analyzing.
1472 Function &F;
1473
1474 /// Data layout of the module.
1475 const DataLayout &DL;
1476
1477 /// Does the module have any calls to the llvm.experimental.guard intrinsic
1478 /// at all? If this is false, we avoid doing work that will only help if
1479 /// thare are guards present in the IR.
1480 bool HasGuards;
1481
1482 /// The target library information for the target we are targeting.
1483 TargetLibraryInfo &TLI;
1484
1485 /// The tracker for \@llvm.assume intrinsics in this function.
1486 AssumptionCache &AC;
1487
1488 /// The dominator tree.
1489 DominatorTree &DT;
1490
1491 /// The loop information for the function we are currently analyzing.
1492 LoopInfo &LI;
1493
1494 /// This SCEV is used to represent unknown trip counts and things.
1495 std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1496
1497 /// The type for HasRecMap.
1498 using HasRecMapType = DenseMap<const SCEV *, bool>;
1499
1500 /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1501 HasRecMapType HasRecMap;
1502
1503 /// The type for ExprValueMap.
1504 using ValueSetVector = SmallSetVector<Value *, 4>;
1505 using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1506
1507 /// ExprValueMap -- This map records the original values from which
1508 /// the SCEV expr is generated from.
1509 ExprValueMapType ExprValueMap;
1510
1511 /// The type for ValueExprMap.
1512 using ValueExprMapType =
1514
1515 /// This is a cache of the values we have analyzed so far.
1516 ValueExprMapType ValueExprMap;
1517
1518 /// This is a cache for expressions that got folded to a different existing
1519 /// SCEV.
1522
1523 /// Mark predicate values currently being processed by isImpliedCond.
1524 SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1525
1526 /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1527 SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1528
1529 /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1530 SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1531
1532 // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1533 SmallPtrSet<const PHINode *, 6> PendingMerges;
1534
1535 /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1536 /// conditions dominating the backedge of a loop.
1537 bool WalkingBEDominatingConds = false;
1538
1539 /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1540 /// predicate by splitting it into a set of independent predicates.
1541 bool ProvingSplitPredicate = false;
1542
1543 /// Memoized values for the getConstantMultiple
1544 DenseMap<const SCEV *, APInt> ConstantMultipleCache;
1545
1546 /// Return the Value set from which the SCEV expr is generated.
1547 ArrayRef<Value *> getSCEVValues(const SCEV *S);
1548
1549 /// Private helper method for the getConstantMultiple method. If \p CtxI is
1550 /// not nullptr, return a constant multiple valid at \p CtxI.
1551 APInt getConstantMultipleImpl(const SCEV *S,
1552 const Instruction *Ctx = nullptr);
1553
1554 /// Information about the number of times a particular loop exit may be
1555 /// reached before exiting the loop.
1556 struct ExitNotTakenInfo {
1557 PoisoningVH<BasicBlock> ExitingBlock;
1558 const SCEV *ExactNotTaken;
1559 const SCEV *ConstantMaxNotTaken;
1560 const SCEV *SymbolicMaxNotTaken;
1562
1563 explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1564 const SCEV *ExactNotTaken,
1565 const SCEV *ConstantMaxNotTaken,
1566 const SCEV *SymbolicMaxNotTaken,
1568 : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1569 ConstantMaxNotTaken(ConstantMaxNotTaken),
1570 SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1571
1572 bool hasAlwaysTruePredicate() const {
1573 return Predicates.empty();
1574 }
1575 };
1576
1577 /// Information about the backedge-taken count of a loop. This currently
1578 /// includes an exact count and a maximum count.
1579 ///
1580 class BackedgeTakenInfo {
1581 friend class ScalarEvolution;
1582
1583 /// A list of computable exits and their not-taken counts. Loops almost
1584 /// never have more than one computable exit.
1585 SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1586
1587 /// Expression indicating the least constant maximum backedge-taken count of
1588 /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1589 /// only valid if the predicates associated with all loop exits are true.
1590 const SCEV *ConstantMax = nullptr;
1591
1592 /// Indicating if \c ExitNotTaken has an element for every exiting block in
1593 /// the loop.
1594 bool IsComplete = false;
1595
1596 /// Expression indicating the least maximum backedge-taken count of the loop
1597 /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1598 const SCEV *SymbolicMax = nullptr;
1599
1600 /// True iff the backedge is taken either exactly Max or zero times.
1601 bool MaxOrZero = false;
1602
1603 bool isComplete() const { return IsComplete; }
1604 const SCEV *getConstantMax() const { return ConstantMax; }
1605
1606 LLVM_ABI const ExitNotTakenInfo *getExitNotTaken(
1607 const BasicBlock *ExitingBlock,
1608 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1609
1610 public:
1611 BackedgeTakenInfo() = default;
1612 BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1613 BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1614
1615 using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1616
1617 /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1618 LLVM_ABI BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts,
1619 bool IsComplete, const SCEV *ConstantMax,
1620 bool MaxOrZero);
1621
1622 /// Test whether this BackedgeTakenInfo contains any computed information,
1623 /// or whether it's all SCEVCouldNotCompute values.
1624 bool hasAnyInfo() const {
1625 return !ExitNotTaken.empty() ||
1626 !isa<SCEVCouldNotCompute>(getConstantMax());
1627 }
1628
1629 /// Test whether this BackedgeTakenInfo contains complete information.
1630 bool hasFullInfo() const { return isComplete(); }
1631
1632 /// Return an expression indicating the exact *backedge-taken*
1633 /// count of the loop if it is known or SCEVCouldNotCompute
1634 /// otherwise. If execution makes it to the backedge on every
1635 /// iteration (i.e. there are no abnormal exists like exception
1636 /// throws and thread exits) then this is the number of times the
1637 /// loop header will execute minus one.
1638 ///
1639 /// If the SCEV predicate associated with the answer can be different
1640 /// from AlwaysTrue, we must add a (non null) Predicates argument.
1641 /// The SCEV predicate associated with the answer will be added to
1642 /// Predicates. A run-time check needs to be emitted for the SCEV
1643 /// predicate in order for the answer to be valid.
1644 ///
1645 /// Note that we should always know if we need to pass a predicate
1646 /// argument or not from the way the ExitCounts vector was computed.
