LCOV - code coverage report
Current view: top level - include/llvm/ADT - SmallVector.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 1970 2323 84.8 %
Date: 2018-10-20 13:21:21 Functions: 3964 7409 53.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file defines the SmallVector class.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #ifndef LLVM_ADT_SMALLVECTOR_H
      15             : #define LLVM_ADT_SMALLVECTOR_H
      16             : 
      17             : #include "llvm/ADT/iterator_range.h"
      18             : #include "llvm/Support/AlignOf.h"
      19             : #include "llvm/Support/Compiler.h"
      20             : #include "llvm/Support/MathExtras.h"
      21             : #include "llvm/Support/MemAlloc.h"
      22             : #include "llvm/Support/type_traits.h"
      23             : #include "llvm/Support/ErrorHandling.h"
      24             : #include <algorithm>
      25             : #include <cassert>
      26             : #include <cstddef>
      27             : #include <cstdlib>
      28             : #include <cstring>
      29             : #include <initializer_list>
      30             : #include <iterator>
      31             : #include <memory>
      32             : #include <new>
      33             : #include <type_traits>
      34             : #include <utility>
      35             : 
      36             : namespace llvm {
      37             : 
      38             : /// This is all the non-templated stuff common to all SmallVectors.
      39             : class SmallVectorBase {
      40             : protected:
      41             :   void *BeginX;
      42             :   unsigned Size = 0, Capacity;
      43             : 
      44             :   SmallVectorBase() = delete;
      45             :   SmallVectorBase(void *FirstEl, size_t Capacity)
      46  9391524883 :       : BeginX(FirstEl), Capacity(Capacity) {}
      47             : 
      48             :   /// This is an implementation of the grow() method which only works
      49             :   /// on POD-like data types and is out of line to reduce code duplication.
      50             :   void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
      51             : 
      52             : public:
      53 13599661468 :   size_t size() const { return Size; }
      54  3001793850 :   size_t capacity() const { return Capacity; }
      55             : 
      56    29394197 :   LLVM_NODISCARD bool empty() const { return !Size; }
      57             : 
      58             :   /// Set the array size to \p N, which the current array must have enough
      59             :   /// capacity for.
      60             :   ///
      61             :   /// This does not construct or destroy any elements in the vector.
      62             :   ///
      63             :   /// Clients can use this in conjunction with capacity() to write past the end
      64             :   /// of the buffer when they know that more elements are available, and only
      65             :   /// update the size later. This avoids the cost of value initializing elements
      66             :   /// which will only be overwritten.
      67           0 :   void set_size(size_t Size) {
      68             :     assert(Size <= capacity());
      69 20863796217 :     this->Size = Size;
      70           0 :   }
      71             : };
      72             : 
      73             : /// Figure out the offset of the first element.
      74             : template <class T, typename = void> struct SmallVectorAlignmentAndSize {
      75             :   AlignedCharArrayUnion<SmallVectorBase> Base;
      76             :   AlignedCharArrayUnion<T> FirstEl;
      77             : };
      78             : 
      79             : /// This is the part of SmallVectorTemplateBase which does not depend on whether
      80             : /// the type T is a POD. The extra dummy template argument is used by ArrayRef
      81             : /// to avoid unnecessarily requiring T to be complete.
      82             : template <typename T, typename = void>
      83             : class SmallVectorTemplateCommon : public SmallVectorBase {
      84             :   /// Find the address of the first element.  For this pointer math to be valid
      85             :   /// with small-size of 0 for T with lots of alignment, it's important that
      86             :   /// SmallVectorStorage is properly-aligned even for small-size of 0.
      87             :   void *getFirstEl() const {
      88             :     return const_cast<void *>(reinterpret_cast<const void *>(
      89             :         reinterpret_cast<const char *>(this) +
      90  3935394730 :         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
      91             :   }
      92             :   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
      93             : 
      94             : protected:
      95             :   SmallVectorTemplateCommon(size_t Size)
      96             :       : SmallVectorBase(getFirstEl(), Size) {}
      97             : 
      98             :   void grow_pod(size_t MinCapacity, size_t TSize) {
      99   123687022 :     SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
     100             :   }
     101             : 
     102             :   /// Return true if this is a smallvector which has not had dynamic
     103             :   /// memory allocated for it.
     104   699213973 :   bool isSmall() const { return BeginX == getFirstEl(); }
     105             : 
     106             :   /// Put this vector in a state of being small.
     107             :   void resetToSmall() {
     108      869233 :     BeginX = getFirstEl();
     109      869233 :     Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
     110             :   }
     111             : 
     112             : public:
     113             :   using size_type = size_t;
     114             :   using difference_type = ptrdiff_t;
     115             :   using value_type = T;
     116             :   using iterator = T *;
     117             :   using const_iterator = const T *;
     118             : 
     119             :   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
     120             :   using reverse_iterator = std::reverse_iterator<iterator>;
     121             : 
     122             :   using reference = T &;
     123             :   using const_reference = const T &;
     124             :   using pointer = T *;
     125             :   using const_pointer = const T *;
     126             : 
     127             :   // forward iterator creation methods.
     128             :   LLVM_ATTRIBUTE_ALWAYS_INLINE
     129 23456423425 :   iterator begin() { return (iterator)this->BeginX; }
     130             :   LLVM_ATTRIBUTE_ALWAYS_INLINE
     131 11942194327 :   const_iterator begin() const { return (const_iterator)this->BeginX; }
     132             :   LLVM_ATTRIBUTE_ALWAYS_INLINE
     133 37471022239 :   iterator end() { return begin() + size(); }
     134             :   LLVM_ATTRIBUTE_ALWAYS_INLINE
     135  4194512428 :   const_iterator end() const { return begin() + size(); }
     136             : 
     137             :   // reverse iterator creation methods.
