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Abstract
We present Vector LLVA, a virtual instruction set architecture (V-
ISA) that exposes extensive static information about vector paral-
lelism while avoiding the use of hardware-specific parameters. We
provide both arbitrary-length vectors (for targets that allow vec-
tors of arbitrary length, or where the target length is not known)
and fixed-length vectors (for targets that have a fixed vectorlength,
such as subword SIMD extensions), together with a rich set ofoper-
ations on both vector types. We have implemented translators that
compile (1) Vector LLVA written with arbitrary-length vectors to
the Motorola RSVP architecture and (2) Vector LLVA written with
fixed-length vectors to both AltiVec and Intel SSE2. Our translator-
generated code achieves speedups competitive with handwritten
native code versions of several benchmarks on all three architec-
tures. These experiments show that our V-ISA design captures vec-
tor parallelism for two quite different classes of architectures and
provides virtual object code portability within the class of subword
SIMD architectures.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages—Processors

General Terms Performance, Languages

Keywords Multimedia, Vector, SIMD, Virtual Instruction Sets

1. Introduction
High-performance media processing applications are becoming in-
creasingly important on a wide range of systems. Like most appli-
cations, these programs are generally compiled and shippedin the
form of native binary code for a particular processor architecture.
This approach has two particular drawbacks for media processing
applications where careful tuning for very high performance is im-
portant. First, even when written in a source-level language (e.g.,
C), application code must often be tuned for hardware details such
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as available operations and memory access restrictions, and such
tuning is not likely to carry over from one architecture to another
(e.g., Motorola’s AltiVec vs. Intel’s SSE2). This makes it difficult
and expensive to write a single source program that achievesthe
highest performance on different architectures, even though these
architectures are fairly similar in most important ways. Second, as
processor generations evolve within a single architecture, it may
even be difficult to tune code for multiple generations of a single ar-
chitecture (e.g., if new instructions are added for a commonvector
idiom or explicit support for streaming vector data from memory is
added in the memory system).

One approach to addressing these drawbacks is todefer native
code generation and processor-specific optimizationuntil as late as
possible (e.g., until install time on an end-user’s system). Bytecode-
based virtual machines such as JVM [19] and CLI [21] have this
ability (by using just-in-time compilation), but their primary goal is
not maximum optimization. In previous work, we have described a
low-level virtual instruction set and compilation strategy designed
to enable such “lifelong” code generation and optimization, aimed
primarily at high performance [18, 1]. This instruction setis called
Low Level Virtual Architecture (LLVA) and is aimed at supporting
general purpose applications on ordinary superscalar processors.

In this paper, we describe a set of extensions to LLVA to support
vector (SIMD) parallelism for media processing, which we refer to
as Vector LLVA. We believe that bringing the virtual instruction set
approach to vector code would have the following benefits:

1. The virtual instruction set (V-ISA) can provide a single portable
virtual object code across multiple classes of vector architec-
tures, e.g., streaming processors like RSVP and subword-SIMD
ISA extensions like AltiVec and SSE. As should be clear from
the design in Section 2, this code can be compiled and run on a
wide range of processor architectures from multiple processor
classes. Note, however, that achieving near-hand-coded perfor-
mance on all these classes from a single representation of a pro-
gram may be difficult, and we do not address that goal in this
work.

2. The V-ISA can provide near-hand-coded performancewithin
each architecture class, including across multiple architectures
in a single class, e.g., AltiVec and SSE2 in the class of subword
SIMD extensions. This is particularly important for multime-
dia vector architectures, which tend to expose many low-level
architectural details, and to be notoriously difficult targets for
programming and compilation. While some of the difficulties
are fundamental to the architecture (e.g., alignment), many can
be abstracted away by the V-ISA.



3. The programmer or high-level compiler can generate a single
bytecode representation that is later optimized by aprocessor-
specificcode generator (the “translator”), with full informa-
tion about all the details of a particular processor chip and
system configuration. Furthermore, the difficult issues of auto-
vectorization and vector code optimization can be confined to
the “front-end” compiler, leaving the translator simple and al-
lowing it to focus on machine-level optimization and code gen-
eration issues.

Other qualitative benefits not evaluated in this work, but discussed
briefly in Section 5, include portability across generations of a sin-
gle architecture and significant productivity savings for designers
through the use of common programming tools (e.g., for debug-
ging, instrumentation, and tuning).

The following scenario can help illustrate these benefits. Con-
sider a media processing application being developed for a mix of
streaming and subword SIMD platforms. At design time, the appli-
cation would be structured in terms of one or more available ker-
nel libraries and initially implemented in ordinary C, withminimal
use of explicit Vector LLVA code (expressed via C intrinsics). If a
“front-end” auto-vectorizing compiler [16, 4, 24, 22, 27] is avail-
able, the need for these intrinsics is greatly reduced; otherwise, all
vector computations must be expressed using the intrinsics. The li-
brary could be written in Vector LLVA form (either directly or in C
with heavy use of the intrinsics) and tuned carefully and separately
for the two classes, but not for each individual hardware ISA. The
(hopefully small) fraction of remaining application code that con-
sumes significant execution time could also be incrementally tuned
for each class. Overall, debugging and tuning of the application
would occur for one version of code for each architecture class, and
not for each specific target architecture. The overall code would be
linked and shipped in two versions, one for each class. The vir-
tual object code would be optimized and compiled to native code
separately on each target device, exploiting both processor-specific
information and application-level information. The latter could be
extracted from all parts of the code because Vector LLVA is care-
fully designed for effective optimization (unlike machine-level as-
sembly language). Overall, the resulting program would reflect all
these stages of tuning – library, application, link-time, and install-
time, and potentially even between program executions based on
end-user-specific profile information [1].

Designing a virtual vector instruction set for media process-
ing that provides all these benefits presents new challenges(over
and above the design of base LLVA) for at least two reasons. First,
media-processing applications demand very high performance, and
important kernels are oftenhand-tuned at the assembly level. A V-
ISA that reduced performance significantly compared with hand-
tuned assembly code would likely not be acceptable. In fact,we
consider this criterion to be the primary design goal in our work.
Second, as noted earlier, multimedia vector architecturestend to ex-
pose many low-level, idiosyncratic hardware details, and abstract-
ing away the important common details in a compact design (i.e.,
not a union of features of different processors) requires substantial
design effort.

The design of Vector LLVA includes several novel features
and/or capabilities, in order to meet the challenges above and to
address other design goals we considered important:

• Machine-independent operations and semantics that capture
important hardware features: This is the basic goal of Vector
LLVA and, to our knowledge, our V-ISA is the firstvirtual in-
struction set specifically designed for vector operations on mod-
ern vector architectures. The closest previous example we are
aware of, the Stream Virtual Machine, has similar design goals
but focuses on abstracting communication between architec-

ture components (while using the ordinary native instruction set
for each processor). We compare this work with Vector LLVA
briefly in Section 4.

• Explicit support for variable-length and fixed-length vector op-
erations: To enable very high performance programming and
tuning, we distinguish two broad classes of vector architectures
that are proposed or available today: architectures that support
operations on arbitrary-length vectors or “streams” [8, 13] and
subword SIMD extensions [9, 12, 5]. To support both classes,
our virtual instruction set includes both variable-lengthvectors
and fixed-length vectors, and includes several features to en-
able careful tuning for each processor class, listed below.The
variable-length vectors can also be used to achieve portabil-
ity across the classes, though perhaps not with optimal perfor-
mance.

