
Calysto: Scalable and Precise Extended Static Checking
∗

Domagoj Babić
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ABSTRACT

Automatically detecting bugs in programs has been a long-held
goal in software engineering. Many techniques exist, trading-off
varying levels of automation, thoroughness of coverage of program
behavior, precision of analysis, and scalability to large code bases.
This paper presents the CALYSTO static checker, which achieves an
unprecedented combination of precision and scalability in a com-
pletely automatic extended static checker. CALYSTO is interpro-
cedurally path-sensitive, fully context-sensitive, and bit-accurate in
modeling data operations — comparable coverage and precision
to very expensive formal analyses — yet scales comparably to the
leading, less precise, static-analysis-based tool for similar proper-
ties. Using CALYSTO, we have discovered dozens of bugs, com-
pletely automatically, in hundreds of thousands of lines of produc-
tion, open-source applications, with a very low rate of false error
reports. This paper presents the design decisions, algorithms, and
optimizations behind CALYSTO’s performance.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]:

General Terms

Verification

Keywords

formal verification, static checking, static analysis

1. INTRODUCTION
Error removal (verification/testing/debugging) is one of the most

time-consuming parts of the software development life cycle. Ac-
cordingly, an enormous range of techniques and tools have been
developed to support this task.

We can classify these techniques and tools according to the trade-
offs they must make along four dimensions:
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Coverage How thoroughly are all possible execution paths and
data values covered by the analysis?

Automation How much manual effort is required?

Precision How precisely does the analysis correspond to the actual
software that is executed?

Scalability How large of a code base can be analyzed by the tech-
nique or tool?

For example, traditional software testing has perfect precision and
excellent scalability — because the tests run on the actual code
— and can be highly automated as well. Coverage, however, is
the weakness, and many corner-case bugs elude traditional testing.
Furthermore, as software grows, coverage drops off, or test time in-
creases, exponentially, sparking interest in formal methods. Fully
formal verification promises perfect coverage — a proof of correct-
ness considers all possible executions and inputs — but has histori-
cally been painfully labor-intensive. Modern, semi-automatic tools
(e.g., ESC/Java [19]) are much better, but still require programmer-
supplied loop, function, and class invariants, limiting acceptance of
these tools in practice.

Model checking [11, 32] brought complete automation to formal
verification, but unfortunately, with a very harsh precision/scalabil-
ity trade-off. At one extreme, some software model checkers (e.g.,
Spin [23], Java PathFinder [36], CBMC [9]) can be applied di-
rectly to the code base, precisely capturing the true behavior of the
program code, but with very limited scalability (or with very lim-
ited coverage, when used for bug-hunting by only partially explor-
ing the state space). Abstraction-based methods (e.g., SLAM [5],
BLAST [21], Java PathFinder, Bandera/Bogor [33], SATABS [10])
improve scalability, but at the cost of precision. As the abstrac-
tions are refined, to regain precision, then scalability suffers. The
main direction of model-checking research has been to maintain
complete automation, thorough coverage, and acceptable precision,
while trying to improve scalability.

In contrast, an alternative philosophy towards static program anal-
ysis, usually dubbed “static checking”, traces back to lint [25]:
scalability is paramount, and coverage and precision are sacrificed.
The tool doesn’t promise to find all bugs, nor does it promise that
all bugs reported are real bugs. Ease-of-use is also a high prior-
ity, so these tools are typically so automated that the user need not
write specifications. Instead, the tools are empirically hand-tuned
to search for certain types of common programming errors. Be-
cause of the scalability and ease-of-use, these tools have achieved
moderate acceptance in practice. Unfortunately, the scalability de-
rives from approximate summarization of the state of the program,
losing precision and leading to their major weakness: crying wolf
with false error reports (“false positives”). Programmers will often
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use a static checker, because it’s easy, but they will often ignore the
results, because too many reports are wrong. Recent research has
moved toward more sophisticated analyses, borrowing techniques
from formal verification and static analysis, to reduce the false er-
ror rate and generalize the types of errors that can be detected (e.g.,
MC [18], bddbddb [37], Clouseau [20], and Saturn [38]).

Extended static checking is a term coined by Detlefs et al. [15]
for combining the usage model of static checking (ease-of-use, pre-
targeting to specific common bugs, no guarantees of coverage or
precision) with the machinery of formal verification (generating
verification conditions and checking with a theorem prover). The
promise is coverage comparable to formal verification, with au-
tomation and scalability approaching that of simpler static check-
ers. In addition, the formal-style analysis is general and principled
— the same machinery applies to an enormous variety of errors.
Unfortunately, their ESC/Modula-3 [15] and ESC/Java [19] check-
ers are not fully automatic. To achieve scalability, the formal analy-
ses are intraprocedural, and the programmer must supply class and
method invariants by hand.

This paper presents CALYSTO, our extended static checker. CA-
LYSTO was inspired and influenced by ESC/Java, CBMC, and es-
pecially, Saturn. CALYSTO embraces the ESC philosophy of com-
bining the ease-of-use of static checking with the powerful analy-
ses of formal verification. Unlike ESC/Java, though, CALYSTO is
fully automatic, performing interprocedural analysis. Also unlike
ESC/Java, CALYSTO handles data operations bit-accurately, so ef-
fects like overflow are precisely modeled. CALYSTO’s complete
automation, interprocedural path-sensitivity, and bit-precision re-
semble the model checker CBMC. Both tools are based on bit-
accurate symbolic execution and are fully interprocedurally path-
sensitive (i.e., different program paths are accurately and distinctly
analyzed, even through procedure calls) and truly context-sensitive
(i.e., the analysis of a procedure precisely considers how and from
where it was called). CBMC, however, typically can handle only
up to a few thousand lines of code, whereas CALYSTO has scaled
to real applications of hundreds of thousands of lines of code. The
closest work to CALYSTO is the static checker Saturn. Saturn has
also demonstrated scalability to hundreds of thousands of lines of
real code, while checking similar errors [17]. Saturn, however, is
bit-accurate only for the most common integer operators (e.g., addi-
tion, subtraction, bitwise operators), and, more importantly, is only
intraprocedurally path-sensitive. Interprocedural analysis is based
on automatically computed summaries, which abstract the behav-
ior of procedures by projecting their effects onto small finite-state
property automata, thereby losing precision. Similarly, Saturn’s
context-sensitivity is also only with respect to these abstract states.
CALYSTO combines the virtues of CBMC and Saturn, achieving
better scalability than anything with comparable precision and cov-
erage, and better precision and coverage than anything with com-
parable scalability.