     138             :   reverse_iterator rbegin()            { return reverse_iterator(end()); }
     139             :   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
     140           0 :   reverse_iterator rend()              { return reverse_iterator(begin()); }
     141           0 :   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
     142             : 
     143             :   size_type size_in_bytes() const { return size() * sizeof(T); }
     144             :   size_type max_size() const { return size_type(-1) / sizeof(T); }
     145             : 
     146          14 :   size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
     147             : 
     148             :   /// Return a pointer to the vector's buffer, even if empty().
     149           0 :   pointer data() { return pointer(begin()); }
     150             :   /// Return a pointer to the vector's buffer, even if empty().
     151           0 :   const_pointer data() const { return const_pointer(begin()); }
     152             : 
     153             :   LLVM_ATTRIBUTE_ALWAYS_INLINE
     154             :   reference operator[](size_type idx) {
     155             :     assert(idx < size());
     156  4855991006 :     return begin()[idx];
     157             :   }
     158             :   LLVM_ATTRIBUTE_ALWAYS_INLINE
     159             :   const_reference operator[](size_type idx) const {
     160             :     assert(idx < size());
     161 14309188750 :     return begin()[idx];
     162             :   }
     163             : 
     164           0 :   reference front() {
     165             :     assert(!empty());
     166           0 :     return begin()[0];
     167             :   }
     168           0 :   const_reference front() const {
     169             :     assert(!empty());
     170           0 :     return begin()[0];
     171             :   }
     172           0 : 
     173             :   reference back() {
     174           0 :     assert(!empty());
     175  1813549163 :     return end()[-1];
     176           0 :   }
     177             :   const_reference back() const {
     178           0 :     assert(!empty());
     179  1109614848 :     return end()[-1];
     180           0 :   }
     181             : };
     182           0 : 
     183  1105698920 : /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
     184           0 : /// implementations that are designed to work with non-POD-like T's.
     185             : template <typename T, bool isPodLike>
     186           0 : class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
     187   102930162 : protected:
     188             :   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
     189             : 
     190     9771194 :   static void destroy_range(T *S, T *E) {
     191  1050868425 :     while (S != E) {
     192   329705835 :       --E;
     193    11093185 :       E->~T();
     194             :     }
     195    15601032 :   }
     196        6266 : 
     197       65541 :   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
     198     1406446 :   /// constructing elements as needed.
     199   203578594 :   template<typename It1, typename It2>
     200   136987202 :   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
     201    10511327 :     std::uninitialized_copy(std::make_move_iterator(I),
     202      608869 :                             std::make_move_iterator(E), Dest);
     203    16064288 :   }
     204     1580395 : 
     205      922117 :   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
     206       55857 :   /// constructing elements as needed.
     207     5563700 :   template<typename It1, typename It2>
     208      744396 :   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
     209     2653906 :     std::uninitialized_copy(I, E, Dest);
     210     1516247 :   }
     211      332557 : 
     212        2381 :   /// Grow the allocated memory (without initializing new elements), doubling
     213      590800 :   /// the size of the allocated memory. Guarantees space for at least one more
     214      590692 :   /// element, or MinSize more elements if specified.
     215      920868 :   void grow(size_t MinSize = 0);
     216      138667 : 
     217      396413 : public:
     218   187471869 :   void push_back(const T &Elt) {
     219   187804815 :     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
     220     1422633 :       this->grow();
     221    27456462 :     ::new ((void*) this->end()) T(Elt);
     222   123606963 :     this->set_size(this->size() + 1);
     223   187214123 :   }
     224    96990440 : 
     225   112106131 :   void push_back(T &&Elt) {
     226    16039683 :     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
     227     1051056 :       this->grow();
     228    99958750 :     ::new ((void*) this->end()) T(::std::move(Elt));
     229   110249982 :     this->set_size(this->size() + 1);
     230    47007894 :   }
     231    34742039 : 
     232     3304217 :   void pop_back() {
     233   160352803 :     this->set_size(this->size() - 1);
     234   168727198 :     this->end()->~T();
     235    36927279 :   }
     236   141850616 : };
     237   181110359 : 
     238   178668024 : // Define this out-of-line to dissuade the C++ compiler from inlining it.
     239       20741 : template <typename T, bool isPodLike>
     240     3183221 : void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
     241   368991422 :   if (MinSize > UINT32_MAX)
     242   365465903 :     report_bad_alloc_error("SmallVector capacity overflow during allocation");
     243     1141452 : 
     244     4184566 :   // Always grow, even from zero.
     245    37501698 :   size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
     246    33703686 :   NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
     247     8052319 :   T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
     248     3906314 : 
     249     5628171 :   // Move the elements over.
     250     2065102 :   this->uninitialized_move(this->begin(), this->end(), NewElts);
     251       66994 : 
     252     1994144 :   // Destroy the original elements.
     253     7517542 :   destroy_range(this->begin(), this->end());
     254     5090595 : 
     255     3370384 :   // If this wasn't grown from the inline copy, deallocate the old space.
     256    12239956 :   if (!this->isSmall())
     257    11931168 :     free(this->begin());
     258      504917 : 
     259    13382372 :   this->BeginX = NewElts;
     260     3288361 :   this->Capacity = NewCapacity;
     261     4525435 : }
     262     2796521 : 
     263     1792460 : 
     264     2892155 : /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
     265     3308737 : /// implementations that are designed to work with POD-like T's.
