Line data Source code
1 : //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : /// \file
10 : ///
11 : /// Implements a lazy call graph analysis and related passes for the new pass
12 : /// manager.
13 : ///
14 : /// NB: This is *not* a traditional call graph! It is a graph which models both
15 : /// the current calls and potential calls. As a consequence there are many
16 : /// edges in this call graph that do not correspond to a 'call' or 'invoke'
17 : /// instruction.
18 : ///
19 : /// The primary use cases of this graph analysis is to facilitate iterating
20 : /// across the functions of a module in ways that ensure all callees are
21 : /// visited prior to a caller (given any SCC constraints), or vice versa. As
22 : /// such is it particularly well suited to organizing CGSCC optimizations such
23 : /// as inlining, outlining, argument promotion, etc. That is its primary use
24 : /// case and motivates the design. It may not be appropriate for other
25 : /// purposes. The use graph of functions or some other conservative analysis of
26 : /// call instructions may be interesting for optimizations and subsequent
27 : /// analyses which don't work in the context of an overly specified
28 : /// potential-call-edge graph.
29 : ///
30 : /// To understand the specific rules and nature of this call graph analysis,
31 : /// see the documentation of the \c LazyCallGraph below.
32 : ///
33 : //===----------------------------------------------------------------------===//
34 :
35 : #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 : #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
37 :
38 : #include "llvm/ADT/ArrayRef.h"
39 : #include "llvm/ADT/DenseMap.h"
40 : #include "llvm/ADT/Optional.h"
41 : #include "llvm/ADT/PointerIntPair.h"
42 : #include "llvm/ADT/SetVector.h"
43 : #include "llvm/ADT/SmallPtrSet.h"
44 : #include "llvm/ADT/SmallVector.h"
45 : #include "llvm/ADT/StringRef.h"
46 : #include "llvm/ADT/iterator.h"
47 : #include "llvm/ADT/iterator_range.h"
48 : #include "llvm/Analysis/TargetLibraryInfo.h"
49 : #include "llvm/IR/Constant.h"
50 : #include "llvm/IR/Constants.h"
51 : #include "llvm/IR/Function.h"
52 : #include "llvm/IR/PassManager.h"
53 : #include "llvm/Support/Allocator.h"
54 : #include "llvm/Support/Casting.h"
55 : #include "llvm/Support/raw_ostream.h"
56 : #include <cassert>
57 : #include <iterator>
58 : #include <string>
59 : #include <utility>
60 :
61 : namespace llvm {
62 :
63 : class Module;
64 : class Value;
65 :
66 : /// A lazily constructed view of the call graph of a module.
67 : ///
68 : /// With the edges of this graph, the motivating constraint that we are
69 : /// attempting to maintain is that function-local optimization, CGSCC-local
70 : /// optimizations, and optimizations transforming a pair of functions connected
71 : /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
72 : /// DAG. That is, no optimizations will delete, remove, or add an edge such
73 : /// that functions already visited in a bottom-up order of the SCC DAG are no
74 : /// longer valid to have visited, or such that functions not yet visited in
75 : /// a bottom-up order of the SCC DAG are not required to have already been
76 : /// visited.
77 : ///
78 : /// Within this constraint, the desire is to minimize the merge points of the
79 : /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
80 : /// in the SCC DAG, the more independence there is in optimizing within it.
81 : /// There is a strong desire to enable parallelization of optimizations over
82 : /// the call graph, and both limited fanout and merge points will (artificially
83 : /// in some cases) limit the scaling of such an effort.
84 : ///
85 : /// To this end, graph represents both direct and any potential resolution to
86 : /// an indirect call edge. Another way to think about it is that it represents
87 : /// both the direct call edges and any direct call edges that might be formed
88 : /// through static optimizations. Specifically, it considers taking the address
89 : /// of a function to be an edge in the call graph because this might be
90 : /// forwarded to become a direct call by some subsequent function-local
91 : /// optimization. The result is that the graph closely follows the use-def
92 : /// edges for functions. Walking "up" the graph can be done by looking at all
93 : /// of the uses of a function.
94 : ///
95 : /// The roots of the call graph are the external functions and functions
96 : /// escaped into global variables. Those functions can be called from outside
97 : /// of the module or via unknowable means in the IR -- we may not be able to
98 : /// form even a potential call edge from a function body which may dynamically
99 : /// load the function and call it.
100 : ///
101 : /// This analysis still requires updates to remain valid after optimizations
102 : /// which could potentially change the set of potential callees. The
103 : /// constraints it operates under only make the traversal order remain valid.
104 : ///
105 : /// The entire analysis must be re-computed if full interprocedural
106 : /// optimizations run at any point. For example, globalopt completely
107 : /// invalidates the information in this analysis.
108 : ///
109 : /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
110 : /// it from the existing CallGraph. At some point, it is expected that this
111 : /// will be the only call graph and it will be renamed accordingly.
112 : class LazyCallGraph {
113 : public:
114 : class Node;
115 : class EdgeSequence;
116 : class SCC;
117 : class RefSCC;
118 : class edge_iterator;
119 : class call_edge_iterator;
120 :
121 : /// A class used to represent edges in the call graph.
122 : ///
123 : /// The lazy call graph models both *call* edges and *reference* edges. Call
124 : /// edges are much what you would expect, and exist when there is a 'call' or
125 : /// 'invoke' instruction of some function. Reference edges are also tracked
126 : /// along side these, and exist whenever any instruction (transitively
127 : /// through its operands) references a function. All call edges are
128 : /// inherently reference edges, and so the reference graph forms a superset
129 : /// of the formal call graph.
130 : ///
131 : /// All of these forms of edges are fundamentally represented as outgoing
132 : /// edges. The edges are stored in the source node and point at the target
133 : /// node. This allows the edge structure itself to be a very compact data
134 : /// structure: essentially a tagged pointer.
135 : class Edge {
136 : public:
137 : /// The kind of edge in the graph.
138 : enum Kind : bool { Ref = false, Call = true };
139 :
140 : Edge();
141 : explicit Edge(Node &N, Kind K);
142 :
143 : /// Test whether the edge is null.
144 : ///
145 : /// This happens when an edge has been deleted. We leave the edge objects
146 : /// around but clear them.
147 : explicit operator bool() const;
148 :
149 : /// Returnss the \c Kind of the edge.
150 : Kind getKind() const;
151 :
152 : /// Test whether the edge represents a direct call to a function.