1647 /// If we allowed SCEV predicates to be generated when populating this
1648 /// vector, this information can contain them and therefore a
1649 /// SCEVPredicate argument should be added to getExact.
1650 LLVM_ABI const SCEV *getExact(
1651 const Loop *L, ScalarEvolution *SE,
1652 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1653
1654 /// Return the number of times this loop exit may fall through to the back
1655 /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1656 /// this block before this number of iterations, but may exit via another
1657 /// block. If \p Predicates is null the function returns CouldNotCompute if
1658 /// predicates are required, otherwise it fills in the required predicates.
1659 const SCEV *getExact(
1660 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1661 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1662 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1663 return ENT->ExactNotTaken;
1664 else
1665 return SE->getCouldNotCompute();
1666 }
1667
1668 /// Get the constant max backedge taken count for the loop.
1669 LLVM_ABI const SCEV *getConstantMax(
1670 ScalarEvolution *SE,
1671 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1672
1673 /// Get the constant max backedge taken count for the particular loop exit.
1674 const SCEV *getConstantMax(
1675 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1676 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1677 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1678 return ENT->ConstantMaxNotTaken;
1679 else
1680 return SE->getCouldNotCompute();
1681 }
1682
1683 /// Get the symbolic max backedge taken count for the loop.
1684 LLVM_ABI const SCEV *getSymbolicMax(
1685 const Loop *L, ScalarEvolution *SE,
1686 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
1687
1688 /// Get the symbolic max backedge taken count for the particular loop exit.
1689 const SCEV *getSymbolicMax(
1690 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1691 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1692 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1693 return ENT->SymbolicMaxNotTaken;
1694 else
1695 return SE->getCouldNotCompute();
1696 }
1697
1698 /// Return true if the number of times this backedge is taken is either the
1699 /// value returned by getConstantMax or zero.
1700 LLVM_ABI bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1701 };
1702
1703 /// Cache the backedge-taken count of the loops for this function as they
1704 /// are computed.
1705 DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1706
1707 /// Cache the predicated backedge-taken count of the loops for this
1708 /// function as they are computed.
1709 DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1710
1711 /// Loops whose backedge taken counts directly use this non-constant SCEV.
1712 DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1713 BECountUsers;
1714
1715 /// This map contains entries for all of the PHI instructions that we
1716 /// attempt to compute constant evolutions for. This allows us to avoid
1717 /// potentially expensive recomputation of these properties. An instruction
1718 /// maps to null if we are unable to compute its exit value.
1719 DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1720
1721 /// This map contains entries for all the expressions that we attempt to
1722 /// compute getSCEVAtScope information for, which can be expensive in
1723 /// extreme cases.
1724 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1725 ValuesAtScopes;
1726
1727 /// Reverse map for invalidation purposes: Stores of which SCEV and which
1728 /// loop this is the value-at-scope of.
1729 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1730 ValuesAtScopesUsers;
1731
1732 /// Memoized computeLoopDisposition results.
1733 DenseMap<const SCEV *,
1735 LoopDispositions;
1736
1737 struct LoopProperties {
1738 /// Set to true if the loop contains no instruction that can abnormally exit
1739 /// the loop (i.e. via throwing an exception, by terminating the thread
1740 /// cleanly or by infinite looping in a called function). Strictly
1741 /// speaking, the last one is not leaving the loop, but is identical to
1742 /// leaving the loop for reasoning about undefined behavior.
1743 bool HasNoAbnormalExits;
1744
1745 /// Set to true if the loop contains no instruction that can have side
1746 /// effects (i.e. via throwing an exception, volatile or atomic access).
1747 bool HasNoSideEffects;
1748 };
1749
1750 /// Cache for \c getLoopProperties.
1751 DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1752
1753 /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1754 LLVM_ABI LoopProperties getLoopProperties(const Loop *L);
1755
1756 bool loopHasNoSideEffects(const Loop *L) {
1757 return getLoopProperties(L).HasNoSideEffects;
1758 }
1759
1760 /// Compute a LoopDisposition value.
1761 LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1762
1763 /// Memoized computeBlockDisposition results.
1764 DenseMap<
1765 const SCEV *,
1767 BlockDispositions;
1768
1769 /// Compute a BlockDisposition value.
1770 BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1771
1772 /// Stores all SCEV that use a given SCEV as its direct operand.
1773 DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1774
1775 /// Memoized results from getRange
1776 DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1777
1778 /// Memoized results from getRange
1779 DenseMap<const SCEV *, ConstantRange> SignedRanges;
1780
1781 /// Used to parameterize getRange
1782 enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1783
1784 /// Set the memoized range for the given SCEV.
1785 const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1786 ConstantRange CR) {
1787 DenseMap<const SCEV *, ConstantRange> &Cache =
1788 Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1789
1790 auto Pair = Cache.insert_or_assign(S, std::move(CR));
1791 return Pair.first->second;
1792 }
1793
1794 /// Determine the range for a particular SCEV.
1795 /// NOTE: This returns a reference to an entry in a cache. It must be
1796 /// copied if its needed for longer.
1797 LLVM_ABI const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1798 unsigned Depth = 0);
1799
1800 /// Determine the range for a particular SCEV, but evaluates ranges for
1801 /// operands iteratively first.
1802 const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1803
1804 /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1805 /// Helper for \c getRange.
1806 ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1807 const APInt &MaxBECount);
1808
1809 /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1810 /// Start,+,\p Step}<nw>.
1811 ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1812 const SCEV *MaxBECount,
1813 unsigned BitWidth,
1814 RangeSignHint SignHint);
1815
1816 /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1817 /// Step} by "factoring out" a ternary expression from the add recurrence.
1818 /// Helper called by \c getRange.
1819 ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1820 const APInt &MaxBECount);
1821
1822 /// If the unknown expression U corresponds to a simple recurrence, return
1823 /// a constant range which represents the entire recurrence. Note that
1824 /// *add* recurrences with loop invariant steps aren't represented by
1825 /// SCEVUnknowns and thus don't use this mechanism.
1826 ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1827
1828 /// We know that there is no SCEV for the specified value. Analyze the
1829 /// expression recursively.
1830 const SCEV *createSCEV(Value *V);
1831
1832 /// We know that there is no SCEV for the specified value. Create a new SCEV
1833 /// for \p V iteratively.
