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Abstract

We present Vector LLVA, a virtual instruction set architget (V-
ISA) that exposes extensive static information about vegéwal-
lelism while avoiding the use of hardware-specific paranseid/e
provide both arbitrary-length vectors (for targets thabwalvec-
tors of arbitrary length, or where the target length is nadkn)
and fixed-length vectors (for targets that have a fixed veetagth,
such as subword SIMD extensions), together with a rich sapef-
ations on both vector types. We have implemented transl&bait
compile (1) Vector LLVA written with arbitrary-length veats to
the Motorola RSVP architecture and (2) Vector LLVA writteithv
fixed-length vectors to both AltiVec and Intel SSE2. Our slator-

generated code achieves speedups competitive with hatetwri

native code versions of several benchmarks on all thredtaceh
tures. These experiments show that our V-ISA design captge-

tor parallelism for two quite different classes of architees and
provides virtual object code portability within the clagsabword

SIMD architectures.

Categories and Subject Descriptors  D.3.4 [Softwarg: Program-
ming Languages—Processors

General Terms Performance, Languages

Keywords Multimedia, Vector, SIMD, Virtual Instruction Sets

1. Introduction

High-performance media processing applications are bgpim-
creasingly important on a wide range of systems. Like mogli-ap
cations, these programs are generally compiled and shippbe
form of native binary code for a particular processor agtttitre.
This approach has two particular drawbacks for media psicgs
applications where careful tuning for very high performaigim-
portant. First, even when written in a source-level languégg.,
C), application code must often be tuned for hardware desaith
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as available operations and memory access restrictiodssach
tuning is not likely to carry over from one architecture ta#rer
(e.g., Motorola’s AltiVec vs. Intel's SSE2). This makes iffidult
and expensive to write a single source program that achitnees
highest performance on different architectures, evenghdhese
architectures are fairly similar in most important waysc@u, as
processor generations evolve within a single architectiumay
even be difficult to tune code for multiple generations ofmgke ar-
chitecture (e.g., if new instructions are added for a commeator
idiom or explicit support for streaming vector data from nogynis
added in the memory system).

One approach to addressing these drawbacksdefer native
code generation and processor-specific optimizatiotil as late as
possible (e.g., until install time on an end-user’s syst@&wybecode-

based virtual machines such as JVM [19] and CLI [21] have this

ability (by using just-in-time compilation), but their prary goal is
not maximum optimization. In previous work, we have dessilia
low-level virtual instruction set and compilation stragetesigned
to enable such “lifelong” code generation and optimizataimed
primarily at high performance [18, 1]. This instruction getalled
Low Level Virtual Architecture (LLVA) and is aimed at suppimg
general purpose applications on ordinary superscalaepsots.
In this paper, we describe a set of extensions to LLVA to suppo
vector (SIMD) parallelism for media processing, which wiere¢o
as Vector LLVA. We believe that bringing the virtual insttion set
approach to vector code would have the following benefits:

1. The virtual instruction set (V-ISA) can provide a singtetable
virtual object code across multiple classes of vector &echi
tures, e.g., streaming processors like RSVP and subwdvid S|
ISA extensions like AltiVec and SSE. As should be clear from

the design in Section 2, this code can be compiled and run on a

wide range of processor architectures from multiple preces
classes. Note, however, that achieving near-hand-codéarpe
mance on all these classes from a single representatiorrof a p
gram may be difficult, and we do not address that goal in this
work.

2. The V-ISA can provide near-hand-coded performawitin
each architecture claséncluding across multiple architectures
in a single class, e.g., AltiVec and SSE2 in the class of sudwo
SIMD extensions. This is particularly important for mulgém
dia vector architectures, which tend to expose many lowtlev
architectural details, and to be notoriously difficult &tgfor
programming and compilation. While some of the difficulties
are fundamental to the architecture (e.g., alignment) yncan
be abstracted away by the V-ISA.



3. The programmer or high-level compiler can generate desing
bytecode representation that is later optimized Ipyazessor-
specificcode generator (the “translator”), with full informa-
tion about all the details of a particular processor chip and
system configuration. Furthermore, the difficult issuesutba
vectorization and vector code optimization can be confiled t
the “front-end” compiler, leaving the translator simpledaad-
lowing it to focus on machine-level optimization and codege
eration issues.

Other qualitative benefits not evaluated in this work, bstdssed
briefly in Section 5, include portability across generasiofna sin-
gle architecture and significant productivity savings fesigners
through the use of common programming tools (e.g., for debug
ging, instrumentation, and tuning).

The following scenario can help illustrate these benefitsm-C
sider a media processing application being developed foixam
streaming and subword SIMD platforms. At design time, thaliap
cation would be structured in terms of one or more availakle k
nel libraries and initially implemented in ordinary C, wittiinimal
use of explicit Vector LLVA code (expressed via C intringidé a
“front-end” auto-vectorizing compiler [16, 4, 24, 22, 28] avail-
able, the need for these intrinsics is greatly reduced;raflke, all
vector computations must be expressed using the intrinBiesli-
brary could be written in Vector LLVA form (either directlya C
with heavy use of the intrinsics) and tuned carefully andhsately
for the two classes, but not for each individual hardware.|Side
(hopefully small) fraction of remaining application codet con-
sumes significant execution time could also be incrementiatied
for each class. Overall, debugging and tuning of the apidica
would occur for one version of code for each architecturss;land
notfor each specific target architecture. The overall code Wbel
linked and shipped in two versions, one for each class. The vi
tual object code would be optimized and compiled to nativéeco
separately on each target device, exploiting both processrific
information and application-level information. The late®uld be
extracted from all parts of the code because Vector LLVA igca
fully designed for effective optimization (unlike machitevel as-
sembly language). Overall, the resulting program wouldotfhll
these stages of tuning — library, application, link-timed anstall-
time, and potentially even between program executionscbase
end-user-specific profile information [1].

Designing a virtual vector instruction set for media preees
ing that provides all these benefits presents new challefuyes
and above the design of base LLVA) for at least two reasomst, Fi
media-processing applications demand very high perfocemand
important kernels are oftdmand-tuned at the assembly levalV-
ISA that reduced performance significantly compared withdha
tuned assembly code would likely not be acceptable. In faet,
consider this criterion to be the primary design goal in ousnk
Second, as noted earlier, multimedia vector architecteresto ex-
pose many low-level, idiosyncratic hardware details, dostract-
ing away the important common details in a compact design (i.
not a union of features of different processors) requiréstsuntial
design effort.

The design of Vector LLVA includes several novel features
and/or capabilities, in order to meet the challenges abadeta
address other design goals we considered important:

¢ Machine-independent operations and semantics that captur
important hardware featuresThis is the basic goal of Vector
LLVA and, to our knowledge, our V-ISA is the firsirtual in-
struction set specifically designed for vector operationsiod-
ern vector architectures. The closest previous examplereve a
aware of, the Stream Virtual Machine, has similar designggoa

ture components (while using the ordinary native instarctet
for each processor). We compare this work with Vector LLVA
briefly in Section 4.