153 : ///
154 : /// This requires that the edge is not null.
155 : bool isCall() const;
156 :
157 : /// Get the call graph node referenced by this edge.
158 : ///
159 : /// This requires that the edge is not null.
160 : Node &getNode() const;
161 :
162 : /// Get the function referenced by this edge.
163 : ///
164 : /// This requires that the edge is not null.
165 : Function &getFunction() const;
166 :
167 : private:
168 : friend class LazyCallGraph::EdgeSequence;
169 : friend class LazyCallGraph::RefSCC;
170 :
171 : PointerIntPair<Node *, 1, Kind> Value;
172 :
173 : void setKind(Kind K) { Value.setInt(K); }
174 : };
175 :
176 : /// The edge sequence object.
177 : ///
178 : /// This typically exists entirely within the node but is exposed as
179 : /// a separate type because a node doesn't initially have edges. An explicit
180 : /// population step is required to produce this sequence at first and it is
181 : /// then cached in the node. It is also used to represent edges entering the
182 : /// graph from outside the module to model the graph's roots.
183 : ///
184 : /// The sequence itself both iterable and indexable. The indexes remain
185 : /// stable even as the sequence mutates (including removal).
186 0 : class EdgeSequence {
187 : friend class LazyCallGraph;
188 : friend class LazyCallGraph::Node;
189 : friend class LazyCallGraph::RefSCC;
190 :
191 : using VectorT = SmallVector<Edge, 4>;
192 : using VectorImplT = SmallVectorImpl<Edge>;
193 :
194 : public:
195 : /// An iterator used for the edges to both entry nodes and child nodes.
196 : class iterator
197 : : public iterator_adaptor_base<iterator, VectorImplT::iterator,
198 : std::forward_iterator_tag> {
199 : friend class LazyCallGraph;
200 : friend class LazyCallGraph::Node;
201 :
202 : VectorImplT::iterator E;
203 :
204 : // Build the iterator for a specific position in the edge list.
205 : iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
206 : : iterator_adaptor_base(BaseI), E(E) {
207 1621 : while (I != E && !*I)
208 201 : ++I;
209 : }
210 :
211 : public:
212 : iterator() = default;
213 :
214 : using iterator_adaptor_base::operator++;
215 : iterator &operator++() {
216 : do {
217 2295 : ++I;
218 2295 : } while (I != E && !*I);
219 : return *this;
220 : }
221 : };
222 :
223 : /// An iterator over specifically call edges.
224 : ///
225 : /// This has the same iteration properties as the \c iterator, but
226 : /// restricts itself to edges which represent actual calls.
227 : class call_iterator
228 : : public iterator_adaptor_base<call_iterator, VectorImplT::iterator,
229 : std::forward_iterator_tag> {
230 : friend class LazyCallGraph;
231 : friend class LazyCallGraph::Node;
232 :
233 : VectorImplT::iterator E;
234 :
235 : /// Advance the iterator to the next valid, call edge.
236 0 : void advanceToNextEdge() {
237 6418 : while (I != E && (!*I || !I->isCall()))
238 499 : ++I;
239 0 : }
240 :
241 : // Build the iterator for a specific position in the edge list.
242 : call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
243 : : iterator_adaptor_base(BaseI), E(E) {
244 : advanceToNextEdge();
245 : }
246 :
247 : public:
248 : call_iterator() = default;
249 :
250 : using iterator_adaptor_base::operator++;
251 1033 : call_iterator &operator++() {
252 1033 : ++I;
253 1033 : advanceToNextEdge();
254 1033 : return *this;
255 : }
256 : };
257 :
258 : iterator begin() { return iterator(Edges.begin(), Edges.end()); }
259 : iterator end() { return iterator(Edges.end(), Edges.end()); }
260 :
261 : Edge &operator[](int i) { return Edges[i]; }
262 : Edge &operator[](Node &N) {
263 : assert(EdgeIndexMap.find(&N) != EdgeIndexMap.end() && "No such edge!");
264 3 : auto &E = Edges[EdgeIndexMap.find(&N)->second];
265 : assert(E && "Dead or null edge!");
266 : return E;
267 : }
268 :
269 237 : Edge *lookup(Node &N) {
270 237 : auto EI = EdgeIndexMap.find(&N);
271 237 : if (EI == EdgeIndexMap.end())
272 : return nullptr;
273 237 : auto &E = Edges[EI->second];
274 : return E ? &E : nullptr;
275 : }
276 :
277 1573 : call_iterator call_begin() {
278 1573 : return call_iterator(Edges.begin(), Edges.end());
279 : }
280 1773 : call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); }
281 :
282 91 : iterator_range<call_iterator> calls() {
283 91 : return make_range(call_begin(), call_end());
284 : }
285 :
286 : bool empty() {
287 1675 : for (auto &E : Edges)
288 : if (E)
289 : return false;
290 :
291 : return true;
292 : }
293 :
294 : private:
295 : VectorT Edges;
296 : DenseMap<Node *, int> EdgeIndexMap;
297 :
298 319 : EdgeSequence() = default;
299 :
300 : /// Internal helper to insert an edge to a node.
301 : void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
302 :
303 : /// Internal helper to change an edge kind.
304 : void setEdgeKind(Node &ChildN, Edge::Kind EK);
305 :
306 : /// Internal helper to remove the edge to the given function.
307 : bool removeEdgeInternal(Node &ChildN);
308 :
309 : /// Internal helper to replace an edge key with a new one.
310 : ///
311 : /// This should be used when the function for a particular node in the
312 : /// graph gets replaced and we are updating all of the edges to that node
313 : /// to use the new function as the key.
314 : void replaceEdgeKey(Function &OldTarget, Function &NewTarget);
315 : };
316 :
317 : /// A node in the call graph.
318 : ///
319 : /// This represents a single node. It's primary roles are to cache the list of
320 : /// callees, de-duplicate and provide fast testing of whether a function is
321 : /// a callee, and facilitate iteration of child nodes in the graph.
322 : ///
323 : /// The node works much like an optional in order to lazily populate the
324 : /// edges of each node. Until populated, there are no edges. Once populated,
325 : /// you can access the edges by dereferencing the node or using the `->`
326 : /// operator as if the node was an `Optional<EdgeSequence>`.