Fundamentally, CALYSTO is based on a fully formal analysis,
but with some unsound approximations to dodge classical unde-
cidability results in software verification (e.g., loops, recursion,
and heap-allocated data structures). Extensive optimizations — al-
gorithm and data structure improvements, abstraction-refinement
frameworks, heuristics, careful implementation — are then required
to make such an expensive approach scalable in practice. Experi-
mental evaluation shows that the overall system works: on hun-
dreds of thousands of lines of real, open-source applications, CA-
LYSTO identified real bugs, completely automatically, that resulted
in developers issuing patches. The false error rate was below 23%.
This paper describes how CALYSTO attains such an unprecedented
combination of coverage, automation, precision, and scalability.

Figure 1: High-Level CALYSTO Architecture

2. CALYSTO SYSTEM ARCHITECTURE
The high-level architecture of CALYSTO is shown in Fig. 1. CA-

LYSTO is designed as a compiler pass, in the spirit of Hoare’s “ver-
ifying compiler” grand challenge [22]: it accepts the compiler’s in-
termediate representation, in static single assignment (SSA) form [14],
performs various verification checks, issues bug reports and warn-
ings, and then passes semantically unmodified SSA on to the com-
piler backend. Designing a static checker in this manner has the ob-
vious advantage of language independence, but also helps to check
for errors in the compiler front-end (and any other compiler passes
that precede the CALYSTO pass). Supporting a different program-
ming language requires only a different front-end, and, if required,
a name demangler to improve the legibility of bug reports. We are
using LLVM [28] as our compiler framework, but SSA is standard
in modern compilers, so CALYSTO could be retargeted easily to
another compiler framework or used as a standalone application.

Internally, the CALYSTO system consists of three stages, sup-
ported by an automatic theorem prover, SPEAR. The first stage is
a lightweight function pointer alias analysis. It constructs (a sound
approximation of) the call graph, including indirect calls through
function pointers. We sacrifice some precision, by using a sound,
flow-sensitive, but context-insensitive alias analysis, tracking only
the function pointers. This pass requires negligible resources, yet
is precise enough in practice.

The next stage is symbolic execution [26], which executes the
program using symbolic instead of concrete values. CALYSTO sym-
bolically executes functions in the analyzed program, computing
symbolic definitions for each modified variable and memory lo-
cation. These symbolic definitions are used to create verification

conditions (VCs) — logical formulas that are valid iff some cor-
rectness property holds of the program. The symbolic execution
machinery allows generating VCs for any assertion at any point in
the program. CALYSTO currently supports user-supplied assertions
(written as boolean expressions in whatever programming language
the compiler front-end is parsing), but in the spirit of static check-
ing, also automatically generates VCs to check that each pointer
dereference cannot be NULL. The generated VCs are essentially
formal verification conditions: all possible program paths and data
values are considered (except for the unsound approximations de-
scribed in Sec. 3).

The last stage consists of checking and filtering the verification
conditions. In principle, the VCs could be sent directly to a theo-
rem prover for checking, and this approach is used in most other
tools. We have found, however, that both efficiency and usability
can be improved by control and filtering of what VCs are checked.
The main efficiency gain is described in Sec. 4.2. To improve us-
ability, if the theorem prover manages to find a falsifying solution
(a potential bug), this stage reports the bug and filters away all VCs
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corresponding to the same property within the same function. For
instance, if a pointer that can be NULL is dereferenced at many
different places within the same function, and that function can be
called in many different contexts, CALYSTO will emit only one bug
report per context. This heuristic avoids overloading the program-
mer with reports that correspond to the same issue. For each falsi-
fied VC, CALYSTO dumps a detailed graphical trace; if the falsified
VC depends on any global variables, the trace is given all the way
from the root of the call graph (the main function).

The actual validity-checking of VCs is done by SPEAR, which
is a sound and complete, fully automatic theorem prover that sup-
ports Boolean logic, bit-vector operations, and bit-accurate arith-
metic. Unlike other static checkers, which use general-purpose
SAT solvers or theorem provers, SPEAR is custom-designed for the
software VCs generated by CALYSTO, optimizing performance.

3. DESIGN CHOICES
Our goal was to combine the coverage and precision of formal

verification with the scalability of static checking. To achieve this
goal, our basic design philosophy was to start with a principled,
fully formal, precise analysis, to make as few unsound approxima-
tions as possible, and then to focus on improving scalability. This
approach helps separate the concerns of the correctness of our anal-
yses from their efficient, practical implementation.

We made three key decisions to make CALYSTO significantly
more precise than is typical for static checkers:

• The first decision was to be bit-precise, meaning that we
handle machine arithmetic precisely, including all bound-
ary conditions (underflows and overflows) and all standard
operators, including multiplication, division, remainder, and
shift. This precision incurs a high computational cost, but we
believe that the cost is justified. First, boundary conditions
themselves are frequent sources of bugs (e.g., [4]). Second,
bounded integers are a prerequisite for deciding properties
with non-linear operators,1 and we observed that non-linear
operators appear quite frequently in real code.

• Interprocedural path-sensitivity was the second important de-
sign decision. Since the number of possible paths typically
grows exponentially in code size, this decision is also com-
putationally expensive, but we believe this, too, is justified.
For example, a common coding idiom that requires interpro-
cedural path-sensitivity is the handling of erroneous condi-
tions. Applications frequently use long chains of function
calls for handling erroneous and exceptional conditions, e.g.,
checking pre/post-conditions, detecting errors, printing and
logging messages, and finally exiting with an appropriate er-
ror code. We have seen such sequences that are 5–7 func-
tion calls deep. Static checkers that are not interprocedurally
path-sensitive can fail to precisely compute the conditions
under which the sequence exits, resulting in false positives.