Explicit support for variable-length and fixed-length \arabp-
erations To enable very high performance programming and
tuning, we distinguish two broad classes of vector archites
that are proposed or available today: architectures thaist
operations on arbitrary-length vectors or “streams” [§, &3]
subword SIMD extensions [9, 12, 5]. To support both classes,
our virtual instruction set includes both variable-lengéttors
and fixed-length vectors, and includes several featuresito e
able careful tuning for each processor class, listed belbw.
variable-length vectors can also be used to achieve pbrtabi
ity across the classes, though perhaps not with optimabperf
mance.

Asynchronous load and store semantics for long vectdfs
provide a way of expressing vector loads and stores that al-
lows the translator to interleave the individual loads atodes
with no further analysis. This allows vector computatiombé
“blocked” for different vector lengths much more easilytha

if vector loads and stores were “atomic” operations. It @ko
lows streaming prefetches of long vectors from and to memory
when hardware allows (this is possible on RSVP and we believe
should be a key feature on future processors).

Alignment Memory loads and stores can specify an alignment
attribute (treated as a guarantee by the programmer), ialjow
the translator to generate efficient code for properly ain
values.

SSA form and type informatioivector LLVA inherits two
important features from base LLVA: an infinite-register SSA
form and type information. These features apply to all vecto
registers and operands, and allow more precise analysis and
more flexible optimization and code generation in the t@nsl
tor, while reducing the need for complex program analysis on
virtual object code.

Keeping the translator simplé\ Vector LLVA program tuned
for a processor class can be translated to native code fotie-pa
ular member of that class without requiring sophisticatedt p
gram analysis or an auto-vectorizing compiler. This is seagy

to keep the translator fast and with a small memory footprint
so that it can be invoked at install time or even runtime, ard ¢
be used in small-scale systems like a PDA or a cell phone.

We evaluate the suitability of Vector LLVA for high perfor-
mance programming on representative architectures frentvib
classes identified above. For the first class (arbitrargtlemector
architectures), we consider the Motorola Reconfigurabieasi-
ing Vector Processor (RSVP) [8]. For the second class (stbwo
SIMD architectures), we consider both PowerPC/AltiVec §9d
Intel SSE/SSEZ2 [5]. Our evaluation examines three issuésisl-
ity for writing high performance code for a class, feastitf writ-
ing a translator without overly complex compiler techngloand
experimental results showing the performance achieved fml-
lection of important media processing kernels.

The experimental results in this paper show that our trémsla
can compile Vector LLVA kernels into code competitive witdutd-
coded assembly for RSVP, and we discuss how programs can
be written at the Vector LLVA level to tune for this processor
The results also show that kernels can be written and tuned in
singleVector LLVA representation that is compiledbothAltiVec
and SSE2, achieving performance competitive with handdod
assembly on both processors. (In contrast, the Intel actoxieer
for SSE2 [5] is unable to vectorize scalar versions of three o

but focuses on abstracting communication between arehitec of five of our SSE2 benchmarks.) Together, these resultsigeov



evidence that our design achieves the goals we set outraariiés
section: a single machine-independent virtual instructet and
programming model, but with the ability to tune code sepdyat
for distinct classes of processors.

Section 2 describes Vector LLVA and the rationale behind its
key design features. Section 3 discusses the suitabiliguofe-
sign for the two classes, including the experimental ressiim-
marized above. Section 4 compares our approach with previou
programming and compilation strategies for media progss¥ge
conclude with a brief summary of the strengths and weakseasfse
Vector LLVA today and a discussion of how it can be used within
the broader context of programming media processing agijoits.

2. Vector Extensionsto LLVA

We designed Vector LLVA texpresector parallelism and related
information (such as possibilities for interleaving lo@ad&l stores)
andcommunicatéhat information to the translator, while we shift
the burden to the programmer or high-level compileextractthe
information and ensure that the resulting program is corigus
allows us to

¢ Provide a clean separation between the high-level (program
ming and high-level compiler) functions and the low-level
translation. We want to keep as many of the machine-specific
details as possible in the low-level translator, whild gtibvid-
ing high performance.

Factor as much of the analysis that is common across various
architectures as possible into a single high-level comgter
example, alias, dependence, and alignment analysis casmiee d
once and used to generate Vector LLVA code that expresses pos
sibilities for vectorization and instruction schedulimjfferent
translators can use this information for different targetaout
having to derive it repeatedly.

Keep the translator simple. We envision that the translator
would reside in memory on the target machine, and that trans-
lation would occur at install time or even at runtime. Theref

the translator should be fast and should have a small memory
footprint.

The base LLVA is a RISC-like three-address, load-storetiigst
tion set, but with several unusual features compared wati-tr
tional processor ISAs: (1) an infinite virtual register 42 type
information suitable for sophisticated compiler optintiaa, in-
cluding pointers, structures, arrays, and functions; (8g=#plicit
control flow graph (CFG); (4) the use of Static Single Assignin
(SSA) form for all virtual registers, which provides an exil
register-level dataflow representation; (5) mechanismexfmse
stack, global, and heap memory; and (6) an exception mesiani
that allows greater flexibility for code reordering by thartsla-
tor. Equally important, the V-ISA doesot include machine-level
details that are better suited to the native ISA, includinfixed
register set, stack frame layout, low-level addressingesptim-
its on immediate constants, delay slots, speculation jgaédn, or
explicit interlocks.

Table 1 shows the new instructions defined in this work. The
instruction set retains all the key properties of the baseA. lin-
cluding an infinite virtual register set, SSA form and expligpe
information for all virtual registers, the RISC-style leatbre na-
ture of the ISA, and simple primitive operations that alloxten-
sive optimization by external compilers.

2.1 TheVector Type

Vector LLVA extends the existing LLVA type system by adding a
vector typethat represents values of any LLVA scalar type (inte-
ger, floating point, or Boolean), where> 0 is an arbitrary value

not necessarily known at compile time. We chose to limit thetor
element types to scalars because we wanted to keep theaefares
tion close to the target architecture. Higher-level cardt such as
arrays of arrays or arrays of structs map straightforwatallyec-
tor LLVA. If the access pattern is regular enough, strideatioand
stores can be used to express these constructs. Othermésean
use multiple vectors contained within outer loops.

The vector type supports compilation to a target machine or
family of machines (such as AltiVec and SSE) that providegmec
registers of fixed length. In this casejs a compile-time constant.
The vector type also supports compilation to target archites
that provide variable-length vectors (such as the MotoR/P
architecture), or to multiple architectures that provid#ecent
vector lengths. In this case,is unknown at compile time.

The vector type is a first-class type, and it behaves likerothe
first-class types in LLVA. It is held in SSA-form virtual regjers.

It can be used in computational instructions or passed tctifums.

It can be loaded from or stored to memory, as discussed b&lew.
provide an instructiorimm that populates all elements of a vector
with the same (immediate) value. We also provide instristimr
moving vector data between registers and memory, as distuss
below.