• Asynchronous load and store semantics for long vectors: We
provide a way of expressing vector loads and stores that al-
lows the translator to interleave the individual loads and stores
with no further analysis. This allows vector computations to be
“blocked” for different vector lengths much more easily than
if vector loads and stores were “atomic” operations. It alsoal-
lows streaming prefetches of long vectors from and to memory
when hardware allows (this is possible on RSVP and we believe
should be a key feature on future processors).

• Alignment: Memory loads and stores can specify an alignment
attribute (treated as a guarantee by the programmer), allowing
the translator to generate efficient code for properly aligned
values.

• SSA form and type information: Vector LLVA inherits two
important features from base LLVA: an infinite-register SSA
form and type information. These features apply to all vector
registers and operands, and allow more precise analysis and
more flexible optimization and code generation in the transla-
tor, while reducing the need for complex program analysis on
virtual object code.

• Keeping the translator simple: A Vector LLVA program tuned
for a processor class can be translated to native code for a partic-
ular member of that class without requiring sophisticated pro-
gram analysis or an auto-vectorizing compiler. This is necessary
to keep the translator fast and with a small memory footprint,
so that it can be invoked at install time or even runtime, and can
be used in small-scale systems like a PDA or a cell phone.

We evaluate the suitability of Vector LLVA for high perfor-
mance programming on representative architectures from the two
classes identified above. For the first class (arbitrary-length vector
architectures), we consider the Motorola Reconfigurable Stream-
ing Vector Processor (RSVP) [8]. For the second class (subword
SIMD architectures), we consider both PowerPC/AltiVec [9]and
Intel SSE/SSE2 [5]. Our evaluation examines three issues: suitabil-
ity for writing high performance code for a class, feasibility of writ-
ing a translator without overly complex compiler technology, and
experimental results showing the performance achieved fora col-
lection of important media processing kernels.

The experimental results in this paper show that our translator
can compile Vector LLVA kernels into code competitive with hand-
coded assembly for RSVP, and we discuss how programs can
be written at the Vector LLVA level to tune for this processor.
The results also show that kernels can be written and tuned ina
singleVector LLVA representation that is compiled tobothAltiVec
and SSE2, achieving performance competitive with hand-coded
assembly on both processors. (In contrast, the Intel autovectorizer
for SSE2 [5] is unable to vectorize scalar versions of three out
of five of our SSE2 benchmarks.) Together, these results provide



evidence that our design achieves the goals we set out earlier in this
section: a single machine-independent virtual instruction set and
programming model, but with the ability to tune code separately
for distinct classes of processors.

Section 2 describes Vector LLVA and the rationale behind its
key design features. Section 3 discusses the suitability ofour de-
sign for the two classes, including the experimental results sum-
marized above. Section 4 compares our approach with previous
programming and compilation strategies for media processors. We
conclude with a brief summary of the strengths and weaknesses of
Vector LLVA today and a discussion of how it can be used within
the broader context of programming media processing applications.

2. Vector Extensions to LLVA
We designed Vector LLVA toexpressvector parallelism and related
information (such as possibilities for interleaving loadsand stores)
andcommunicatethat information to the translator, while we shift
the burden to the programmer or high-level compiler toextractthe
information and ensure that the resulting program is correct. This
allows us to

• Provide a clean separation between the high-level (program-
ming and high-level compiler) functions and the low-level
translation. We want to keep as many of the machine-specific
details as possible in the low-level translator, while still provid-
ing high performance.

• Factor as much of the analysis that is common across various
architectures as possible into a single high-level compiler. For
example, alias, dependence, and alignment analysis can be done
once and used to generate Vector LLVA code that expresses pos-
sibilities for vectorization and instruction scheduling.Different
translators can use this information for different targetswithout
having to derive it repeatedly.

• Keep the translator simple. We envision that the translator
would reside in memory on the target machine, and that trans-
lation would occur at install time or even at runtime. Therefore,
the translator should be fast and should have a small memory
footprint.

The base LLVA is a RISC-like three-address, load-store instruc-
tion set, but with several unusual features compared with tradi-
tional processor ISAs: (1) an infinite virtual register set;(2) type
information suitable for sophisticated compiler optimization, in-
cluding pointers, structures, arrays, and functions; (3) an explicit
control flow graph (CFG); (4) the use of Static Single Assignment
(SSA) form for all virtual registers, which provides an explicit
register-level dataflow representation; (5) mechanisms toexpose
stack, global, and heap memory; and (6) an exception mechanism
that allows greater flexibility for code reordering by the transla-
tor. Equally important, the V-ISA doesnot include machine-level
details that are better suited to the native ISA, including afixed
register set, stack frame layout, low-level addressing modes, lim-
its on immediate constants, delay slots, speculation, predication, or
explicit interlocks.

Table 1 shows the new instructions defined in this work. The
instruction set retains all the key properties of the base LLVA, in-
cluding an infinite virtual register set, SSA form and explicit type
information for all virtual registers, the RISC-style load-store na-
ture of the ISA, and simple primitive operations that allow exten-
sive optimization by external compilers.

2.1 The Vector Type

Vector LLVA extends the existing LLVA type system by adding a
vector typethat representsn values of any LLVA scalar type (inte-
ger, floating point, or Boolean), wheren > 0 is an arbitrary value

not necessarily known at compile time. We chose to limit the vector
element types to scalars because we wanted to keep the representa-
tion close to the target architecture. Higher-level constructs such as
arrays of arrays or arrays of structs map straightforwardlyto Vec-
tor LLVA. If the access pattern is regular enough, strided loads and
stores can be used to express these constructs. Otherwise, one can
use multiple vectors contained within outer loops.

The vector type supports compilation to a target machine or
family of machines (such as AltiVec and SSE) that provide vector
registers of fixed length. In this case,n is a compile-time constant.
The vector type also supports compilation to target architectures
that provide variable-length vectors (such as the MotorolaRSVP
architecture), or to multiple architectures that provide different
vector lengths. In this case,n is unknown at compile time.

The vector type is a first-class type, and it behaves like other
first-class types in LLVA. It is held in SSA-form virtual registers.
It can be used in computational instructions or passed to functions.
It can be loaded from or stored to memory, as discussed below.We
provide an instructionvimm that populates all elements of a vector
with the same (immediate) value. We also provide instructions for
moving vector data between registers and memory, as discussed
below.

When the vector length is a compile-time constant, our imple-
mentation stores the vector length in the LLVA type. Otherwise,
we do not explicitly represent the length in the type; instead, the
back end infers the vector lengths from the operations that produce
vectors (vector load andvimm) and propagates them to other parts
of the program. We chose this implementation because our base
(scalar) LLVA implementation does not support parametric types.
In an implementation that does support parametric types, itshould
be straightforward to encode all vector lengths in the type informa-
tion.

2.2 Vector-Memory Operations

We extend the LLVAload andstore instructions to operate on
vector types. Theload instruction takes a pointer to a vector in
memory (i.e., a contiguous set of scalar values of specified length)
and loads that vector into a register. Thestore instruction takes a
vector register and a pointer to a vector in memory, and it stores the
register value into memory.

Load and store operations on vectors are restricted to stride-
one memory access. We also define new instructionsvgather and
vscatter for accessing arrays in memory with arbitrary dimen-
sion and stride, or with indirection vectors. For targets such as
RSVP that explicitly support these access patterns, thevgather
andvscatter instructions translate directly to operations on the
target machine. For other architectures (such as AltiVec and SSE,
which provide only limited access to memory at strides otherthan
one), the translator must introduce data movement operations or
produce scalar code. As discussed below, we have designed the se-
mantics ofvgather andvscatter to make this easy for the trans-
lator.