• A consequence of the interprocedural path-sensitivity is the
third key decision: CALYSTO is fully, precisely context-sensitive.
Context-sensitive analyses differentiate the effects of the state
of the program at different call sites where a function is called.
In contrast, a context-insensitive analysis can be much more
efficient, because a function need be analyzed only once, re-
gardless of how many different places it is called, but this

1Undecidability with (unbounded) integer multiplication and quan-
tifiers follows from Gödel’s Incompleteness Theorem. Even with-
out quantification, undecidability follows from the undecidability
of Hilbert’s Tenth Problem. See, e.g., [31].

analysis must merge together the states at all possible call
sites, thereby losing information and producing false posi-
tives. Note that a “context-sensitive” analysis can still be
very imprecise, e.g., many software model-checkers abstract
the state of the program onto a small set of predicates, and
the context-sensitivity is only with respect to these abstract
states. CALYSTO goes further, keeping definitions of inter-
procedural control-flow context, variables, and abstract mem-
ory locations to which pointers can point. Achieving such
precision is expensive in both time and space.

These decisions greatly increased the computational complexity of
our analyses, but enabled the low false positive rate.

We also had to make some design decisions that were unsound
(compromising coverage, thereby possibly missing bugs) as well as
imprecise (possibly resulting in false positives):

• CALYSTO currently does not support floating-point opera-
tions. Floating-point is handled unsoundly by converting
floating-point variables and constants to integral ones. In
theory, it is straightforward, but tedious, to add bit-accurate
floating-point models to the theorem prover. A practically
efficient solution, however, will likely require more research.
We have not observed any false positives due to this handling
of floating-point in any of our benchmarks.

• Loops create the classical halting problem undecidability re-
sult. Accordingly, CALYSTO unsoundly approximates loops
by unrolling them once and terminating them with an as-
sumption that the loop test has failed, similarly to ESC/Java
[19]. This is a major source of missed bugs, because possible
program paths are not analyzed. For example, in the follow-
ing real code (abstracted from the HYPERSAT benchmark):

1 i n t c n t = 0 ;
2 bool c2 = f a l s e ;
3 whi le ( c1 /∗ some c o n d i t i o n ∗ / ) {
4 i f ( c2 ) {
5 c n t ++;
6 }
7 c2 = t rue ;
8 }
9 i f ( c n t == 0 ) { e x i t ( 1 ) ; }

10 . . .

variable c2 is false in the first iteration, so the cnt counter
can be incremented only in the second iteration. If the loop
is unrolled only once, line 10 becomes unreachable. Since
CALYSTO does not check unreachable code, it can therefore
miss bugs. Fortunately, we have seen only a very few false
positives due to this handling of loops in preliminary exper-
iments checking programmer-specified assertions, and none
at all when checking the automatically generated VCs.

• Recursion creates the same undecidability problem as loops,
and we handle it in a similar manner. Like Saturn [38], CA-
LYSTO simply breaks cycles in the call graph, ignoring the
recursive call. This practice causes a small number of false
positives in practice. For example, in the application Post-
fix,2 a safe allocator xmalloc tries to allocate memory on the
heap and, if successful, returns a valid pointer. If it’s un-
successful, it calls the function fatal, which prints an error
message and exits (doesn’t return). The function fatal, how-
ever, calls xmalloc to construct its error message! To prevent

2Version 2.5.20070614. We could not compile Postfix completely
with the LLVM front-end (some functions were not compiled into
the binaries), so we do not use Postfix for benchmarking in Sec. 5.
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possibly infinite recursion, the programmers added a re-entry
counter, and if the counter exceeds 2, then fatal exits without
trying to construct an error message. If our analysis cuts out
the recursive call to fatal, it cannot infer that xmalloc cannot
return NULL, producing false positives.

• Pointer arithmetic (and therefore arrays) is known to be un-
decidable in general [7]. We use a simpler memory model,
similar to the “logical memory model” [6], in which ∗(ptr +
i) and ∗ptr are assumed to refer to the same object, except
that our symbolic execution does distinguish those two loca-
tions if our expression simplifier (Sec. 4.1) can simplify i to
a constant. Such constant offsets are often used for access to
structure fields (making CALYSTO field-sensitive as well), so
this added precision is important in practice.

Obviously, there are no perfect solutions to the undecidable prob-
lems, but these are well-studied issues, and CALYSTO’s design is
compatible with standard approaches to handling these problems
soundly or at least more precisely than we do currently. For ex-
ample, there is no theoretical obstacle preventing CALYSTO from
checking and using user-supplied loop invariants to handle loops
soundly, but we chose to make CALYSTO fully automatic. Heuris-
tics based on abstract interpretation [12] could be used to infer
loop invariants automatically, as in [30], providing automation and
sound handling of loops, but at the risk of introducing more false
positives. Similar techniques could be applied to infer function,
class, and heap invariants, with the same trade-off of soundness
versus precision. We could also make CALYSTO’s analysis pro-
gressively more precise by generalizing our current approxima-
tions to some small, bounded depth, e.g., unrolling loops several
times instead of just once, allowing a bounded number of recursive
calls, and modeling the first few elements of arrays precisely be-
fore lumping the rest of the elements together. The trade-off here
would be the greater computational complexity versus the greater
precision. In general, the overall goal is to achieve the most use-
ful, practical balance between coverage, automation, precision, and
scalability. We based our design decisions on the state-of-the-art,
and our belief in the improvements we could make (Sec. 4). As
future research changes the balance (e.g., a more precise heuristic
for inferring loop invariants, a more efficient theorem prover, etc.),
these decisions should be revisited.

4. IMPROVING SCALABILITY
As mentioned, bit-precise and *-sensitive (path-, context-, and

field-sensitive) analysis is computationally extremely expensive;
our first attempts did not scale beyond a couple thousand lines of
code. This section describes the novel techniques we developed to
make CALYSTO practical. The three subsections correspond to the
three main parts of CALYSTO in Fig. 1: the symbolic execution, the
verification condition filtering, and the theorem prover.

Three general principles underlie the improvements to the anal-
yses: preserving and exploiting problem structure; using fast, ap-
proximate analyses to filter and simplify tasks before applying heavy-
weight, precise analyses; and caching to reuse previously computed
results. Indeed, even the top-level architecture of CALYSTO re-
flects the filtering idea — the function pointer analysis stage is a
lightweight, approximate analysis that simplifies the task of the
later, more expensive analyses.

