LLVM 20.0.0git
blake3_avx512.c
Go to the documentation of this file.
1#include "blake3_impl.h"
2
3#include <immintrin.h>
4
5#define _mm_shuffle_ps2(a, b, c) \
6 (_mm_castps_si128( \
7 _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
8
9INLINE __m128i loadu_128(const uint8_t src[16]) {
10 return _mm_loadu_si128((const __m128i *)src);
11}
12
13INLINE __m256i loadu_256(const uint8_t src[32]) {
14 return _mm256_loadu_si256((const __m256i *)src);
15}
16
17INLINE __m512i loadu_512(const uint8_t src[64]) {
18 return _mm512_loadu_si512((const __m512i *)src);
19}
20
21INLINE void storeu_128(__m128i src, uint8_t dest[16]) {
22 _mm_storeu_si128((__m128i *)dest, src);
23}
24
25INLINE void storeu_256(__m256i src, uint8_t dest[16]) {
26 _mm256_storeu_si256((__m256i *)dest, src);
27}
28
29INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
30
31INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
32
33INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); }
34
35INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
36
37INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
38
39INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); }
40
41INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
42
43INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
44
45INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); }
46
48 return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
49}
50
51INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); }
52
53INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); }
54
55INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); }
56
57INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); }
58
59INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); }
60
61INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); }
62
63INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); }
64
65INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); }
66
67INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); }
68
69INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); }
70
71INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); }
72
73INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); }
74
75/*
76 * ----------------------------------------------------------------------------
77 * compress_avx512
78 * ----------------------------------------------------------------------------
79 */
80
81INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
82 __m128i m) {
83 *row0 = add_128(add_128(*row0, m), *row1);
84 *row3 = xor_128(*row3, *row0);
85 *row3 = rot16_128(*row3);
86 *row2 = add_128(*row2, *row3);
87 *row1 = xor_128(*row1, *row2);
88 *row1 = rot12_128(*row1);
89}
90
91INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
92 __m128i m) {
93 *row0 = add_128(add_128(*row0, m), *row1);
94 *row3 = xor_128(*row3, *row0);
95 *row3 = rot8_128(*row3);
96 *row2 = add_128(*row2, *row3);
97 *row1 = xor_128(*row1, *row2);
98 *row1 = rot7_128(*row1);
99}
100
101// Note the optimization here of leaving row1 as the unrotated row, rather than
102// row0. All the message loads below are adjusted to compensate for this. See
103// discussion at https://github.com/sneves/blake2-avx2/pull/4
104INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
105 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
106 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
107 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
108}
109
110INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
111 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
112 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
113 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
114}
115
116INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
118 uint8_t block_len, uint64_t counter, uint8_t flags) {
119 rows[0] = loadu_128((uint8_t *)&cv[0]);
120 rows[1] = loadu_128((uint8_t *)&cv[4]);
121 rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
122 rows[3] = set4(counter_low(counter), counter_high(counter),
123 (uint32_t)block_len, (uint32_t)flags);
124
125 __m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]);
126 __m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]);
127 __m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]);
128 __m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]);
129
130 __m128i t0, t1, t2, t3, tt;
131
132 // Round 1. The first round permutes the message words from the original
133 // input order, into the groups that get mixed in parallel.
134 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
135 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
136 t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
137 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
138 diagonalize(&rows[0], &rows[2], &rows[3]);
139 t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
140 t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
141 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
142 t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
143 t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
144 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
145 undiagonalize(&rows[0], &rows[2], &rows[3]);
146 m0 = t0;
147 m1 = t1;
148 m2 = t2;
149 m3 = t3;
150
151 // Round 2. This round and all following rounds apply a fixed permutation
152 // to the message words from the round before.
153 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
154 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
155 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
156 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
157 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
158 t1 = _mm_blend_epi16(tt, t1, 0xCC);
159 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
160 diagonalize(&rows[0], &rows[2], &rows[3]);
161 t2 = _mm_unpacklo_epi64(m3, m1);
162 tt = _mm_blend_epi16(t2, m2, 0xC0);
163 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
164 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
165 t3 = _mm_unpackhi_epi32(m1, m3);
166 tt = _mm_unpacklo_epi32(m2, t3);
167 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
168 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
169 undiagonalize(&rows[0], &rows[2], &rows[3]);
170 m0 = t0;
171 m1 = t1;
172 m2 = t2;
173 m3 = t3;
174
175 // Round 3
176 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
177 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
178 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
179 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
180 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
181 t1 = _mm_blend_epi16(tt, t1, 0xCC);
182 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
183 diagonalize(&rows[0], &rows[2], &rows[3]);
184 t2 = _mm_unpacklo_epi64(m3, m1);
185 tt = _mm_blend_epi16(t2, m2, 0xC0);