     266     1495515 : template <typename T>
     267     4651463 : class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
     268     4554228 : protected:
     269     4351404 :   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
     270     1489376 : 
     271     2357182 :   // No need to do a destroy loop for POD's.
     272      840939 :   static void destroy_range(T *, T *) {}
     273      695552 : 
     274      670006 :   /// Move the range [I, E) onto the uninitialized memory
     275     1693715 :   /// starting with "Dest", constructing elements into it as needed.
     276        2180 :   template<typename It1, typename It2>
     277     1040091 :   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
     278     2536228 :     // Just do a copy.
     279      922440 :     uninitialized_copy(I, E, Dest);
     280       49786 :   }
     281     2325074 : 
     282     1695064 :   /// Copy the range [I, E) onto the uninitialized memory
     283     1828182 :   /// starting with "Dest", constructing elements into it as needed.
     284     1729238 :   template<typename It1, typename It2>
     285     3516598 :   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
     286        4258 :     // Arbitrary iterator types; just use the basic implementation.
     287     2522475 :     std::uninitialized_copy(I, E, Dest);
     288     2191291 :   }
     289     1573453 : 
     290      306413 :   /// Copy the range [I, E) onto the uninitialized memory
     291      217236 :   /// starting with "Dest", constructing elements into it as needed.
     292     2415858 :   template <typename T1, typename T2>
     293     2462626 :   static void uninitialized_copy(
     294      129426 :       T1 *I, T1 *E, T2 *Dest,
     295     1125053 :       typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
     296      203535 :                                            T2>::value>::type * = nullptr) {
     297     2631194 :     // Use memcpy for PODs iterated by pointers (which includes SmallVector
     298     2428297 :     // iterators): std::uninitialized_copy optimizes to memmove, but we can
     299     2429210 :     // use memcpy here. Note that I and E are iterators and thus might be
     300       77135 :     // invalid for memcpy if they are equal.
     301  1699430134 :     if (I != E)
     302  1712570143 :       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
     303      349879 :   }
     304       74779 : 
     305      194725 :   /// Double the size of the allocated memory, guaranteeing space for at
     306       14679 :   /// least one more element or MinSize if specified.
     307      123759 :   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
     308     2520989 : 
     309     7145210 : public:
     310 18674857225 :   void push_back(const T &Elt) {
     311 18659730721 :     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
     312     2468807 :       this->grow();
     313 18659925154 :     memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
     314 18657486863 :     this->set_size(this->size() + 1);
     315 18657467399 :   }
     316   210093947 : 
     317   242539535 :   void pop_back() { this->set_size(this->size() - 1); }
     318    34206880 : };
     319   242443889 : 
     320   210156239 : /// This class consists of common code factored out of the SmallVector class to
     321   242443869 : /// reduce code duplication based on the SmallVector 'N' template parameter.
     322  2177636318 : template <typename T>
     323  2177630617 : class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
     324        2320 :   using SuperClass = SmallVectorTemplateBase<T, isPodLike<T>::value>;
     325  2145460401 : 
     326  2145566083 : public:
     327  2145567094 :   using iterator = typename SuperClass::iterator;
     328 15231834434 :   using const_iterator = typename SuperClass::const_iterator;
     329 15281395325 :   using size_type = typename SuperClass::size_type;
     330       11131 : 
     331 15232060169 : protected:
     332 15882286119 :   // Default ctor - Initialize to empty.
     333 15882296830 :   explicit SmallVectorImpl(unsigned N)
     334   363323316 :       : SmallVectorTemplateBase<T, isPodLike<T>::value>(N) {}
     335  1024828839 : 
     336   651920447 : public:
     337  1015305918 :   SmallVectorImpl(const SmallVectorImpl &) = delete;
     338   392645678 : 
     339   396451033 :   ~SmallVectorImpl() {
     340   167907872 :     // Subclass has already destructed this vector's elements.
     341   198992358 :     // If this wasn't grown from the inline copy, deallocate the old space.
     342   304352748 :     if (!this->isSmall())
     343  1354654118 :       free(this->begin());
     344  1345881086 :   }
     345   209821518 : 
     346  1256289511 :   void clear() {
     347  1238010095 :     this->destroy_range(this->begin(), this->end());
     348  1389817308 :     this->Size = 0;
     349   398288335 :   }
     350   314668344 : 
     351   137793932 :   void resize(size_type N) {
     352   380397607 :     if (N < this->size()) {
     353   332893870 :       this->destroy_range(this->begin()+N, this->end());
     354   587619383 :       this->set_size(N);
     355   242272517 :     } else if (N > this->size()) {
     356   254811081 :       if (this->capacity() < N)
     357   317173205 :         this->grow(N);
     358   785810332 :       for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
     359   851167508 :         new (&*I) T();
     360  1448676157 :       this->set_size(N);
     361   161657004 :     }
     362   151677463 :   }
     363    95353458 : 
     364   123182935 :   void resize(size_type N, const T &NV) {
     365   352775598 :     if (N < this->size()) {
     366  1823734859 :       this->destroy_range(this->begin()+N, this->end());
     367   284005487 :       this->set_size(N);
     368   394884416 :     } else if (N > this->size()) {
     369   302678419 :       if (this->capacity() < N)
     370   694860135 :         this->grow(N);
     371   176556113 :       std::uninitialized_fill(this->end(), this->begin()+N, NV);
     372   197151507 :       this->set_size(N);
     373    46169489 :     }
     374    47597174 :   }
     375    63283913 : 
     376   318962425 :   void reserve(size_type N) {
     377   249485562 :     if (this->capacity() < N)
     378   561381956 :       this->grow(N);
     379   320992075 :   }
     380   280926840 : 
     381   135200114 :   LLVM_NODISCARD T pop_back_val() {
     382   136148657 :     T Result = ::std::move(this->back());
     383    83913360 :     this->pop_back();
     384   346446622 :     return Result;
     385    73459578 :   }
     386   100414818 : 
     387   217482765 :   void swap(SmallVectorImpl &RHS);
     388   191946375 : 
     389   122682624 :   /// Add the specified range to the end of the SmallVector.