When the vector length is a compile-time constant, our imple
mentation stores the vector length in the LLVA type. Othemyi
we do not explicitly represent the length in the type; indtehe
back end infers the vector lengths from the operations tiwatyre
vectors (vector load andimm) and propagates them to other parts
of the program. We chose this implementation because ow bas
(scalar) LLVA implementation does not support paramefyjes.

In an implementation that does support parametric typashatld
be straightforward to encode all vector lengths in the tyfperma-
tion.

2.2 \Vector-Memory Operations

We extend the LLVAload andstore instructions to operate on
vector types. Théoad instruction takes a pointer to a vector in
memory (i.e., a contiguous set of scalar values of specifiedth)
and loads that vector into a register. Tére instruction takes a
vector register and a pointer to a vector in memory, and iestthe
register value into memory.

Load and store operations on vectors are restricted toestrid
one memory access. We also define new instructigasher and
vscatter for accessing arrays in memory with arbitrary dimen-
sion and stride, or with indirection vectors. For targetshsas
RSVP that explicitly support these access patternsygaeher
andvscatter instructions translate directly to operations on the
target machine. For other architectures (such as AltiVeL SSE,
which provide only limited access to memory at strides othan
one), the translator must introduce data movement opesato
produce scalar code. As discussed below, we have desigasé-th
mantics ofvgather andvscatter to make this easy for the trans-
lator.

The arguments tegather are a memory addregsand one or
more pairg 1, m), wherel is an index group andh is a multiplier.
An index group specifies a list of indices, either as a trigtart,
end, stride), or as an explicit vector of indices. The expliector of
indices provides the full traditional gather (indexed I[peapability
found in, e.g., Fortran 90. Values are loaded from memoryesid

p into registen- according to the following formula:

j=0
for each index, in index groupl;

) for each index,, in index groupl,,
rli+ 4] =plir-mi+ ..+ in - mal



Table1l. Summary of Vector Extensions

Instruction [ Explanation of Syntax [ Function
Vector-Memory Operations and Immediate Values
vimm i, n 4 is a scalar valuer is a length Form a vector of length in which each position has value
loadp p is a pointer to a vector in memory | Load a vector into a vector register
storev, p v is a vector registerp is a pointer to | Store registep into memory locatiorp
a vector in memory
vgather p is a pointer;I; is either (1) a triple | Gather an array slice into a vector register
p,[1,m1,Io,mo, ..., [, My l;,uq, s; giving lower bound, upper|
bound, and stride, or (2) a vector gf
indices;m; is a multiplier
vscatter v IS a vector registerp, I;, and m; Scatter a vector register into an array slice
v,p, In,mi,Ia,ma, ..., I, my, are as for vgather
aligned Attribute that may be applied to load, Tells the translator that a load or store may be translatesttly, without
store, vgather, and vscatter additional analysis or runtime alignment checks, on anitecture that has
alignment requirements
Arithmetic, Logic, Compare, and Select
addvy, v vy, andwvy are vectors Add the elements of two vectors

sub, mul, div, rem, and, or, xor, vseteq, Same as add Perform an arithmetic or comparison operation on two vector
vsetne, vsetle, vsetge, vsetlt, vsetgt
adds, subs Same as add Saturated add or subtract
satv, t v is an integral vector;, is a scalar type| Saturate each elementofto typet
of smaller precision than the element
type ofv
shlv, a v is a vector;a is an unsigned byte Shift each element af left or right by a bits
shrv, a
shrrndv, a v is a vector;a is an unsigned byte Do a rounded shift right of each elementwoby a bits

bis a vector of booleans;; andv, are
vectors of the same type

vselecth, vy, va

Form a new vector by selecting an element fromwhereb is true and from
vo Whereb is false

signv v is a vector Form the vector consisting of 1 in places wherev is less than zerd) in

positions where equals zero, antl in positions where is greater than zerg
maxwvi, va vy andwvy are vectors Form the vector consisting of the maximum or minimum elenvahie ofv
min vy, va andv at each position

Data Movement Operations

v is a vector/ is a lower bounds is a
stride, andn is a length

extractv, [, s, n

Form a new vector of length by extractingn. elements ob starting af with
stride s

extractelement, 7 v is a vector; is an index

Extract element of vector v. Similar to extractv, ¢, 1, 1, except that the
result is a scalar value rather than a vector

vy and vy are vectors is a lower
bound, ands is a stride

combinevy, va, 1, s

Form a new vector by replacing elemeft$ + s, ...,l + s(n — 1) of vy
with the corresponding elementsf, wheren is the length ofvo

v is a vectore is a scalar element, an
1 is an index

combineelement, e, ¢

Form a new vector by replacing elemenof v with e. Similar to combine
v1,va, i, 1, except that is a scalar element rather than a vector

permutev, % v is a vector; is an index vector

Produce a new vector with the elementa,gfermuted according to

Note that this indexing scheme is very flexible. It allows m@veol-
umn access on row-major or column-major arrays, by intergha
ing the multipliers. Because the multipliers need not be miten
time constants, the array extents need not be staticallyknalso,
by using a zero multiplier, one can generate repeated valines
syntax ofvscatter is identical, except thatscatter requires an
additional operand (the vector value to be stored) and pesino
value.

The semantics ofgather andvscatter are different from
load andstore. vgather andvscatter guarantee only that the
loads and stores defined above occur, and that the loadetbaed s
values are placed into the destination (register or memiarihe
order specified above. The translator is free to schedull®#ueof
any component value of a vector at any point in the program fxo
vgather to the first use of that value. Similarly, the translator may
schedule a store at any point from the definition of the vaiubé
vscatter of that value.

These rules are important because the translator oftersteed
interleave loads and stores. For example, if the progranrittew
using long vectors, and the translator is compiling to atshector
or scalar architecture, the translator must strip-mine#wtor com-
putations on the shorter length. Even where the hardwaowsll
for long vectors (such as RSVP), long vector loads will ulsual
be pipelined with other computations. With stricter senta(e.g.,
that of Fortran 90, which provides that the program must beha
as if all loads in a single statement occur before any storeise

same statement), the translator must do additional, oftemptex,
analysis to validate the strip-mining, scalarization, ipefining, in
effect repeating the analysis required to vectorize thgnam in
the first place [2]. Our semantics allows the translator widithis
additional analysis.

Note that the burden is on the programmer or high-level com-
piler to write the Vector LLVA program so that these rulespro
duce correct results. For example, in the well-known case N]
= X[0:N-1], it would not be correct simply to write @gather
followed by avscatter. One way to write the program correctly
is to put an explicit reversed loop (usirgtractelement and
combineelement) between thegather andvscatter (see Sec-
tion 3.1.1 below for an example of such a loop). This loop wloul
tell the translator that any blocking or strip-mining of theads
and stores must be done with a reversed loop. We envision that
vgather andvscatter would be used for long vectors and vec-
tors whose length is unknown at compile time (i.e., vectaeases
that must be strip-mined or scalarized by the translatdnjlewec-
tor loads and stores would be used for accesses to shoriérgth
vectors supported by a particular target.