The arguments tovgather are a memory addressp and one or
more pairs(I, m), whereI is an index group andm is a multiplier.
An index group specifies a list of indices, either as a triple (start,
end, stride), or as an explicit vector of indices. The explicit vector of
indices provides the full traditional gather (indexed load) capability
found in, e.g., Fortran 90. Values are loaded from memory address
p into registerr according to the following formula:

j = 0
for each indexi1 in index groupI1

...
for each indexin in index groupIn

r[j + +] = p[i1 · m1 + . . . + in · mn]



Table 1. Summary of Vector Extensions
Instruction Explanation of Syntax Function

Vector-Memory Operations and Immediate Values
vimm i, n i is a scalar value;n is a length Form a vector of lengthn in which each position has valuei
loadp p is a pointer to a vector in memory Load a vector into a vector register
storev, p v is a vector register;p is a pointer to

a vector in memory
Store registerv into memory locationp

vgather
p, I1, m1, I2, m2, . . . , In, mn

p is a pointer;Ii is either (1) a triple
li, ui, si giving lower bound, upper
bound, and stride, or (2) a vector of
indices;mi is a multiplier

Gather an array slice into a vector register

vscatter
v, p, I1, m1, I2, m2, . . . , In, mn

v is a vector register;p, Ii, and mi

are as for vgather
Scatter a vector register into an array slice

aligned Attribute that may be applied to load,
store, vgather, and vscatter

Tells the translator that a load or store may be translated directly, without
additional analysis or runtime alignment checks, on an architecture that has
alignment requirements

Arithmetic, Logic, Compare, and Select
addv1, v2 v1 andv2 are vectors Add the elements of two vectors
sub, mul, div, rem, and, or, xor, vseteq,
vsetne, vsetle, vsetge, vsetlt, vsetgt

Same as add Perform an arithmetic or comparison operation on two vectors

adds, subs Same as add Saturated add or subtract
satv, t v is an integral vector;t is a scalar type

of smaller precision than the element
type ofv

Saturate each element ofv to typet

shlv, a

shrv, a

v is a vector;a is an unsigned byte Shift each element ofv left or right bya bits

shrrndv, a v is a vector;a is an unsigned byte Do a rounded shift right of each element ofv by a bits
vselectb, v1, v2 b is a vector of booleans;v1 andv2 are

vectors of the same type
Form a new vector by selecting an element fromv1 whereb is true and from
v2 whereb is false

signv v is a vector Form the vector consisting of−1 in places wherev is less than zero,0 in
positions wherev equals zero, and1 in positions wherev is greater than zero

maxv1, v2

min v1, v2

v1 andv2 are vectors Form the vector consisting of the maximum or minimum elementvalue ofv1

andv2 at each position
Data Movement Operations

extractv, l, s, n v is a vector,l is a lower bound,s is a
stride, andn is a length

Form a new vector of lengthn by extractingn elements ofv starting atl with
strides

extractelementv, i v is a vector;i is an index Extract elementi of vector v. Similar to extractv, i, 1, 1, except that the
result is a scalar value rather than a vector

combinev1, v2, l, s v1 and v2 are vectors,l is a lower
bound, ands is a stride

Form a new vector by replacing elementsl, l + s, . . . , l + s(n − 1) of v1

with the corresponding elements ofv2, wheren is the length ofv2

combineelementv, e, i v is a vector,e is a scalar element, and
i is an index

Form a new vector by replacing elementi of v with e. Similar to combine
v1, v2, i, 1, except thate is a scalar element rather than a vector

permutev, i v is a vector;i is an index vector Produce a new vector with the elements ofv permuted according toi

Note that this indexing scheme is very flexible. It allows rowor col-
umn access on row-major or column-major arrays, by interchang-
ing the multipliers. Because the multipliers need not be compile-
time constants, the array extents need not be statically known. Also,
by using a zero multiplier, one can generate repeated values. The
syntax ofvscatter is identical, except thatvscatter requires an
additional operand (the vector value to be stored) and produces no
value.

The semantics ofvgather and vscatter are different from
load andstore. vgather andvscatter guarantee only that the
loads and stores defined above occur, and that the loaded and stored
values are placed into the destination (register or memory)in the
order specified above. The translator is free to schedule theload of
any component value of a vector at any point in the program from a
vgather to the first use of that value. Similarly, the translator may
schedule a store at any point from the definition of the value to the
vscatter of that value.

These rules are important because the translator often needs to
interleave loads and stores. For example, if the program is written
using long vectors, and the translator is compiling to a short-vector
or scalar architecture, the translator must strip-mine thevector com-
putations on the shorter length. Even where the hardware allows
for long vectors (such as RSVP), long vector loads will usually
be pipelined with other computations. With stricter semantics (e.g.,
that of Fortran 90, which provides that the program must behave
as if all loads in a single statement occur before any stores in the

same statement), the translator must do additional, often complex,
analysis to validate the strip-mining, scalarization, or pipelining, in
effect repeating the analysis required to vectorize the program in
the first place [2]. Our semantics allows the translator to avoid this
additional analysis.

Note that the burden is on the programmer or high-level com-
piler to write the Vector LLVA program so that these rules pro-
duce correct results. For example, in the well-known caseX[1:N]
= X[0:N-1], it would not be correct simply to write avgather
followed by avscatter. One way to write the program correctly
is to put an explicit reversed loop (usingextractelement and
combineelement) between thevgather andvscatter (see Sec-
tion 3.1.1 below for an example of such a loop). This loop would
tell the translator that any blocking or strip-mining of theloads
and stores must be done with a reversed loop. We envision that
vgather andvscatter would be used for long vectors and vec-
tors whose length is unknown at compile time (i.e., vector accesses
that must be strip-mined or scalarized by the translator), while vec-
tor loads and stores would be used for accesses to short fixed-length
vectors supported by a particular target.

2.3 Arithmetic, Logic, Compare, and Select

Vector LLVA provides the following operations on vectors:

• Arithmetic, logical, and bit shift operations.These LLVA oper-
ations may be applied directly to a single vector operand (bit
shift) or a pair of vector operands of the same type.



• Vector comparison operations.Vector LLVA extends the ex-
isting LLVA comparison operations with new instructions that
take two vector values and produce a vector of booleans.

• Vector select.Vector LLVA adds an operationvselect that
takes a vector of booleans as the predicate and performs the
corresponding selection at each position from the input vectors.
We chose the select operation, rather than a mask operation as
found on some vector architectures, because LLVA already sup-
ports this operation and because it seems to be more common
on multimedia vector architectures. If true masking is needed
(e.g., to hide a divide by zero that would otherwise cause an ex-
ception), it can be simulated by introducing “safe” values (e.g.,
divide by one instead of zero) and one or more additional select
operations.

In all cases the operands must have the same length, or the results
are unspecified. In keeping with our goal of designing a low-level
virtual architecture for high performance, we chose not to include
length checks (which would incur some performance overhead)
as part of the semantics. It is possible to express such checks in
Vector LLVA, and a programmer or compiler can always add them
if necessary. This is similar to how array bounds checks are handled
in machine code (and in LLVA).

The vector compare operations in Vector LLVA translate di-
rectly to the vector compare operations provided by RSVP, AltiVec,
and SSE.vselect translates directly to the elementwise select op-
erations available in AltiVec (vector select), SSE (synthesized with
logical operations), and RSVP (vif).

We also extend the Vector LLVA instruction set to provide prim-
itive multimedia operations found in media processing instruction
sets such as AltiVec, SSE, and RSVP. While we have not attempted
to produce a comprehensive list of multimedia operations, we have
developed the following criteria for adding a new operation:

• Is it straightforward to express the operation in terms of more
primitive instructions?If the answer was “Yes,” we avoided a
new instruction to keep the representation simple. An important
question here is whether a pattern matching code generator can
recognize the pattern reliably and generate the correct instruc-
tion or instruction sequence. Where this is not the case (e.g.,
with saturation, which can be expressed in multiple ways), we
provided a new instruction.