     390   344300675 :   template <typename in_iter,
     391   394689283 :             typename = typename std::enable_if<std::is_convertible<
     392   440390603 :                 typename std::iterator_traits<in_iter>::iterator_category,
     393   188766993 :                 std::input_iterator_tag>::value>::type>
     394  1427017023 :   void append(in_iter in_start, in_iter in_end) {
     395  1431912753 :     size_type NumInputs = std::distance(in_start, in_end);
     396   463382822 :     // Grow allocated space if needed.
     397  1349353811 :     if (NumInputs > this->capacity() - this->size())
     398   301065521 :       this->grow(this->size()+NumInputs);
     399   269261338 : 
     400   392442338 :     // Copy the new elements over.
     401   404070193 :     this->uninitialized_copy(in_start, in_end, this->end());
     402  2501489031 :     this->set_size(this->size() + NumInputs);
     403  1346283481 :   }
     404   661749712 : 
     405   356593427 :   /// Add the specified range to the end of the SmallVector.
     406   281082304 :   void append(size_type NumInputs, const T &Elt) {
     407   203385480 :     // Grow allocated space if needed.
     408   231150910 :     if (NumInputs > this->capacity() - this->size())
     409    83985534 :       this->grow(this->size()+NumInputs);
     410    75944800 : 
     411   100309302 :     // Copy the new elements over.
     412   403135200 :     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
     413   409394524 :     this->set_size(this->size() + NumInputs);
     414   117779638 :   }
     415   369463929 : 
     416   364780281 :   void append(std::initializer_list<T> IL) {
     417   337024728 :     append(IL.begin(), IL.end());
     418    27130696 :   }
     419   140730428 : 
     420   846812007 :   // FIXME: Consider assigning over existing elements, rather than clearing &
     421   380767383 :   // re-initializing them - for all assign(...) variants.
     422   229815953 : 
     423   236585712 :   void assign(size_type NumElts, const T &Elt) {
     424   291088009 :     clear();
     425   210854843 :     if (this->capacity() < NumElts)
     426   132829406 :       this->grow(NumElts);
     427   211542512 :     this->set_size(NumElts);
     428   216702836 :     std::uninitialized_fill(this->begin(), this->end(), Elt);
     429   233869104 :   }
     430    55121933 : 
     431    96115195 :   template <typename in_iter,
     432   205740535 :             typename = typename std::enable_if<std::is_convertible<
     433   165033330 :                 typename std::iterator_traits<in_iter>::iterator_category,
     434   119136197 :                 std::input_iterator_tag>::value>::type>
     435   200925680 :   void assign(in_iter in_start, in_iter in_end) {
     436   213046586 :     clear();
     437   177196559 :     append(in_start, in_end);
     438   147966981 :   }
     439   251278445 : 
     440   250583945 :   void assign(std::initializer_list<T> IL) {
     441   152441879 :     clear();
     442   428498174 :     append(IL);
     443   304650101 :   }
     444   236848239 : 
     445   202855454 :   iterator erase(const_iterator CI) {
     446   259794108 :     // Just cast away constness because this is a non-const member function.
     447   231109582 :     iterator I = const_cast<iterator>(CI);
     448    70517414 : 
     449    65916294 :     assert(I >= this->begin() && "Iterator to erase is out of bounds.");
     450   160634597 :     assert(I < this->end() && "Erasing at past-the-end iterator.");
     451   174539510 : 
     452   112495795 :     iterator N = I;
     453   252938864 :     // Shift all elts down one.
     454   261997032 :     std::move(I+1, this->end(), I);
     455   264985759 :     // Drop the last elt.
     456   251142627 :     this->pop_back();
     457   159138144 :     return(N);
     458   168432832 :   }
     459   176620856 : 
     460   131160903 :   iterator erase(const_iterator CS, const_iterator CE) {
     461   110395645 :     // Just cast away constness because this is a non-const member function.
     462   321124635 :     iterator S = const_cast<iterator>(CS);
     463   217110325 :     iterator E = const_cast<iterator>(CE);
     464    63546060 : 
     465    53260490 :     assert(S >= this->begin() && "Range to erase is out of bounds.");
     466    66009106 :     assert(S <= E && "Trying to erase invalid range.");
     467    64866081 :     assert(E <= this->end() && "Trying to erase past the end.");
     468    78606508 : 
     469   117527071 :     iterator N = S;
     470   132994680 :     // Shift all elts down.
     471   126754419 :     iterator I = std::move(E, this->end(), S);
     472    78113424 :     // Drop the last elts.
     473   583243052 :     this->destroy_range(I, this->end());
     474   575203020 :     this->set_size(I - this->begin());
     475   142088663 :     return(N);
     476   533587221 :   }
     477  1060913998 : 
     478   580467053 :   iterator insert(iterator I, T &&Elt) {
     479    61369322 :     if (I == this->end()) {  // Important special case for empty vector.