186 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
187 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
188 t3 = _mm_unpackhi_epi32(m1, m3);
189 tt = _mm_unpacklo_epi32(m2, t3);
190 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
191 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
192 undiagonalize(&rows[0], &rows[2], &rows[3]);
193 m0 = t0;
194 m1 = t1;
195 m2 = t2;
196 m3 = t3;
197
198 // Round 4
199 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
200 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
201 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
202 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
203 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
204 t1 = _mm_blend_epi16(tt, t1, 0xCC);
205 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
206 diagonalize(&rows[0], &rows[2], &rows[3]);
207 t2 = _mm_unpacklo_epi64(m3, m1);
208 tt = _mm_blend_epi16(t2, m2, 0xC0);
209 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
210 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
211 t3 = _mm_unpackhi_epi32(m1, m3);
212 tt = _mm_unpacklo_epi32(m2, t3);
213 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
214 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
215 undiagonalize(&rows[0], &rows[2], &rows[3]);
216 m0 = t0;
217 m1 = t1;
218 m2 = t2;
219 m3 = t3;
220
221 // Round 5
222 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
223 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
224 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
225 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
226 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
227 t1 = _mm_blend_epi16(tt, t1, 0xCC);
228 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
229 diagonalize(&rows[0], &rows[2], &rows[3]);
230 t2 = _mm_unpacklo_epi64(m3, m1);
231 tt = _mm_blend_epi16(t2, m2, 0xC0);
232 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
233 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
234 t3 = _mm_unpackhi_epi32(m1, m3);
235 tt = _mm_unpacklo_epi32(m2, t3);
236 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
237 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
238 undiagonalize(&rows[0], &rows[2], &rows[3]);
239 m0 = t0;
240 m1 = t1;
241 m2 = t2;
242 m3 = t3;
243
244 // Round 6
245 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
246 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
247 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
248 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
249 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
250 t1 = _mm_blend_epi16(tt, t1, 0xCC);
251 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
252 diagonalize(&rows[0], &rows[2], &rows[3]);
253 t2 = _mm_unpacklo_epi64(m3, m1);
254 tt = _mm_blend_epi16(t2, m2, 0xC0);
255 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
256 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
257 t3 = _mm_unpackhi_epi32(m1, m3);
258 tt = _mm_unpacklo_epi32(m2, t3);
259 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
260 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
261 undiagonalize(&rows[0], &rows[2], &rows[3]);
262 m0 = t0;
263 m1 = t1;
264 m2 = t2;
265 m3 = t3;
266
267 // Round 7
268 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
269 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
270 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
271 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
272 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
273 t1 = _mm_blend_epi16(tt, t1, 0xCC);
274 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
275 diagonalize(&rows[0], &rows[2], &rows[3]);
276 t2 = _mm_unpacklo_epi64(m3, m1);
277 tt = _mm_blend_epi16(t2, m2, 0xC0);
278 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
279 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
280 t3 = _mm_unpackhi_epi32(m1, m3);
281 tt = _mm_unpacklo_epi32(m2, t3);
282 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
283 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
284 undiagonalize(&rows[0], &rows[2], &rows[3]);
285}
286
289 uint8_t block_len, uint64_t counter,
290 uint8_t flags, uint8_t out[64]) {
291 __m128i rows[4];
292 compress_pre(rows, cv, block, block_len, counter, flags);
293 storeu_128(xor_128(rows[0], rows[2]), &out[0]);
294 storeu_128(xor_128(rows[1], rows[3]), &out[16]);
295 storeu_128(xor_128(rows[2], loadu_128((uint8_t *)&cv[0])), &out[32]);
296 storeu_128(xor_128(rows[3], loadu_128((uint8_t *)&cv[4])), &out[48]);
297}
298
301 uint8_t block_len, uint64_t counter,
302 uint8_t flags) {
303 __m128i rows[4];
304 compress_pre(rows, cv, block, block_len, counter, flags);
305 storeu_128(xor_128(rows[0], rows[2]), (uint8_t *)&cv[0]);
306 storeu_128(xor_128(rows[1], rows[3]), (uint8_t *)&cv[4]);
307}
308
309/*
310 * ----------------------------------------------------------------------------
311 * hash4_avx512
312 * ----------------------------------------------------------------------------
313 */
314
315INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) {
316 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
317 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
318 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
319 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
320 v[0] = add_128(v[0], v[4]);
321 v[1] = add_128(v[1], v[5]);
322 v[2] = add_128(v[2], v[6]);
323 v[3] = add_128(v[3], v[7]);
324 v[12] = xor_128(v[12], v[0]);
325 v[13] = xor_128(v[13], v[1]);
326 v[14] = xor_128(v[14], v[2]);
327 v[15] = xor_128(v[15], v[3]);
328 v[12] = rot16_128(v[12]);
329 v[13] = rot16_128(v[13]);
330 v[14] = rot16_128(v[14]);
331 v[15] = rot16_128(v[15]);
332 v[8] = add_128(v[8], v[12]);
333 v[9] = add_128(v[9], v[13]);
334 v[10] = add_128(v[10], v[14]);
335 v[11] = add_128(v[11], v[15]);
336 v[4] = xor_128(v[4], v[8]);
337 v[5] = xor_128(v[5], v[9]);
338 v[6] = xor_128(v[6], v[10]);
339 v[7] = xor_128(v[7], v[11]);
340 v[4] = rot12_128(v[4]);
341 v[5] = rot12_128(v[5]);
342 v[6] = rot12_128(v[6]);
343 v[7] = rot12_128(v[7]);
344 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
345 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
346 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
347 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
348 v[0] = add_128(v[0], v[4]);
349 v[1] = add_128(v[1], v[5]);
350 v[2] = add_128(v[2], v[6]);
351 v[3] = add_128(v[3], v[7]);
352 v[12] = xor_128(v[12], v[0]);
353 v[13] = xor_128(v[13], v[1]);
354 v[14] = xor_128(v[14], v[2]);
355 v[15] = xor_128(v[15], v[3]);
356 v[12] = rot8_128(v[12]);
357 v[13] = rot8_128(v[13]);
358 v[14] = rot8_128(v[14]);
359 v[15] = rot8_128(v[15]);
360 v[8] = add_128(v[8], v[12]);
361 v[9] = add_128(v[9], v[13]);
362 v[10] = add_128(v[10], v[14]);
363 v[11] = add_128(v[11], v[15]);
364 v[4] = xor_128(v[4], v[8]);