• Is the operation used across various instruction sets?For some
operations (max/min and saturation are important examples),
the answer was yes. For more exotic cases (such as AltiVec
mradds, which multiplies two vectors, does a rounded shift
right by 15, and does a saturated add of the result with another
vector), the answer was no. We decided to express these com-
putations in terms of more primitive, widely used instructions,
and rely on the code generator to exploit available featuresof
the hardware.

If a programmer finds that Vector LLVA needs further extension
for a particular architecture or application, such an extension is
straightforward to do. LLVA already supports the concept ofan
intrinsic, which is an operation (expressed as a function call) that is
lowered to a specified sequence of instructions for each supported
architecture. Given a particular programming idiom for a particular
architecture, a programmer could encapsulate that idiom asan
intrinsic translated to a special implementation on that architecture
while being lowered to an ordinary Vector LLVA code sequence
(which is translated as usual) on other architectures.

2.4 Data Movement Operations

Data movement operations are an important feature of many vector
architectures. For example, on AltiVec or SSE, data may be loaded

only at stride one, so strided access must be done with permute or
shuffle operations. Similarly, when the size of a computed value
changes (as in promoting a short to an int), a pack or unpack
instruction is needed to preserve the overall number of bitsin
the vector. Another reason for data movement is the alignment
requirement. When a data access is unaligned, the resultingvector
must be shifted to ensure that the computation is correct.

RSVP is much more flexible: it provides variable vector lengths,
allows operations of different precisions on the same vector, pro-
vides direct strided access to memory, and has no alignment re-
quirement. However, data movement instructions are still useful.
For example, access to interleaved data (e.g., triples of RGB data)
can be done via several strided data accesses, or it can be done
with a single stride-one memory access followed by several strided
accesses to the resulting vector. The second method saves input
stream units (a key limited resource on RSVP) and may be more
efficient in some cases.

To express vector data movement, Vector LLVA adds five new
instructions:extract, extractelement, combine, combine-
element, and permute. extract extracts a strided subvector
of a vector register, the type of which is also a vector, while
extractelement extracts a single indexed element (of scalar
type) of a vector.combine overlays a smaller vector on top of a
larger one, spaced at a specified stride.combineelement overlays
a single element (of scalar type) on top of a vector at a specified
index. In both cases, the result is assigned to a new vector register,
to preserve the SSA property.permute takes a vector and an in-
dex vector; each position in the index vector specifies wherein the
input vector to get the value for that position in the output vector.
In Section 2 below, we discuss in more detail how these instruc-
tions can represent the data movement operations found in RSVP,
AltiVec, and SSE.

2.5 Alignment

Many vector architectures in use today have data alignment require-
ments. For example, on AltiVec, pointers used in vector loadand
store instructions must be aligned on 16 bytes (i.e., the last four
bits of the address must be zero). If a pointer is unaligned, the last
four bits of the address are dropped. In the absence of an alignment
guarantee, the translator for such an architecture must insert run-
time alignment checks and data shuffling instructions, which can be
very inefficient. SSE does provide for unaligned loads and stores,
but they are less efficient than aligned loads and stores.

At the application level, much more efficient options are pos-
sible. The programmer can control alignment in many ways, e.g.,
via carefully chosen aligned object allocation (usually supported by
memory allocators or linkers), via loop restructuring, or via algo-
rithmic changes. The compiler could automatically ensure aligned
references in some cases, listed below, but only by using much
more sophisticated analysis than we want the translator to do. For
these reasons, the goals of our design are: (1) to enable the pro-
grammer or external compiler to express available knowledge of
alignment; and (2) to enable the translator to generate aligned loads
or stores without complex program analysis.

To meet these goals, we provide analigned attribute that
may be applied to vector loads and stores and tovgather and
vscatter operations.aligned guarantees that the load or store
always occurs with an aligned pointer. The alignment boundary is
notencoded in this attribute: the value of this parameter is typically
exploited at other places in the algorithm (e.g., allocation, loop
bounds, or data shuffling).

To convert load and store operations to aligned load and store
operations, the programmer or high-level compiler would use some
combination of the following techniques:



• Use non-automatic techniques such as those listed above to
designthe kernel for aligned memory accesses.

• Use aligned object allocation in simple cases that can be han-
dled automatically.

• Use interprocedural alignment analysis [10, 26] and/or program
transformations [17] to ensure aligned accesses;

• Where an access would be unaligned, use an aligned access fol-
lowed by data movement (extract andcombine) operations,
e.g., as described in [10].

Where all of these techniques fail, the operation can be leftas
an unmarked (i.e., possibly unaligned) load or store, forcing the
translator to insert a runtime alignment check at some cost to
efficiency.

3. Evaluation
In this section, we present the results of an evaluation of Vector
LLVA that we carried out with three goals in mind:

1. To determine whether Vector LLVA can be used to write code
for a range of vector architectures. Within a family of related
architectures, we want to write code that is as portable as pos-
sible.

2. To determine whether Vector LLVA can be translated to native
code for several architectures using a simple translator for each
one.

3. To determine whether handwritten Vector LLVA can be trans-
lated with performance competitive with handwritten native
code.

To perform this evaluation, we used Vector LLVA to write pro-
grams and generate code for three architectures: the Motorola Re-
configurable Streaming Vector Processor (RSVP) architecture [8],
AltiVec [9], and SSE2 [5]. For the AltiVec and SSE2 programs,we
compiled asingleVector LLVA program tobothAltiVec and SSE2.
We hand-tuned the Vector LLVA code for AltiVec/SSE2, but not
specifically for either one. For the RSVP programs, we hand-tuned
the Vector LLVA code for RSVP. In all cases, we compared the
generated code with handcoded native versions of the same bench-
marks.

It wasnot a goal of the present work to show hand-coded per-
formance from a single program representation across both RSVP
and AltiVec/SSE2. These architectures have significant differences,
and we believe it is very difficult, if not impossible, to achieve
near-handcoded performance with a single representation across
these architectures. Several researchers are currently working on
the problem of efficiently compiling long vectors to short-vector
architectures with data access and alignment constraints [22, 27,
26, 14]. This research will likely make it possible for Vector LLVA
written with long vectors to be portable to AltiVec, SSE2, and
other architectures with moderately good performance, butachiev-
ing near-handcoded performance with this approach is an open
question.

For the evaluation below, we wrote Vector LLVA code “by
hand.” To simplify this task, we have developed a C API providing
intrinsics for the Vector LLVA instructions, similar to theAPIs
available for programming AltiVec and SSE2.

3.1 Suitability for RSVP

RSVP [8] is a vector coprocessor architecture that accelerates vec-
torizable computations on arbitrary length vectors (called streams);
a host processor performs the other computations. The coprocessor
and host share main memory (and the implementations we worked
with share the entire cache hierarchy). RSVP defines a dataflow

graph (DFG) language for writing coprocessor code. Each DFG
describes the body of a single basic-block loop; typically,each iter-
ation of the loop body reads elements of one or more input vectors,
performs some computations described by the graph, and writes
back elements of one or more output vectors. The number of it-
erations, the descriptions of the input and output streams,and any
needed scalar values are specified as inputs to the DFG by the host.
Each stream is described as a rectangular subsection of an array,
specified as astride, span, andskip triple for each dimension. The
architecture provides unlimited vector registers (DFG nodes), but a
limited number of scalar registers, “tunnels”, and “accumulators”
(used to express loop-carried dependences). All dependences, in-
cluding loop-carried dependences (which can only cross oneitera-
tion), are explicitly stated. Any conditional code must be converted
to use conditional select operations or must be executed on the host.