1834 const SCEV *createSCEVIter(Value *V);
1835 /// Collect operands of \p V for which SCEV expressions should be constructed
1836 /// first. Returns a SCEV directly if it can be constructed trivially for \p
1837 /// V.
1838 const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1839
1840 /// Returns SCEV for the first operand of a phi if all phi operands have
1841 /// identical opcodes and operands.
1842 const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN);
1843
1844 /// Provide the special handling we need to analyze PHI SCEVs.
1845 const SCEV *createNodeForPHI(PHINode *PN);
1846
1847 /// Helper function called from createNodeForPHI.
1848 const SCEV *createAddRecFromPHI(PHINode *PN);
1849
1850 /// A helper function for createAddRecFromPHI to handle simple cases.
1851 const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1852 Value *StartValueV);
1853
1854 /// Helper function called from createNodeForPHI.
1855 const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1856
1857 /// Provide special handling for a select-like instruction (currently this
1858 /// is either a select instruction or a phi node). \p Ty is the type of the
1859 /// instruction being processed, that is assumed equivalent to
1860 /// "Cond ? TrueVal : FalseVal".
1861 std::optional<const SCEV *>
1862 createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1863 Value *TrueVal, Value *FalseVal);
1864
1865 /// See if we can model this select-like instruction via umin_seq expression.
1866 const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1867 Value *TrueVal,
1868 Value *FalseVal);
1869
1870 /// Given a value \p V, which is a select-like instruction (currently this is
1871 /// either a select instruction or a phi node), which is assumed equivalent to
1872 /// Cond ? TrueVal : FalseVal
1873 /// see if we can model it as a SCEV expression.
1874 const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1875 Value *FalseVal);
1876
1877 /// Provide the special handling we need to analyze GEP SCEVs.
1878 const SCEV *createNodeForGEP(GEPOperator *GEP);
1879
1880 /// Implementation code for getSCEVAtScope; called at most once for each
1881 /// SCEV+Loop pair.
1882 const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1883
1884 /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1885 /// values if the loop hasn't been analyzed yet. The returned result is
1886 /// guaranteed not to be predicated.
1887 BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1888
1889 /// Similar to getBackedgeTakenInfo, but will add predicates as required
1890 /// with the purpose of returning complete information.
1891 BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1892
1893 /// Compute the number of times the specified loop will iterate.
1894 /// If AllowPredicates is set, we will create new SCEV predicates as
1895 /// necessary in order to return an exact answer.
1896 BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1897 bool AllowPredicates = false);
1898
1899 /// Compute the number of times the backedge of the specified loop will
1900 /// execute if it exits via the specified block. If AllowPredicates is set,
1901 /// this call will try to use a minimal set of SCEV predicates in order to
1902 /// return an exact answer.
1903 ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1904 bool IsOnlyExit, bool AllowPredicates = false);
1905
1906 // Helper functions for computeExitLimitFromCond to avoid exponential time
1907 // complexity.
1908
1909 class ExitLimitCache {
1910 // It may look like we need key on the whole (L, ExitIfTrue,
1911 // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
1912 // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1913 // vary the in \c ExitCond and \c ControlsOnlyExit parameters. We remember
1914 // the initial values of the other values to assert our assumption.
1915 SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1916
1917 const Loop *L;
1918 bool ExitIfTrue;
1919 bool AllowPredicates;
1920
1921 public:
1922 ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1923 : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1924
1925 LLVM_ABI std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1926 bool ExitIfTrue,
1927 bool ControlsOnlyExit,
1928 bool AllowPredicates);
1929
1930 LLVM_ABI void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1931 bool ControlsOnlyExit, bool AllowPredicates,
1932 const ExitLimit &EL);
1933 };
1934
1935 using ExitLimitCacheTy = ExitLimitCache;
1936
1937 ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1938 const Loop *L, Value *ExitCond,
1939 bool ExitIfTrue,
1940 bool ControlsOnlyExit,
1941 bool AllowPredicates);
1942 ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1943 Value *ExitCond, bool ExitIfTrue,
1944 bool ControlsOnlyExit,
1945 bool AllowPredicates);
1946 std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1947 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
1948 bool ControlsOnlyExit, bool AllowPredicates);
1949
1950 /// Compute the number of times the backedge of the specified loop will
1951 /// execute if its exit condition were a conditional branch of the ICmpInst
1952 /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1953 /// to use a minimal set of SCEV predicates in order to return an exact
1954 /// answer.
1955 ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1956 bool ExitIfTrue,
1957 bool IsSubExpr,
1958 bool AllowPredicates = false);
1959
1960 /// Variant of previous which takes the components representing an ICmp
1961 /// as opposed to the ICmpInst itself. Note that the prior version can
1962 /// return more precise results in some cases and is preferred when caller
1963 /// has a materialized ICmp.
1964 ExitLimit computeExitLimitFromICmp(const Loop *L, CmpPredicate Pred,
1965 const SCEV *LHS, const SCEV *RHS,
1966 bool IsSubExpr,
1967 bool AllowPredicates = false);
1968
1969 /// Compute the number of times the backedge of the specified loop will
1970 /// execute if its exit condition were a switch with a single exiting case
1971 /// to ExitingBB.
1972 ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1973 SwitchInst *Switch,
1974 BasicBlock *ExitingBB,
1975 bool IsSubExpr);
1976
1977 /// Compute the exit limit of a loop that is controlled by a
1978 /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
1979 /// count in these cases (since SCEV has no way of expressing them), but we
1980 /// can still sometimes compute an upper bound.
1981 ///
1982 /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1983 /// RHS`.
1984 ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1985 ICmpInst::Predicate Pred);
1986
1987 /// If the loop is known to execute a constant number of times (the
1988 /// condition evolves only from constants), try to evaluate a few iterations
1989 /// of the loop until we get the exit condition gets a value of ExitWhen
1990 /// (true or false). If we cannot evaluate the exit count of the loop,
1991 /// return CouldNotCompute.
1992 const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1993 bool ExitWhen);
1994
1995 /// Return the number of times an exit condition comparing the specified
1996 /// value to zero will execute. If not computable, return CouldNotCompute.
1997 /// If AllowPredicates is set, this call will try to use a minimal set of
1998 /// SCEV predicates in order to return an exact answer.