327 1221 : class Node {
328 : friend class LazyCallGraph;
329 : friend class LazyCallGraph::RefSCC;
330 :
331 : public:
332 : LazyCallGraph &getGraph() const { return *G; }
333 :
334 0 : Function &getFunction() const { return *F; }
335 :
336 0 : StringRef getName() const { return F->getName(); }
337 :
338 : /// Equality is defined as address equality.
339 : bool operator==(const Node &N) const { return this == &N; }
340 : bool operator!=(const Node &N) const { return !operator==(N); }
341 :
342 : /// Tests whether the node has been populated with edges.
343 : bool isPopulated() const { return Edges.hasValue(); }
344 :
345 : /// Tests whether this is actually a dead node and no longer valid.
346 : ///
347 : /// Users rarely interact with nodes in this state and other methods are
348 : /// invalid. This is used to model a node in an edge list where the
349 : /// function has been completely removed.
350 0 : bool isDead() const {
351 : assert(!G == !F &&
352 : "Both graph and function pointers should be null or non-null.");
353 0 : return !G;
354 : }
355 :
356 : // We allow accessing the edges by dereferencing or using the arrow
357 : // operator, essentially wrapping the internal optional.
358 : EdgeSequence &operator*() const {
359 : // Rip const off because the node itself isn't changing here.
360 : return const_cast<EdgeSequence &>(*Edges);
361 : }
362 : EdgeSequence *operator->() const { return &**this; }
363 :
364 : /// Populate the edges of this node if necessary.
365 : ///
366 : /// The first time this is called it will populate the edges for this node
367 : /// in the graph. It does this by scanning the underlying function, so once
368 : /// this is done, any changes to that function must be explicitly reflected
369 : /// in updates to the graph.
370 : ///
371 : /// \returns the populated \c EdgeSequence to simplify walking it.
372 : ///
373 : /// This will not update or re-scan anything if called repeatedly. Instead,
374 : /// the edge sequence is cached and returned immediately on subsequent
375 : /// calls.
376 : EdgeSequence &populate() {
377 55 : if (Edges)
378 : return *Edges;
379 :
380 55 : return populateSlow();
381 : }
382 :
383 : private:
384 : LazyCallGraph *G;
385 : Function *F;
386 :
387 : // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
388 : // stored directly within the node. These are both '-1' when nodes are part
389 : // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
390 : int DFSNumber = 0;
391 : int LowLink = 0;
392 :
393 : Optional<EdgeSequence> Edges;
394 :
395 : /// Basic constructor implements the scanning of F into Edges and
396 : /// EdgeIndexMap.
397 1221 : Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {}
398 :
399 : /// Implementation of the scan when populating.
400 : EdgeSequence &populateSlow();
401 :
402 : /// Internal helper to directly replace the function with a new one.
403 : ///
404 : /// This is used to facilitate tranfsormations which need to replace the
405 : /// formal Function object but directly move the body and users from one to
406 : /// the other.
407 : void replaceFunction(Function &NewF);
408 :
409 : void clear() { Edges.reset(); }
410 :
411 : /// Print the name of this node's function.
412 0 : friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
413 1557 : return OS << N.F->getName();
414 : }
415 :
416 : /// Dump the name of this node's function to stderr.
417 : void dump() const;
418 : };
419 :
420 : /// An SCC of the call graph.
421 : ///
422 : /// This represents a Strongly Connected Component of the direct call graph
423 : /// -- ignoring indirect calls and function references. It stores this as
424 : /// a collection of call graph nodes. While the order of nodes in the SCC is
425 : /// stable, it is not any particular order.
426 : ///
427 : /// The SCCs are nested within a \c RefSCC, see below for details about that
428 : /// outer structure. SCCs do not support mutation of the call graph, that
429 : /// must be done through the containing \c RefSCC in order to fully reason
430 : /// about the ordering and connections of the graph.
431 1131 : class SCC {
432 : friend class LazyCallGraph;
433 : friend class LazyCallGraph::Node;
434 :
435 : RefSCC *OuterRefSCC;
436 : SmallVector<Node *, 1> Nodes;
437 :
438 : template <typename NodeRangeT>
439 1131 : SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
440 1131 : : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
441 :
442 : void clear() {
443 115 : OuterRefSCC = nullptr;
444 : Nodes.clear();
445 : }
446 :
447 : /// Print a short descrtiption useful for debugging or logging.
448 : ///
449 : /// We print the function names in the SCC wrapped in '()'s and skipping
450 : /// the middle functions if there are a large number.
451 : //
452 : // Note: this is defined inline to dodge issues with GCC's interpretation
453 : // of enclosing namespaces for friend function declarations.
454 1267 : friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
455 : OS << '(';
456 : int i = 0;
457 2824 : for (LazyCallGraph::Node &N : C) {
458 1557 : if (i > 0)
459 290 : OS << ", ";
460 : // Elide the inner elements if there are too many.
461 1557 : if (i > 8) {
462 0 : OS << "..., " << *C.Nodes.back();
463 : break;
464 : }
465 1557 : OS << N;
466 1557 : ++i;
467 : }
468 : OS << ')';
469 1267 : return OS;
470 : }
471 :
472 : /// Dump a short description of this SCC to stderr.
473 : void dump() const;
474 :
475 : #ifndef NDEBUG
476 : /// Verify invariants about the SCC.
477 : ///
478 : /// This will attempt to validate all of the basic invariants within an
479 : /// SCC, but not that it is a strongly connected componet per-se. Primarily
480 : /// useful while building and updating the graph to check that basic
481 : /// properties are in place rather than having inexplicable crashes later.
482 : void verify();
483 : #endif
484 :
485 : public:
486 : using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>;
487 :
488 : iterator begin() const { return Nodes.begin(); }
489 : iterator end() const { return Nodes.end(); }
490 :
491 288 : int size() const { return Nodes.size(); }
492 :
493 0 : RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
494 :
495 : /// Test if this SCC is a parent of \a C.
496 : ///
497 : /// Note that this is linear in the number of edges departing the current
498 : /// SCC.
499 : bool isParentOf(const SCC &C) const;
500 :
501 : /// Test if this SCC is an ancestor of \a C.
502 : ///
503 : /// Note that in the worst case this is linear in the number of edges
504 : /// departing the current SCC and every SCC in the entire graph reachable
505 : /// from this SCC. Thus this very well may walk every edge in the entire
506 : /// call graph! Do not call this in a tight loop!