     480    73435541 :       this->push_back(::std::move(Elt));
     481    41411978 :       return this->end()-1;
     482    44566170 :     }
     483   118551822 : 
     484    59279709 :     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
     485   110164193 :     assert(I <= this->end() && "Inserting past the end of the vector.");
     486   111520696 : 
     487   185202035 :     if (this->size() >= this->capacity()) {
     488   213027019 :       size_t EltNo = I-this->begin();
     489    69311228 :       this->grow();
     490   177984605 :       I = this->begin()+EltNo;
     491   228120145 :     }
     492   161399724 : 
     493    33813660 :     ::new ((void*) this->end()) T(::std::move(this->back()));
     494    21455960 :     // Push everything else over.
     495    20284628 :     std::move_backward(I, this->end()-1, this->end());
     496    66548566 :     this->set_size(this->size() + 1);
     497    85801402 : 
     498    53835713 :     // If we just moved the element we're inserting, be sure to update
     499    76298561 :     // the reference.
     500    93628673 :     T *EltPtr = &Elt;
     501   196658587 :     if (I <= EltPtr && EltPtr < this->end())
     502    60688011 :       ++EltPtr;
     503    51556249 : 
     504    21754958 :     *I = ::std::move(*EltPtr);
     505    43661176 :     return I;
     506   109454262 :   }
     507    40702251 : 
     508   183556748 :   iterator insert(iterator I, const T &Elt) {
     509    62108495 :     if (I == this->end()) {  // Important special case for empty vector.
     510    35688166 :       this->push_back(Elt);
     511    76791552 :       return this->end()-1;
     512   184781586 :     }
     513    45659934 : 
     514    74273626 :     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
     515    63610882 :     assert(I <= this->end() && "Inserting past the end of the vector.");
     516    98914476 : 
     517    88112959 :     if (this->size() >= this->capacity()) {
     518    85912714 :       size_t EltNo = I-this->begin();
     519    65743390 :       this->grow();
     520    41536440 :       I = this->begin()+EltNo;
     521   335365585 :     }
     522   302147128 :     ::new ((void*) this->end()) T(std::move(this->back()));
     523    53301486 :     // Push everything else over.
     524   362041342 :     std::move_backward(I, this->end()-1, this->end());
     525   353805768 :     this->set_size(this->size() + 1);
     526   346479320 : 
     527    14320503 :     // If we just moved the element we're inserting, be sure to update
     528   102945263 :     // the reference.
     529    43936259 :     const T *EltPtr = &Elt;
     530   401325753 :     if (I <= EltPtr && EltPtr < this->end())
     531   255108300 :       ++EltPtr;
     532    22019496 : 
     533   384494110 :     *I = *EltPtr;
     534   354862668 :     return I;
     535   225411296 :   }
     536   300167343 : 
     537   148805641 :   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
     538   181622968 :     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
     539   407985277 :     size_t InsertElt = I - this->begin();
     540   355675505 : 
     541    48145699 :     if (I == this->end()) {  // Important special case for empty vector.
     542   340083825 :       append(NumToInsert, Elt);
     543   372409305 :       return this->begin()+InsertElt;
     544   379638234 :     }
     545    48609091 : 
     546   122866959 :     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
     547    59994586 :     assert(I <= this->end() && "Inserting past the end of the vector.");
     548   114234355 : 
     549    88844100 :     // Ensure there is enough space.
     550   196298022 :     reserve(this->size() + NumToInsert);
     551   356659837 : 
     552   347910376 :     // Uninvalidate the iterator.
     553    60126904 :     I = this->begin()+InsertElt;
     554   312632284 : 
     555   390165897 :     // If there are more elements between the insertion point and the end of the
     556   381141340 :     // range than there are being inserted, we can use a simple approach to
     557    20927141 :     // insertion.  Since we already reserved space, we know that this won't
     558    32194785 :     // reallocate the vector.
     559    90462088 :     if (size_t(this->end()-I) >= NumToInsert) {
     560     5069001 :       T *OldEnd = this->end();
     561   318154449 :       append(std::move_iterator<iterator>(this->end() - NumToInsert),
     562    19660758 :              std::move_iterator<iterator>(this->end()));
     563     6162068 : 
     564     9278707 :       // Copy the existing elements that get replaced.
     565    10158953 :       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
     566   118118343 : 
     567    69603460 :       std::fill_n(I, NumToInsert, Elt);
     568     9660420 :       return I;
     569     7327611 :     }
     570   150231652 : 
     571   238819548 :     // Otherwise, we're inserting more elements than exist already, and we're
     572   232838157 :     // not inserting at the end.
     573    14281308 : 
     574   230088380 :     // Move over the elements that we're about to overwrite.
     575   271461261 :     T *OldEnd = this->end();
     576   268143665 :     this->set_size(this->size() + NumToInsert);
     577    20160136 :     size_t NumOverwritten = OldEnd-I;
     578    66348575 :     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
     579   142773758 : 
     580   147136145 :     // Replace the overwritten part.
     581    48418418 :     std::fill_n(I, NumOverwritten, Elt);
     582    20125477 : 
     583    87291309 :     // Insert the non-overwritten middle part.
     584     3375611 :     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
     585     3693069 :     return I;
     586      827619 :   }
     587    34206360 : 
     588    34077597 :   template <typename ItTy,
     589  1043424849 :             typename = typename std::enable_if<std::is_convertible<
     590   201918145 :                 typename std::iterator_traits<ItTy>::iterator_category,
     591   107986337 :                 std::input_iterator_tag>::value>::type>
     592   102159948 :   iterator insert(iterator I, ItTy From, ItTy To) {
     593   131631277 :     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
     594   218983226 :     size_t InsertElt = I - this->begin();
     595   128713371 : 
     596    94329591 :     if (I == this->end()) {  // Important special case for empty vector.