2.3 Arithmetic, Logic, Compare, and Select
Vector LLVA provides the following operations on vectors:
¢ Arithmetic, logical, and bit shift operation$hese LLVA oper-

ations may be applied directly to a single vector operand (bi
shift) or a pair of vector operands of the same type.



e \ector comparison operation¥ector LLVA extends the ex-
isting LLVA comparison operations with new instructionsith
take two vector values and produce a vector of booleans.

Vector selectVector LLVA adds an operationselect that

takes a vector of booleans as the predicate and performs the

corresponding selection at each position from the inputorsc

We chose the select operation, rather than a mask operation a

found on some vector architectures, because LLVA alreaply su
ports this operation and because it seems to be more commo
on multimedia vector architectures. If true masking is meed
(e.g., to hide a divide by zero that would otherwise causexan e
ception), it can be simulated by introducing “safe” valuesg(,
divide by one instead of zero) and one or more additionatsele
operations.

In all cases the operands must have the same length, or thlesres
are unspecified. In keeping with our goal of designing a level
virtual architecture for high performance, we chose nohtdude
length checks (which would incur some performance overhead
as part of the semantics. It is possible to express such shack
Vector LLVA, and a programmer or compiler can always add them
if necessary. This is similar to how array bounds checks anelled

in machine code (and in LLVA).

The vector compare operations in Vector LLVA translate di-
rectly to the vector compare operations provided by RSV#tvét,
and SSEvselect translates directly to the elementwise select op-
erations available in AltiVec (vector select), SSE (systhed with
logical operations), and RSVR{f).

We also extend the Vector LLVA instruction set to providenpri
itive multimedia operations found in media processingringion
sets such as AltiVec, SSE, and RSVP. While we have not atept
to produce a comprehensive list of multimedia operatiorshave
developed the following criteria for adding a new operation

e |s it straightforward to express the operation in terms ofreno
primitive instructionsdf the answer was “Yes,” we avoided a
new instruction to keep the representation simple. An irtgrdr
question here is whether a pattern matching code geneator ¢
recognize the pattern reliably and generate the corretruins
tion or instruction sequence. Where this is not the case, (e.g
with saturation, which can be expressed in multiple ways), w
provided a new instruction.

Is the operation used across various instruction sésf’some
operations (max/min and saturation are important exaiples

n

only at stride one, so strided access must be done with peronut
shuffle operations. Similarly, when the size of a computddeva
changes (as in promoting a short to an int), a pack or unpack
instruction is needed to preserve the overall number of ibits
the vector. Another reason for data movement is the alighmen
requirement. When a data access is unaligned, the resuéigr
must be shifted to ensure that the computation is correct.

RSVP is much more flexible: it provides variable vector |rsgt
allows operations of different precisions on the same vegto-
vides direct strided access to memory, and has no alignneent r
quirement. However, data movement instructions are stififul.

For example, access to interleaved data (e.g., triples & B&a)

can be done via several strided data accesses, or it can lee don
with a single stride-one memory access followed by sevéridies!
accesses to the resulting vector. The second method sgwets in
stream units (a key limited resource on RSVP) and may be more
efficient in some cases.

To express vector data movement, Vector LLVA adds five new
instructions: extract, extractelement, combine, combine-
element, and permute. extract extracts a strided subvector
of a vector register, the type of which is also a vector, while
extractelement extracts a single indexed element (of scalar
type) of a vectorcombine overlays a smaller vector on top of a
larger one, spaced at a specified stritctnbineelement overlays
a single element (of scalar type) on top of a vector at a specifi
index. In both cases, the result is assigned to a new vedistee,
to preserve the SSA propertyermute takes a vector and an in-
dex vector; each position in the index vector specifies whetiee
input vector to get the value for that position in the outpettor.

In Section 2 below, we discuss in more detail how these instru
tions can represent the data movement operations foundfPRS
AltiVec, and SSE.

25 Alignment

Many vector architectures in use today have data alignneeyuiire-
ments. For example, on AltiVec, pointers used in vector laad
store instructions must be aligned on 16 bytes (i.e., theftas
bits of the address must be zero). If a pointer is unaligriesl|ast
four bits of the address are dropped. In the absence of amadigt
guarantee, the translator for such an architecture musttingn-
time alignment checks and data shuffling instructions, tvhan be
very inefficient. SSE does provide for unaligned loads andest

the answer was yes. For more exotic cases (such as Altivec Put they are less efficient than aligned loads and stores.

mradds, which multiplies two vectors, does a rounded shift

At the application level, much more efficient options are-pos

right by 15 and does a saturated add of the result with another SiPle. The programmer can control alignment in many wayg, €.
vector), the answer was no. We decided to express these com-via carefully chosen aligned object allocation (usuallypsurted by

putations in terms of more primitive, widely used instroos,
and rely on the code generator to exploit available featafes
the hardware.

If a programmer finds that Vector LLVA needs further extensio
for a particular architecture or application, such an esitam is
straightforward to do. LLVA already supports the concepiaaf
intrinsic, which is an operation (expressed as a function call) that is
lowered to a specified sequence of instructions for eachostgxp
architecture. Given a particular programming idiom for gipalar
architecture, a programmer could encapsulate that idioraras
intrinsic translated to a special implementation on thahiecture
while being lowered to an ordinary Vector LLVA code sequence
(which is translated as usual) on other architectures.

2.4 Data Movement Operations

Data movement operations are an important feature of mastgve
architectures. For example, on AltiVec or SSE, data may addd

memory allocators or linkers), via loop restructuring, @ =lgo-
rithmic changes. The compiler could automatically enslipmed
references in some cases, listed below, but only by usinghmuc
more sophisticated analysis than we want the translatoo t&-ofr
these reasons, the goals of our design are: (1) to enablerdhe p
grammer or external compiler to express available knovwdeofgy
alignment; and (2) to enable the translator to generataadidpads

or stores without complex program analysis.

To meet these goals, we provide ahigned attribute that
may be applied to vector loads and stores anggather and
vscatter operationsaligned guarantees that the load or store
always occurs with an aligned pointer. The alignment boonda
notencoded in this attribute: the value of this parameter ity
exploited at other places in the algorithm (e.g., allocatimop
bounds, or data shuffling).

To convert load and store operations to aligned load ane stor
operations, the programmer or high-level compiler woulel smme
combination of the following techniques:



e Use non-automatic techniques such as those listed above tograph (DFG) language for writing coprocessor code. Each DFG

designthe kernel for aligned memory accesses.

e Use aligned object allocation in simple cases that can be han

dled automatically.

e Use interprocedural alignment analysis [10, 26] and/og@m
transformations [17] to ensure aligned accesses;

describes the body of a single basic-block loop; typicaiéch iter-
ation of the loop body reads elements of one or more inpubvect
performs some computations described by the graph, andswrit
back elements of one or more output vectors. The number of it-
erations, the descriptions of the input and output streamd,any
needed scalar values are specified as inputs to the DFG bypshe h

¢ Where an access would be unaligned, use an aligned access folEach stream is described as a rectangular subsection ofay ar

lowed by data movemenettract andcombine) operations,
e.g., as described in [10].