507 : bool isAncestorOf(const SCC &C) const;
508 :
509 : /// Test if this SCC is a child of \a C.
510 : ///
511 : /// See the comments for \c isParentOf for detailed notes about the
512 : /// complexity of this routine.
513 7 : bool isChildOf(const SCC &C) const { return C.isParentOf(*this); }
514 :
515 : /// Test if this SCC is a descendant of \a C.
516 : ///
517 : /// See the comments for \c isParentOf for detailed notes about the
518 : /// complexity of this routine.
519 5 : bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); }
520 :
521 : /// Provide a short name by printing this SCC to a std::string.
522 : ///
523 : /// This copes with the fact that we don't have a name per-se for an SCC
524 : /// while still making the use of this in debugging and logging useful.
525 824 : std::string getName() const {
526 : std::string Name;
527 824 : raw_string_ostream OS(Name);
528 824 : OS << *this;
529 : OS.flush();
530 824 : return Name;
531 : }
532 : };
533 :
534 : /// A RefSCC of the call graph.
535 : ///
536 : /// This models a Strongly Connected Component of function reference edges in
537 : /// the call graph. As opposed to actual SCCs, these can be used to scope
538 : /// subgraphs of the module which are independent from other subgraphs of the
539 : /// module because they do not reference it in any way. This is also the unit
540 : /// where we do mutation of the graph in order to restrict mutations to those
541 : /// which don't violate this independence.
542 : ///
543 : /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
544 : /// are necessarily within some actual SCC that nests within it. Since
545 : /// a direct call *is* a reference, there will always be at least one RefSCC
546 : /// around any SCC.
547 : class RefSCC {
548 : friend class LazyCallGraph;
549 : friend class LazyCallGraph::Node;
550 :
551 : LazyCallGraph *G;
552 :
553 : /// A postorder list of the inner SCCs.
554 : SmallVector<SCC *, 4> SCCs;
555 :
556 : /// A map from SCC to index in the postorder list.
557 : SmallDenseMap<SCC *, int, 4> SCCIndices;
558 :
559 : /// Fast-path constructor. RefSCCs should instead be constructed by calling
560 : /// formRefSCCFast on the graph itself.
561 : RefSCC(LazyCallGraph &G);
562 :
563 : void clear() {
564 : SCCs.clear();
565 89 : SCCIndices.clear();
566 : }
567 :
568 : /// Print a short description useful for debugging or logging.
569 : ///
570 : /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
571 : /// there are a large number.
572 : //
573 : // Note: this is defined inline to dodge issues with GCC's interpretation
574 : // of enclosing namespaces for friend function declarations.
575 24 : friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
576 : OS << '[';
577 : int i = 0;
578 56 : for (LazyCallGraph::SCC &C : RC) {
579 32 : if (i > 0)
580 8 : OS << ", ";
581 : // Elide the inner elements if there are too many.
582 32 : if (i > 4) {
583 0 : OS << "..., " << *RC.SCCs.back();
584 0 : break;
585 : }
586 32 : OS << C;
587 32 : ++i;
588 : }
589 : OS << ']';
590 24 : return OS;
591 : }
592 :
593 : /// Dump a short description of this RefSCC to stderr.
594 : void dump() const;
595 :
596 : #ifndef NDEBUG
597 : /// Verify invariants about the RefSCC and all its SCCs.
598 : ///
599 : /// This will attempt to validate all of the invariants *within* the
600 : /// RefSCC, but not that it is a strongly connected component of the larger
601 : /// graph. This makes it useful even when partially through an update.
602 : ///
603 : /// Invariants checked:
604 : /// - SCCs and their indices match.
605 : /// - The SCCs list is in fact in post-order.
606 : void verify();
607 : #endif
608 :
609 : /// Handle any necessary parent set updates after inserting a trivial ref
610 : /// or call edge.
611 : void handleTrivialEdgeInsertion(Node &SourceN, Node &TargetN);
612 :
613 : public:
614 : using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>;
615 : using range = iterator_range<iterator>;
616 : using parent_iterator =
617 : pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>;
618 :
619 : iterator begin() const { return SCCs.begin(); }
620 : iterator end() const { return SCCs.end(); }
621 :
622 21 : ssize_t size() const { return SCCs.size(); }
623 :
624 49 : SCC &operator[](int Idx) { return *SCCs[Idx]; }
625 :
626 : iterator find(SCC &C) const {
627 112 : return SCCs.begin() + SCCIndices.find(&C)->second;
628 : }
629 :
630 : /// Test if this RefSCC is a parent of \a RC.
631 : ///
632 : /// CAUTION: This method walks every edge in the \c RefSCC, it can be very
633 : /// expensive.
634 : bool isParentOf(const RefSCC &RC) const;
635 :
636 : /// Test if this RefSCC is an ancestor of \a RC.
637 : ///
638 : /// CAUTION: This method walks the directed graph of edges as far as
639 : /// necessary to find a possible path to the argument. In the worst case
640 : /// this may walk the entire graph and can be extremely expensive.
641 : bool isAncestorOf(const RefSCC &RC) const;
642 :
643 : /// Test if this RefSCC is a child of \a RC.
644 : ///
645 : /// CAUTION: This method walks every edge in the argument \c RefSCC, it can
646 : /// be very expensive.
647 10 : bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); }
648 :
649 : /// Test if this RefSCC is a descendant of \a RC.
650 : ///
651 : /// CAUTION: This method walks the directed graph of edges as far as
652 : /// necessary to find a possible path from the argument. In the worst case
653 : /// this may walk the entire graph and can be extremely expensive.
654 : bool isDescendantOf(const RefSCC &RC) const {
655 8 : return RC.isAncestorOf(*this);
656 : }
657 :
658 : /// Provide a short name by printing this RefSCC to a std::string.
659 : ///
660 : /// This copes with the fact that we don't have a name per-se for an RefSCC
661 : /// while still making the use of this in debugging and logging useful.
662 : std::string getName() const {
663 : std::string Name;
664 : raw_string_ostream OS(Name);
665 : OS << *this;
666 : OS.flush();
667 : return Name;
668 : }
669 :
670 : ///@{
671 : /// \name Mutation API
672 : ///
673 : /// These methods provide the core API for updating the call graph in the
674 : /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs.
675 : ///
676 : /// Note that these methods sometimes have complex runtimes, so be careful
677 : /// how you call them.
678 :
679 : /// Make an existing internal ref edge into a call edge.