     597    77536384 :       append(From, To);
     598    64042349 :       return this->begin()+InsertElt;
     599   102148828 :     }
     600    48021114 : 
     601    57338854 :     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
     602   101924110 :     assert(I <= this->end() && "Inserting past the end of the vector.");
     603   104093027 : 
     604    59560534 :     size_t NumToInsert = std::distance(From, To);
     605    56847285 : 
     606    96919308 :     // Ensure there is enough space.
     607    36497795 :     reserve(this->size() + NumToInsert);
     608    11486533 : 
     609     6836574 :     // Uninvalidate the iterator.
     610    55866597 :     I = this->begin()+InsertElt;
     611     6195246 : 
     612     7769644 :     // If there are more elements between the insertion point and the end of the
     613    31236047 :     // range than there are being inserted, we can use a simple approach to
     614     2255885 :     // insertion.  Since we already reserved space, we know that this won't
     615    40765024 :     // reallocate the vector.
     616     4894826 :     if (size_t(this->end()-I) >= NumToInsert) {
     617     3084049 :       T *OldEnd = this->end();
     618     9666029 :       append(std::move_iterator<iterator>(this->end() - NumToInsert),
     619    27449955 :              std::move_iterator<iterator>(this->end()));
     620    17655686 : 
     621     6098142 :       // Copy the existing elements that get replaced.
     622   110780450 :       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
     623   127839585 : 
     624   137942202 :       std::copy(From, To, I);
     625   137227188 :       return I;
     626    74164188 :     }
     627    52386788 : 
     628    52781979 :     // Otherwise, we're inserting more elements than exist already, and we're
     629    59590988 :     // not inserting at the end.
     630   251017811 : 
     631   255095043 :     // Move over the elements that we're about to overwrite.
     632   265733715 :     T *OldEnd = this->end();
     633   140509949 :     this->set_size(this->size() + NumToInsert);
     634   136689226 :     size_t NumOverwritten = OldEnd-I;
     635   268336557 :     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
     636   169362219 : 
     637    36749365 :     // Replace the overwritten part.
     638     3663174 :     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
     639     8504372 :       *J = *From;
     640   205901376 :       ++J; ++From;
     641   103706628 :     }
     642      941922 : 
     643     4850033 :     // Insert the non-overwritten middle part.
     644    17984151 :     this->uninitialized_copy(From, To, OldEnd);
     645    16285663 :     return I;
     646     5009115 :   }
     647     4360200 : 
     648     3573671 :   void insert(iterator I, std::initializer_list<T> IL) {
     649      733033 :     insert(I, IL.begin(), IL.end());
     650     1409051 :   }
     651     1506707 : 
     652    42419221 :   template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) {
     653    25194186 :     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
     654    49620888 :       this->grow();
     655    43290493 :     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
     656    10868323 :     this->set_size(this->size() + 1);
     657    78749555 :   }
     658    53425403 : 
     659     1309406 :   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
     660     2745109 : 
     661    31452218 :   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
     662   105851577 : 
     663    43383984 :   bool operator==(const SmallVectorImpl &RHS) const {
     664    78170874 :     if (this->size() != RHS.size()) return false;
     665    51475455 :     return std::equal(this->begin(), this->end(), RHS.begin());
     666     7191900 :   }
     667     8136933 :   bool operator!=(const SmallVectorImpl &RHS) const {
     668    29598452 :     return !(*this == RHS);
     669     8347517 :   }
     670     1437343 : 
     671     2397589 :   bool operator<(const SmallVectorImpl &RHS) const {
     672     1191080 :     return std::lexicographical_compare(this->begin(), this->end(),
     673    26991549 :                                         RHS.begin(), RHS.end());
     674    36055058 :   }
     675     7177261 : };
     676    35372745 : 
     677     5701446 : template <typename T>
     678     4645410 : void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
     679     1090568 :   if (this == &RHS) return;
     680     4021320 : 
     681   104409532 :   // We can only avoid copying elements if neither vector is small.
     682    80033202 :   if (!this->isSmall() && !RHS.isSmall()) {
     683     5048989 :     std::swap(this->BeginX, RHS.BeginX);
     684     5729178 :     std::swap(this->Size, RHS.Size);
     685    31552578 :     std::swap(this->Capacity, RHS.Capacity);
     686    31262722 :     return;
     687     2314767 :   }
     688    73029743 :   if (RHS.size() > this->capacity())
     689    49985549 :     this->grow(RHS.size());
     690     2849408 :   if (this->size() > RHS.capacity())
     691      976394 :     RHS.grow(this->size());
     692    28471083 : 
     693     2032133 :   // Swap the shared elements.
     694     4869298 :   size_t NumShared = this->size();
     695   128687494 :   if (NumShared > RHS.size()) NumShared = RHS.size();
     696     2928573 :   for (size_type i = 0; i != NumShared; ++i)
     697     2059828 :     std::swap((*this)[i], RHS[i]);
     698     1697260 : 
     699      952048 :   // Copy over the extra elts.