Where all of these techniques fail, the operation can bedsft
an unmarked (i.e., possibly unaligned) load or store, faydhe
translator to insert a runtime alignment check at some awmst t
efficiency.

3. Evaluation

In this section, we present the results of an evaluation atore
LLVA that we carried out with three goals in mind:

1. To determine whether Vector LLVA can be used to write code
for a range of vector architectures. Within a family of retht
architectures, we want to write code that is as portable as po
sible.

2. To determine whether Vector LLVA can be translated toveati
code for several architectures using a simple translatadoh
one.

3. To determine whether handwritten Vector LLVA can be trans
lated with performance competitive with handwritten nativ
code.

To perform this evaluation, we used Vector LLVA to write pro-
grams and generate code for three architectures: the MatBe>
configurable Streaming Vector Processor (RSVP) architedg],
AltiVec [9], and SSE2 [5]. For the AltiVec and SSE2 programs,
compiled asingleVector LLVA program tobothAltiVec and SSE2.
We hand-tuned the Vector LLVA code for AltiVec/SSE2, but not
specifically for either one. For the RSVP programs, we hamed
the Vector LLVA code for RSVP. In all cases, we compared the
generated code with handcoded native versions of the sanohbe
marks.

It wasnot a goal of the present work to show hand-coded per-
formance from a single program representation across b8¥FR
and AltiVec/SSE2. These architectures have significafemihces,
and we believe it is very difficult, if not impossible, to aehé
near-handcoded performance with a single representatimss
these architectures. Several researchers are currentkingoon
the problem of efficiently compiling long vectors to shogetor
architectures with data access and alignment constreéd@ts27,

26, 14]. This research will likely make it possible for Vectd VA
written with long vectors to be portable to AltiVec, SSE2dan
other architectures with moderately good performanceabhiev-

ing near-handcoded performance with this approach is an ope
question.

For the evaluation below, we wrote Vector LLVA code “by
hand.” To simplify this task, we have developed a C API pringd
intrinsics for the Vector LLVA instructions, similar to th&Pls
available for programming AltiVec and SSE2.

3.1 Suitability for RSVP

RSVP [8] is a vector coprocessor architecture that acdelersec-
torizable computations on arbitrary length vectors (ckdeeams;

a host processor performs the other computations. The cegsor
and host share main memory (and the implementations we worke
with share the entire cache hierarchy). RSVP defines a dataflo

specified as atride, span andskiptriple for each dimension. The
architecture provides unlimited vector registers (DFGeg)dbut a
limited number of scalar registers, “tunnels”, and “acclators”
(used to express loop-carried dependences). All depeadeimc
cluding loop-carried dependences (which can only crossterse
tion), are explicitly stated. Any conditional code must beerted
to use conditional select operations or must be executeukmast.
The hardware implementations of RSVP use VLIW cores with
20 units, and a rich network for interconnecting the unitsofi-
ware scheduler maps the DFG operations onto the RSVP hazdwar
using aggressive pipelining of data parallel loops. A pangmer-
visible local memory, called the tile buffer, is used to leufand
reuse stream data values. The latest RSVP implementagosi¢n
2) provides three input streams and one output stream.

3.1.1 Writing Vector LLVA for RSVP

Because RSVP uses a loop-based idiom to express vector paral
lelism, the most natural way to write Vector LLVA code for RBV

is as a loop operating sequentially on vectors with the ¥alhg
properties (we refer to this as a “vector loop”):

1. The loop consists of a single basic block ending in a baotkwa
branch to the head.

2. No memory operations (vector or scalar) appear in the loop
body. In particular, allvgather and load operations appear
before the loop, and allscatter and store operations appear
after the loop.

3. All operations inside the loop aszalar operations; elements
are extracted from vectors (usingtractelement) before
they are used in the loop and inserted into vectors (using
combineelement) that are stored or used after the loop.

Figure 1 illustrates this “vector loop” form for the kerneAB
(sum of absolute differences), which is given by0:n-1] =
sumreduce (abs (x[0:n-1]-y[0:n-1])).

ENTRY:
TO = add n, —1
Tl = vgather x, 0, TO, 1, 1
T2 = vgather y, 0, TO, 1, 1
T4 = seteq n, O
br T4, EXIT, LOOP
LOOP:
T5 = phi (0, ENTRY), (T12, LOOP)
T6 = phi (0, ENTRY), (T11, LOOP)
T7 = extractelement T1, T5
T8 = extractelement T2, T5
T9 = sub T7, T8
T10 = abs T9
T11 = add T10, T6
T12 = add T5, 1
T13 = setlt T12, n
br T13, LOOP, EXIT
EXIT:

T14 = phi (0, ENTRY), (T11, LOOP)
vscatter T14, z, 0, TO, 1, 1

Figure1l. SAD Benchmark



This “vector loop” idiom expresses the full range of RSVP-con
structs while exposing vector parallelism to the transldtor ex-
ample, checking index expressions is much simpler tharrarpi
dependence analysis, because any complicated memorg geates
terns have been factored out of the loop and put wigtather and
vscatter operations. Inside the loop, the translator need identify
only the relatively simple “streaming” (i.e., successiceess) pat-

pure vector code would break this property, which is why waadto
mix the two, as noted earlier.
Our implementation also identifies uses of input and output

streams and scalar registers and maps them to the corrésgond

hardware resources. Tunnel and accumulator operatioreaaiy
recognized by the presence of a phi node and the pattern sf use
Currently, we have implemented this algorithm only for thepg-

terns supported by RSVP. Further, as in the RSVP DFG languagefree Vector LLVA idiom; for the “vector loop” idiom, we do the

itself, all dependences are explicitly stated, facilitgticompiler
analysis. (Loop-independent dependences become dehasesc
while loop-carried dependences are expressed as phi hodes.

For kernels that do not use constructs that require suclicéxpl
loops (such as loop-carried dependences and conditioorasst
we can also write Vector LLVA in a “pure” vector form that uses
no explicit loops: vector values are loaded into vector segs,
computed, and stored. This form of Vector LLVA is compact and
easy to analyze. It is also a higher-level idiom than theardoibp
form that could be easier to translate to other architestasewell.
For kernels that can be written this way, it is straightfamivéo
lower this representation to the vector loop idiom and themegate
RSVP code. To avoid complex loop fusion requirements in the
translator we impose the requirement that pure vector antbrve

mapping by hand.

Once the Vector LLVA has been partitioned and mapped to the
RSVP resources, translating the individual operations DEG
operations is straightforward. Thegather and vscatter in-
structions are mapped to the input and output vector stredts u
(VSUs). Tunnel and accumulator operations have already bee
identified in the partition/mapping step, described ab@ther
operations are directly mapped to distinct DFG nodes; intmos
cases this is a one-to-one mapping. In some cases we apfyrpat
matching (e.g., we code generate a division by a constantipofv
two as an RSVRiv2n).