4.1 Structure-Preserving Symbolic Execution
Symbolic Execution.

The two standard methods for computing verification conditions
(or other symbolic representations of programs) are symbolic exe-

cution [26] and weakest (liberal) precondition [16]. The first is a
forward analysis; the second, backward. We chose forward sym-
bolic execution for several reasons:

• Pointer definitions are known before the pointers are deref-
erenced. Knowing the pointer definition, our symbolic ex-
ecution can precisely simulate the effects of pointer reads
and writes, by simply executing them symbolically. Doing
the equivalent analysis backward is possible, in theory, but
would produce excessively complex expressions represent-
ing all possible pointer definitions at program points between
the def and the use.

• Going forward, one builds more complex expressions from
simpler ones, without performing substitutions. Thus, the
constructed expressions will not be modified later. Immutabil-
ity of the constructed expressions allows them to be simpli-
fied while being built. For instance, consider a sequence of
code like:

i n t x = 1 ;
. . .
i f (0 < x ) y = 0 ;
. . .
return y∗z ;

A backward analysis substitutes the 1 for x after the entire
expression ITE(0 < x,0,y)× z has already been constructed.
To simplify it to zero, the simplifier has to revisit all expres-
sions that contain the modified sub-expression. On the other
hand, a forward analysis would construct 0 < 1 at the if state-
ment, which simplifies to true, continue with ITE(true,0,y),
which simplifies to 0, and end up with 0×z, which simplifies
to 0. This early expression simplification saves a substantial
amount of memory.

• Symbolic execution and weakest precondition can both gen-
erate expressions exponential in the size of the code (e.g., [13,
29]). Representing the expressions as graphs that share com-
mon sub-expressions avoids that blowup [27]. Just as with
the early simplification, forward analysis facilitates imme-
diate common sub-expression elimination while the expres-
sions are being built.

Our symbolic execution algorithm processes each function ex-
actly once, proceeding bottom-up in the call graph, computing a
symbolic representation of the function’s effects. Program func-
tions can have multiple effects, e.g., returning a value, modify-
ing globals, and modifying memory locations reachable through
passed-in parameters. For each side-effect, CALYSTO computes a
symbolic expression. When a function is called, symbolic expres-
sions for small effects (up to 50 nodes) are inlined immediately,
while larger effects are represented in the symbolic expression by
place-holding summary operators. The summary operators are ex-
panded during VC-checking only if needed (Sec. 4.2).

Efficient Gated Single Assignment Form.
The basic step of symbolic execution is to find the correct sym-

bolic definition of each variable or memory location that is read,
and then to update the correct symbolic definition of each vari-
able/location that is written. These operations are performed so
many times that their implementation needs to be extremely fast.

Plain SSA form doesn’t directly provide the information needed
for fast lookup of definitions. At join points (i.e., places where
different program paths merge), SSA introduces a φ -“function”
for each definition, which denotes somehow choosing the correct
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definition depending on where the preceding flow of control came
from. If the exact definition matters (and it does for verification),
the analysis has to track where the flow of control came from, and
pick the appropriate definition.

Gated Single Assignment (GSA) form solves this problem (e.g.
[35]). GSA extends SSA with a gating function γ that replaces the
φ -function. A γ-function in a basic block B can be intuitively un-
derstood as an expression that determines which definitions reach
B and under which conditions. Our symbolic execution constructs
γ- from φ -functions on the fly.

The challenging aspect of efficiently implementing GSA form
is in handling memory locations accessed through pointers. For
example, consider:

i f ( c ) p = &x ;
e l s e p = &y ;
∗p = 1 ;

It’s easy to construct a γ-function that gives the correct value of p as
IT E(c,&x,&y), but it’s less obvious how to update the new sym-
bolic values for x and y efficiently. CALYSTO maintains partial,
conditional expressions, which compactly represent the different
definitions that might be live from the different basic blocks. Miss-
ing definitions (which represent either infeasible paths or values
dependent on the calling context) are represented by a placeholder,
which is later substituted with a real definition during structural re-
finement (Sec. 4.2).

Preserving Structure.
As mentioned earlier, preserving and exploiting problem struc-

ture was a key principle behind improving efficiency. Fortunately,
the graph-based representation of symbolic expressions that we use
to prevent expression-size blow-up also captures and preserves the
dataflow structure of the program. All computed expressions are
represented as maximally-shared graphs:

DEFINITION 1 (MAXIMALLY-SHARED GRAPH).
Let G = (N,E,L ) be a labeled, directed graph, where N is the set

of nodes, E ⊆N×N is the set of edges, and L : N →O is a labeling

function from N to some set of operators O. Let |n| denote the out-

degree of node n. For all nodes n, the arity of the operator L (n)
must be equal to |n|. Furthermore, assume the outgoing edges are

ordered, and let the node pointed-to by the i-th edge of a node n

be denoted as childi(n). Two nodes n1 and n2 are defined to be

equivalent (n1 , n2) iff |n1| = |n2|, L (n1) = L (n2), and:

∀0 ≤ i ≤ |n1| : childi(n1) , childi(n2)

Graph G is maximally-shared if ¬∃n1,n2 ∈ N : n1 6= n2 ∧n1 , n2.

The following code helps illustrate how maximally-shared graphs
preserve the flow of data in the program:

i n t g lob ; / / G loba l
. . .
vo id f ( i n t a ) {

bool f l i p = f a l s e ;
i f ( a < 0) {

a = −a ;
f l i p = t rue ;

}

i f ( f l i p ) {
a s s e r t ( a != 0 ) ; / / A1
g lob /= a ;

}
return ;

}

Figure 2: Example of a Maximally-Shared Graph. The ini-

tial values at function entry are shown at the bottom, while the

computed symbolic values at function exit are at the top of the

graph. Implication is represented as =>, disequality as / =,

signed division as /s, unary minus as −, while other operators

have standard meanings. Given the initial values of glob and a

(bottom), symbolic values of glob and the VC corresponding to

A1 at function exit are represented by the ITE node I1 and the

implication node => (top).

Function f modifies a global and contains assertion A1. Fig. 2
shows the result of symbolic execution of function f : two sym-
bolic expressions, representing the effect on glob and the VC cor-
responding to A1. Note that A1 is unreachable if a ≥ 0, so the VC
is vacuously true in that case, hence the implication node.

Maximally-shared graphs provide several benefits:

• Node ni is reachable from node n j if and only if n j is data-
dependent on ni. Thus, irrelevant sub-expressions are au-
tomatically sliced away. Slicing is crucial for efficient VC
checking, since redundant subexpressions significantly slow
down theorem provers and confuse their heuristics.