     700     4412353 :   if (this->size() > RHS.size()) {
     701     3532836 :     size_t EltDiff = this->size() - RHS.size();
     702     1822149 :     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
     703     2268698 :     RHS.set_size(RHS.size() + EltDiff);
     704     2016553 :     this->destroy_range(this->begin()+NumShared, this->end());
     705     2159689 :     this->set_size(NumShared);
     706     3493369 :   } else if (RHS.size() > this->size()) {
     707     3120030 :     size_t EltDiff = RHS.size() - this->size();
     708    15286897 :     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
     709   126022123 :     this->set_size(this->size() + EltDiff);
     710    11123007 :     this->destroy_range(RHS.begin()+NumShared, RHS.end());
     711    10709263 :     RHS.set_size(NumShared);
     712     1052968 :   }
     713      408310 : }
     714     3410742 : 
     715     4848580 : template <typename T>
     716     4974003 : SmallVectorImpl<T> &SmallVectorImpl<T>::
     717     2504104 :   operator=(const SmallVectorImpl<T> &RHS) {
     718   178816721 :   // Avoid self-assignment.
     719     1094909 :   if (this == &RHS) return *this;
     720       79988 : 
     721      780722 :   // If we already have sufficient space, assign the common elements, then
     722    14660044 :   // destroy any excess.
     723     9406289 :   size_t RHSSize = RHS.size();
     724    48100092 :   size_t CurSize = this->size();
     725    39289779 :   if (CurSize >= RHSSize) {
     726     1389456 :     // Assign common elements.
     727    40766933 :     iterator NewEnd;
     728     2659796 :     if (RHSSize)
     729      147848 :       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
     730      397160 :     else
     731     5500261 :       NewEnd = this->begin();
     732    77103639 : 
     733    38387776 :     // Destroy excess elements.
     734      206048 :     this->destroy_range(NewEnd, this->end());
     735     4714382 : 
     736    10271274 :     // Trim.
     737      324210 :     this->set_size(RHSSize);
     738     3289234 :     return *this;
     739      770807 :   }
     740     3675388 : 
     741     4277786 :   // If we have to grow to have enough elements, destroy the current elements.
     742      256264 :   // This allows us to avoid copying them during the grow.
     743     5244020 :   // FIXME: don't do this if they're efficiently moveable.
     744    36815492 :   if (this->capacity() < RHSSize) {
     745    35083034 :     // Destroy current elements.
     746     1199669 :     this->destroy_range(this->begin(), this->end());
     747    88143957 :     this->set_size(0);
     748    62781173 :     CurSize = 0;
     749    47882121 :     this->grow(RHSSize);
     750    31469357 :   } else if (CurSize) {
     751    50963124 :     // Otherwise, use assignment for the already-constructed elements.
     752     6476018 :     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
     753    54819225 :   }
     754    53715319 : 
     755    32790801 :   // Copy construct the new elements in place.
     756    66878494 :   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
     757    29258392 :                            this->begin()+CurSize);
     758    86898188 : 
     759   462365568 :   // Set end.
     760    27601797 :   this->set_size(RHSSize);
     761    58334484 :   return *this;
     762    21027717 : }
     763     7867693 : 
     764     7262975 : template <typename T>
     765     7632176 : SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
     766     5572862 :   // Avoid self-assignment.
     767      143051 :   if (this == &RHS) return *this;
     768     7755127 : 
     769     4305285 :   // If the RHS isn't small, clear this vector and then steal its buffer.
     770     8637543 :   if (!RHS.isSmall()) {
     771     4923820 :     this->destroy_range(this->begin(), this->end());
     772     4919899 :     if (!this->isSmall()) free(this->begin());
     773     3277672 :     this->BeginX = RHS.BeginX;
     774     7009382 :     this->Size = RHS.Size;
     775     6947282 :     this->Capacity = RHS.Capacity;
     776     2139433 :     RHS.resetToSmall();
     777    12113980 :     return *this;
     778    19653763 :   }
     779    22072627 : 
     780     1083076 :   // If we already have sufficient space, assign the common elements, then
     781    12037129 :   // destroy any excess.
     782     9154607 :   size_t RHSSize = RHS.size();
     783     1075189 :   size_t CurSize = this->size();
     784     2181477 :   if (CurSize >= RHSSize) {
     785     6429918 :     // Assign common elements.
     786    22497087 :     iterator NewEnd = this->begin();
     787    13751458 :     if (RHSSize)
     788     7791174 :       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
     789    17124141 : 
     790     5566547 :     // Destroy excess elements and trim the bounds.
     791    15267746 :     this->destroy_range(NewEnd, this->end());
     792     9906296 :     this->set_size(RHSSize);
     793     6826401 : 
     794    18450070 :     // Clear the RHS.
     795    19453834 :     RHS.clear();
     796    20784544 : 
     797     9790285 :     return *this;
     798    38659502 :   }
     799    20906510 : 
     800    13399781 :   // If we have to grow to have enough elements, destroy the current elements.
     801    10994986 :   // This allows us to avoid copying them during the grow.
     802     3487419 :   // FIXME: this may not actually make any sense if we can efficiently move
     803     8100596 :   // elements.
     804    13992773 :   if (this->capacity() < RHSSize) {
     805    11379920 :     // Destroy current elements.
     806    17824594 :     this->destroy_range(this->begin(), this->end());
     807     9348290 :     this->set_size(0);
     808     7528430 :     CurSize = 0;
     809    13288866 :     this->grow(RHSSize);
     810    12029832 :   } else if (CurSize) {
     811    41315368 :     // Otherwise, use assignment for the already-constructed elements.
     812    12365152 :     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
     813     4289231 :   }
     814    29025445 : 
     815     5729010 :   // Move-construct the new elements in place.
     816     2883259 :   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
     817     4546065 :                            this->begin()+CurSize);
     818    32982668 : 
     819    34015881 :   // Set end.