680 : ///
681 : /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
682 : /// If that happens, the optional callback \p MergedCB will be invoked (if
683 : /// provided) on the SCCs being merged away prior to actually performing
684 : /// the merge. Note that this will never include the target SCC as that
685 : /// will be the SCC functions are merged into to resolve the cycle. Once
686 : /// this function returns, these merged SCCs are not in a valid state but
687 : /// the pointers will remain valid until destruction of the parent graph
688 : /// instance for the purpose of clearing cached information. This function
689 : /// also returns 'true' if a cycle was formed and some SCCs merged away as
690 : /// a convenience.
691 : ///
692 : /// After this operation, both SourceN's SCC and TargetN's SCC may move
693 : /// position within this RefSCC's postorder list. Any SCCs merged are
694 : /// merged into the TargetN's SCC in order to preserve reachability analyses
695 : /// which took place on that SCC.
696 : bool switchInternalEdgeToCall(
697 : Node &SourceN, Node &TargetN,
698 : function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {});
699 :
700 : /// Make an existing internal call edge between separate SCCs into a ref
701 : /// edge.
702 : ///
703 : /// If SourceN and TargetN in separate SCCs within this RefSCC, changing
704 : /// the call edge between them to a ref edge is a trivial operation that
705 : /// does not require any structural changes to the call graph.
706 : void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN);
707 :
708 : /// Make an existing internal call edge within a single SCC into a ref
709 : /// edge.
710 : ///
711 : /// Since SourceN and TargetN are part of a single SCC, this SCC may be
712 : /// split up due to breaking a cycle in the call edges that formed it. If
713 : /// that happens, then this routine will insert new SCCs into the postorder
714 : /// list *before* the SCC of TargetN (previously the SCC of both). This
715 : /// preserves postorder as the TargetN can reach all of the other nodes by
716 : /// definition of previously being in a single SCC formed by the cycle from
717 : /// SourceN to TargetN.
718 : ///
719 : /// The newly added SCCs are added *immediately* and contiguously
720 : /// prior to the TargetN SCC and return the range covering the new SCCs in
721 : /// the RefSCC's postorder sequence. You can directly iterate the returned
722 : /// range to observe all of the new SCCs in postorder.
723 : ///
724 : /// Note that if SourceN and TargetN are in separate SCCs, the simpler
725 : /// routine `switchTrivialInternalEdgeToRef` should be used instead.
726 : iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN,
727 : Node &TargetN);
728 :
729 : /// Make an existing outgoing ref edge into a call edge.
730 : ///
731 : /// Note that this is trivial as there are no cyclic impacts and there
732 : /// remains a reference edge.
733 : void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
734 :
735 : /// Make an existing outgoing call edge into a ref edge.
736 : ///
737 : /// This is trivial as there are no cyclic impacts and there remains
738 : /// a reference edge.
739 : void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
740 :
741 : /// Insert a ref edge from one node in this RefSCC to another in this
742 : /// RefSCC.
743 : ///
744 : /// This is always a trivial operation as it doesn't change any part of the
745 : /// graph structure besides connecting the two nodes.
746 : ///
747 : /// Note that we don't support directly inserting internal *call* edges
748 : /// because that could change the graph structure and requires returning
749 : /// information about what became invalid. As a consequence, the pattern
750 : /// should be to first insert the necessary ref edge, and then to switch it
751 : /// to a call edge if needed and handle any invalidation that results. See
752 : /// the \c switchInternalEdgeToCall routine for details.
753 : void insertInternalRefEdge(Node &SourceN, Node &TargetN);
754 :
755 : /// Insert an edge whose parent is in this RefSCC and child is in some
756 : /// child RefSCC.
757 : ///
758 : /// There must be an existing path from the \p SourceN to the \p TargetN.
759 : /// This operation is inexpensive and does not change the set of SCCs and
760 : /// RefSCCs in the graph.
761 : void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
762 :
763 : /// Insert an edge whose source is in a descendant RefSCC and target is in
764 : /// this RefSCC.
765 : ///
766 : /// There must be an existing path from the target to the source in this
767 : /// case.
768 : ///
769 : /// NB! This is has the potential to be a very expensive function. It
770 : /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
771 : /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
772 : /// participate in the cycle can in the worst case require traversing every
773 : /// RefSCC in the graph. Every attempt is made to avoid that, but passes
774 : /// must still exercise caution calling this routine repeatedly.
775 : ///
776 : /// Also note that this can only insert ref edges. In order to insert
777 : /// a call edge, first insert a ref edge and then switch it to a call edge.
778 : /// These are intentionally kept as separate interfaces because each step
779 : /// of the operation invalidates a different set of data structures.
780 : ///
781 : /// This returns all the RefSCCs which were merged into the this RefSCC
782 : /// (the target's). This allows callers to invalidate any cached
783 : /// information.
784 : ///
785 : /// FIXME: We could possibly optimize this quite a bit for cases where the
786 : /// caller and callee are very nearby in the graph. See comments in the
787 : /// implementation for details, but that use case might impact users.
788 : SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
789 : Node &TargetN);
790 :
791 : /// Remove an edge whose source is in this RefSCC and target is *not*.
792 : ///
793 : /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
794 : /// from this SCC have been fully explored by any in-flight DFS graph
795 : /// formation, so this is always safe to call once you have the source
796 : /// RefSCC.
797 : ///
798 : /// This operation does not change the cyclic structure of the graph and so
799 : /// is very inexpensive. It may change the connectivity graph of the SCCs
800 : /// though, so be careful calling this while iterating over them.
801 : void removeOutgoingEdge(Node &SourceN, Node &TargetN);
802 :
803 : /// Remove a list of ref edges which are entirely within this RefSCC.
804 : ///
805 : /// Both the \a SourceN and all of the \a TargetNs must be within this
806 : /// RefSCC. Removing these edges may break cycles that form this RefSCC and
807 : /// thus this operation may change the RefSCC graph significantly. In
808 : /// particular, this operation will re-form new RefSCCs based on the
809 : /// remaining connectivity of the graph. The following invariants are
810 : /// guaranteed to hold after calling this method:
811 : ///
812 : /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact
813 : /// and in the graph. No new RefSCCs are built.
814 : /// 2) Otherwise, this RefSCC will be dead after this call and no longer in
815 : /// the graph or the postorder traversal of the call graph. Any iterator
816 : /// pointing at this RefSCC will become invalid.