3.1.3 Results

We tested our representation and code generator usingabé&ver

loop forms cannot be mixed in the same code sequence (morekernels from the audio and image processing applicaticasait/e

precisely, they will be translated into separate vectonéks).

We considered including higher-level abstractions, ssahnap-
reduce, in our Vector LLVA representation, but decided agfait.
LLVA is deliberately alow levelrepresentation. It aims to encode
enough information to enable sophisticated compiler asisignd
transformation, while remaining close enough to the tatgel-
low the programmer or compiler careful control over perfanoe
characteristics of the code. We believe that higher-lespbtructs,
such as the kernel functions and streaming loops of StreamdC a
KernelC [23] can be mapped straightforwardly to Vector LLVA

3.1.2 Generating RSVP Code

Generating RSVP code from Vector LLVA involves the follogin

steps:

1. Identify and group the sets of vector instructions thdt ag-
come distinct RSVP DFGs.

2. Lower each distinct group of pure vector instructionswector
loop” form, forming a single “vector loop.”

identified computation-intensive vectorizable loops areghoally
rewrote them using our C language extensions for writingtec
LLVA. We tested the following kernels:

e Saxpy: Multiplying a vector by a scalar and adding it to another
vector.

e Quant: Vector quantization from the H.263 video coding stan-
dard.

e MAD Filter: A filter for enhancing stereo separation from the
MAD benchmark in the MediaBench suite.

e RGB2YUV: Conversion from RGB color representation to
YUV chrominance and luminance representation.

e Transpose: Eight by eight matrix transpose.

e DCT: Discrete cosine transform (Chen’s algorithm) for video
encoding.

e SAD: sum of absolute differences between two vectors, used in
motion estimation for video encoding

In each case, we vectorized a single scalar loop from thénaiig

3. For each “vector loop” generated in the previous step, map penchmark. We wrote the first five benchmarks in the “puretaec
the computations to the software-exposed resources of RSVPidiom (with no LLVA loops). We wrote SAD in the “vector loop”

(streams, scalars, accumulators and tunnels) and gererate
DFG.

4. For the non-vectorizable code, generate code for theprost

idiom, as discussed above.
We are only able to experiment with small kernels such as
the above because we have to manually write two or threeenativ

cessor, including the RSVP library calls to set up and execut Versions plus two Vector LLVA versions of each one, and tune

the DFG.

In step one, for kernels already written in “vector loop”rfor
we use the grouping implied by the loop. For kernels written a
a sequence of vector statements, we use a partitioningitaligor
similar to the one used for scalar renaming [2, p. 197]. Tge-al
rithm forms the largest set of vector instructions that eayally be

each of them for the experiments. Nevertheless, we beliegk s
kernels are acceptable here for at least two reasons. Riiist,
well known that such kernels dominate the computations afyma
media processing applications (e.g., SAD and DCT account fo
over 50% of the scalar execution cycles of Motorola’s MPEG 4
encoder benchmark for RSVP). Second, because media piragess
is heavily driven by industry-wide standards like MPEG, GRE

transformed to an RSVP DFG (making the DFG as large as pos- TIFF, etc., the same well-defined kernels tend to appeagategky

sible is a good heuristic in most cases). It does this by \idfig
def-use chains upwards untilvgather or vimm, and downwards
until avscatter. This grouping process must satisfy the same re-
quirements as loop fusion, i.e., the loop bounds of sucoessic-

tor instructions (treating each as a distinct loop) mustcmathis
property does not need to be checked, however, becausedtoe ve
lengths in a def-use chain must be consistent to ensuredegiied
semantics (see Section 2.3). Note that mixing vector loadie egth

in multimedia codes. For these reasons, we expect multamedi
programmers to identify and isolate computations into vuatied
kernels, as we did in this work.

We ran the Vector LLVA code through our RSVP code gen-
erator, generating C code for the host (an ARM9 processat) an
DFG code for RSVP. Of the four codes, MAD Filter required thre
DFGs because of the patterns of loads and stores (it is pessib
implement MAD Filter with a single DFG, but doing so requires



interleaving the loads and stores in a way that actuallyaesiper-
formance). The other benchmarks required one DFG each.

We ran the generated code (host code and DFGs) on a cycle-

level simulator from Motorola that models both the ARM prece
sor and the RSVP coprocessor [8]. The simulator reportbaptée
counts for the ARM processor, including cycles spent in comp
tation and cycles spent setting up and waiting for the RSVP co

processor. We measured the speedup achieved when runeing th

ARM/RSVP version of the loop compared with running the entir
scalar loop on the ARM host. This is the same metric as use’],in
since RSVP is a coprocessor and has no “single-processaione
to use as a baseline.

Figure 2 shows the speedups that our code generator achievecf

and compares them to the speedups achieved by handwritiéh RS
DFGs for a range of vector values. (We used the same host oode f
both versions). As expected, the vector performance camsig
improves with increasing vector length. For the handcodEG&

we attempted to use the most efficient way of coding the DFGis. F
Saxpy, Quant, RGB2YUV, DCT, and SAD, we used DFGs written
and tuned by the authors of [8].

The Vector LLVA version was very close to, or exceeded, the
performance of the handcoded version in all cases. For Saxgy
DCT, the Vector LLVA performance was slightly better beaaus
the compiler-generated DFG specified the precision for @dira-
tions, saving some execution cycles. For Quant, the VedtvAL
version was significantly better because our LLVA compitens-
formations were able to propagate a constant from the sodrou
ing C program into the Vector LLVA code, so that the value be-
came a constant€onst) instead of a variablevécalar) in the
resulting DFG. An optimization like this would be usefulfiby ex-
ample, a kernel is tuned once by hand and used in differelgrcal
contexts, where the compiler can apply different optiniara (in-
lining, constant propagation, etc.) appropriate to théeckht con-
texts. We could have performed this constant propagaticmaioyl
on the RSVP DFG, but because the C compiler is not aware of the
RSVP semantics, automatic constant propagation from thed€ c
to the RSVP code is not possible. This optimization illustsaa
potential benefit of writing the scalar C code and the vectonél
in a single language (Vector LLVA).

3.2 Suitability for AltiVec and SSE2

We have also written two code generators that translateo¥ect
LLVA to code for either AltiVec or SSE2. Our aim is to enable
programmers to write one Vector LLVA program for either ofsle
targets (and other similar ones). AltiVec and SSE2 are ainiil
that they both operate on 128-bit wide registers with theesam
data types, have many overlapping operations, and impase si
lar constraints on alignment and data movement. Howevergth
are important differences between the two. Some operatoas
supported on one architecture but not the other. They uerelift
idioms in some cases, e.g., AltiVec has a select operatibiigew
SSE2 synthesizes this operation with bitwise logical ofjena.

3.2.1 Writing Vector LLVA for AltiVec and SSE2

In targeting AltiVec and SSE2, we hand wrote Vector LLVA in a
form tailored to these targets. Our AltiVec/SSE2 form of tdec
LLVA has the following salient features:

e All vectors are of fixed length (128 bits). Longer vector op-
erations are handled with loops blocked on the vector length
We do this blocking by hand for now. In many cases, it would
be straightforward to have the translator block loops aatdm

¢ \We useload andstore operations, instead ofgather and
vscatter, to reflect that AltiVec and SSE2 loads and stores
are at stride one and do not have asynchronous semantics.