     820    34534793 :   this->set_size(RHSSize);
     821     6618029 : 
     822     2140330 :   RHS.clear();
     823    33339569 :   return *this;
     824     9782323 : }
     825    12645567 : 
     826    12487896 : /// Storage for the SmallVector elements.  This is specialized for the N=0 case
     827     8464013 : /// to avoid allocating unnecessary storage.
     828     3836540 : template <typename T, unsigned N>
     829      951763 : struct SmallVectorStorage {
     830     8515852 :   AlignedCharArrayUnion<T> InlineElts[N];
     831    20441357 : };
     832    21207856 : 
     833    34110223 : /// We need the storage to be properly aligned even for small-size of 0 so that
     834     4661011 : /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
     835     7358574 : /// well-defined.
     836     7738745 : template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
     837    11642462 : 
     838     6943150 : /// This is a 'vector' (really, a variable-sized array), optimized
     839     5182568 : /// for the case when the array is small.  It contains some number of elements
     840     4282224 : /// in-place, which allows it to avoid heap allocation when the actual number of
     841      883348 : /// elements is below that threshold.  This allows normal "small" cases to be
     842     8623672 : /// fast without losing generality for large inputs.
     843    18397847 : ///
     844    12246237 : /// Note that this does not attempt to be exception safe.
     845     6048204 : ///
     846     1127652 : template <typename T, unsigned N>
     847    29319385 : class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
     848    17649765 : public:
     849   266201006 :   SmallVector() : SmallVectorImpl<T>(N) {}
     850     1046036 : 
     851    34967911 :   ~SmallVector() {
     852     3329375 :     // Destroy the constructed elements in the vector.
     853     4376593 :     this->destroy_range(this->begin(), this->end());
     854    76656980 :   }
     855     4721192 : 
     856      942528 :   explicit SmallVector(size_t Size, const T &Value = T())
     857    26037002 :     : SmallVectorImpl<T>(N) {
     858    25991378 :     this->assign(Size, Value);
     859    21086235 :   }
     860    18744687 : 
     861   143391811 :   template <typename ItTy,
     862     9773012 :             typename = typename std::enable_if<std::is_convertible<
     863     5861873 :                 typename std::iterator_traits<ItTy>::iterator_category,
     864     9002204 :                 std::input_iterator_tag>::value>::type>
     865     8863105 :   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
     866    25974359 :     this->append(S, E);
     867  1206197039 :   }
     868    11156641 : 
     869    14989328 :   template <typename RangeTy>
     870     6680711 :   explicit SmallVector(const iterator_range<RangeTy> &R)
     871     2307895 :       : SmallVectorImpl<T>(N) {
     872    12651379 :     this->append(R.begin(), R.end());
     873    71328840 :   }
     874     5661008 : 
     875    18746419 :   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
     876    31899241 :     this->assign(IL);
     877    14487264 :   }
     878    11053567 : 
     879    28144873 :   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
     880    28904513 :     if (!RHS.empty())
     881    69190123 :       SmallVectorImpl<T>::operator=(RHS);
     882    34312011 :   }
     883     8563696 : 
     884    11722921 :   const SmallVector &operator=(const SmallVector &RHS) {
     885   137122563 :     SmallVectorImpl<T>::operator=(RHS);
     886     1889011 :     return *this;
     887    11685220 :   }
     888     9907508 : 
     889      883944 :   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
     890    12150676 :     if (!RHS.empty())
     891    60091294 :       SmallVectorImpl<T>::operator=(::std::move(RHS));
     892    13537532 :   }
     893   379685110 : 
     894     7276500 :   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
     895    53701363 :     if (!RHS.empty())
     896    17562899 :       SmallVectorImpl<T>::operator=(::std::move(RHS));
     897   138934144 :   }
     898    33931517 : 
     899     9990155 :   const SmallVector &operator=(SmallVector &&RHS) {
     900   184333964 :     SmallVectorImpl<T>::operator=(::std::move(RHS));
     901    44419958 :     return *this;
     902    50823059 :   }
     903    14573105 : 
     904    11307928 :   const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
     905    69388719 :     SmallVectorImpl<T>::operator=(::std::move(RHS));
     906    18739553 :     return *this;
     907   352259047 :   }
     908   358501108 : 
     909    56013608 :   const SmallVector &operator=(std::initializer_list<T> IL) {
     910     5716230 :     this->assign(IL);
     911    14512899 :     return *this;
     912    44189129 :   }
     913   136116521 : };
     914    31367322 : 
     915     7362783 : template <typename T, unsigned N>
     916    47076986 : inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
     917    73698639 :   return X.capacity_in_bytes();
     918    82316938 : }
     919    48014964 : 
     920    76158890 : } // end namespace llvm
     921   314057056 : 
     922    66484073 : namespace std {
     923   155310803 : 
     924     6308187 :   /// Implement std::swap in terms of SmallVector swap.
     925    80050540 :   template<typename T>
     926    21508586 :   inline void
     927    31045929 :   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
     928    29054075 :     LHS.swap(RHS);
     929    56296413 :   }
     930    25042031 : 
     931    16255756 :   /// Implement std::swap in terms of SmallVector swap.
     932     4458864 :   template<typename T, unsigned N>
     933     2460906 :   inline void
     934    13014872 :   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
     935    27235251 :     LHS.swap(RHS);
     936     4772698 :   }
     937    61054243 : 
     938    20776554 : } // end namespace std
     939    68596200 : 
     940     6236376 : #endif // LLVM_ADT_SMALLVECTOR_H

Generated by: LCOV version 1.13