1999 ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
2000 bool AllowPredicates = false);
2001
2002 /// Return the number of times an exit condition checking the specified
2003 /// value for nonzero will execute. If not computable, return
2004 /// CouldNotCompute.
2005 ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
2006
2007 /// Return the number of times an exit condition containing the specified
2008 /// less-than comparison will execute. If not computable, return
2009 /// CouldNotCompute.
2010 ///
2011 /// \p isSigned specifies whether the less-than is signed.
2012 ///
2013 /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
2014 /// the branch (loops exits only if condition is true). In this case, we can
2015 /// use NoWrapFlags to skip overflow checks.
2016 ///
2017 /// If \p AllowPredicates is set, this call will try to use a minimal set of
2018 /// SCEV predicates in order to return an exact answer.
2019 ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
2020 bool isSigned, bool ControlsOnlyExit,
2021 bool AllowPredicates = false);
2022
2023 ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
2024 bool isSigned, bool IsSubExpr,
2025 bool AllowPredicates = false);
2026
2027 /// Return a predecessor of BB (which may not be an immediate predecessor)
2028 /// which has exactly one successor from which BB is reachable, or null if
2029 /// no such block is found.
2030 std::pair<const BasicBlock *, const BasicBlock *>
2031 getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
2032
2033 /// Test whether the condition described by Pred, LHS, and RHS is true
2034 /// whenever the given FoundCondValue value evaluates to true in given
2035 /// Context. If Context is nullptr, then the found predicate is true
2036 /// everywhere. LHS and FoundLHS may have different type width.
2037 LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
2038 const SCEV *RHS, const Value *FoundCondValue,
2039 bool Inverse,
2040 const Instruction *Context = nullptr);
2041
2042 /// Test whether the condition described by Pred, LHS, and RHS is true
2043 /// whenever the given FoundCondValue value evaluates to true in given
2044 /// Context. If Context is nullptr, then the found predicate is true
2045 /// everywhere. LHS and FoundLHS must have same type width.
2046 LLVM_ABI bool isImpliedCondBalancedTypes(CmpPredicate Pred, const SCEV *LHS,
2047 const SCEV *RHS,
2048 CmpPredicate FoundPred,
2049 const SCEV *FoundLHS,
2050 const SCEV *FoundRHS,
2051 const Instruction *CtxI);
2052
2053 /// Test whether the condition described by Pred, LHS, and RHS is true
2054 /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
2055 /// true in given Context. If Context is nullptr, then the found predicate is
2056 /// true everywhere.
2057 LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
2058 const SCEV *RHS, CmpPredicate FoundPred,
2059 const SCEV *FoundLHS, const SCEV *FoundRHS,
2060 const Instruction *Context = nullptr);
2061
2062 /// Test whether the condition described by Pred, LHS, and RHS is true
2063 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2064 /// true in given Context. If Context is nullptr, then the found predicate is
2065 /// true everywhere.
2066 bool isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS,
2067 const SCEV *RHS, const SCEV *FoundLHS,
2068 const SCEV *FoundRHS,
2069 const Instruction *Context = nullptr);
2070
2071 /// Test whether the condition described by Pred, LHS, and RHS is true
2072 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2073 /// true. Here LHS is an operation that includes FoundLHS as one of its
2074 /// arguments.
2075 bool isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS,
2076 const SCEV *RHS, const SCEV *FoundLHS,
2077 const SCEV *FoundRHS, unsigned Depth = 0);
2078
2079 /// Test whether the condition described by Pred, LHS, and RHS is true.
2080 /// Use only simple non-recursive types of checks, such as range analysis etc.
2081 bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred, const SCEV *LHS,
2082 const SCEV *RHS);
2083
2084 /// Test whether the condition described by Pred, LHS, and RHS is true
2085 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2086 /// true.
2087 bool isImpliedCondOperandsHelper(CmpPredicate Pred, const SCEV *LHS,
2088 const SCEV *RHS, const SCEV *FoundLHS,
2089 const SCEV *FoundRHS);
2090
2091 /// Test whether the condition described by Pred, LHS, and RHS is true
2092 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2093 /// true. Utility function used by isImpliedCondOperands. Tries to get
2094 /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
2095 bool isImpliedCondOperandsViaRanges(CmpPredicate Pred, const SCEV *LHS,
2096 const SCEV *RHS, CmpPredicate FoundPred,
2097 const SCEV *FoundLHS,
2098 const SCEV *FoundRHS);
2099
2100 /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
2101 /// by a call to @llvm.experimental.guard in \p BB.
2102 bool isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred,
2103 const SCEV *LHS, const SCEV *RHS);
2104
2105 /// Test whether the condition described by Pred, LHS, and RHS is true
2106 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2107 /// true.
2108 ///
2109 /// This routine tries to rule out certain kinds of integer overflow, and
2110 /// then tries to reason about arithmetic properties of the predicates.
2111 bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
2112 const SCEV *RHS, const SCEV *FoundLHS,
2113 const SCEV *FoundRHS);
2114
2115 /// Test whether the condition described by Pred, LHS, and RHS is true
2116 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2117 /// true.
2118 ///
2119 /// This routine tries to weaken the known condition basing on fact that
2120 /// FoundLHS is an AddRec.
2121 bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred, const SCEV *LHS,
2122 const SCEV *RHS,
2123 const SCEV *FoundLHS,
2124 const SCEV *FoundRHS,
2125 const Instruction *CtxI);
2126
2127 /// Test whether the condition described by Pred, LHS, and RHS is true
2128 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2129 /// true.
2130 ///
2131 /// This routine tries to figure out predicate for Phis which are SCEVUnknown
2132 /// if it is true for every possible incoming value from their respective
2133 /// basic blocks.
2134 bool isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
2135 const SCEV *FoundLHS, const SCEV *FoundRHS,
2136 unsigned Depth);
2137
2138 /// Test whether the condition described by Pred, LHS, and RHS is true
2139 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2140 /// true.
2141 ///
2142 /// This routine tries to reason about shifts.
2143 bool isImpliedCondOperandsViaShift(CmpPredicate Pred, const SCEV *LHS,
2144 const SCEV *RHS, const SCEV *FoundLHS,
2145 const SCEV *FoundRHS);
2146
2147 /// If we know that the specified Phi is in the header of its containing
2148 /// loop, we know the loop executes a constant number of times, and the PHI
2149 /// node is just a recurrence involving constants, fold it.