365 v[5] = xor_128(v[5], v[9]);
366 v[6] = xor_128(v[6], v[10]);
367 v[7] = xor_128(v[7], v[11]);
368 v[4] = rot7_128(v[4]);
369 v[5] = rot7_128(v[5]);
370 v[6] = rot7_128(v[6]);
371 v[7] = rot7_128(v[7]);
372
373 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
374 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
375 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
376 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
377 v[0] = add_128(v[0], v[5]);
378 v[1] = add_128(v[1], v[6]);
379 v[2] = add_128(v[2], v[7]);
380 v[3] = add_128(v[3], v[4]);
381 v[15] = xor_128(v[15], v[0]);
382 v[12] = xor_128(v[12], v[1]);
383 v[13] = xor_128(v[13], v[2]);
384 v[14] = xor_128(v[14], v[3]);
385 v[15] = rot16_128(v[15]);
386 v[12] = rot16_128(v[12]);
387 v[13] = rot16_128(v[13]);
388 v[14] = rot16_128(v[14]);
389 v[10] = add_128(v[10], v[15]);
390 v[11] = add_128(v[11], v[12]);
391 v[8] = add_128(v[8], v[13]);
392 v[9] = add_128(v[9], v[14]);
393 v[5] = xor_128(v[5], v[10]);
394 v[6] = xor_128(v[6], v[11]);
395 v[7] = xor_128(v[7], v[8]);
396 v[4] = xor_128(v[4], v[9]);
397 v[5] = rot12_128(v[5]);
398 v[6] = rot12_128(v[6]);
399 v[7] = rot12_128(v[7]);
400 v[4] = rot12_128(v[4]);
401 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
402 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
403 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
404 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
405 v[0] = add_128(v[0], v[5]);
406 v[1] = add_128(v[1], v[6]);
407 v[2] = add_128(v[2], v[7]);
408 v[3] = add_128(v[3], v[4]);
409 v[15] = xor_128(v[15], v[0]);
410 v[12] = xor_128(v[12], v[1]);
411 v[13] = xor_128(v[13], v[2]);
412 v[14] = xor_128(v[14], v[3]);
413 v[15] = rot8_128(v[15]);
414 v[12] = rot8_128(v[12]);
415 v[13] = rot8_128(v[13]);
416 v[14] = rot8_128(v[14]);
417 v[10] = add_128(v[10], v[15]);
418 v[11] = add_128(v[11], v[12]);
419 v[8] = add_128(v[8], v[13]);
420 v[9] = add_128(v[9], v[14]);
421 v[5] = xor_128(v[5], v[10]);
422 v[6] = xor_128(v[6], v[11]);
423 v[7] = xor_128(v[7], v[8]);
424 v[4] = xor_128(v[4], v[9]);
425 v[5] = rot7_128(v[5]);
426 v[6] = rot7_128(v[6]);
427 v[7] = rot7_128(v[7]);
428 v[4] = rot7_128(v[4]);
429}
430
431INLINE void transpose_vecs_128(__m128i vecs[4]) {
432 // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
433 // 22/33. Note that this doesn't split the vector into two lanes, as the
434 // AVX2 counterparts do.
435 __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
436 __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
437 __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
438 __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
439
440 // Interleave 64-bit lanes.
441 __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
442 __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
443 __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
444 __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
445
446 vecs[0] = abcd_0;
447 vecs[1] = abcd_1;
448 vecs[2] = abcd_2;
449 vecs[3] = abcd_3;
450}
451
452INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
453 size_t block_offset, __m128i out[16]) {
454 out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
455 out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
456 out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
457 out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
458 out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
459 out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
460 out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
461 out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
462 out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
463 out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
464 out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
465 out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
466 out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
467 out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
468 out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
469 out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
470 for (size_t i = 0; i < 4; ++i) {
471 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
472 }
473 transpose_vecs_128(&out[0]);
474 transpose_vecs_128(&out[4]);
475 transpose_vecs_128(&out[8]);
476 transpose_vecs_128(&out[12]);
477}
478
479INLINE void load_counters4(uint64_t counter, bool increment_counter,
480 __m128i *out_lo, __m128i *out_hi) {
481 uint64_t mask = (increment_counter ? ~0 : 0);
482 __m256i mask_vec = _mm256_set1_epi64x(mask);
483 __m256i deltas = _mm256_setr_epi64x(0, 1, 2, 3);
484 deltas = _mm256_and_si256(mask_vec, deltas);
485 __m256i counters =
486 _mm256_add_epi64(_mm256_set1_epi64x((int64_t)counter), deltas);
487 *out_lo = _mm256_cvtepi64_epi32(counters);
488 *out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(counters, 32));
489}
490
491static
492void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks,
493 const uint32_t key[8], uint64_t counter,
494 bool increment_counter, uint8_t flags,
495 uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
496 __m128i h_vecs[8] = {
497 set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
498 set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
499 };
500 __m128i counter_low_vec, counter_high_vec;
501 load_counters4(counter, increment_counter, &counter_low_vec,
502 &counter_high_vec);
503 uint8_t block_flags = flags | flags_start;
504
505 for (size_t block = 0; block < blocks; block++) {
506 if (block + 1 == blocks) {
507 block_flags |= flags_end;
508 }
509 __m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
510 __m128i block_flags_vec = set1_128(block_flags);
511 __m128i msg_vecs[16];
512 transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
513
514 __m128i v[16] = {
515 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
516 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
517 set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
518 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
519 };
520 round_fn4(v, msg_vecs, 0);
521 round_fn4(v, msg_vecs, 1);
522 round_fn4(v, msg_vecs, 2);
523 round_fn4(v, msg_vecs, 3);
524 round_fn4(v, msg_vecs, 4);
525 round_fn4(v, msg_vecs, 5);
526 round_fn4(v, msg_vecs, 6);
527 h_vecs[0] = xor_128(v[0], v[8]);
528 h_vecs[1] = xor_128(v[1], v[9]);
529 h_vecs[2] = xor_128(v[2], v[10]);
530 h_vecs[3] = xor_128(v[3], v[11]);
531 h_vecs[4] = xor_128(v[4], v[12]);
532 h_vecs[5] = xor_128(v[5], v[13]);
533 h_vecs[6] = xor_128(v[6], v[14]);
534 h_vecs[7] = xor_128(v[7], v[15]);
535
536 block_flags = flags;
537 }
538
539 transpose_vecs_128(&h_vecs[0]);
540 transpose_vecs_128(&h_vecs[4]);
541 // The first four vecs now contain the first half of each output, and the
542 // second four vecs contain the second half of each output.