The hardware implementations of RSVP use VLIW cores with
20 units, and a rich network for interconnecting the units. Asoft-
ware scheduler maps the DFG operations onto the RSVP hardware
using aggressive pipelining of data parallel loops. A programmer-
visible local memory, called the tile buffer, is used to buffer and
reuse stream data values. The latest RSVP implementation (version
2) provides three input streams and one output stream.

3.1.1 Writing Vector LLVA for RSVP

Because RSVP uses a loop-based idiom to express vector paral-
lelism, the most natural way to write Vector LLVA code for RSVP
is as a loop operating sequentially on vectors with the following
properties (we refer to this as a “vector loop”):

1. The loop consists of a single basic block ending in a backward
branch to the head.

2. No memory operations (vector or scalar) appear in the loop
body. In particular, allvgather and load operations appear
before the loop, and allvscatter and store operations appear
after the loop.

3. All operations inside the loop arescalar operations; elements
are extracted from vectors (usingextractelement) before
they are used in the loop and inserted into vectors (using
combineelement) that are stored or used after the loop.

Figure 1 illustrates this “vector loop” form for the kernel SAD
(sum of absolute differences), which is given byz[0:n-1] =
sumreduce(abs(x[0:n-1]-y[0:n-1])).

ENTRY:
T0 = add n , −1
T1 = vgather x , 0 , T0 , 1 , 1
T2 = vgather y , 0 , T0 , 1 , 1
T4 = s e t e q n , 0
br T4 , EXIT , LOOP

LOOP:
T5 = phi ( 0 , ENTRY) , ( T12 , LOOP)
T6 = phi ( 0 , ENTRY) , ( T11 , LOOP)
T7 = e x t r a c t e l e m e n t T1 , T5
T8 = e x t r a c t e l e m e n t T2 , T5
T9 = sub T7 , T8
T10 = abs T9
T11 = add T10 , T6
T12 = add T5 , 1
T13 = s e t l t T12 , n
br T13 , LOOP , EXIT

EXIT :
T14 = phi ( 0 , ENTRY) , ( T11 , LOOP)
v s c a t t e r T14 , z , 0 , T0 , 1 , 1

Figure 1. SAD Benchmark



This “vector loop” idiom expresses the full range of RSVP con-
structs while exposing vector parallelism to the translator. For ex-
ample, checking index expressions is much simpler than arbitrary
dependence analysis, because any complicated memory access pat-
terns have been factored out of the loop and put intovgather and
vscatter operations. Inside the loop, the translator need identify
only the relatively simple “streaming” (i.e., successive access) pat-
terns supported by RSVP. Further, as in the RSVP DFG language
itself, all dependences are explicitly stated, facilitating compiler
analysis. (Loop-independent dependences become def-use chains,
while loop-carried dependences are expressed as phi nodes.)

For kernels that do not use constructs that require such explicit
loops (such as loop-carried dependences and conditional stores),
we can also write Vector LLVA in a “pure” vector form that uses
no explicit loops: vector values are loaded into vector registers,
computed, and stored. This form of Vector LLVA is compact and
easy to analyze. It is also a higher-level idiom than the vector loop
form that could be easier to translate to other architectures as well.
For kernels that can be written this way, it is straightforward to
lower this representation to the vector loop idiom and then generate
RSVP code. To avoid complex loop fusion requirements in the
translator we impose the requirement that pure vector and vector
loop forms cannot be mixed in the same code sequence (more
precisely, they will be translated into separate vector kernels).

We considered including higher-level abstractions, such as map-
reduce, in our Vector LLVA representation, but decided against it.
LLVA is deliberately alow levelrepresentation. It aims to encode
enough information to enable sophisticated compiler analysis and
transformation, while remaining close enough to the targetto al-
low the programmer or compiler careful control over performance
characteristics of the code. We believe that higher-level constructs,
such as the kernel functions and streaming loops of StreamC and
KernelC [23] can be mapped straightforwardly to Vector LLVA.

3.1.2 Generating RSVP Code

Generating RSVP code from Vector LLVA involves the following
steps:

1. Identify and group the sets of vector instructions that will be-
come distinct RSVP DFGs.

2. Lower each distinct group of pure vector instructions to “vector
loop” form, forming a single “vector loop.”

3. For each “vector loop” generated in the previous step, map
the computations to the software-exposed resources of RSVP
(streams, scalars, accumulators and tunnels) and generatea
DFG.

4. For the non-vectorizable code, generate code for the hostpro-
cessor, including the RSVP library calls to set up and execute
the DFG.

In step one, for kernels already written in “vector loop” form,
we use the grouping implied by the loop. For kernels written as
a sequence of vector statements, we use a partitioning algorithm
similar to the one used for scalar renaming [2, p. 197]. The algo-
rithm forms the largest set of vector instructions that can legally be
transformed to an RSVP DFG (making the DFG as large as pos-
sible is a good heuristic in most cases). It does this by following
def-use chains upwards until avgather or vimm, and downwards
until avscatter. This grouping process must satisfy the same re-
quirements as loop fusion, i.e., the loop bounds of successive vec-
tor instructions (treating each as a distinct loop) must match. This
property does not need to be checked, however, because the vector
lengths in a def-use chain must be consistent to ensure well-defined
semantics (see Section 2.3). Note that mixing vector loop code with

pure vector code would break this property, which is why we donot
mix the two, as noted earlier.

Our implementation also identifies uses of input and output
streams and scalar registers and maps them to the corresponding
hardware resources. Tunnel and accumulator operations areeasily
recognized by the presence of a phi node and the pattern of uses.
Currently, we have implemented this algorithm only for the loop-
free Vector LLVA idiom; for the “vector loop” idiom, we do the
mapping by hand.

Once the Vector LLVA has been partitioned and mapped to the
RSVP resources, translating the individual operations into DFG
operations is straightforward. Thevgather and vscatter in-
structions are mapped to the input and output vector stream units
(VSUs). Tunnel and accumulator operations have already been
identified in the partition/mapping step, described above.Other
operations are directly mapped to distinct DFG nodes; in most
cases this is a one-to-one mapping. In some cases we apply pattern
matching (e.g., we code generate a division by a constant power of
two as an RSVPdiv2n).

3.1.3 Results

We tested our representation and code generator using several C
kernels from the audio and image processing application areas. We
identified computation-intensive vectorizable loops and manually
rewrote them using our C language extensions for writing Vector
LLVA. We tested the following kernels:

• Saxpy: Multiplying a vector by a scalar and adding it to another
vector.

• Quant: Vector quantization from the H.263 video coding stan-
dard.

• MAD Filter: A filter for enhancing stereo separation from the
MAD benchmark in the MediaBench suite.

• RGB2YUV: Conversion from RGB color representation to
YUV chrominance and luminance representation.

• Transpose: Eight by eight matrix transpose.

• DCT: Discrete cosine transform (Chen’s algorithm) for video
encoding.

• SAD: sum of absolute differences between two vectors, used in
motion estimation for video encoding

In each case, we vectorized a single scalar loop from the original
benchmark. We wrote the first five benchmarks in the “pure” vector
idiom (with no LLVA loops). We wrote SAD in the “vector loop”
idiom, as discussed above.