817 : /// 3) All newly formed RefSCCs will be returned and the order of the
818 : /// RefSCCs returned will be a valid postorder traversal of the new
819 : /// RefSCCs.
820 : /// 4) No RefSCC other than this RefSCC has its member set changed (this is
821 : /// inherent in the definition of removing such an edge).
822 : ///
823 : /// These invariants are very important to ensure that we can build
824 : /// optimization pipelines on top of the CGSCC pass manager which
825 : /// intelligently update the RefSCC graph without invalidating other parts
826 : /// of the RefSCC graph.
827 : ///
828 : /// Note that we provide no routine to remove a *call* edge. Instead, you
829 : /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
830 : /// This split API is intentional as each of these two steps can invalidate
831 : /// a different aspect of the graph structure and needs to have the
832 : /// invalidation handled independently.
833 : ///
834 : /// The runtime complexity of this method is, in the worst case, O(V+E)
835 : /// where V is the number of nodes in this RefSCC and E is the number of
836 : /// edges leaving the nodes in this RefSCC. Note that E includes both edges
837 : /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
838 : /// effort has been made to minimize the overhead of common cases such as
839 : /// self-edges and edge removals which result in a spanning tree with no
840 : /// more cycles.
841 : SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
842 : ArrayRef<Node *> TargetNs);
843 :
844 : /// A convenience wrapper around the above to handle trivial cases of
845 : /// inserting a new call edge.
846 : ///
847 : /// This is trivial whenever the target is in the same SCC as the source or
848 : /// the edge is an outgoing edge to some descendant SCC. In these cases
849 : /// there is no change to the cyclic structure of SCCs or RefSCCs.
850 : ///
851 : /// To further make calling this convenient, it also handles inserting
852 : /// already existing edges.
853 : void insertTrivialCallEdge(Node &SourceN, Node &TargetN);
854 :
855 : /// A convenience wrapper around the above to handle trivial cases of
856 : /// inserting a new ref edge.
857 : ///
858 : /// This is trivial whenever the target is in the same RefSCC as the source
859 : /// or the edge is an outgoing edge to some descendant RefSCC. In these
860 : /// cases there is no change to the cyclic structure of the RefSCCs.
861 : ///
862 : /// To further make calling this convenient, it also handles inserting
863 : /// already existing edges.
864 : void insertTrivialRefEdge(Node &SourceN, Node &TargetN);
865 :
866 : /// Directly replace a node's function with a new function.
867 : ///
868 : /// This should be used when moving the body and users of a function to
869 : /// a new formal function object but not otherwise changing the call graph
870 : /// structure in any way.
871 : ///
872 : /// It requires that the old function in the provided node have zero uses
873 : /// and the new function must have calls and references to it establishing
874 : /// an equivalent graph.
875 : void replaceNodeFunction(Node &N, Function &NewF);
876 :
877 : ///@}
878 : };
879 :
880 : /// A post-order depth-first RefSCC iterator over the call graph.
881 : ///
882 : /// This iterator walks the cached post-order sequence of RefSCCs. However,
883 : /// it trades stability for flexibility. It is restricted to a forward
884 : /// iterator but will survive mutations which insert new RefSCCs and continue
885 : /// to point to the same RefSCC even if it moves in the post-order sequence.
886 : class postorder_ref_scc_iterator
887 : : public iterator_facade_base<postorder_ref_scc_iterator,
888 : std::forward_iterator_tag, RefSCC> {
889 : friend class LazyCallGraph;
890 : friend class LazyCallGraph::Node;
891 :
892 : /// Nonce type to select the constructor for the end iterator.
893 : struct IsAtEndT {};
894 :
895 : LazyCallGraph *G;
896 : RefSCC *RC = nullptr;
897 :
898 : /// Build the begin iterator for a node.
899 : postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) {}
900 :
901 : /// Build the end iterator for a node. This is selected purely by overload.
902 : postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {}
903 :
904 : /// Get the post-order RefSCC at the given index of the postorder walk,
905 : /// populating it if necessary.
906 : static RefSCC *getRC(LazyCallGraph &G, int Index) {
907 567 : if (Index == (int)G.PostOrderRefSCCs.size())
908 : // We're at the end.
909 : return nullptr;
910 :
911 3273 : return G.PostOrderRefSCCs[Index];
912 : }
913 :
914 : public:
915 0 : bool operator==(const postorder_ref_scc_iterator &Arg) const {
916 2432 : return G == Arg.G && RC == Arg.RC;
917 : }
918 :
919 0 : reference operator*() const { return *RC; }
920 :
921 : using iterator_facade_base::operator++;
922 1902 : postorder_ref_scc_iterator &operator++() {
923 : assert(RC && "Cannot increment the end iterator!");
924 1902 : RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1);
925 1902 : return *this;
926 : }
927 : };
928 :
929 : /// Construct a graph for the given module.
930 : ///
931 : /// This sets up the graph and computes all of the entry points of the graph.
932 : /// No function definitions are scanned until their nodes in the graph are
933 : /// requested during traversal.
934 : LazyCallGraph(Module &M, TargetLibraryInfo &TLI);
935 :
936 : LazyCallGraph(LazyCallGraph &&G);
937 : LazyCallGraph &operator=(LazyCallGraph &&RHS);
938 :
939 : EdgeSequence::iterator begin() { return EntryEdges.begin(); }
940 : EdgeSequence::iterator end() { return EntryEdges.end(); }
941 :
942 : void buildRefSCCs();
943 :
944 567 : postorder_ref_scc_iterator postorder_ref_scc_begin() {
945 : if (!EntryEdges.empty())
946 : assert(!PostOrderRefSCCs.empty() &&
947 : "Must form RefSCCs before iterating them!");
948 567 : return postorder_ref_scc_iterator(*this);
949 : }
950 : postorder_ref_scc_iterator postorder_ref_scc_end() {
951 : if (!EntryEdges.empty())
952 : assert(!PostOrderRefSCCs.empty() &&
953 : "Must form RefSCCs before iterating them!");
954 : return postorder_ref_scc_iterator(*this,
955 : postorder_ref_scc_iterator::IsAtEndT());
956 : }
957 :
958 207 : iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
959 207 : return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
960 : }
961 :
962 : /// Lookup a function in the graph which has already been scanned and added.
963 1842 : Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
964 :
965 : /// Lookup a function's SCC in the graph.