2150 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2151 const Loop *L);
2152
2153 /// Test if the given expression is known to satisfy the condition described
2154 /// by Pred and the known constant ranges of LHS and RHS.
2155 bool isKnownPredicateViaConstantRanges(CmpPredicate Pred, const SCEV *LHS,
2156 const SCEV *RHS);
2157
2158 /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2159 /// integer overflow.
2160 ///
2161 /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2162 /// positive.
2163 bool isKnownPredicateViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
2164 const SCEV *RHS);
2165
2166 /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2167 /// prove them individually.
2168 bool isKnownPredicateViaSplitting(CmpPredicate Pred, const SCEV *LHS,
2169 const SCEV *RHS);
2170
2171 /// Try to match the Expr as "(L + R)<Flags>".
2172 bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2173 SCEV::NoWrapFlags &Flags);
2174
2175 /// Forget predicated/non-predicated backedge taken counts for the given loop.
2176 void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2177
2178 /// Drop memoized information for all \p SCEVs.
2179 void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2180
2181 /// Helper for forgetMemoizedResults.
2182 void forgetMemoizedResultsImpl(const SCEV *S);
2183
2184 /// Iterate over instructions in \p Worklist and their users. Erase entries
2185 /// from ValueExprMap and collect SCEV expressions in \p ToForget
2186 void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2187 SmallPtrSetImpl<Instruction *> &Visited,
2188 SmallVectorImpl<const SCEV *> &ToForget);
2189
2190 /// Erase Value from ValueExprMap and ExprValueMap.
2191 void eraseValueFromMap(Value *V);
2192
2193 /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2194 void insertValueToMap(Value *V, const SCEV *S);
2195
2196 /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2197 /// pointer.
2198 bool checkValidity(const SCEV *S) const;
2199
2200 /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2201 /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
2202 /// equivalent to proving no signed (resp. unsigned) wrap in
2203 /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2204 /// (resp. `SCEVZeroExtendExpr`).
2205 template <typename ExtendOpTy>
2206 bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2207 const Loop *L);
2208
2209 /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2210 SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2211
2212 /// Try to prove NSW on \p AR by proving facts about conditions known on
2213 /// entry and backedge.
2214 SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2215
2216 /// Try to prove NUW on \p AR by proving facts about conditions known on
2217 /// entry and backedge.
2218 SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2219
2220 std::optional<MonotonicPredicateType>
2221 getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2222 ICmpInst::Predicate Pred);
2223
2224 /// Return SCEV no-wrap flags that can be proven based on reasoning about
2225 /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2226 /// would trigger undefined behavior on overflow.
2227 SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2228
2229 /// Return a scope which provides an upper bound on the defining scope of
2230 /// 'S'. Specifically, return the first instruction in said bounding scope.
2231 /// Return nullptr if the scope is trivial (function entry).
2232 /// (See scope definition rules associated with flag discussion above)
2233 const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2234
2235 /// Return a scope which provides an upper bound on the defining scope for
2236 /// a SCEV with the operands in Ops. The outparam Precise is set if the
2237 /// bound found is a precise bound (i.e. must be the defining scope.)
2238 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2239 bool &Precise);
2240
2241 /// Wrapper around the above for cases which don't care if the bound
2242 /// is precise.
2243 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2244
2245 /// Given two instructions in the same function, return true if we can
2246 /// prove B must execute given A executes.
2247 bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2248 const Instruction *B);
2249
2250 /// Returns true if \p Op is guaranteed not to cause immediate UB.
2251 bool isGuaranteedNotToCauseUB(const SCEV *Op);
2252
2253 /// Returns true if \p Op is guaranteed to not be poison.
2254 static bool isGuaranteedNotToBePoison(const SCEV *Op);
2255
2256 /// Return true if the SCEV corresponding to \p I is never poison. Proving
2257 /// this is more complex than proving that just \p I is never poison, since
2258 /// SCEV commons expressions across control flow, and you can have cases
2259 /// like:
2260 ///
2261 /// idx0 = a + b;
2262 /// ptr[idx0] = 100;
2263 /// if (<condition>) {
2264 /// idx1 = a +nsw b;
2265 /// ptr[idx1] = 200;
2266 /// }
2267 ///
2268 /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2269 /// hence not sign-overflow) only if "<condition>" is true. Since both
2270 /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2271 /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2272 bool isSCEVExprNeverPoison(const Instruction *I);
2273
2274 /// This is like \c isSCEVExprNeverPoison but it specifically works for
2275 /// instructions that will get mapped to SCEV add recurrences. Return true
2276 /// if \p I will never generate poison under the assumption that \p I is an
2277 /// add recurrence on the loop \p L.
2278 bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2279
2280 /// Similar to createAddRecFromPHI, but with the additional flexibility of
2281 /// suggesting runtime overflow checks in case casts are encountered.
2282 /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2283 /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2284 /// into an AddRec, assuming some predicates; The function then returns the
2285 /// AddRec and the predicates as a pair, and caches this pair in
2286 /// PredicatedSCEVRewrites.
2287 /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2288 /// itself (with no predicates) is recorded, and a nullptr with an empty
2289 /// predicates vector is returned as a pair.
2290 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2291 createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2292
2293 /// Compute the maximum backedge count based on the range of values
2294 /// permitted by Start, End, and Stride. This is for loops of the form
2295 /// {Start, +, Stride} LT End.
2296 ///
2297 /// Preconditions:
2298 /// * the induction variable is known to be positive.
2299 /// * the induction variable is assumed not to overflow (i.e. either it
2300 /// actually doesn't, or we'd have to immediately execute UB)
2301 /// We *don't* assert these preconditions so please be careful.
2302 const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2303 const SCEV *End, unsigned BitWidth,
2304 bool IsSigned);
2305
2306 /// Verify if an linear IV with positive stride can overflow when in a
2307 /// less-than comparison, knowing the invariant term of the comparison,
2308 /// the stride.
2309 bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2310
2311 /// Verify if an linear IV with negative stride can overflow when in a
2312 /// greater-than comparison, knowing the invariant term of the comparison,
2313 /// the stride.
2314 bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2315
2316 /// Get add expr already created or create a new one.