543 storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]);
544 storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]);
545 storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]);
546 storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]);
547 storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]);
548 storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]);
549 storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]);
550 storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]);
551}
552
553/*
554 * ----------------------------------------------------------------------------
555 * hash8_avx512
556 * ----------------------------------------------------------------------------
557 */
558
559INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) {
560 v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
561 v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
562 v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
563 v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
564 v[0] = add_256(v[0], v[4]);
565 v[1] = add_256(v[1], v[5]);
566 v[2] = add_256(v[2], v[6]);
567 v[3] = add_256(v[3], v[7]);
568 v[12] = xor_256(v[12], v[0]);
569 v[13] = xor_256(v[13], v[1]);
570 v[14] = xor_256(v[14], v[2]);
571 v[15] = xor_256(v[15], v[3]);
572 v[12] = rot16_256(v[12]);
573 v[13] = rot16_256(v[13]);
574 v[14] = rot16_256(v[14]);
575 v[15] = rot16_256(v[15]);
576 v[8] = add_256(v[8], v[12]);
577 v[9] = add_256(v[9], v[13]);
578 v[10] = add_256(v[10], v[14]);
579 v[11] = add_256(v[11], v[15]);
580 v[4] = xor_256(v[4], v[8]);
581 v[5] = xor_256(v[5], v[9]);
582 v[6] = xor_256(v[6], v[10]);
583 v[7] = xor_256(v[7], v[11]);
584 v[4] = rot12_256(v[4]);
585 v[5] = rot12_256(v[5]);
586 v[6] = rot12_256(v[6]);
587 v[7] = rot12_256(v[7]);
588 v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
589 v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
590 v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
591 v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
592 v[0] = add_256(v[0], v[4]);
593 v[1] = add_256(v[1], v[5]);
594 v[2] = add_256(v[2], v[6]);
595 v[3] = add_256(v[3], v[7]);
596 v[12] = xor_256(v[12], v[0]);
597 v[13] = xor_256(v[13], v[1]);
598 v[14] = xor_256(v[14], v[2]);
599 v[15] = xor_256(v[15], v[3]);
600 v[12] = rot8_256(v[12]);
601 v[13] = rot8_256(v[13]);
602 v[14] = rot8_256(v[14]);
603 v[15] = rot8_256(v[15]);
604 v[8] = add_256(v[8], v[12]);
605 v[9] = add_256(v[9], v[13]);
606 v[10] = add_256(v[10], v[14]);
607 v[11] = add_256(v[11], v[15]);
608 v[4] = xor_256(v[4], v[8]);
609 v[5] = xor_256(v[5], v[9]);
610 v[6] = xor_256(v[6], v[10]);
611 v[7] = xor_256(v[7], v[11]);
612 v[4] = rot7_256(v[4]);
613 v[5] = rot7_256(v[5]);
614 v[6] = rot7_256(v[6]);
615 v[7] = rot7_256(v[7]);
616
617 v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
618 v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
619 v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
620 v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
621 v[0] = add_256(v[0], v[5]);
622 v[1] = add_256(v[1], v[6]);
623 v[2] = add_256(v[2], v[7]);
624 v[3] = add_256(v[3], v[4]);
625 v[15] = xor_256(v[15], v[0]);
626 v[12] = xor_256(v[12], v[1]);
627 v[13] = xor_256(v[13], v[2]);
628 v[14] = xor_256(v[14], v[3]);
629 v[15] = rot16_256(v[15]);
630 v[12] = rot16_256(v[12]);
631 v[13] = rot16_256(v[13]);
632 v[14] = rot16_256(v[14]);
633 v[10] = add_256(v[10], v[15]);
634 v[11] = add_256(v[11], v[12]);
635 v[8] = add_256(v[8], v[13]);
636 v[9] = add_256(v[9], v[14]);
637 v[5] = xor_256(v[5], v[10]);
638 v[6] = xor_256(v[6], v[11]);
639 v[7] = xor_256(v[7], v[8]);
640 v[4] = xor_256(v[4], v[9]);
641 v[5] = rot12_256(v[5]);
642 v[6] = rot12_256(v[6]);
643 v[7] = rot12_256(v[7]);
644 v[4] = rot12_256(v[4]);
645 v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
646 v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
647 v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
648 v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
649 v[0] = add_256(v[0], v[5]);
650 v[1] = add_256(v[1], v[6]);
651 v[2] = add_256(v[2], v[7]);
652 v[3] = add_256(v[3], v[4]);
653 v[15] = xor_256(v[15], v[0]);
654 v[12] = xor_256(v[12], v[1]);
655 v[13] = xor_256(v[13], v[2]);
656 v[14] = xor_256(v[14], v[3]);
657 v[15] = rot8_256(v[15]);
658 v[12] = rot8_256(v[12]);
659 v[13] = rot8_256(v[13]);
660 v[14] = rot8_256(v[14]);
661 v[10] = add_256(v[10], v[15]);
662 v[11] = add_256(v[11], v[12]);
663 v[8] = add_256(v[8], v[13]);
664 v[9] = add_256(v[9], v[14]);
665 v[5] = xor_256(v[5], v[10]);
666 v[6] = xor_256(v[6], v[11]);
667 v[7] = xor_256(v[7], v[8]);
668 v[4] = xor_256(v[4], v[9]);
669 v[5] = rot7_256(v[5]);
670 v[6] = rot7_256(v[6]);
671 v[7] = rot7_256(v[7]);
672 v[4] = rot7_256(v[4]);
673}
674
675INLINE void transpose_vecs_256(__m256i vecs[8]) {
676 // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
677 // is 22/33/66/77.
678 __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
679 __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
680 __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
681 __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
682 __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
683 __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
684 __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
685 __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
686
687 // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
688 // 11/33.
689 __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
690 __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
691 __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
692 __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
693 __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
694 __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
695 __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
696 __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
697
698 // Interleave 128-bit lanes.