966 : ///
967 : /// \returns null if the function hasn't been assigned an SCC via the RefSCC
968 : /// iterator walk.
969 4207 : SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
970 :
971 : /// Lookup a function's RefSCC in the graph.
972 : ///
973 : /// \returns null if the function hasn't been assigned a RefSCC via the
974 : /// RefSCC iterator walk.
975 394 : RefSCC *lookupRefSCC(Node &N) const {
976 394 : if (SCC *C = lookupSCC(N))
977 394 : return &C->getOuterRefSCC();
978 :
979 : return nullptr;
980 : }
981 :
982 : /// Get a graph node for a given function, scanning it to populate the graph
983 : /// data as necessary.
984 2101 : Node &get(Function &F) {
985 2101 : Node *&N = NodeMap[&F];
986 2101 : if (N)
987 : return *N;
988 :
989 1221 : return insertInto(F, N);
990 : }
991 :
992 : /// Get the sequence of known and defined library functions.
993 : ///
994 : /// These functions, because they are known to LLVM, can have calls
995 : /// introduced out of thin air from arbitrary IR.
996 : ArrayRef<Function *> getLibFunctions() const {
997 : return LibFunctions.getArrayRef();
998 : }
999 :
1000 : /// Test whether a function is a known and defined library function tracked by
1001 : /// the call graph.
1002 : ///
1003 : /// Because these functions are known to LLVM they are specially modeled in
1004 : /// the call graph and even when all IR-level references have been removed
1005 : /// remain active and reachable.
1006 : bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
1007 :
1008 : ///@{
1009 : /// \name Pre-SCC Mutation API
1010 : ///
1011 : /// These methods are only valid to call prior to forming any SCCs for this
1012 : /// call graph. They can be used to update the core node-graph during
1013 : /// a node-based inorder traversal that precedes any SCC-based traversal.
1014 : ///
1015 : /// Once you begin manipulating a call graph's SCCs, most mutation of the
1016 : /// graph must be performed via a RefSCC method. There are some exceptions
1017 : /// below.
1018 :
1019 : /// Update the call graph after inserting a new edge.
1020 : void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
1021 :
1022 : /// Update the call graph after inserting a new edge.
1023 : void insertEdge(Function &Source, Function &Target, Edge::Kind EK) {
1024 : return insertEdge(get(Source), get(Target), EK);
1025 : }
1026 :
1027 : /// Update the call graph after deleting an edge.
1028 : void removeEdge(Node &SourceN, Node &TargetN);
1029 :
1030 : /// Update the call graph after deleting an edge.
1031 : void removeEdge(Function &Source, Function &Target) {
1032 : return removeEdge(get(Source), get(Target));
1033 : }
1034 :
1035 : ///@}
1036 :
1037 : ///@{
1038 : /// \name General Mutation API
1039 : ///
1040 : /// There are a very limited set of mutations allowed on the graph as a whole
1041 : /// once SCCs have started to be formed. These routines have strict contracts
1042 : /// but may be called at any point.
1043 :
1044 : /// Remove a dead function from the call graph (typically to delete it).
1045 : ///
1046 : /// Note that the function must have an empty use list, and the call graph
1047 : /// must be up-to-date prior to calling this. That means it is by itself in
1048 : /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural
1049 : /// changes result from calling this routine other than potentially removing
1050 : /// entry points into the call graph.
1051 : ///
1052 : /// If SCC formation has begun, this function must not be part of the current
1053 : /// DFS in order to call this safely. Typically, the function will have been
1054 : /// fully visited by the DFS prior to calling this routine.
1055 : void removeDeadFunction(Function &F);
1056 :
1057 : ///@}
1058 :
1059 : ///@{
1060 : /// \name Static helpers for code doing updates to the call graph.
1061 : ///
1062 : /// These helpers are used to implement parts of the call graph but are also
1063 : /// useful to code doing updates or otherwise wanting to walk the IR in the
1064 : /// same patterns as when we build the call graph.
1065 :
1066 : /// Recursively visits the defined functions whose address is reachable from
1067 : /// every constant in the \p Worklist.
1068 : ///
1069 : /// Doesn't recurse through any constants already in the \p Visited set, and
1070 : /// updates that set with every constant visited.
1071 : ///
1072 : /// For each defined function, calls \p Callback with that function.
1073 : template <typename CallbackT>
1074 1986 : static void visitReferences(SmallVectorImpl<Constant *> &Worklist,
1075 : SmallPtrSetImpl<Constant *> &Visited,
1076 : CallbackT Callback) {
1077 5015 : while (!Worklist.empty()) {
1078 : Constant *C = Worklist.pop_back_val();
1079 :
1080 : if (Function *F = dyn_cast<Function>(C)) {
1081 669 : if (!F->isDeclaration())
1082 210 : Callback(*F);
1083 669 : continue;
1084 : }
1085 :
1086 : if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1087 : // The blockaddress constant expression is a weird special case, we
1088 : // can't generically walk its operands the way we do for all other
1089 : // constants.
1090 4 : if (Visited.insert(BA->getFunction()).second)
1091 8 : Worklist.push_back(BA->getFunction());
1092 4 : continue;
1093 : }
1094 :
1095 5555 : for (Value *Op : C->operand_values())
1096 843 : if (Visited.insert(cast<Constant>(Op)).second)
1097 583 : Worklist.push_back(cast<Constant>(Op));
1098 : }
1099 1986 : }
1100 319 :
1101 : ///@}
1102 :
1103 506 : private:
1104 : using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator;
1105 : using node_stack_range = iterator_range<node_stack_iterator>;
1106 :
1107 25 : /// Allocator that holds all the call graph nodes.
1108 11 : SpecificBumpPtrAllocator<Node> BPA;
1109 25 :
1110 : /// Maps function->node for fast lookup.
1111 : DenseMap<const Function *, Node *> NodeMap;
1112 :
1113 : /// The entry edges into the graph.
1114 : ///
1115 : /// These edges are from "external" sources. Put another way, they
1116 0 : /// escape at the module scope.
1117 0 : EdgeSequence EntryEdges;
1118 0 :
1119 : /// Allocator that holds all the call graph SCCs.
1120 : SpecificBumpPtrAllocator<SCC> SCCBPA;
1121 470 :
1122 146 : /// Maps Function -> SCC for fast lookup.
1123 105 : DenseMap<Node *, SCC *> SCCMap;
1124 :
1125 319 : /// Allocator that holds all the call graph RefSCCs.