We are only able to experiment with small kernels such as
the above because we have to manually write two or three native
versions plus two Vector LLVA versions of each one, and tune
each of them for the experiments. Nevertheless, we believe such
kernels are acceptable here for at least two reasons. First,it is
well known that such kernels dominate the computations of many
media processing applications (e.g., SAD and DCT account for
over 50% of the scalar execution cycles of Motorola’s MPEG 4
encoder benchmark for RSVP). Second, because media processing
is heavily driven by industry-wide standards like MPEG, JPEG,
TIFF, etc., the same well-defined kernels tend to appear repeatedly
in multimedia codes. For these reasons, we expect multimedia
programmers to identify and isolate computations into well-tuned
kernels, as we did in this work.

We ran the Vector LLVA code through our RSVP code gen-
erator, generating C code for the host (an ARM9 processor) and
DFG code for RSVP. Of the four codes, MAD Filter required three
DFGs because of the patterns of loads and stores (it is possible to
implement MAD Filter with a single DFG, but doing so requires



interleaving the loads and stores in a way that actually reduces per-
formance). The other benchmarks required one DFG each.

We ran the generated code (host code and DFGs) on a cycle-
level simulator from Motorola that models both the ARM proces-
sor and the RSVP coprocessor [8]. The simulator reports total cycle
counts for the ARM processor, including cycles spent in compu-
tation and cycles spent setting up and waiting for the RSVP co-
processor. We measured the speedup achieved when running the
ARM/RSVP version of the loop compared with running the entire
scalar loop on the ARM host. This is the same metric as used in [8],
since RSVP is a coprocessor and has no “single-processor” version
to use as a baseline.

Figure 2 shows the speedups that our code generator achieved
and compares them to the speedups achieved by handwritten RSVP
DFGs for a range of vector values. (We used the same host code for
both versions). As expected, the vector performance consistently
improves with increasing vector length. For the handcoded DFGs,
we attempted to use the most efficient way of coding the DFGs. For
Saxpy, Quant, RGB2YUV, DCT, and SAD, we used DFGs written
and tuned by the authors of [8].

The Vector LLVA version was very close to, or exceeded, the
performance of the handcoded version in all cases. For Saxpyand
DCT, the Vector LLVA performance was slightly better because
the compiler-generated DFG specified the precision for all opera-
tions, saving some execution cycles. For Quant, the Vector LLVA
version was significantly better because our LLVA compiler trans-
formations were able to propagate a constant from the surround-
ing C program into the Vector LLVA code, so that the value be-
came a constant (vconst) instead of a variable (vscalar) in the
resulting DFG. An optimization like this would be useful if,for ex-
ample, a kernel is tuned once by hand and used in different caller
contexts, where the compiler can apply different optimizations (in-
lining, constant propagation, etc.) appropriate to the different con-
texts. We could have performed this constant propagation byhand
on the RSVP DFG, but because the C compiler is not aware of the
RSVP semantics, automatic constant propagation from the C code
to the RSVP code is not possible. This optimization illustrates a
potential benefit of writing the scalar C code and the vector kernel
in a single language (Vector LLVA).

3.2 Suitability for AltiVec and SSE2

We have also written two code generators that translate Vector
LLVA to code for either AltiVec or SSE2. Our aim is to enable
programmers to write one Vector LLVA program for either of these
targets (and other similar ones). AltiVec and SSE2 are similar in
that they both operate on 128-bit wide registers with the same
data types, have many overlapping operations, and impose simi-
lar constraints on alignment and data movement. However, there
are important differences between the two. Some operationsare
supported on one architecture but not the other. They use different
idioms in some cases, e.g., AltiVec has a select operation, while
SSE2 synthesizes this operation with bitwise logical operations.

3.2.1 Writing Vector LLVA for AltiVec and SSE2

In targeting AltiVec and SSE2, we hand wrote Vector LLVA in a
form tailored to these targets. Our AltiVec/SSE2 form of Vector
LLVA has the following salient features:

• All vectors are of fixed length (128 bits). Longer vector op-
erations are handled with loops blocked on the vector length.
We do this blocking by hand for now. In many cases, it would
be straightforward to have the translator block loops automati-
cally. However, because of the vector size and memory access
constraints imposed by AltiVec and SSE, automatic generation
of optimal code from the long vector form is an open research
problem.

• We useload andstore operations, instead ofvgather and
vscatter, to reflect that AltiVec and SSE2 loads and stores
are at stride one and do not have asynchronous semantics.

• We ensure alignment of allocated vectors and use thealigned
attribute to indicate aligned loads and stores.

• We write explicit data movement and shuffling operations using
the Vector LLVA operations discussed in Section 2.4, both for
promoting and demoting data types, and for performing strided
memory access.

Figure 3 illustrates our AltiVec/SSE2 form of Vector LLVA in
schematic form for the Quant benchmark (getelementptr is an
LLVA operation for computing the address of an element in an ar-
ray or struct [1]). Note that expressing data movement operations
is straightforward. This example shows a pack of two vectorsof
short into a vector of char (the actual quantization computation is
omitted). Unpacking operations are similar and useextract. We
can also useextract to express permute/shuffle operations with a
fixed stride andpermute to express arbitrary permute/shuffle op-
erations. Note also that the loop has been unrolled to two iterations
to support the pack operation. This shows how Vector LLVA can
be hand-tuned for fixed-length vector architectures, whileretain-
ing portability across examples of such architectures. A loop like
this could be generated automatically from the long vector repre-
sentation by a compiler, but to achieve optimal performancethe
compiler would need to be sophisticated enough to generate this
unrolling and packing pattern.

T0 = g e t e l e m e n t p t r in , 2∗ i
T1 = a l i g n e d load T0 ; s h o r t
T2 = . . . ; q u a n t i z e T1 to char
T3 = g e t e l e m e n t p t r in , 2∗ i +1
T4 = a l i g n e d load T3
T5 = . . . ; q u a n t i z e T4 to char
T6 = vimm c ha r 0 , 1 6
T7 = combine T6 , T2 , 0 , 1
T8 = combine T7 , T5 , 8 , 1
T9 = g e t e l e m e n t p t r out , i
a l i g n e d s t o r e T8 , T9

Figure 3. Quant Benchmark for AltiVec and SSE2

3.2.2 Generating AltiVec and SSE2 Code

We wrote two simple pattern-matching translators to take the same
Vector LLVA representation, described above, to AltiVec and SSE2
Code. To keep the implementation simple, we generated C, aug-
mented with the source-level compiler intrinsics for AltiVec (sup-
ported by gcc) and SSE2 (supported by the Intel C compiler as well
as gcc).

In many cases, the Vector LLVA to AltiVec or SSE2 transla-
tion is one-to-one. In the following cases, we matched patterns of
several Vector LLVA instructions and converted them to a single
AltiVec or SSE2 instruction:

• Where an instruction is important for performance on the target
architecture, but is too specialized to warrant a separate Vector
LLVA instruction (e.g., the AltiVecmradds).

• For packing, unpacking, and shuffling operations. For theseop-
erations, we used sequences of the more general Vector LLVA
data movement instructions, as discussed above.