¢ We ensure alignment of allocated vectors and useiligned
attribute to indicate aligned loads and stores.

* We write explicit data movement and shuffling operationagisi
the Vector LLVA operations discussed in Section 2.4, both fo
promoting and demoting data types, and for performing attid
memory access.

Figure 3 illustrates our AltiVec/SSE2 form of Vector LLVA in
chematic form for the Quant benchmage{elementptr is an
LVA operation for computing the address of an element inian a
ray or struct [1]). Note that expressing data movement djpers
is straightforward. This example shows a pack of two vectdrs
short into a vector of char (the actual quantization compurtas
omitted). Unpacking operations are similar and ageract. We
can also usextract to express permute/shuffle operations with a
fixed stride ancbermute to express arbitrary permute/shuffle op-
erations. Note also that the loop has been unrolled to twatites
to support the pack operation. This shows how Vector LLVA can
be hand-tuned for fixed-length vector architectures, wrétain-
ing portability across examples of such architectures. gpltke
this could be generated automatically from the long vectpre-
sentation by a compiler, but to achieve optimal performathee
compiler would need to be sophisticated enough to genenéte t
unrolling and packing pattern.

TO = getelementptr in, 2xi

Tl = aligned load TO ; short
T2 = ... ; quantize T1 to char
T3 = getelementptr in, 2xi+1
T4 = aligned load T3

T5 = ... ; quantize T4 to char
T6 =vimm char 0, 16

T7 = combine T6, T2, 0, 1

T8 = combine T7, T5, 8, 1

T9 = getelementptr out, i
aligned store T8, T9

Figure 3. Quant Benchmark for AltiVec and SSE2

3.2.2 Generating AltiVec and SSE2 Code

We wrote two simple pattern-matching translators to takestime
Vector LLVA representation, described above, to AltiVed 8SE2
Code. To keep the implementation simple, we generated G, aug
mented with the source-level compiler intrinsics for ABR/(sup-
ported by gcc) and SSE2 (supported by the Intel C compileredis w
as gcc).

In many cases, the Vector LLVA to AltiVec or SSE2 transla-
tion is one-to-one. In the following cases, we matched padtef
several Vector LLVA instructions and converted them to gkn
AltiVec or SSE?2 instruction:

e Where an instruction is important for performance on thgear
architecture, but is too specialized to warrant a separatéoy
LLVA instruction (e.g., the AltiVeanradds).

¢ For packing, unpacking, and shuffling operations. For tlopse
erations, we used sequences of the more general Vector LLVA
data movement instructions, as discussed above.

In some cases, we generated a sequence of instructions Bom a

cally. However, because of the vector size and memory accessgle Vector LLVA instruction. This is particularly true on §3,

constraints imposed by AltiVec and SSE, automatic gerwrati
of optimal code from the long vector form is an open research
problem.

where some basic operations (e.g., vector select and gpekin-
out saturation) are not directly supported and must be sgizhd.
We added new intrinsics for saturation and max/min opematio
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Figure 2. Speedups on RSVP

3.2.3 Results

We ran our translators on the same list of benchmarks givee tios)

Table 2. AltiVec Performance Results (in milliseconds except ra-

tion 3.1.3 above, with two changes. First, we ran RGB2YU\Wonl Scalar ] Vector ]
on AltiVec, because we did not see a way to hand code this bench = Hand | LLVA_| Ratio | Hand | LLVA | Ratio
) < . e Py 3410 | 4350 | 0.78 || 300 | 300 | 1.0
mark on SSE2 with reasonable efficiency given the limitation Quant 1350 | 1430 | 0.94 100 80 125
SSEZ2’s shuffling operations. Second, we did not run SAD on Al- MAD Filter | 4450 | 4910 | 0.91 390 210 | 0.95
tiVec or SSE because SAD is a special instruction on SSE2 and RGB2YUV | 9700 | 15560 | 0.62 || 230 | 240 | 0.96
it cannot be expressed in terms of more primitive operat{bes Transpose | 800 | 1810 | 0.44 || 300 | 250 | 1.2
cause SSE2 lacks instructions to sum-reduce a vector)efdrer DCT 2920 | 5180 | 056 J| 160 | 170 | 0.94

SAD is probably best dealt with as a special case and made into
an intrinsic that is translated to the appropriate code aivéd
(using more primitive instructions) or SSE2 (using the SAD i
struction). For Quant, RGB2YUV, Transpose, and DCT, we used
the hand-coded AltiVec versions available from FreescBdeob-

tain hand-coded SSE2 versions, we hand-translated théomwiog
Apple Computer’s guidelines for AltiVec to SSE2 translatig].

We wrote the handcoded versions of Saxpy and MAD Filter for
both AltiVec and SSE2.

To generate the handcoded performance numbers for AltiVec,
we put our handwritten C code with AltiVec intrinsics thrdug
gcc with AltiVec intrinsics enabled. For SSE2, we did the sam
thing using the Intel SSE2 intrinsics and the freely avddabon-
commercial version of the Intel C compiler (icc). To genertite
Vector LLVA numbers, we first translated the Vector LLVA to C
with intrinsics, as described in Section 3.2.2 above, aea tut
the result through gcc (for AltiVec) or icc (for SSE2).

Tables 2 and 3 give performance numbers and ratios comparing

the handcoded kernels to Vector LLVA for both scalar and aect

performance. The performance numbers are the user timegedp
by the POSIX utilitytimes. These times include cycles consumed
in scalar operations (such as surrounding loops). We shew th
scalar comparison to illustrate the differences in the Ibasé end
infrastructures. With the Intel compiler, the scalar C codepiled
to X86 performed nearly identically to the code that we fingt p
through our C back end for LLVA and then compiled to X86.
For PowerPC using gcc, however, the scalar results were quit
different in some cases. This makes it difficult to compare th
vector numbers for PowerPC/AltiVec. Regardless of theedéffice
in scalar numbers, however, the vector ratios are encawybgi
close. On AltiVec, Vector LLVA performance ranges from 6%
worse (DCT) to 25% better (Quant) than handcoded. On SSE,
Vector LLVA performance ranges from 8% worse (DCT) to 21%
better (Transpose) than handcoded.