2317 const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2318 SCEV::NoWrapFlags Flags);
2319
2320 /// Get mul expr already created or create a new one.
2321 const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2322 SCEV::NoWrapFlags Flags);
2323
2324 // Get addrec expr already created or create a new one.
2325 const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2326 const Loop *L, SCEV::NoWrapFlags Flags);
2327
2328 /// Return x if \p Val is f(x) where f is a 1-1 function.
2329 const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2330
2331 /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2332 /// A loop is considered "used" by an expression if it contains
2333 /// an add rec on said loop.
2334 void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2335
2336 /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2337 /// `UniqueSCEVs`. Return if found, else nullptr.
2338 SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2339
2340 /// Get reachable blocks in this function, making limited use of SCEV
2341 /// reasoning about conditions.
2342 void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2343 Function &F);
2344
2345 /// Return the given SCEV expression with a new set of operands.
2346 /// This preserves the origial nowrap flags.
2347 const SCEV *getWithOperands(const SCEV *S,
2348 SmallVectorImpl<const SCEV *> &NewOps);
2349
2350 FoldingSet<SCEV> UniqueSCEVs;
2351 FoldingSet<SCEVPredicate> UniquePreds;
2352 BumpPtrAllocator SCEVAllocator;
2353
2354 /// This maps loops to a list of addrecs that directly use said loop.
2355 DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2356
2357 /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2358 /// they can be rewritten into under certain predicates.
2359 DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2360 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2361 PredicatedSCEVRewrites;
2362
2363 /// Set of AddRecs for which proving NUW via an induction has already been
2364 /// tried.
2365 SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2366
2367 /// Set of AddRecs for which proving NSW via an induction has already been
2368 /// tried.
2369 SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2370
2371 /// The head of a linked list of all SCEVUnknown values that have been
2372 /// allocated. This is used by releaseMemory to locate them all and call
2373 /// their destructors.
2374 SCEVUnknown *FirstUnknown = nullptr;
2375};
2376
2377/// Analysis pass that exposes the \c ScalarEvolution for a function.
2379 : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2381
2382 LLVM_ABI static AnalysisKey Key;
2383
2384public:
2386
2388};
2389
2390/// Verifier pass for the \c ScalarEvolutionAnalysis results.
2392 : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2393public:
2395 static bool isRequired() { return true; }
2396};
2397
2398/// Printer pass for the \c ScalarEvolutionAnalysis results.
2400 : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2401 raw_ostream &OS;
2402
2403public:
2404 explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2405
2407
2408 static bool isRequired() { return true; }
2409};
2410
2412 std::unique_ptr<ScalarEvolution> SE;
2413
2414public:
2415 static char ID;
2416
2418
2419 ScalarEvolution &getSE() { return *SE; }
2420 const ScalarEvolution &getSE() const { return *SE; }
2421
2422 bool runOnFunction(Function &F) override;
2423 void releaseMemory() override;
2424 void getAnalysisUsage(AnalysisUsage &AU) const override;
2425 void print(raw_ostream &OS, const Module * = nullptr) const override;
2426 void verifyAnalysis() const override;
2427};
2428
2429/// An interface layer with SCEV used to manage how we see SCEV expressions
2430/// for values in the context of existing predicates. We can add new
2431/// predicates, but we cannot remove them.
2432///
2433/// This layer has multiple purposes:
2434/// - provides a simple interface for SCEV versioning.
2435/// - guarantees that the order of transformations applied on a SCEV
2436/// expression for a single Value is consistent across two different
2437/// getSCEV calls. This means that, for example, once we've obtained
2438/// an AddRec expression for a certain value through expression
2439/// rewriting, we will continue to get an AddRec expression for that
2440/// Value.
2441/// - lowers the number of expression rewrites.
2443public:
2445
2446 LLVM_ABI const SCEVPredicate &getPredicate() const;
2447
2448 /// Returns the SCEV expression of V, in the context of the current SCEV
2449 /// predicate. The order of transformations applied on the expression of V
2450 /// returned by ScalarEvolution is guaranteed to be preserved, even when
2451 /// adding new predicates.
2452 LLVM_ABI const SCEV *getSCEV(Value *V);
2453
2454 /// Get the (predicated) backedge count for the analyzed loop.
2456
2457 /// Get the (predicated) symbolic max backedge count for the analyzed loop.
2459
2460 /// Returns the upper bound of the loop trip count as a normal unsigned
2461 /// value, or 0 if the trip count is unknown.
2463
2464 /// Adds a new predicate.
2465 LLVM_ABI void addPredicate(const SCEVPredicate &Pred);
2466
2467 /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2468 /// predicates. If we can't transform the expression into an AddRecExpr we
2469 /// return nullptr and not add additional SCEV predicates to the current
2470 /// context.
2472
2473 /// Proves that V doesn't overflow by adding SCEV predicate.
2476
2477 /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2478 /// predicate.
2481
2482 /// Returns the ScalarEvolution analysis used.
2483 ScalarEvolution *getSE() const { return &SE; }
2484
2485 /// We need to explicitly define the copy constructor because of FlagsMap.
2487
2488 /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2489 /// The printed text is indented by \p Depth.
2490 LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const;
2491
2492 /// Check if \p AR1 and \p AR2 are equal, while taking into account
2493 /// Equal predicates in Preds.
2495 const SCEVAddRecExpr *AR2) const;
2496
2497private:
2498 /// Increments the version number of the predicate. This needs to be called
2499 /// every time the SCEV predicate changes.
2500 void updateGeneration();
2501
2502 /// Holds a SCEV and the version number of the SCEV predicate used to
2503 /// perform the rewrite of the expression.
2504 using RewriteEntry = std::pair<unsigned, const SCEV *>;
2505
2506 /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2507 /// number. If this number doesn't match the current Generation, we will
2508 /// need to do a rewrite. To preserve the transformation order of previous
2509 /// rewrites, we will rewrite the previous result instead of the original
2510 /// SCEV.
2512
2513 /// Records what NoWrap flags we've added to a Value *.
2515
2516 /// The ScalarEvolution analysis.
2517 ScalarEvolution &SE;
2518
2519 /// The analyzed Loop.
2520 const Loop &L;
2521
2522 /// The SCEVPredicate that forms our context. We will rewrite all
2523 /// expressions assuming that this predicate true.