• Common sub-expressions are always shared. Aside from the
obvious savings in memory, this knowledge can be exploited
to speed up the theorem-proving phase. For example, as-
sume that some function g calls f and after the call checks
some property that is either data- or control-dependent on
glob modified by f . Denote the assertion that checks that
property A2. Symbolic expressions computed for A1 and
A2 share at least ITE2 in Fig. 2. Theorem provers can ex-
ploit this sharing to avoid solving the same sub-expressions
multiple times (as in [2]).

• The structure of the graph can be exploited for abstraction
and refinement. Note that the validity of assertion A1 is inde-
pendent of the actual value of a, even though the implication
node is data-flow dependent on a. If a ≥ 0, the VC is vacu-
ously true. Otherwise, if a < 0, then ITE2 will be equal to
−a, and the VC is again true because a < 0 ⇒ (−a 6= 0). So,
if we have some complex function h that returns an integer,
and we call f with the result of h as a parameter:

. . .
f ( h ( ) ) ;
. . .

we do not even need to analyze what h returns, because what-
ever it returns, assertion A1 will hold. This is the core idea
of structural abstraction in Sec. 4.2.
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Our use of maximally-shared graphs is similar to the use of BDDs [8]
in bddbddb [37] and, to a lesser degree, in Saturn [38]. Both data
structures exploit sharing to (try to) avoid an exponential space
blow-up, and in both data structures, the shared structure enables
caching and re-using previously computed results. The key differ-
ence is that maximally-shared graphs are not canonical representa-
tions of functions. The maximally-shared graphs preserve program
structure, and are therefore linear in the size of the program (if we
don’t in-line function effects). Because BDDs are canonical, they
provably must blow-up exponentially for most functions, including
common operations such as multiplication [8]. Maximally-shared
graphs are the lightweight, good-enough solution, with the theorem
prover as backup; the canonicity of BDDs is heavy-weight overkill
for this task.

Expression Simplifier.
The lack of canonicity of maximally-shared graphs could pro-

duce inefficiency, because two functionally equivalent nodes might
not be structurally equivalent. In theory, the symbolic execution
stage could prevent this problem by calling SPEAR to check for
functionally equivalent nodes, but such an approach would be pro-
hibitively expensive, analogous to using BDDs. Instead, we again
rely on the principle of a fast, good-enough solution for the com-
mon cases, leaving the hard cases for the theorem prover later.

As the symbolic execution builds symbolic expressions, those
expressions are immediately simplified with a light-weight expres-
sion simplifier. The simplifier is mostly not recursive and looks at
only one operator node at the time. There is one exception: sim-
plification of conjunctions. We experimentally found that control-
flow context expressions frequently contain sub-expressions that
are composed of 2–20 conjuncts, which occasionally contradict
each other. Simplifying such contradicting conjuncts saves some
memory with minimal cost in runtime.

Interestingly, the expression simplification has little effect on
theorem-prover runtimes later, when the VCs are checked. Most
simplifications are just constant propagation, and theorem provers
are extremely efficient at propagation of such facts. The big win
from the expression simplifier is the savings in space, caused by
the early pruning of duplicate nodes and infeasible paths.

4.2 Structural Abstraction
Structural abstraction is the key scalability breakthrough in the

verification condition filtering stage of CALYSTO [3]. It is an auto-
matic abstraction/refinement framework, so it first attempts to solve
an abstracted, approximate, easier VC, and then progressively re-
fines the VC as needed. The key difference versus other abstrac-
tion/refinement approaches for software verification is that both
the abstraction and refinement are entirely based on exploiting the
structure available in the program (hence the importance of pre-
serving this structure in the symbolic execution stage). Because
they are structural, the abstraction and refinement steps are very
fast; unlike many other abstraction/refinement schemes, there is no
need for expensive proofs of unsatisfiability.

Recall that the symbolic execution stage builds a maximally-
shared graph for each function, and that function calls (larger than
50 nodes) are not inlined, but indicated by a placeholder node. Re-
turning to the example in Sec. 4.1, suppose we have a function that
calls f , with code like:

. . .
f ( h ( ) ) ;
a s s e r t g lob < 1 ; / / A2

The symbolic expression for the VC for assertion A2 would (ig-
noring the inlining of small function effects) simply be a graph

comparing a placeholder node to 1. The placeholder node would
indicate that it is the effect on the global variable glob, of calling f

with a parameter that is the result of calling h, but this effect is not
computed, yet.

These placeholder nodes form an abstraction boundary that nat-
urally corresponds to typical programming style: programmers try
to modularize their code to minimize dependencies across function
calls. In structural abstraction, when a VC is checked for validity,
the theorem prover at first considers the placeholder nodes to be un-
constrained variables. If the theorem prover still manages to prove
validity, the checked VC is valid no matter what the placeholders
actually represent. The assertion is OK. If the VC can fail, how-
ever, it might be a false positive, because the unconstrained value
might not be a possible effect of the function call. Thus, we need a
refinement step to eliminate the false positive.

In structural refinement, one placeholder node is expanded with
the maximally-shared graph of the function call it represents. This
enlarges the graph for the VC, making it more precise and refining
the abstraction. This new VC is again checked for validity, and the
abstraction/refinement loop continues, inlining placeholder nodes
one-by-one, until either the VC becomes valid or the VC can still
fail but every relevant placeholder node has been inlined (in which
case a bug has been discovered).

Continuing the example, checking the initial, abstract VC for as-
sertion A2 will fail, because the unconstrained placeholder can take
on an arbitrary value, say, 2, that is greater than 1. Thus, structural
refinement will expand the placeholder node, and the refined VC
for A2 will check that the effect of f on glob is less than 1. Graph-
ically, we would add a new comparison node to Fig. 2, comparing
ITE node I1 to a constant node 1. The node labeled a at the bottom
of the figure would be a placeholder node for the return value of h.
This new VC would be checked by the theorem prover. Depend-
ing on what is known about the original value of glob, the new VC
might be valid (e.g., if glob were equal to 0 before the call to f ).
If not, the structural refinement would next expand the placeholder
node for the call to h, and the process would continue.

