LLVM 20.0.0git
blake3_avx2.c
Go to the documentation of this file.
1#include "blake3_impl.h"
2
3#include <immintrin.h>
4
5#define DEGREE 8
6
7INLINE __m256i loadu(const uint8_t src[32]) {
8 return _mm256_loadu_si256((const __m256i *)src);
9}
10
11INLINE void storeu(__m256i src, uint8_t dest[16]) {
12 _mm256_storeu_si256((__m256i *)dest, src);
13}
14
15INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
16
17// Note that clang-format doesn't like the name "xor" for some reason.
18INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
19
20INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
21
22INLINE __m256i rot16(__m256i x) {
23 return _mm256_shuffle_epi8(
24 x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2,
25 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
26}
27
28INLINE __m256i rot12(__m256i x) {
29 return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12));
30}
31
32INLINE __m256i rot8(__m256i x) {
33 return _mm256_shuffle_epi8(
34 x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1,
35 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
36}
37
38INLINE __m256i rot7(__m256i x) {
39 return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7));
40}
41
42INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) {
43 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
44 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
45 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
46 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
47 v[0] = addv(v[0], v[4]);
48 v[1] = addv(v[1], v[5]);
49 v[2] = addv(v[2], v[6]);
50 v[3] = addv(v[3], v[7]);
51 v[12] = xorv(v[12], v[0]);
52 v[13] = xorv(v[13], v[1]);
53 v[14] = xorv(v[14], v[2]);
54 v[15] = xorv(v[15], v[3]);
55 v[12] = rot16(v[12]);
56 v[13] = rot16(v[13]);
57 v[14] = rot16(v[14]);
58 v[15] = rot16(v[15]);
59 v[8] = addv(v[8], v[12]);
60 v[9] = addv(v[9], v[13]);
61 v[10] = addv(v[10], v[14]);
62 v[11] = addv(v[11], v[15]);
63 v[4] = xorv(v[4], v[8]);
64 v[5] = xorv(v[5], v[9]);
65 v[6] = xorv(v[6], v[10]);
66 v[7] = xorv(v[7], v[11]);
67 v[4] = rot12(v[4]);
68 v[5] = rot12(v[5]);
69 v[6] = rot12(v[6]);
70 v[7] = rot12(v[7]);
71 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
72 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
73 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
74 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
75 v[0] = addv(v[0], v[4]);
76 v[1] = addv(v[1], v[5]);
77 v[2] = addv(v[2], v[6]);
78 v[3] = addv(v[3], v[7]);
79 v[12] = xorv(v[12], v[0]);
80 v[13] = xorv(v[13], v[1]);
81 v[14] = xorv(v[14], v[2]);
82 v[15] = xorv(v[15], v[3]);
83 v[12] = rot8(v[12]);
84 v[13] = rot8(v[13]);
85 v[14] = rot8(v[14]);
86 v[15] = rot8(v[15]);
87 v[8] = addv(v[8], v[12]);
88 v[9] = addv(v[9], v[13]);
89 v[10] = addv(v[10], v[14]);
90 v[11] = addv(v[11], v[15]);
91 v[4] = xorv(v[4], v[8]);
92 v[5] = xorv(v[5], v[9]);
93 v[6] = xorv(v[6], v[10]);
94 v[7] = xorv(v[7], v[11]);
95 v[4] = rot7(v[4]);
96 v[5] = rot7(v[5]);
97 v[6] = rot7(v[6]);
98 v[7] = rot7(v[7]);
99
100 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
101 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
102 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
103 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
104 v[0] = addv(v[0], v[5]);
105 v[1] = addv(v[1], v[6]);
106 v[2] = addv(v[2], v[7]);
107 v[3] = addv(v[3], v[4]);
108 v[15] = xorv(v[15], v[0]);
109 v[12] = xorv(v[12], v[1]);
110 v[13] = xorv(v[13], v[2]);
111 v[14] = xorv(v[14], v[3]);
112 v[15] = rot16(v[15]);
113 v[12] = rot16(v[12]);
114 v[13] = rot16(v[13]);
115 v[14] = rot16(v[14]);
116 v[10] = addv(v[10], v[15]);
117 v[11] = addv(v[11], v[12]);
118 v[8] = addv(v[8], v[13]);
119 v[9] = addv(v[9], v[14]);
120 v[5] = xorv(v[5], v[10]);
121 v[6] = xorv(v[6], v[11]);
122 v[7] = xorv(v[7], v[8]);
123 v[4] = xorv(v[4], v[9]);
124 v[5] = rot12(v[5]);
125 v[6] = rot12(v[6]);
126 v[7] = rot12(v[7]);
127 v[4] = rot12(v[4]);
128 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
129 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
130 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
131 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
132 v[0] = addv(v[0], v[5]);
133 v[1] = addv(v[1], v[6]);
134 v[2] = addv(v[2], v[7]);
135 v[3] = addv(v[3], v[4]);
136 v[15] = xorv(v[15], v[0]);
137 v[12] = xorv(v[12], v[1]);
138 v[13] = xorv(v[13], v[2]);
139 v[14] = xorv(v[14], v[3]);
140 v[15] = rot8(v[15]);
141 v[12] = rot8(v[12]);