699 vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
700 vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
701 vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
702 vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
703 vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
704 vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
705 vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
706 vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
707}
708
709INLINE void transpose_msg_vecs8(const uint8_t *const *inputs,
710 size_t block_offset, __m256i out[16]) {
711 out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
712 out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
713 out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
714 out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
715 out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
716 out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
717 out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
718 out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
719 out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
720 out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
721 out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
722 out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
723 out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
724 out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
725 out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
726 out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
727 for (size_t i = 0; i < 8; ++i) {
728 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
729 }
730 transpose_vecs_256(&out[0]);
731 transpose_vecs_256(&out[8]);
732}
733
734INLINE void load_counters8(uint64_t counter, bool increment_counter,
735 __m256i *out_lo, __m256i *out_hi) {
736 uint64_t mask = (increment_counter ? ~0 : 0);
737 __m512i mask_vec = _mm512_set1_epi64(mask);
738 __m512i deltas = _mm512_setr_epi64(0, 1, 2, 3, 4, 5, 6, 7);
739 deltas = _mm512_and_si512(mask_vec, deltas);
740 __m512i counters =
741 _mm512_add_epi64(_mm512_set1_epi64((int64_t)counter), deltas);
742 *out_lo = _mm512_cvtepi64_epi32(counters);
743 *out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(counters, 32));
744}
745
746static
747void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks,
748 const uint32_t key[8], uint64_t counter,
749 bool increment_counter, uint8_t flags,
750 uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
751 __m256i h_vecs[8] = {
752 set1_256(key[0]), set1_256(key[1]), set1_256(key[2]), set1_256(key[3]),
753 set1_256(key[4]), set1_256(key[5]), set1_256(key[6]), set1_256(key[7]),
754 };
755 __m256i counter_low_vec, counter_high_vec;
756 load_counters8(counter, increment_counter, &counter_low_vec,
757 &counter_high_vec);
758 uint8_t block_flags = flags | flags_start;
759
760 for (size_t block = 0; block < blocks; block++) {
761 if (block + 1 == blocks) {
762 block_flags |= flags_end;
763 }
764 __m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN);
765 __m256i block_flags_vec = set1_256(block_flags);
766 __m256i msg_vecs[16];
767 transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
768
769 __m256i v[16] = {
770 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
771 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
772 set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]),
773 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
774 };
775 round_fn8(v, msg_vecs, 0);
776 round_fn8(v, msg_vecs, 1);
777 round_fn8(v, msg_vecs, 2);
778 round_fn8(v, msg_vecs, 3);
779 round_fn8(v, msg_vecs, 4);
780 round_fn8(v, msg_vecs, 5);
781 round_fn8(v, msg_vecs, 6);
782 h_vecs[0] = xor_256(v[0], v[8]);
783 h_vecs[1] = xor_256(v[1], v[9]);
784 h_vecs[2] = xor_256(v[2], v[10]);
785 h_vecs[3] = xor_256(v[3], v[11]);
786 h_vecs[4] = xor_256(v[4], v[12]);
787 h_vecs[5] = xor_256(v[5], v[13]);
788 h_vecs[6] = xor_256(v[6], v[14]);
789 h_vecs[7] = xor_256(v[7], v[15]);
790
791 block_flags = flags;
792 }
793
794 transpose_vecs_256(h_vecs);
795 storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]);
796 storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]);
797 storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]);
798 storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]);
799 storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]);
800 storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]);
801 storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]);
802 storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]);
803}
804
805/*
806 * ----------------------------------------------------------------------------
807 * hash16_avx512
808 * ----------------------------------------------------------------------------
809 */
810
811INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) {
812 v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
813 v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
814 v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
815 v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
816 v[0] = add_512(v[0], v[4]);
817 v[1] = add_512(v[1], v[5]);
818 v[2] = add_512(v[2], v[6]);
819 v[3] = add_512(v[3], v[7]);
820 v[12] = xor_512(v[12], v[0]);
821 v[13] = xor_512(v[13], v[1]);
822 v[14] = xor_512(v[14], v[2]);
823 v[15] = xor_512(v[15], v[3]);
824 v[12] = rot16_512(v[12]);
825 v[13] = rot16_512(v[13]);
826 v[14] = rot16_512(v[14]);
827 v[15] = rot16_512(v[15]);
828 v[8] = add_512(v[8], v[12]);
829 v[9] = add_512(v[9], v[13]);
830 v[10] = add_512(v[10], v[14]);
831 v[11] = add_512(v[11], v[15]);
832 v[4] = xor_512(v[4], v[8]);
833 v[5] = xor_512(v[5], v[9]);
834 v[6] = xor_512(v[6], v[10]);
835 v[7] = xor_512(v[7], v[11]);
836 v[4] = rot12_512(v[4]);
837 v[5] = rot12_512(v[5]);
838 v[6] = rot12_512(v[6]);
839 v[7] = rot12_512(v[7]);
840 v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
841 v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
842 v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
843 v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
844 v[0] = add_512(v[0], v[4]);
845 v[1] = add_512(v[1], v[5]);
846 v[2] = add_512(v[2], v[6]);
847 v[3] = add_512(v[3], v[7]);
848 v[12] = xor_512(v[12], v[0]);
849 v[13] = xor_512(v[13], v[1]);
850 v[14] = xor_512(v[14], v[2]);
851 v[15] = xor_512(v[15], v[3]);
852 v[12] = rot8_512(v[12]);
853 v[13] = rot8_512(v[13]);
854 v[14] = rot8_512(v[14]);
855 v[15] = rot8_512(v[15]);
856 v[8] = add_512(v[8], v[12]);
857 v[9] = add_512(v[9], v[13]);
858 v[10] = add_512(v[10], v[14]);