The choice of which definitions of placeholder nodes to inline
is important. CALYSTO uses a don’t-care analysis to isolate the
reason why the VC still fails and to inline only definitions that are
logically related to that reason. For instance, if an AND operator
node has two branches, and the value of one branch is false, that
branch is a sufficient explanation for the value of the AND node,
and it suffices to refine only that branch. The refinement is based
on structure and the falsifying assignment returned by the theorem
prover, so it is simple and fast.

An additional feature of structural refinement is that the VCs
change monotonically: each refinement only adds information. Thus,
an incremental theorem prover can re-use all of its work (learned
clauses and implications) from solving the VC on one iteration as
it re-solves the modified VC on the next iteration. The close coop-
eration between the analysis stages and the theorem prover provide
opportunities for improved efficiency.

4.3 Application-Specific Theorem Prover
CALYSTO generates highly complex VCs, so a significant por-

tion of runtime is spent in theorem prover calls. To handle such
VCs, we had to develop a theorem prover for bit-vector (machine)
arithmetic, SPEAR. The core of SPEAR is essentially a Boolean
satisfiability (SAT) solver, but with layers of added functionality
to support the needs of software verification. SPEAR won the bit-
vector arithmetic category in the SMT 2007 competition.3

3For details, see http://www.smtcomp.org/
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SPEAR is designed to work closely with CALYSTO, so it un-
derstands the structure of the VCs. For example, SPEAR can use
information from the VCs to modify its heuristics, e.g., choosing
different orderings of constraints or variables. Also, SPEAR is in-
cremental, so it capitalizes on the incremental queries generated by
structural refinement.

In addition to the structure-based techniques, two other factors
that significantly improved the overall scalability of CALYSTO are
the way in which SPEAR encodes arithmetic operators and the CA-
LYSTO-specific tuning of SPEAR.

Gate-Optimal Encoding.
Programs contain non-linear operators, and to be bit-precise, one

must have a theorem prover that supports them. A number of differ-
ent methods have been developed for linear bit-vector arithmetic,
but few of them are applicable to non-linear operators. The usual
approach is bit-blasting: Variables are encoded as bit-vectors of
suitable size, and operators are replaced by digital circuits corre-
sponding to that operator. In effect, VCs become large digital cir-
cuits, which can be converted to conjunctive normal form (CNF)
using the Tseitin transform [34] and given to a boolean satisfiabil-
ity (SAT) solver.

Numerous circuits have been proposed for each standard op-
eration. Choosing the right circuit for CNF encoding is a little-
researched but important problem — properly selected circuit can
easily make the theorem prover an order of magnitude faster. The
heuristic we found most effective is to use gate-optimal circuits,
i.e., circuits that have the minimal number of gates. Such cir-
cuits tend to generate the fewest variables during Tseitin encoding,
which avoids flooding the SAT solver with redundant variables.

Automatic Optimization of Parameters.
Parameterized heuristics abound in automated theorem proving,

and manual tuning of the respective parameters is difficult and time-
consuming. Typically each class of problems exhibits certain spe-
cific characteristics, and parameter settings that work well for one
do not necessarily work well for another.

We have used AI techniques to automatically tune the parameters
controlling the heuristics used by SPEAR to optimize performance
for the kinds of VCs generated by CALYSTO [24]. The approach
is stochastic local search: the optimization algorithm performs a
simple hill-climbing to find local minima and perturbation to es-
cape local minima. The probability of finding the global minimum
grows with longer runtimes.

The tuning process is extremely slow. We therefore tuned on
a small set of VCs. The optimization technique also adaptively
chooses the number of training instances to use for each parameter
setting: while poor settings can be discarded after a few algorithm
runs, promising ones are evaluated on more instances.

We then evaluated the automatically-tuned parameter settings on
a separate test set of VCs, measuring a 500-fold speedup over the
manually optimized version of SPEAR on CALYSTO-computed ver-
ification conditions. (All tuning was completed before we ran the
benchmarks in Sec. 5.) The speedup made CALYSTO much more
practical, and also gave us insights into the relation between char-
acteristics of CALYSTO-generated VCs and search parameters.

5. EXPERIMENTAL RESULTS
To evaluate CALYSTO, we checked a number of publicly avail-

able, real-world applications: the openssh remote access server
and client, the inn Usenet system, the ntp network time proto-
col server and client, the bind DNS system, and the OpenLDAP

Benchmark LOC (total) LOC (code) Modules

bftpd 1.8 4532 3306 1

bftpd 1.9.2 4602 3368 1

HYPERSAT 1.7 9123 6022 1

spin 4.3.0 28394 20481 1

openssh 4.6p1 81908 45304 11

inn 2.4.3 122727 71102 46

ntp 4.2.4p2-RC5 185865 74230 10

ntp 4.2.5p66 192019 74277 9

bind 9.4.1p1 393318 184204 26

openldap 2.4.4a 374266 223595 27

TOTAL 1406754 685408 133

Table 1: Benchmarks Used for Experiments. The second and

third columns show the number of lines of code before and af-

ter preprocessing (“LOC(code)” does not include comments,

empty lines, and pragma-disabled code). The fourth column

gives the number of compilation units produced by LLVM’s

front-end.

Lightweight Directory Access Protocol system. Those benchmarks
are the largest open-source benchmarks that we could successfully
compile with both LLVM’s front-end and with Saturn. We also
used some smaller applications where we were able to get particu-
larly prompt and precise feedback from the developers: the Bftpd
FTP server, the HYPERSAT boolean satisfiability solver, and the
Spin explicit-state model-checker. Table 5 lists the benchmarks.

We checked the automatically generated assertions that derefer-
enced pointers cannot be NULL. This is an excellent property to
use to evaluate a static checker because: (i) the property is well-
defined and automatic, (ii) pointers are often passed through a long
sequence of calls, which necessitates interprocedural analysis, (iii)
pointer manipulation in programs depends on both data- and control-
flow of the program, exercising all the components of a static checker,
and (iv) pointers are dereferenced very frequently in code — the
number of produced VCs is probably larger than what would be
generated by any other property (proper locking, for instance), and
the sheer number of VCs pushes static checkers to their limits.

Initially, we started sending raw reports to developers, but quickly
found that developers were very unwilling to separate out real bugs
from false positives (inadvertently validating our research goal of
minimizing false positives!). We began filtering the reports our-
selves, omitting all reports that we could prove infeasible. All re-
maining reports were sent to the developers. At that point, we ran
into an unexpected problem: the developers would either take a
very defensive stance, claiming that a particular bug was either ir-
relevant or very improbable, or would take a very cautious stance,
fixing everything in the code just to be safe, without much thought
about whether a bug was feasible or not. To be rigorous, we have
defined a bug strictly as follows:

• Only a dereference of a pointer which is either uninitialized
or NULL is considered a bug.