142 v[13] = rot8(v[13]);
143 v[14] = rot8(v[14]);
144 v[10] = addv(v[10], v[15]);
145 v[11] = addv(v[11], v[12]);
146 v[8] = addv(v[8], v[13]);
147 v[9] = addv(v[9], v[14]);
148 v[5] = xorv(v[5], v[10]);
149 v[6] = xorv(v[6], v[11]);
150 v[7] = xorv(v[7], v[8]);
151 v[4] = xorv(v[4], v[9]);
152 v[5] = rot7(v[5]);
153 v[6] = rot7(v[6]);
154 v[7] = rot7(v[7]);
155 v[4] = rot7(v[4]);
156}
157
158INLINE void transpose_vecs(__m256i vecs[DEGREE]) {
159 // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
160 // is 22/33/66/77.
161 __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
162 __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
163 __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
164 __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
165 __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
166 __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
167 __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
168 __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
169
170 // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
171 // 11/33.
172 __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
173 __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
174 __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
175 __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
176 __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
177 __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
178 __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
179 __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
180
181 // Interleave 128-bit lanes.
182 vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
183 vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
184 vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
185 vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
186 vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
187 vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
188 vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
189 vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
190}
191
192INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
193 size_t block_offset, __m256i out[16]) {
194 out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
195 out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
196 out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
197 out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
198 out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
199 out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
200 out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
201 out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
202 out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
203 out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
204 out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
205 out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
206 out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
207 out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
208 out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
209 out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
210 for (size_t i = 0; i < 8; ++i) {
211 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
212 }
213 transpose_vecs(&out[0]);
214 transpose_vecs(&out[8]);
215}
216
217INLINE void load_counters(uint64_t counter, bool increment_counter,
218 __m256i *out_lo, __m256i *out_hi) {
219 const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter);
220 const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
221 const __m256i add1 = _mm256_and_si256(mask, add0);
222 __m256i l = _mm256_add_epi32(_mm256_set1_epi32((int32_t)counter), add1);
223 __m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)),
224 _mm256_xor_si256( l, _mm256_set1_epi32(0x80000000)));
225 __m256i h = _mm256_sub_epi32(_mm256_set1_epi32((int32_t)(counter >> 32)), carry);
226 *out_lo = l;
227 *out_hi = h;
228}
229
230static
231void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks,
232 const uint32_t key[8], uint64_t counter,
233 bool increment_counter, uint8_t flags,
234 uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
235 __m256i h_vecs[8] = {
236 set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
237 set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
238 };
239 __m256i counter_low_vec, counter_high_vec;
240 load_counters(counter, increment_counter, &counter_low_vec,
241 &counter_high_vec);
242 uint8_t block_flags = flags | flags_start;