In some cases, we generated a sequence of instructions from asin-
gle Vector LLVA instruction. This is particularly true on SSE2,
where some basic operations (e.g., vector select and packing with-
out saturation) are not directly supported and must be synthesized.
We added new intrinsics for saturation and max/min operations.
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Figure 2. Speedups on RSVP

3.2.3 Results

We ran our translators on the same list of benchmarks given inSec-
tion 3.1.3 above, with two changes. First, we ran RGB2YUV only
on AltiVec, because we did not see a way to hand code this bench-
mark on SSE2 with reasonable efficiency given the limitations on
SSE2’s shuffling operations. Second, we did not run SAD on Al-
tiVec or SSE because SAD is a special instruction on SSE2 and
it cannot be expressed in terms of more primitive operations(be-
cause SSE2 lacks instructions to sum-reduce a vector). Therefore,
SAD is probably best dealt with as a special case and made into
an intrinsic that is translated to the appropriate code on AltiVec
(using more primitive instructions) or SSE2 (using the SAD in-
struction). For Quant, RGB2YUV, Transpose, and DCT, we used
the hand-coded AltiVec versions available from Freescale.To ob-
tain hand-coded SSE2 versions, we hand-translated them following
Apple Computer’s guidelines for AltiVec to SSE2 translation [3].
We wrote the handcoded versions of Saxpy and MAD Filter for
both AltiVec and SSE2.

To generate the handcoded performance numbers for AltiVec,
we put our handwritten C code with AltiVec intrinsics through
gcc with AltiVec intrinsics enabled. For SSE2, we did the same
thing using the Intel SSE2 intrinsics and the freely available, non-
commercial version of the Intel C compiler (icc). To generate the
Vector LLVA numbers, we first translated the Vector LLVA to C
with intrinsics, as described in Section 3.2.2 above, and then put
the result through gcc (for AltiVec) or icc (for SSE2).

Tables 2 and 3 give performance numbers and ratios comparing
the handcoded kernels to Vector LLVA for both scalar and vector

Table 2. AltiVec Performance Results (in milliseconds except ra-
tios)

Scalar Vector
Hand LLVA Ratio Hand LLVA Ratio

Saxpy 3410 4350 0.78 300 300 1.0
Quant 1350 1430 0.94 100 80 1.25

MAD Filter 4450 4910 0.91 390 410 0.95
RGB2YUV 9700 15560 0.62 230 240 0.96
Transpose 800 1810 0.44 300 250 1.2

DCT 2920 5180 0.56 160 170 0.94

performance. The performance numbers are the user times reported
by the POSIX utilitytimes. These times include cycles consumed
in scalar operations (such as surrounding loops). We show the
scalar comparison to illustrate the differences in the baseback end
infrastructures. With the Intel compiler, the scalar C codecompiled
to X86 performed nearly identically to the code that we first put
through our C back end for LLVA and then compiled to X86.
For PowerPC using gcc, however, the scalar results were quite
different in some cases. This makes it difficult to compare the
vector numbers for PowerPC/AltiVec. Regardless of the difference
in scalar numbers, however, the vector ratios are encouragingly
close. On AltiVec, Vector LLVA performance ranges from 6%
worse (DCT) to 25% better (Quant) than handcoded. On SSE,
Vector LLVA performance ranges from 8% worse (DCT) to 21%
better (Transpose) than handcoded.

A pertinent question is whether an auto-vectorizing compiler
could achieve some of the portability benefits of Vector LLVAby



Table 3. SSE2 Performance Results (in milliseconds except ratios)
Scalar Vector

Hand LLVA Ratio Hand LLVA Ratio
Saxpy 2020 2000 1.0 180 180 1.0
Quant 1100 1090 1.01 100 100 1.0

MAD Filter 2390 2390 1.0 340 350 0.97
Transpose 610 610 1.0 350 290 1.21

DCT 2220 2200 1.01 390 420 0.92

automatically compiling a common, higher-level program down to
vector hardware (instead of our approach of using lower-level code
tuned for a generic, fixed-length SIMD architecture). We putscalar
versions of our benchmarks (with dependence hints) throughthe
autovectorizer included with the Intel compiler, the best autovector-
izer for SIMD available to us. For the simplest benchmarks, Saxpy
and MAD Filter, the autovectorizer was able to generate codethat
performed just about as well as the handcoded and Vector LLVA
versions: 220 for Saxpy and 340 for MAD Filter (these are not
shown in the tables). However, for the other three benchmarks, the
Intel autovectorizer was unable to produceanyspeedups, even with
dependence hints. These three benchmarks require more compli-
cated patterns of instructions, such as packing, unpacking, shuf-
fling, and loop unrolling, to obtain good performance. Whilethe
Intel compiler was not sophisticated enough to recognize these pat-
terns automatically from the scalar code, we could express these
patterns directly in Vector LLVA, obtaining code with essentially
handcoded performance that was also portable to AltiVec.

4. Related Work
There has been a recent surge of work on compiling to vector
processors, particularly subword SIMD architectures suchas Al-
tiVec and SSE. Much of this work has focused on vectorizing or
“SIMDizing” scalar source [16, 4, 24, 22, 27]. Others have fo-
cused on generating efficient code subject to the alignment,vector
size, and data movement constraints of subword SIMD architec-
tures [17, 26, 14]. There has been some work on portable vector
programming using explicit vectors [7, 11]. We are unaware of any
work that proposes avirtual vector instruction set, and we believe
our work is unique in this regard.

Wu et al. [27] describe a framework for compiling scalar C
source to AltiVec. Their compiler internally abstracts physical vec-
tors into “virtual vectors,” and they describe techniques for low-
ering the virtual vectors to actual vectors satisfying the require-
ments of AltiVec, including fixed length and alignment. In contrast
to our work, Wu et al. do not address the problem of achieving near-
handcoded performance on multiple different architectures. They
do not discuss compilation to arbitrary-length vector or streaming
architectures such as RSVP; in fact, the lengths of their virtual vec-
tors must be compile-time constants. Finally, their virtual vectors
are used only within a compiler intermediate representation, rather
than a virtual instruction set. This is primarily a difference in goals:
two of our goals have been to give programmers a more uniform ar-
chitectural model for multiple families of vector architectures, and
to provide virtual object code portability across these families.

The Stream Virtual Machine of Labonte et al. [15] has similar
goals to ours, but the two designs emphasize distinct and comple-
mentary issues. We focus on expressing vector parallelism mapped
to a single vector processor, whereas Labonte et al. use the native
instruction set (directly or through a C API) for individualprocess-
ing cores. Their design focuses on modeling the communication
among multiple different components of a streaming architecture.
They provide a parametric model for describing such an architec-
ture and show that the model can accurately describe severalactual
architectures. We believe that in the long term, it would be valu-

able to combine Labonte et al.’s model for expressing communi-
cation among multiple SIMD cores and memories with our virtual
instruction set for expressing vector operations in a single core.

VCODE [6] is an intermediate-level language designed for use
in studying the compilation of data-parallel languages to large-
scale parallel architectures. Like Vector LLVA, VCODE is intended
to be a portable representation and supports arbitrary-length vec-
tors. However, VCODE is not designed, as Vector LLVA is, to ex-
press hand-tuned high performance code on streaming and subword
SIMD architectures. This leads to several significant design differ-
ences. For example, VCODE is more abstract than Vector LLVA:it
is a stack machine, it has no scalar type and no explicit loops(only
recursion is allowed), and it allows vectors to be partitioned into
segmentsfor applications such as parsing and DNA sequencing.
VCODE also contains no explicit support for multimedia opera-
tions like saturated arithmetic, gather, and scatter.

A few experimental, domain-specific languages like StreamC
and KernelC for the Imagine stream processor [20, 13], Stream-
It [25], and SPIRAL [28] have been proposed for media processing
and signal processing. These languages provide high-levelfeatures
such as streams or tensors appropriate for the application domain,
whereas we provide low-level primitives appropriate for capturing
(in somewhat abstract terms) the important features of media pro-
cessing hardware. Compilers for these languages could benefit by
targeting Vector LLVA, allowing them to focus on high-levelse-
mantics and optimization, leaving machine-level optimization and
code generation to the translator.