• There must exist a feasible path from the point where the
pointer was initially defined to the point where it was deref-
erenced. For CALYSTO’s evaluation, we also required that if
any globals are included in the trace, the trace must be given
all the way from the main function (root of the call graph).
For Saturn’s evaluation, we waived this constraint.

• Every feasible NULL pointer dereference was considered a
bug, no matter how improbable or irrelevant it might be.
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• Many applications contained pointer checks. Usually, such
checks exit if the pointer is NULL and print/log an appropri-
ate message. In this case, the NULL pointer is never derefer-
enced, so failed pointer checks were not counted as bugs. In
other words, only dereferences that would cause a segmenta-
tion fault were considered bugs.

• If a pointer ptr was guaranteed not to be NULL, then we
also assumed that pointers with offset ptr + i can never be
NULL either. The likelihood of an integral overflow (ptr >
0∧ ptr + i = 0) is extremely remote, and the developers do
not take such reports seriously. Checking that the offset is
within allowed bounds is a different property, not to be con-
fused with NULL-pointer checking.

For all reports that we could not prove to be false, we asked for
a feasibility confirmation from the developers. Reports that nei-
ther we nor developers could prove to be feasible or infeasible are
classified as unknown.

5.1 Comparison to CBMC
As mentioned in the introduction, the software model checker

CBMC [9] was an inspiration for CALYSTO. CBMC promises a
similarly high-level of coverage and precision (bit-accurate, path-
and context-sensitive) as CALYSTO. We also evaluated SATABS [10],
the successor to CBMC, which adds an automatic abstraction en-
gine.

We used CBMC v2.6 and SATABS v1.9 for our experiments.
For compiling larger projects (that require linking), those two tools
required the goto-cc compiler. We were able to compile only the
smaller benchmarks with these tools: bftpd v1.8 and v1.9.2, HY-
PERSAT v1.7, and Spin v4.3.0.

We ran CBMC in two modes: one with default settings and the
other with the --unwind=1 option, which unrolls all loops only
once. SATABS ran with its default settings. CBMC in default mode
ran out of memory on all benchmarks (std::bad_alloc ex-
ception), without producing any results. CBMC with one loop un-
rolling terminated with internal assertion failures on the bftdp runs
and HYPERSAT, and ran out of memory on Spin. SATABS ran out
of memory on bftpd and Spin, and timed out after 15 hours on HY-
PERSAT. Experiments were performed on a dual Opteron 2.8 GHz
machine with 16 GB RAM.

These fully formal tools promise soundness, guaranteeing that
no bugs will be missed, and bit-accurate precision, guaranteeing
no false positives, either. Unfortunately, due to the lack of scal-
ability, they produced neither. The theory of formal verification
has produced deep and valuable insights into program analysis, but
directly applying the theory appears not to produce a practically
scalable tool.

5.2 Comparison to Saturn
Saturn [38], another inspiration for CALYSTO, was designed for

scalability from the start. Despite CALYSTO’s more precise, more
expensive analysis, can it match Saturn’s proven scalability?

We are comparing against Saturn v1.1.4. We used only Saturn’s
NULL pointer analysis, which finds possible NULL pointer deref-

4We are comparing against the most recent, most up-to-date ver-
sion of Saturn available. An earlier version of Saturn reported low
false error rates while checking for NULL pointer dereferences,
although for a much less stringent notion of what constitutes a
true bug [17]: in that paper, inconsistencies in whether a pointer
is checked for NULL on different paths were included as real bugs;
we are using the stricter definition described earlier. Unfortunately,
the developers of Saturn have told us that they believe that the cur-
rent version of Saturn is no longer as effective at identifying NULL

erences. We used the best known parameter settings for each tool.
For CALYSTO, we used the default options, with a 10 second time-
out per VC and limiting the number of VCs per function to 500, ef-
fectively setting the timeout per function to 5000 seconds. Saturn’s
tutorial recommends using a 60 second timeout per function, so all
the experiments presented in tabular form were obtained using the
60sec timeout. When we attempted to use 5000 second timeouts,
Saturn produced the same results on Bftpd and Ntp and ran out of
16 GB of memory on all other benchmarks. Experimental results
are presented in Table 2.

Saturn’s traces were significantly harder to interpret because the
tool does not produce the complete trace and because we do not
have the same level of familiarity with Saturn as we do with CA-
LYSTO. Interestingly, there is very little overlap between the bugs
reported by the two tools. CALYSTO tends to report either viola-
tions of C library properties, which Saturn frequently misses (pre-
sumably because of incomplete descriptions of C library functions),
or very long traces, sometimes spanning through 10–15 functions,
which Saturn misses due to lack of interprocedural path-sensitivity.
On the other hand, most of bugs that CALYSTO missed were due
to unsound handling of loops and to assertion violations (once an
assertion is violated, all the code after it becomes unreachable).

After we reported bftpd, Spin, and ntp bugs, the developers im-
mediately fixed all of them in the next release. Thanks to prompt
responses from the bftpd and ntp developers, we managed to check
the new versions that fixed all the bugs found in the previous ver-
sion. In the new versions, we found new bugs, which have also
been fixed in the meantime.

The most frequent causes of Saturn’s false positives were: lack of
interprocedural path-sensitivity, incomplete specifications of C li-
brary functions (for instance, passing a NULL pointer to free func-
tion is allowed), and specific code patterns that seemed like incon-
sistencies to Saturn. Saturn’s results on bind are especially inter-
esting. Bind’s code is among the highest quality code of all open-
source applications we have seen so far — almost every single
pointer is checked before dereferencing and complex data struc-
tures are checked for consistency before usage. This ubiquitous
checking apparently confused Saturn’s inconsistency analysis be-
cause every single report was provably false. The major sources of
CALYSTO’s false positives were: missing specifications of external
functions, broken cycles in the call graph, and C type unsafety.