243
244 for (size_t block = 0; block < blocks; block++) {
245 if (block + 1 == blocks) {
246 block_flags |= flags_end;
247 }
248 __m256i block_len_vec = set1(BLAKE3_BLOCK_LEN);
249 __m256i block_flags_vec = set1(block_flags);
250 __m256i msg_vecs[16];
251 transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
252
253 __m256i v[16] = {
254 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
255 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
256 set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
257 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
258 };
259 round_fn(v, msg_vecs, 0);
260 round_fn(v, msg_vecs, 1);
261 round_fn(v, msg_vecs, 2);
262 round_fn(v, msg_vecs, 3);
263 round_fn(v, msg_vecs, 4);
264 round_fn(v, msg_vecs, 5);
265 round_fn(v, msg_vecs, 6);
266 h_vecs[0] = xorv(v[0], v[8]);
267 h_vecs[1] = xorv(v[1], v[9]);
268 h_vecs[2] = xorv(v[2], v[10]);
269 h_vecs[3] = xorv(v[3], v[11]);
270 h_vecs[4] = xorv(v[4], v[12]);
271 h_vecs[5] = xorv(v[5], v[13]);
272 h_vecs[6] = xorv(v[6], v[14]);
273 h_vecs[7] = xorv(v[7], v[15]);
274
275 block_flags = flags;
276 }
277
278 transpose_vecs(h_vecs);
279 storeu(h_vecs[0], &out[0 * sizeof(__m256i)]);
280 storeu(h_vecs[1], &out[1 * sizeof(__m256i)]);
281 storeu(h_vecs[2], &out[2 * sizeof(__m256i)]);
282 storeu(h_vecs[3], &out[3 * sizeof(__m256i)]);
283 storeu(h_vecs[4], &out[4 * sizeof(__m256i)]);
284 storeu(h_vecs[5], &out[5 * sizeof(__m256i)]);
285 storeu(h_vecs[6], &out[6 * sizeof(__m256i)]);
286 storeu(h_vecs[7], &out[7 * sizeof(__m256i)]);
287}
288
289#if !defined(BLAKE3_NO_SSE41)
290void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
291 size_t blocks, const uint32_t key[8],
292 uint64_t counter, bool increment_counter,
293 uint8_t flags, uint8_t flags_start,
294 uint8_t flags_end, uint8_t *out);
295#else
296void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
297 size_t blocks, const uint32_t key[8],
298 uint64_t counter, bool increment_counter,
299 uint8_t flags, uint8_t flags_start,
300 uint8_t flags_end, uint8_t *out);
301#endif
302
303void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
304 size_t blocks, const uint32_t key[8],
305 uint64_t counter, bool increment_counter,
306 uint8_t flags, uint8_t flags_start,
307 uint8_t flags_end, uint8_t *out) {
308 while (num_inputs >= DEGREE) {
309 blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags,
310 flags_start, flags_end, out);
311 if (increment_counter) {
312 counter += DEGREE;
313 }
314 inputs += DEGREE;
315 num_inputs -= DEGREE;
316 out = &out[DEGREE * BLAKE3_OUT_LEN];
317 }
318#if !defined(BLAKE3_NO_SSE41)
319 blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
320 increment_counter, flags, flags_start, flags_end, out);
321#else
322 blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
323 increment_counter, flags, flags_start, flags_end,
324 out);
325#endif
326}
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
unify loop Fixup each natural loop to have a single exit block
INLINE __m256i loadu(const uint8_t src[32])
Definition: blake3_avx2.c:7
INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r)
Definition: blake3_avx2.c:42
#define DEGREE
Definition: blake3_avx2.c:5
INLINE __m256i set1(uint32_t x)
Definition: blake3_avx2.c:20
INLINE __m256i addv(__m256i a, __m256i b)
Definition: blake3_avx2.c:15
INLINE void transpose_vecs(__m256i vecs[DEGREE])
Definition: blake3_avx2.c:158
INLINE void storeu(__m256i src, uint8_t dest[16])
Definition: blake3_avx2.c:11
INLINE __m256i rot8(__m256i x)
Definition: blake3_avx2.c:32
static void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out)
Definition: blake3_avx2.c:231
INLINE void load_counters(uint64_t counter, bool increment_counter, __m256i *out_lo, __m256i *out_hi)
Definition: blake3_avx2.c:217
INLINE void transpose_msg_vecs(const uint8_t *const *inputs, size_t block_offset, __m256i out[16])
Definition: blake3_avx2.c:192
INLINE __m256i rot7(__m256i x)
Definition: blake3_avx2.c:38
INLINE __m256i xorv(__m256i a, __m256i b)
Definition: blake3_avx2.c:18
INLINE __m256i rot12(__m256i x)
Definition: blake3_avx2.c:28
INLINE __m256i rot16(__m256i x)
Definition: blake3_avx2.c:22
static const uint8_t MSG_SCHEDULE[7][16]
Definition: blake3_impl.h:82
#define INLINE
Definition: blake3_impl.h:32
static const uint32_t IV[8]
Definition: blake3_impl.h:78
#define blake3_hash_many_avx2
#define BLAKE3_BLOCK_LEN
#define blake3_hash_many_sse41
#define BLAKE3_OUT_LEN
#define blake3_hash_many_portable