859 v[11] = add_512(v[11], v[15]);
860 v[4] = xor_512(v[4], v[8]);
861 v[5] = xor_512(v[5], v[9]);
862 v[6] = xor_512(v[6], v[10]);
863 v[7] = xor_512(v[7], v[11]);
864 v[4] = rot7_512(v[4]);
865 v[5] = rot7_512(v[5]);
866 v[6] = rot7_512(v[6]);
867 v[7] = rot7_512(v[7]);
868
869 v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
870 v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
871 v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
872 v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
873 v[0] = add_512(v[0], v[5]);
874 v[1] = add_512(v[1], v[6]);
875 v[2] = add_512(v[2], v[7]);
876 v[3] = add_512(v[3], v[4]);
877 v[15] = xor_512(v[15], v[0]);
878 v[12] = xor_512(v[12], v[1]);
879 v[13] = xor_512(v[13], v[2]);
880 v[14] = xor_512(v[14], v[3]);
881 v[15] = rot16_512(v[15]);
882 v[12] = rot16_512(v[12]);
883 v[13] = rot16_512(v[13]);
884 v[14] = rot16_512(v[14]);
885 v[10] = add_512(v[10], v[15]);
886 v[11] = add_512(v[11], v[12]);
887 v[8] = add_512(v[8], v[13]);
888 v[9] = add_512(v[9], v[14]);
889 v[5] = xor_512(v[5], v[10]);
890 v[6] = xor_512(v[6], v[11]);
891 v[7] = xor_512(v[7], v[8]);
892 v[4] = xor_512(v[4], v[9]);
893 v[5] = rot12_512(v[5]);
894 v[6] = rot12_512(v[6]);
895 v[7] = rot12_512(v[7]);
896 v[4] = rot12_512(v[4]);
897 v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
898 v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
899 v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
900 v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
901 v[0] = add_512(v[0], v[5]);
902 v[1] = add_512(v[1], v[6]);
903 v[2] = add_512(v[2], v[7]);
904 v[3] = add_512(v[3], v[4]);
905 v[15] = xor_512(v[15], v[0]);
906 v[12] = xor_512(v[12], v[1]);
907 v[13] = xor_512(v[13], v[2]);
908 v[14] = xor_512(v[14], v[3]);
909 v[15] = rot8_512(v[15]);
910 v[12] = rot8_512(v[12]);
911 v[13] = rot8_512(v[13]);
912 v[14] = rot8_512(v[14]);
913 v[10] = add_512(v[10], v[15]);
914 v[11] = add_512(v[11], v[12]);
915 v[8] = add_512(v[8], v[13]);
916 v[9] = add_512(v[9], v[14]);
917 v[5] = xor_512(v[5], v[10]);
918 v[6] = xor_512(v[6], v[11]);
919 v[7] = xor_512(v[7], v[8]);
920 v[4] = xor_512(v[4], v[9]);
921 v[5] = rot7_512(v[5]);
922 v[6] = rot7_512(v[6]);
923 v[7] = rot7_512(v[7]);
924 v[4] = rot7_512(v[4]);
925}
926
927// 0b10001000, or lanes a0/a2/b0/b2 in little-endian order
928#define LO_IMM8 0x88
929
930INLINE __m512i unpack_lo_128(__m512i a, __m512i b) {
931 return _mm512_shuffle_i32x4(a, b, LO_IMM8);
932}
933
934// 0b11011101, or lanes a1/a3/b1/b3 in little-endian order
935#define HI_IMM8 0xdd
936
937INLINE __m512i unpack_hi_128(__m512i a, __m512i b) {
938 return _mm512_shuffle_i32x4(a, b, HI_IMM8);
939}
940
941INLINE void transpose_vecs_512(__m512i vecs[16]) {
942 // Interleave 32-bit lanes. The _0 unpack is lanes
943 // 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes
944 // 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15.
945 __m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]);
946 __m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]);
947 __m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]);
948 __m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]);
949 __m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]);
950 __m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]);
951 __m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]);
952 __m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]);
953 __m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]);
954 __m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]);
955 __m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]);
956 __m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]);
957 __m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]);
958 __m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]);
959 __m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]);
960 __m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]);
961
962 // Interleave 64-bit lates. The _0 unpack is lanes
963 // 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes
964 // 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes
965 // 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes
966 // 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15.
967 __m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0);
968 __m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0);
969 __m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2);
970 __m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2);
971 __m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0);
972 __m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0);
973 __m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2);
974 __m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2);
975 __m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0);
976 __m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0);
977 __m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2);
978 __m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2);
979 __m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0);
980 __m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0);
981 __m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2);
982 __m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2);
983
984 // Interleave 128-bit lanes. The _0 unpack is
985 // 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is
986 // 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on.
987 __m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0);
988 __m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1);
989 __m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2);
990 __m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3);
991 __m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0);
992 __m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1);
993 __m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2);
994 __m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3);
995 __m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0);
996 __m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1);
997 __m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2);
998 __m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3);
999 __m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0);
1000 __m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1);
1001 __m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2);
1002 __m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3);
1003
1004 // Interleave 128-bit lanes again for the final outputs.