1126 1221 : SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
1127 :
1128 : /// The post-order sequence of RefSCCs.
1129 3147 : ///
1130 : /// This list is lazily formed the first time we walk the graph.
1131 : SmallVector<RefSCC *, 16> PostOrderRefSCCs;
1132 :
1133 588 : /// A map from RefSCC to the index for it in the postorder sequence of
1134 151 : /// RefSCCs.
1135 588 : DenseMap<RefSCC *, int> RefSCCIndices;
1136 :
1137 : /// Defined functions that are also known library functions which the
1138 : /// optimizer can reason about and therefore might introduce calls to out of
1139 : /// thin air.
1140 : SmallSetVector<Function *, 4> LibFunctions;
1141 :
1142 3 : /// Helper to insert a new function, with an already looked-up entry in
1143 6 : /// the NodeMap.
1144 3 : Node &insertInto(Function &F, Node *&MappedN);
1145 :
1146 : /// Helper to update pointers back to the graph object during moves.
1147 3113 : void updateGraphPtrs();
1148 443 :
1149 301 : /// Allocates an SCC and constructs it using the graph allocator.
1150 : ///
1151 1221 : /// The arguments are forwarded to the constructor.
1152 : template <typename... Ts> SCC *createSCC(Ts &&... Args) {
1153 : return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
1154 : }
1155 :
1156 : /// Allocates a RefSCC and constructs it using the graph allocator.
1157 : ///
1158 : /// The arguments are forwarded to the constructor.
1159 : template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
1160 : return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
1161 : }
1162 :
1163 : /// Common logic for building SCCs from a sequence of roots.
1164 : ///
1165 : /// This is a very generic implementation of the depth-first walk and SCC
1166 : /// formation algorithm. It uses a generic sequence of roots and generic
1167 : /// callbacks for each step. This is designed to be used to implement both
1168 : /// the RefSCC formation and SCC formation with shared logic.
1169 : ///
1170 : /// Currently this is a relatively naive implementation of Tarjan's DFS
1171 : /// algorithm to form the SCCs.
1172 : ///
1173 : /// FIXME: We should consider newer variants such as Nuutila.
1174 : template <typename RootsT, typename GetBeginT, typename GetEndT,
1175 : typename GetNodeT, typename FormSCCCallbackT>
1176 : static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1177 : GetEndT &&GetEnd, GetNodeT &&GetNode,
1178 : FormSCCCallbackT &&FormSCC);
1179 :
1180 : /// Build the SCCs for a RefSCC out of a list of nodes.
1181 : void buildSCCs(RefSCC &RC, node_stack_range Nodes);
1182 :
1183 : /// Get the index of a RefSCC within the postorder traversal.
1184 : ///
1185 : /// Requires that this RefSCC is a valid one in the (perhaps partial)
1186 : /// postorder traversed part of the graph.
1187 : int getRefSCCIndex(RefSCC &RC) {
1188 : auto IndexIt = RefSCCIndices.find(&RC);
1189 : assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!");
1190 : assert(PostOrderRefSCCs[IndexIt->second] == &RC &&
1191 : "Index does not point back at RC!");
1192 : return IndexIt->second;
1193 : }
1194 : };
1195 :
1196 : inline LazyCallGraph::Edge::Edge() : Value() {}
1197 : inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
1198 :
1199 : inline LazyCallGraph::Edge::operator bool() const {
1200 4200 : return Value.getPointer() && !Value.getPointer()->isDead();
1201 : }
1202 :
1203 : inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const {
1204 1131 : assert(*this && "Queried a null edge!");
1205 1351 : return Value.getInt();
1206 : }
1207 :
1208 : inline bool LazyCallGraph::Edge::isCall() const {
1209 : assert(*this && "Queried a null edge!");
1210 : return getKind() == Call;
1211 : }
1212 50 :
1213 : inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const {
1214 : assert(*this && "Queried a null edge!");
1215 1345 : return *Value.getPointer();
1216 : }
1217 :
1218 : inline Function &LazyCallGraph::Edge::getFunction() const {
1219 : assert(*this && "Queried a null edge!");
1220 16 : return getNode().getFunction();
1221 : }
1222 :
1223 : // Provide GraphTraits specializations for call graphs.
1224 : template <> struct GraphTraits<LazyCallGraph::Node *> {
1225 : using NodeRef = LazyCallGraph::Node *;
1226 : using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1227 :
1228 : static NodeRef getEntryNode(NodeRef N) { return N; }
1229 : static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1230 : static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1231 : };
1232 : template <> struct GraphTraits<LazyCallGraph *> {
1233 : using NodeRef = LazyCallGraph::Node *;
1234 : using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1235 :
1236 : static NodeRef getEntryNode(NodeRef N) { return N; }
1237 : static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1238 : static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1239 : };
1240 22 :
1241 : /// An analysis pass which computes the call graph for a module.
1242 : class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
1243 : friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
1244 22 :
1245 : static AnalysisKey Key;
1246 :
1247 : public:
1248 : /// Inform generic clients of the result type.
1249 : using Result = LazyCallGraph;
1250 :
1251 : /// Compute the \c LazyCallGraph for the module \c M.
1252 8084 : ///
1253 : /// This just builds the set of entry points to the call graph. The rest is
1254 : /// built lazily as it is walked.
1255 0 : LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
1256 298 : return LazyCallGraph(M, AM.getResult<TargetLibraryAnalysis>(M));
1257 41 : }
1258 : };
1259 :
1260 : /// A pass which prints the call graph to a \c raw_ostream.
1261 : ///
1262 : /// This is primarily useful for testing the analysis.
1263 : class LazyCallGraphPrinterPass
1264 : : public PassInfoMixin<LazyCallGraphPrinterPass> {
1265 : raw_ostream &OS;
1266 :
1267 2143 : public:
1268 : explicit LazyCallGraphPrinterPass(raw_ostream &OS);
1269 :
1270 : PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1271 : };
1272 41 :
1273 : /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1274 : ///
1275 : /// This is primarily useful for visualization purposes.
1276 : class LazyCallGraphDOTPrinterPass
1277 : : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1278 : raw_ostream &OS;
1279 :
1280 : public:
1281 : explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1282 :
1283 : PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1284 : };
1285 :
1286 : } // end namespace llvm
1287 :
1288 : #endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H
|