2524 std::unique_ptr<SCEVUnionPredicate> Preds;
2525
2526 /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2527 /// expression we mark it with the version of the predicate. We use this to
2528 /// figure out if the predicate has changed from the last rewrite of the
2529 /// SCEV. If so, we need to perform a new rewrite.
2530 unsigned Generation = 0;
2531
2532 /// The backedge taken count.
2533 const SCEV *BackedgeCount = nullptr;
2534
2535 /// The symbolic backedge taken count.
2536 const SCEV *SymbolicMaxBackedgeCount = nullptr;
2537
2538 /// The constant max trip count for the loop.
2539 std::optional<unsigned> SmallConstantMaxTripCount;
2540};
2541
2542template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2545 return ID;
2546 }
2549 return ID;
2550 }
2551
2552 static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2553 return Val.computeHash();
2554 }
2555
2558 return LHS == RHS;
2559 }
2560};
2561
2562} // end namespace llvm
2563
2564#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file implements a class to represent arbitrary precision integral constant values and operations...
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
SmallPtrSet< const BasicBlock *, 8 > VisitedBlocks
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
static bool isSigned(unsigned int Opcode)
This file defines a hash set that can be used to remove duplication of nodes in a graph.
Hexagon Common GEP
This header defines various interfaces for pass management in LLVM.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define P(N)
This file defines the PointerIntPair class.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:240
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
Value handle with callbacks on RAUW and destruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This class represents a range of values.
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
Definition FoldingSet.h:293
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
FunctionPass(char &pid)
Definition Pass.h:316
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
Value handle that poisons itself if the Value is deleted.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
LLVM_ABI PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L)
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
This node represents a polynomial recurrence on the trip count of the specified loop.
SCEVComparePredicate(const FoldingSetNodeIDRef ID, const ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
const SCEV * getRHS() const
Returns the right hand side of the predicate.
ICmpInst::Predicate getPredicate() const
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEV * getLHS() const
Returns the left hand side of the predicate.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Implementation of the SCEVPredicate interface.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
SCEVPredicateKind getKind() const
virtual unsigned getComplexity() const
Returns the estimated complexity of this predicate.
SCEVPredicate & operator=(const SCEVPredicate &)=default
SCEVPredicate(const SCEVPredicate &)=default
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const =0
Returns true if this predicate implies N.
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
~SCEVPredicate()=default
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
SCEVPredicateKind Kind
unsigned getComplexity() const override
We estimate the complexity of a union predicate as the size number of predicates in the union.
SCEVUnionPredicate(ArrayRef< const SCEVPredicate * > Preds, ScalarEvolution &SE)
Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate getUnionWith(const SCEVPredicate *N, ScalarEvolution &SE) const
Returns a new SCEVUnionPredicate that is the union of this predicate and the given predicate N.
ArrayRef< const SCEVPredicate * > getPredicates() const
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an assumption made on an AddRec expression.
IncrementWrapFlags
Similar to SCEV::NoWrapFlags, but with slightly different semantics for FlagNUSW.
SCEVWrapPredicate(const FoldingSetNodeIDRef ID, const SCEVAddRecExpr *AR, IncrementWrapFlags Flags)
static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags)
static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags)
Convenient IncrementWrapFlags manipulation methods.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
static SCEVWrapPredicate::IncrementWrapFlags maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask)
This class represents an analyzed expression in the program.
LLVM_ABI ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
unsigned short getExpressionSize() const
SCEV & operator=(const SCEV &)=delete
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
SCEV(const SCEV &)=delete
LLVM_ABI void dump() const
This method is used for debugging.
LLVM_ABI bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
LLVM_ABI bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
const unsigned short ExpressionSize
LLVM_ABI void print(raw_ostream &OS) const
Print out the internal representation of this scalar to the specified stream.
SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize)
SCEVTypes getSCEVType() const
unsigned short SubclassData
This field is initialized to zero and may be used in subclasses to store miscellaneous information.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI ScalarEvolution run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Verifier pass for the ScalarEvolutionAnalysis results.
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
const ScalarEvolution & getSE() const
bool operator==(const FoldID &RHS) const
FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty)
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
LLVM_ABI const SCEV * rewrite(const SCEV *Expr) const
Try to apply the collected loop guards to Expr.
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags)
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isKnownOnEveryIteration(CmpPredicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS)
Test if the condition described by Pred, LHS, RHS is known to be true on every iteration of the loop ...
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterationsImpl(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
LLVM_ABI const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getUDivCeilSCEV(const SCEV *N, const SCEV *D)
Compute ceil(N / D).
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getPredicatedConstantMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getConstantMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
LLVM_ABI const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags)
Update no-wrap flags of an AddRec.
const SCEV * getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS)
Promote the operands to the wider of the types using zero-extension, and then perform a umax operatio...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
LLVM_ABI const SCEV * getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getPredicatedBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getBackedgeTakenCount, except it will add a set of SCEV predicates to Predicates that are ...
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
LLVM_ABI ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI)
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty)
LLVM_ABI const SCEV * getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI const SCEV * getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth=0)
LLVM_ABI std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
LLVM_ABI unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
const SCEV * getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
APInt getUnsignedRangeMin(const SCEV *S)
Determine the min of the unsigned range for a particular SCEV.
LLVM_ABI bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth=0)
Simplify LHS and RHS in a comparison with predicate Pred.
LLVM_ABI const SCEV * getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo)
Return an expression for offsetof on the given field with type IntTy.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool containsAddRecurrence(const SCEV *S)
Return true if the SCEV is a scAddRecExpr or it contains scAddRecExpr.
LLVM_ABI const SCEV * getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const
Test whether the given SCEV has Op as a direct or indirect operand.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getAddRecExpr(const SmallVectorImpl< const SCEV * > &Operands, const Loop *L, SCEV::NoWrapFlags Flags)
LLVM_ABI const SCEVPredicate * getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool haveSameSign(const SCEV *S1, const SCEV *S2)
Return true if we know that S1 and S2 must have the same sign.