1005 vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0);
1006 vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1);
1007 vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2);
1008 vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3);
1009 vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4);
1010 vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5);
1011 vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6);
1012 vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7);
1013 vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0);
1014 vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1);
1015 vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2);
1016 vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3);
1017 vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4);
1018 vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5);
1019 vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6);
1020 vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7);
1021}
1022
1023INLINE void transpose_msg_vecs16(const uint8_t *const *inputs,
1024 size_t block_offset, __m512i out[16]) {
1025 out[0] = loadu_512(&inputs[0][block_offset]);
1026 out[1] = loadu_512(&inputs[1][block_offset]);
1027 out[2] = loadu_512(&inputs[2][block_offset]);
1028 out[3] = loadu_512(&inputs[3][block_offset]);
1029 out[4] = loadu_512(&inputs[4][block_offset]);
1030 out[5] = loadu_512(&inputs[5][block_offset]);
1031 out[6] = loadu_512(&inputs[6][block_offset]);
1032 out[7] = loadu_512(&inputs[7][block_offset]);
1033 out[8] = loadu_512(&inputs[8][block_offset]);
1034 out[9] = loadu_512(&inputs[9][block_offset]);
1035 out[10] = loadu_512(&inputs[10][block_offset]);
1036 out[11] = loadu_512(&inputs[11][block_offset]);
1037 out[12] = loadu_512(&inputs[12][block_offset]);
1038 out[13] = loadu_512(&inputs[13][block_offset]);
1039 out[14] = loadu_512(&inputs[14][block_offset]);
1040 out[15] = loadu_512(&inputs[15][block_offset]);
1041 for (size_t i = 0; i < 16; ++i) {
1042 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
1043 }
1044 transpose_vecs_512(out);
1045}
1046
1047INLINE void load_counters16(uint64_t counter, bool increment_counter,
1048 __m512i *out_lo, __m512i *out_hi) {
1049 const __m512i mask = _mm512_set1_epi32(-(int32_t)increment_counter);
1050 const __m512i add0 = _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
1051 const __m512i add1 = _mm512_and_si512(mask, add0);
1052 __m512i l = _mm512_add_epi32(_mm512_set1_epi32((int32_t)counter), add1);
1053 __mmask16 carry = _mm512_cmp_epu32_mask(l, add1, _MM_CMPINT_LT);
1054 __m512i h = _mm512_mask_add_epi32(_mm512_set1_epi32((int32_t)(counter >> 32)), carry, _mm512_set1_epi32((int32_t)(counter >> 32)), _mm512_set1_epi32(1));
1055 *out_lo = l;
1056 *out_hi = h;
1057}
1058
1059static
1060void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks,
1061 const uint32_t key[8], uint64_t counter,
1062 bool increment_counter, uint8_t flags,
1063 uint8_t flags_start, uint8_t flags_end,
1064 uint8_t *out) {
1065 __m512i h_vecs[8] = {
1066 set1_512(key[0]), set1_512(key[1]), set1_512(key[2]), set1_512(key[3]),
1067 set1_512(key[4]), set1_512(key[5]), set1_512(key[6]), set1_512(key[7]),
1068 };
1069 __m512i counter_low_vec, counter_high_vec;
1070 load_counters16(counter, increment_counter, &counter_low_vec,
1071 &counter_high_vec);
1072 uint8_t block_flags = flags | flags_start;
1073
1074 for (size_t block = 0; block < blocks; block++) {
1075 if (block + 1 == blocks) {
1076 block_flags |= flags_end;
1077 }
1078 __m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN);
1079 __m512i block_flags_vec = set1_512(block_flags);
1080 __m512i msg_vecs[16];
1081 transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
1082
1083 __m512i v[16] = {
1084 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
1085 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
1086 set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]),
1087 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
1088 };
1089 round_fn16(v, msg_vecs, 0);
1090 round_fn16(v, msg_vecs, 1);
1091 round_fn16(v, msg_vecs, 2);
1092 round_fn16(v, msg_vecs, 3);
1093 round_fn16(v, msg_vecs, 4);
1094 round_fn16(v, msg_vecs, 5);
1095 round_fn16(v, msg_vecs, 6);
1096 h_vecs[0] = xor_512(v[0], v[8]);
1097 h_vecs[1] = xor_512(v[1], v[9]);
1098 h_vecs[2] = xor_512(v[2], v[10]);
1099 h_vecs[3] = xor_512(v[3], v[11]);
1100 h_vecs[4] = xor_512(v[4], v[12]);
1101 h_vecs[5] = xor_512(v[5], v[13]);
1102 h_vecs[6] = xor_512(v[6], v[14]);
1103 h_vecs[7] = xor_512(v[7], v[15]);
1104
1105 block_flags = flags;
1106 }
1107
1108 // transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8
1109 // state vectors. Pad the matrix with zeros. After transposition, store the
1110 // lower half of each vector.
1111 __m512i padded[16] = {
1112 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
1113 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
1114 set1_512(0), set1_512(0), set1_512(0), set1_512(0),
1115 set1_512(0), set1_512(0), set1_512(0), set1_512(0),
1116 };
1117 transpose_vecs_512(padded);
1118 _mm256_mask_storeu_epi32(&out[0 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[0]));
1119 _mm256_mask_storeu_epi32(&out[1 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[1]));
1120 _mm256_mask_storeu_epi32(&out[2 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[2]));
1121 _mm256_mask_storeu_epi32(&out[3 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[3]));
1122 _mm256_mask_storeu_epi32(&out[4 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[4]));
1123 _mm256_mask_storeu_epi32(&out[5 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[5]));
1124 _mm256_mask_storeu_epi32(&out[6 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[6]));
1125 _mm256_mask_storeu_epi32(&out[7 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[7]));
1126 _mm256_mask_storeu_epi32(&out[8 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[8]));
1127 _mm256_mask_storeu_epi32(&out[9 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[9]));
1128 _mm256_mask_storeu_epi32(&out[10 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[10]));
1129 _mm256_mask_storeu_epi32(&out[11 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[11]));
1130 _mm256_mask_storeu_epi32(&out[12 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[12]));
1131 _mm256_mask_storeu_epi32(&out[13 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[13]));
1132 _mm256_mask_storeu_epi32(&out[14 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[14]));
1133 _mm256_mask_storeu_epi32(&out[15 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[15]));