The runtimes of both static checkers are comparable. Saturn is
faster on some; CALYSTO, on others. Bind was particularly prob-
lematic for CALYSTO — it ran out of memory while analyzing 8
and timed out (1 day) on 1 compilation unit. The timeout was
caused by a performance bug (failing to re-use certain cached re-
sults) in CALYSTO’s interprocedural analysis.

We also analyzed how much time the two checkers spend in
theorem-prover calls. Results are in Tables 3 and 4. CALYSTO

spends almost 50% of its time in theorem prover calls, even with
a small timeout (10 s) and a fast bit-vector arithmetic prover. The
amount of time spent in the theorem prover calls is unsurprising,

pointer dereferences as the earlier version, that the previous version
no longer exists, that they could not re-create it, and that they are
not planning to update their NULL analysis to where they have con-
fidence in it once again [1]. Thus, the only apples-to-apples com-
parison we can make, with the same definition of bugs, the same
benchmarks, and the same machines, is with the current version of
Saturn, which might not represent Saturn in the best possible light.
Fortunately, the central point of the comparison is whether Calysto
achieves comparable scalability to Saturn, despite performing anal-
yses that are, by design, more precise and therefore presumably
more expensive. Perhaps an earlier version of Saturn would have
had precision closer to that of Calysto, but that question is moot.
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Benchmark LOC (code) Saturn v1.1 CALYSTO v1.5
Reports Bugs Unkn. FP Rate Time [s] Reports Bugs Unkn. FP Rate Time [s]

bftpd 1.8 3306 3 3 0 0% 129.51 12 11 0 9% 3.14

bftpd 1.9.2 3368 3 3 0 0% 105.17 5 4 0 20% 2.86

HYPERSAT 1.7 6022 4 0 0 100% 647.21 0 0 0 0% 14.57

spin 4.3.0 20481 15 6 2 54% 2129.04 0 0 0 0% 6858.10

openssh 4.6p1 45304 14 0 1 100% 3707.81 4 1 0 75% 8995.64

inn 2.4.3 71102 288 ∗12 34 96% 9879.69 10 ∗6 1 34% 1312.33

ntp 4.2.4p2-RC5 74230 8 0 0 100% 326.44 30 26 0 14% 558.16

ntp 4.2.5p66 74277 10 0 0 100% 319.33 13 4 3 56% 493.39

bind 9.4.1p1 184204 951 0 0 100% 14984.72 5 ∗2 3 0% ♯2436.88

openldap 2.4.4a 223595 163 ∗14 50 88% 8098.48 20 15 2 27% 200.02

TOTAL 685408 1459 38 87 97% 40226.40 99 69 9 23% 20875.09

Table 2: NULL Pointer Dereference Checking Results. “LOC (code)” indicates the number of lines of true (after preprocessing) code.

“Reports” is the total number of warnings produced on the benchmark. “Bugs” is the number of true bugs found. Starred (∗) bug

numbers represent our best-effort confirmation when we could not get confirmations from developers. Bug numbers without the star

have been confirmed by the developers of the corresponding benchmark. “Unknown” shows the number of reports that could not be

proved either feasible or infeasible. “FP Rate” gives the false positive rate, calculated as 1−#Bugs/(#Reports−#Unknowns). “Time”

is the total runtime in seconds. The ♯ indicates that on bind, CALYSTO’s runtime does not include instances on which CALYSTO

failed to complete — it ran out of memory on 8 compilation units (taking an additional 6263.57 sec), and timed out in one day on one

compilation unit. Experiments were on a dual Opteron 2.8 GHz with 16 GB RAM.

CALYSTO v1.5
Benchmark Total time [s] SPEAR [s] Percentage

bftpd 1.8 3.14 1.25 39.8%

bftpd 1.9.2 2.86 0.88 30.7%

HYPERSAT 1.7 14.57 0.10 0.6%

spin 4.3.0 6858.10 473.50 6.9%

openssh 4.6p1 8995.64 8167.36 90.7%

inn 2.4.3 1312.33 14.77 1.1%

ntp 4.2.4p2-RC5 558.16 56.38 10.1%

ntp 4.2.5p66 493.39 58.03 11.7%

bind 9.4.1p1 ♯2436.88 980.48 40.2%

openldap 2.4.4a 200.02 181.90 90.9%

TOTAL 20875.09 9934.65 47.5%

Table 3: CALYSTO Total Runtime Split. The SPEAR column

shows the time spent in the theorem prover, with the next col-

umn showing the percentage of the total runtime.

given how difficult the computed VCs are. Despite using a slower
theorem prover [24], Saturn spends a much smaller fraction of its
time in theorem prover calls. As mentioned earlier, Saturn per-
forms expensive simplification using BDDs during static analy-
sis, whereas we use a fast and incomplete expression simplifier
and maximally-shared graphs. Also, because of Saturn’s approx-
imate interprocedural analysis, Saturn’s VCs are likely much sim-
pler. The different tool design shows up in the different time pro-
portions, but both tools end up being usably fast.

6. CONCLUSION AND FUTURE WORK
We have presented CALYSTO, an extended static checker that

provides an unprecedented combination of precision and scalabil-
ity. Among fully automatic tools, CALYSTO is more scalable than
anything with comparable coverage and precision, and offers better
coverage and precision than anything with comparable scalability.
This paper summarizes the key ideas to achieves these results.

Obvious lines of future work are more precise handling of pointer
arithmetic, loops, and recursion. There are promising theoretical

Saturn v1.1
Benchmark Total time [s] Minisat [s] Percentage

bftpd 1.8 129.51 17 13.1%

bftpd 1.9.2 105.17 8 7.6%

HYPERSAT 1.7 647.21 232 35.8%

spin 4.3.0 2129.04 457 21.4%

openssh 4.6p1 3707.81 988 26.6%

inn 2.4.3 9879.69 2104 21.2%

ntp 4.2.4p2-RC5 326.44 82 25.1%

ntp 4.2.5p66 319.33 80 25.0%

bind 9.4.1p1 14984.72 1141 7.6%

openldap 2.4.4a 8098.48 949 11.7%

TOTAL 40226.40 6058 15.0%

Table 4: Saturn Total Runtime Split. Saturn’s theorem prover

is the SAT solver Minisat.

results in these areas, which we would like to explore. We also be-
lieve there is considerable room to further improve the performance
of SPEAR, based on additional exploitation of problem structure.
The days of fully automatic, thorough, and highly precise static
checking of multi-million-line code bases are near.
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