A pertinent question is whether an auto-vectorizing coanpil
could achieve some of the portability benefits of Vector LLb#



Table3. SSE2 Performance Results (in milliseconds except ratios)

Scalar Vector
Hand | LLVA Ratio Hand | LLVA Ratio
Saxpy 2020 | 2000 1.0 180 180 1.0
Quant 1100 | 1090 1.01 100 100 1.0
MAD Filter 2390 | 2390 1.0 340 350 0.97
Transpose 610 610 1.0 350 290 1.21
DCT 2220 | 2200 1.01 390 420 0.92

automatically compiling a common, higher-level progranwddo
vector hardware (instead of our approach of using lowestlesde
tuned for a generic, fixed-length SIMD architecture). Wegnatlar
versions of our benchmarks (with dependence hints) thrabgh
autovectorizer included with the Intel compiler, the begbaector-
izer for SIMD available to us. For the simplest benchmarlexpy

and MAD Filter, the autovectorizer was able to generate ¢bde
performed just about as well as the handcoded and Vector LLVA
versions: 220 for Saxpy and 340 for MAD Filter (these are not
shown in the tables). However, for the other three benchsyainke
Intel autovectorizer was unable to prodwae/speedups, even with
dependence hints. These three benchmarks require mordicomp
cated patterns of instructions, such as packing, unpagckimgf-
fling, and loop unrolling, to obtain good performance. White
Intel compiler was not sophisticated enough to recognieselpat-
terns automatically from the scalar code, we could expresset
patterns directly in Vector LLVA, obtaining code with estialy
handcoded performance that was also portable to AltiVec.

4. Related Work

There has been a recent surge of work on compiling to vector
processors, particularly subword SIMD architectures sastil-
tiVec and SSE. Much of this work has focused on vectorizing or
“SIMDizing” scalar source [16, 4, 24, 22, 27]. Others have fo
cused on generating efficient code subject to the alignmentor
size, and data movement constraints of subword SIMD achite
tures [17, 26, 14]. There has been some work on portable wecto
programming using explicit vectors [7, 11]. We are unawdrany
work that proposes wirtual vector instruction setand we believe
our work is unique in this regard.

Wu et al. [27] describe a framework for compiling scalar C
source to AltiVec. Their compiler internally abstracts piwal vec-
tors into “virtual vectors,” and they describe techniques lbw-
ering the virtual vectors to actual vectors satisfying thgquire-
ments of AltiVec, including fixed length and alignment. Imt@st
to our work, Wu et al. do not address the problem of achievaarn
handcoded performance on multiple different architectuiidney
do not discuss compilation to arbitrary-length vector oeaming
architectures such as RSVP; in fact, the lengths of theinaivec-
tors must be compile-time constants. Finally, their virtuectors
are used only within a compiler intermediate represematiather
than a virtual instruction set. This is primarily a diffecenin goals:
two of our goals have been to give programmers a more uniform a
chitectural model for multiple families of vector architeres, and
to provide virtual object code portability across theseifees

The Stream Virtual Machine of Labonte et al. [15] has similar
goals to ours, but the two designs emphasize distinct angleam
mentary issues. We focus on expressing vector paralleliapped
to a single vector processor, whereas Labonte et al. useathe@n
instruction set (directly or through a C API) for individyaiocess-
ing cores. Their design focuses on modeling the communpicati
among multiple different components of a streaming archite.
They provide a parametric model for describing such an techi
ture and show that the model can accurately describe sexettgll
architectures. We believe that in the long term, it would b&iv

able to combine Labonte et al.'s model for expressing conimun
cation among multiple SIMD cores and memories with our altu
instruction set for expressing vector operations in a sicgre.

VCODE [6] is an intermediate-level language designed fer us
in studying the compilation of data-parallel languagesamé-
scale parallel architectures. Like Vector LLVA, VCODE isénded
to be a portable representation and supports arbitragthevec-
tors. However, VCODE is not designed, as Vector LLVA is, te ex
press hand-tuned high performance code on streaming andeiib
SIMD architectures. This leads to several significant dediffer-
ences. For example, VCODE is more abstract than Vector LIiVA:
is a stack machine, it has no scalar type and no explicit |¢oply
recursion is allowed), and it allows vectors to be partigidrinto
segmentdor applications such as parsing and DNA sequencing.
VCODE also contains no explicit support for multimedia aper
tions like saturated arithmetic, gather, and scatter.

A few experimental, domain-specific languages like StreamC
and KernelC for the Imagine stream processor [20, 13], 8trea
It [25], and SPIRAL [28] have been proposed for media praogss
and signal processing. These languages provide highfleaeires
such as streams or tensors appropriate for the applicatioraith,
whereas we provide low-level primitives appropriate foptcaing
(in somewhat abstract terms) the important features of anexti-
cessing hardware. Compilers for these languages couldibbye
targeting Vector LLVA, allowing them to focus on high-levas-
mantics and optimization, leaving machine-level optirtimaand
code generation to the translator.

5. Summary and Future Work

We have proposed a processor-level virtual instructiorcaed
Vector LLVA, designed to encode explicit vector computatidor
media processing hardware. The instruction set aims tozatbshe
important architectural features and operations of harevgao-
cessors, while allowing programmers to write carefullyedicode
manually for a particular processor family. We have implated
translators from Vector LLVA for three processor architees, in
two processor families: the Motorola RSVP processor, aniV/éd
and SSE in the subword SIMD family. Our experience with writ-
ing benchmarks in Vector LLVA by hand shows that it is possibl
to tune code carefully for each of the families and achievéeco
competitive with hand-coded native assembly on each haedara
chitecture, using a single instruction set.

In the near term, we aim to make two improvements in our
work. First, our AltiVec and SSE translators must be enhdrioe
exploit some special features of the hardware such as $igedia
data movement operations and complex instructions likeSthB
operation on SSE. Second, we would like to continue to ptrot
benchmarks and applications to Vector LLVA in order to eaédu
our translators more extensively, and enhance them whedede

In the longer term, there are three directions that would el
alize the potential benefits of this work. First, we believeeaan de-
sign source-level language extensions (e.g., to C) thaeriakm-
pler to write application programs for the Vector LLVA modethile
achieving high performancgithin each processor family. Second,
we would like to demonstrate that high-performatibearies can
be written in a combination of source code and hand-coded Vec
tor LLVA code, while achieving the exacting performance Igoa
that library writers demand in this domain. A key questiomehe
will be how much separate tuning is needed for each targeatyfam
and to what extent that tuning can be made incremental becaus
of the functional portability that Vector LLVA provides. T, we
would like to be able to extend our performance goals to aehie
high performance from aingle Vector LLVA program on multi-
ple families of processors, including the long-vector anbvgord
SIMD families discussed in this paper. This would allow \dct



LLVA to provide binary portability for a single object code®
gram with variable vector lengths across all its targetsda®f pro-
cessors. As discussed earlier, results from previous netsea on
compiling long-vector computations to subword-SIMD hazdey
(e.g., Wu et al. [27]) show that such a representation wadlkédyl
provide good performance, but achieving performance caitiyee
with hand-coded programs is an open question.

Finally, Vector LLVA also provides additional long-term ribe
efits (which are difficult to evaluate experimentally). Eirgector
LLVA can abstract away evolutionary design differencesmeen
multiple generations of a single architecture, reducirgribed to
modify, debug and tune code as an architecture evolvesn8eito
provides a single, rich vector programming model that candsel
by programmers to design algorithms, and by system devedope
to target source-level compilers, debugging tools, antbpaance
tools across a wide range of vector families. Although tkEnedit
is difficult to evaluate experimentally, we believe this isracial
goal for improving programmer productivity for media presig
applications.
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