1134}
1135
1136/*
1137 * ----------------------------------------------------------------------------
1138 * hash_many_avx512
1139 * ----------------------------------------------------------------------------
1140 */
1141
1142INLINE void hash_one_avx512(const uint8_t *input, size_t blocks,
1143 const uint32_t key[8], uint64_t counter,
1144 uint8_t flags, uint8_t flags_start,
1145 uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
1146 uint32_t cv[8];
1147 memcpy(cv, key, BLAKE3_KEY_LEN);
1148 uint8_t block_flags = flags | flags_start;
1149 while (blocks > 0) {
1150 if (blocks == 1) {
1151 block_flags |= flags_end;
1152 }
1154 block_flags);
1155 input = &input[BLAKE3_BLOCK_LEN];
1156 blocks -= 1;
1157 block_flags = flags;
1158 }
1159 memcpy(out, cv, BLAKE3_OUT_LEN);
1160}
1161
1162void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
1163 size_t blocks, const uint32_t key[8],
1164 uint64_t counter, bool increment_counter,
1165 uint8_t flags, uint8_t flags_start,
1166 uint8_t flags_end, uint8_t *out) {
1167 while (num_inputs >= 16) {
1168 blake3_hash16_avx512(inputs, blocks, key, counter, increment_counter, flags,
1169 flags_start, flags_end, out);
1170 if (increment_counter) {
1171 counter += 16;
1172 }
1173 inputs += 16;
1174 num_inputs -= 16;
1175 out = &out[16 * BLAKE3_OUT_LEN];
1176 }
1177 while (num_inputs >= 8) {
1178 blake3_hash8_avx512(inputs, blocks, key, counter, increment_counter, flags,
1179 flags_start, flags_end, out);
1180 if (increment_counter) {
1181 counter += 8;
1182 }
1183 inputs += 8;
1184 num_inputs -= 8;
1185 out = &out[8 * BLAKE3_OUT_LEN];
1186 }
1187 while (num_inputs >= 4) {
1188 blake3_hash4_avx512(inputs, blocks, key, counter, increment_counter, flags,
1189 flags_start, flags_end, out);
1190 if (increment_counter) {
1191 counter += 4;
1192 }
1193 inputs += 4;
1194 num_inputs -= 4;
1195 out = &out[4 * BLAKE3_OUT_LEN];
1196 }
1197 while (num_inputs > 0) {
1198 hash_one_avx512(inputs[0], blocks, key, counter, flags, flags_start,
1199 flags_end, out);
1200 if (increment_counter) {
1201 counter += 1;
1202 }
1203 inputs += 1;
1204 num_inputs -= 1;
1205 out = &out[BLAKE3_OUT_LEN];
1206 }
1207}
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
unify loop Fixup each natural loop to have a single exit block
INLINE __m128i rot16_128(__m128i x)
Definition: blake3_avx512.c:51
INLINE __m512i rot8_512(__m512i x)
Definition: blake3_avx512.c:67
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
Definition: blake3_avx512.c:47
#define _mm_shuffle_ps2(a, b, c)
Definition: blake3_avx512.c:5
INLINE __m256i set1_256(uint32_t x)
Definition: blake3_avx512.c:43
INLINE void storeu_128(__m128i src, uint8_t dest[16])
Definition: blake3_avx512.c:21
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m)
Definition: blake3_avx512.c:81
INLINE __m128i set1_128(uint32_t x)
Definition: blake3_avx512.c:41
INLINE __m512i set1_512(uint32_t x)
Definition: blake3_avx512.c:45
INLINE __m256i rot8_256(__m256i x)
Definition: blake3_avx512.c:65
INLINE __m512i loadu_512(const uint8_t src[64])
Definition: blake3_avx512.c:17
INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r)
INLINE __m256i rot7_256(__m256i x)
Definition: blake3_avx512.c:71
INLINE void storeu_256(__m256i src, uint8_t dest[16])
Definition: blake3_avx512.c:25
INLINE __m512i rot16_512(__m512i x)
Definition: blake3_avx512.c:55
INLINE void hash_one_avx512(const uint8_t *input, size_t blocks, const uint32_t key[8], uint64_t counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN])
INLINE void transpose_vecs_128(__m128i vecs[4])
INLINE __m128i rot8_128(__m128i x)
Definition: blake3_avx512.c:63
INLINE void transpose_vecs_512(__m512i vecs[16])
INLINE __m512i add_512(__m512i a, __m512i b)
Definition: blake3_avx512.c:33
INLINE __m256i xor_256(__m256i a, __m256i b)
Definition: blake3_avx512.c:37
INLINE __m128i loadu_128(const uint8_t src[16])
Definition: blake3_avx512.c:9
INLINE __m128i rot12_128(__m128i x)
Definition: blake3_avx512.c:57
INLINE __m256i rot12_256(__m256i x)
Definition: blake3_avx512.c:59
INLINE void load_counters8(uint64_t counter, bool increment_counter, __m256i *out_lo, __m256i *out_hi)
INLINE __m128i add_128(__m128i a, __m128i b)
Definition: blake3_avx512.c:29
static void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out)
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3)
INLINE void load_counters16(uint64_t counter, bool increment_counter, __m512i *out_lo, __m512i *out_hi)
INLINE __m256i rot16_256(__m256i x)
Definition: blake3_avx512.c:53
INLINE __m512i unpack_lo_128(__m512i a, __m512i b)
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, size_t block_offset, __m128i out[16])
INLINE void transpose_msg_vecs8(const uint8_t *const *inputs, size_t block_offset, __m256i out[16])
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3)
#define HI_IMM8
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags)
INLINE void load_counters4(uint64_t counter, bool increment_counter, __m128i *out_lo, __m128i *out_hi)
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m)
Definition: blake3_avx512.c:91
#define LO_IMM8
static void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out)
INLINE __m256i loadu_256(const uint8_t src[32])
Definition: blake3_avx512.c:13
INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r)
INLINE __m512i rot7_512(__m512i x)
Definition: blake3_avx512.c:73
INLINE void transpose_vecs_256(__m256i vecs[8])
INLINE void transpose_msg_vecs16(const uint8_t *const *inputs, size_t block_offset, __m512i out[16])
INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r)
INLINE __m512i unpack_hi_128(__m512i a, __m512i b)
INLINE __m256i add_256(__m256i a, __m256i b)
Definition: blake3_avx512.c:31
INLINE __m128i rot7_128(__m128i x)
Definition: blake3_avx512.c:69
INLINE __m128i xor_128(__m128i a, __m128i b)
Definition: blake3_avx512.c:35
INLINE __m512i xor_512(__m512i a, __m512i b)
Definition: blake3_avx512.c:39
INLINE __m512i rot12_512(__m512i x)
Definition: blake3_avx512.c:61
static void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out)
static const uint8_t MSG_SCHEDULE[7][16]
Definition: blake3_impl.h:82
#define INLINE
Definition: blake3_impl.h:32
static const uint32_t IV[8]
Definition: blake3_impl.h:78
INLINE uint32_t counter_high(uint64_t counter)
Definition: blake3_impl.h:145
INLINE uint32_t counter_low(uint64_t counter)
Definition: blake3_impl.h:143
#define blake3_hash_many_avx512
#define BLAKE3_BLOCK_LEN
#define BLAKE3_OUT_LEN
#define blake3_compress_xof_avx512
#define BLAKE3_KEY_LEN
#define blake3_compress_in_place_avx512