LLVM_ABI const SCEV * getNotSCEV(const SCEV *V)
Return the SCEV object corresponding to ~V.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B)
Return true if there exists a point in the program at which both A and B could be operands to the sam...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
LLVM_ABI const SCEV * getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, SmallVectorImpl< const SCEVPredicate * > *Predicates, ExitCountKind Kind=Exact)
Same as above except this uses the predicated backedge taken info and may require predicates.
static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags)
LLVM_ABI void forgetTopmostLoop(const Loop *L)
friend class ScalarEvolutionsTest
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LLVM_ABI const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
MonotonicPredicateType
A predicate is said to be monotonically increasing if may go from being false to being true as the lo...
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags)
LLVM_ABI bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether the backedge of the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI APInt getNonZeroConstantMultiple(const SCEV *S)
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
LLVM_ABI BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB)
Return the "disposition" of the given SCEV with respect to the given block.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L)
Return true if this loop is finite by assumption.
LLVM_ABI const SCEV * getExistingSCEV(Value *V)
Return an existing SCEV for V if there is one, otherwise return nullptr.
LLVM_ABI APInt getConstantMultiple(const SCEV *S, const Instruction *CtxI=nullptr)
Returns the max constant multiple of S.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopComputable
The SCEV varies predictably with the loop.
@ LoopVariant
The SCEV is loop-variant (unknown).
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isKnownMultipleOf(const SCEV *S, uint64_t M, SmallVectorImpl< const SCEVPredicate * > &Assumptions)
Check that S is a multiple of M.
LLVM_ABI const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)
getAnyExtendExpr - Return a SCEV for the given operand extended with unspecified bits out to the give...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero=false, bool OrNegative=false)
Test if the given expression is known to be a power of 2.
LLVM_ABI std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI bool containsUndefs(const SCEV *S) const
Return true if the SCEV expression contains an undef value.
LLVM_ABI std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI uint32_t getMinTrailingZeros(const SCEV *S, const Instruction *CtxI=nullptr)
Determine the minimum number of zero bits that S is guaranteed to end in (at every loop iteration).
BlockDisposition
An enum describing the relationship between a SCEV and a basic block.
@ DominatesBlock
The SCEV dominates the block.
@ ProperlyDominatesBlock
The SCEV properly dominates the block.
@ DoesNotDominateBlock
The SCEV does not dominate the block.
LLVM_ABI const SCEV * getGEPExpr(GEPOperator *GEP, ArrayRef< const SCEV * > IndexExprs)
Returns an expression for a GEP.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI void getPoisonGeneratingValues(SmallPtrSetImpl< const Value * > &Result, const SCEV *S)
Return the set of Values that, if poison, will definitively result in S being poison as well.
LLVM_ABI void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
LLVM_ABI const SCEV * getVScale(Type *Ty)
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
Return true if the given SCEV changes value in a known way in the specified loop.
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
const SCEV * getPowerOfTwo(Type *Ty, unsigned Power)
Return a SCEV for the constant Power of two.
LLVM_ABI const SCEV * getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI void forgetAllLoops()
LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
ExitCountKind
The terms "backedge taken count" and "exit count" are used interchangeably to refer to the number of ...
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
@ ConstantMaximum
A constant which provides an upper bound on the exact trip count.
@ Exact
An expression exactly describing the number of times the backedge has executed when a loop is exited.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEVAddRecExpr * convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Preds)
Tries to convert the S expression to an AddRec expression, adding additional predicates to Preds as r...
LLVM_ABI const SCEV * getElementSize(Instruction *Inst)
Return the size of an element read or written by Inst.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< bool > evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Check whether the condition described by Pred, LHS, and RHS is true or false.
LLVM_ABI const SCEV * getUnknown(Value *V)
LLVM_ABI std::optional< std::pair< const SCEV *, SmallVector< const SCEVPredicate *, 3 > > > createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI)
Checks if SymbolicPHI can be rewritten as an AddRecExpr under some Predicates.
LLVM_ABI const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
const SCEV * getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A)
Re-writes the SCEV according to the Predicates in A.
LLVM_ABI std::pair< const SCEV *, const SCEV * > SplitIntoInitAndPostInc(const Loop *L, const SCEV *S)
Splits SCEV expression S into two SCEVs.
LLVM_ABI bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI const SCEV * getPredicatedSymbolicMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI const SCEV * getUDivExactExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI void registerUser(const SCEV *User, ArrayRef< const SCEV * > Ops)
Notify this ScalarEvolution that User directly uses SCEVs in Ops.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the basic block is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool containsErasedValue(const SCEV *S) const
Return true if the SCEV expression contains a Value that has been optimised out and is now a nullptr.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
We'd like to check the predicate on every iteration of the most dominated loop between loops used in ...
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
APInt getSignedRangeMax(const SCEV *S)
Determine the max of the signed range for a particular SCEV.
LLVM_ABI void verify() const
LLVMContext & getContext() const
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
See the file comment.
Definition ValueMap.h:84
LLVM Value Representation.
Definition Value.h:75
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
unsigned combineHashValue(unsigned a, unsigned b)
Simplistic combination of 32-bit hash values into 32-bit hash values.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
FoldingSetBase::Node FoldingSetNode
Definition FoldingSet.h:408
LLVM_ABI bool VerifySCEV
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
BumpPtrAllocatorImpl<> BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition Allocator.h:383
#define N
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:92
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition FoldingSet.h:236
static unsigned getHashValue(const ScalarEvolution::FoldID &Val)
static ScalarEvolution::FoldID getTombstoneKey()
static ScalarEvolution::FoldID getEmptyKey()
static bool isEqual(const ScalarEvolution::FoldID &LHS, const ScalarEvolution::FoldID &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID)
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID)
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID)
static void Profile(const SCEV &X, FoldingSetNodeID &ID)
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition FoldingSet.h:266
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:69
static LLVM_ABI bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
Information about the number of loop iterations for which a loop exit's branch condition evaluates to...
LLVM_ABI ExitLimit(const SCEV *E)
Construct either an exact exit limit from a constant, or an unknown one from a SCEVCouldNotCompute.
bool hasAnyInfo() const
Test whether this ExitLimit contains any computed information, or whether it's all SCEVCouldNotComput...
SmallVector< const SCEVPredicate *, 4 > Predicates
A vector of predicate guards for this ExitLimit.
bool hasFullInfo() const
Test whether this ExitLimit contains all information.
LoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)