5. Summary and Future Work
We have proposed a processor-level virtual instruction setcalled
Vector LLVA, designed to encode explicit vector computations for
media processing hardware. The instruction set aims to abstract the
important architectural features and operations of hardware pro-
cessors, while allowing programmers to write carefully tuned code
manually for a particular processor family. We have implemented
translators from Vector LLVA for three processor architectures, in
two processor families: the Motorola RSVP processor, and AltiVec
and SSE in the subword SIMD family. Our experience with writ-
ing benchmarks in Vector LLVA by hand shows that it is possible
to tune code carefully for each of the families and achieve code
competitive with hand-coded native assembly on each hardware ar-
chitecture, using a single instruction set.

In the near term, we aim to make two improvements in our
work. First, our AltiVec and SSE translators must be enhanced to
exploit some special features of the hardware such as specialized
data movement operations and complex instructions like theSAD
operation on SSE. Second, we would like to continue to port other
benchmarks and applications to Vector LLVA in order to evaluate
our translators more extensively, and enhance them where needed.

In the longer term, there are three directions that would help re-
alize the potential benefits of this work. First, we believe we can de-
sign source-level language extensions (e.g., to C) that make it sim-
pler to write application programs for the Vector LLVA modelwhile
achieving high performancewithin each processor family. Second,
we would like to demonstrate that high-performancelibraries can
be written in a combination of source code and hand-coded Vec-
tor LLVA code, while achieving the exacting performance goals
that library writers demand in this domain. A key question here
will be how much separate tuning is needed for each target family,
and to what extent that tuning can be made incremental because
of the functional portability that Vector LLVA provides. Third, we
would like to be able to extend our performance goals to achieve
high performance from asingleVector LLVA program on multi-
ple families of processors, including the long-vector and subword
SIMD families discussed in this paper. This would allow Vector



LLVA to provide binary portability for a single object code pro-
gram with variable vector lengths across all its target classes of pro-
cessors. As discussed earlier, results from previous researchers on
compiling long-vector computations to subword-SIMD hardware
(e.g., Wu et al. [27]) show that such a representation would likely
provide good performance, but achieving performance competitive
with hand-coded programs is an open question.

Finally, Vector LLVA also provides additional long-term ben-
efits (which are difficult to evaluate experimentally). First, Vector
LLVA can abstract away evolutionary design differences between
multiple generations of a single architecture, reducing the need to
modify, debug and tune code as an architecture evolves. Second, it
provides a single, rich vector programming model that can beused
by programmers to design algorithms, and by system developers
to target source-level compilers, debugging tools, and performance
tools across a wide range of vector families. Although this benefit
is difficult to evaluate experimentally, we believe this is acrucial
goal for improving programmer productivity for media processing
applications.

Acknowledgments
The authors wish to thank the engineers in the Systems Architec-
ture Lab at Motorola, particularly Ray Essick, Phil May, Silviu
Ciricescu, and Mike Schuette, for their assistance with RSVP com-
pilation. We also wish to thank Chris Lattner for his insightful dis-
cussions regarding the design of Vector LLVA.

References
[1] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A

Low-Level Virtual Instruction Set Architecture. InProc. ACM/IEEE
Int’l Symp. on Microarchitecture (MICRO), pages 205–216, San
Diego, CA, Dec. 2003.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann Publishers, Inc., San Francisco,
CA, 2002.

[3] Apple Computer, Inc. AltiVec/SSE Migration Guide. http://developer.
apple.com/documentation/Performance/VelocityEngine-date.html,
2005.

[4] L. Baumstark, Jr., and L. Wills. Exposing Data-Level Parallelism in
Sequential Image Processing Algorithms. InProc. Working Conf. on
Reverse Engineering (WCRE), 2002.

[5] A. J. Bik. The Software Vectorization Handbook: Applying Multimedia
Extensions for Maximum Performance. Intel Press, 2004.

[6] G. E. Blelloch and S. Chatterjee. VCODE: A Data-Parallel
Intermediate Language. InProc. Symp. on the Frontiers of Massively
Parallel Computation, pages 471–480, Oct. 1990.

[7] G. Cheong and M. Lam. An Optimizer for Multimedia Instruction
Sets. InProc. Second SUIF Compiler Workshop, 1997.

[8] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi. The Reconfigurable Streaming Vector
Processor (RSVP). InProc. ACM/IEEE Int’l Symp. on Microarchitec-
ture (MICRO). IEEE Computer Society, Dec. 2003.

[9] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales. AltiVec
Extension to PowerPC Accelerates Media Processing. InProc.
ACM/IEEE Int’l Symp. on Microarchitecture (MICRO), 2000.

[10] A. Eichenberger, P. Wu, and K. O’Brien. Vectorization for SIMD
Architectures with Alignment Constraints. InProc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI),
2004.

[11] R. Fisher and H. Dietz. Compiling for SIMD Within a Register.
In Proc. Int’l Workshop on Languages and Compilers for Parallel
Computing (LCPC), 1998.

[12] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the Cell Multiprocessor.IBM Journal of
Research and Development, 49(4/5):589–604, 2005.

[13] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson,
and J. D. Owens. Programmable Stream Processors.IEEE Computer,
pages 54–62, Aug. 2003.

[14] A. Kudriavtsev and P. Kogge. Generation of Permutations for SIMD
Processors. InConf. on Language, Compiler, and Tool Support for
Embedded Systems (LCTES), 2005.

[15] F. Labonte, P. Mattson, I. Buck, C. Kozyrakis, and M. Horowitz. The
Stream Virtual Machine. InProc. Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), 2004.

[16] S. Larsen and S. Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. InProc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI),
2000.

[17] S. Larsen, E. Witchel, and S. Amarasinghe. Increasing and Detecting
Memory Address Congruence. InProc. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), 2002.

[18] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. InProc. Int’l Symp.
on Code Generation and Optimization (CGO), San Jose, Mar 2004.

[19] T. Lindholm and F. Yellin.The Java Virtual Machine Specification.
Addison-Wesley, Reading, MA, 1997.

[20] P. R. Mattson. A Programming System for the Imagine Media
Processor. PhD thesis, Computer Science Dept., Stanford University,
2002.

[21] E. Meijer and J. Gough. A Technical Overview of the Common
Language Infrastructure. http://research.microsoft.com/̃ emeijer,
2002.

[22] G. Ren, P. Wu, and D. Padua. An Empirical Study on the Vectorization
of Multimedia Applications for Multimedia Extensions. InProc. Int’l
Parallel and Distributed Processing Symp., 2005.

[23] B. Serebrin, J. D. Owens, C. H. Chen, S. P. Crago, U. J. Kapasi,
B. Khailany, P. Mattson, J. Namkoong, S. Rixner, and W. J. Dally.
A Stream Processor Development Platform. InProc. Int’l Conf. on
Computer Design (CDES), 2002.

[24] J. Shin, J. Chame, and M. Hall. Exploiting Superword-Level Locality
in Multimedia Extension Architectures.Journal of Instruction-Level
Parallelism, 31(5):1–28, 2003.

[25] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:A Language
for Streaming Applications. InProc. Int’l Conf. on Compiler
Construction (CC), 2002.

[26] P. Wu, A. Eichenberger, and A. Wang. Efficient SIMD Code
Generation for Runtime Alignment and Length Conversion. InProc.
Int’l Symp. on Code Generation and Optimization (CGO), 2005.

[27] P. Wu, A. Eichenberger, A. Wang, and P. Zhao. An Integrated
Simdization Framework Using Virtual Vectors. InProc. Int’l Conf. on
Supercomputing (ICS), 2005.

[28] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language
and Compiler for DSP Algorithms. InProc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), 2001.


