Line data Source code
1 : //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : /// \file
11 : /// This file exposes an interface to building/using memory SSA to
12 : /// walk memory instructions using a use/def graph.
13 : ///
14 : /// Memory SSA class builds an SSA form that links together memory access
15 : /// instructions such as loads, stores, atomics, and calls. Additionally, it
16 : /// does a trivial form of "heap versioning" Every time the memory state changes
17 : /// in the program, we generate a new heap version. It generates
18 : /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
19 : ///
20 : /// As a trivial example,
21 : /// define i32 @main() #0 {
22 : /// entry:
23 : /// %call = call noalias i8* @_Znwm(i64 4) #2
24 : /// %0 = bitcast i8* %call to i32*
25 : /// %call1 = call noalias i8* @_Znwm(i64 4) #2
26 : /// %1 = bitcast i8* %call1 to i32*
27 : /// store i32 5, i32* %0, align 4
28 : /// store i32 7, i32* %1, align 4
29 : /// %2 = load i32* %0, align 4
30 : /// %3 = load i32* %1, align 4
31 : /// %add = add nsw i32 %2, %3
32 : /// ret i32 %add
33 : /// }
34 : ///
35 : /// Will become
36 : /// define i32 @main() #0 {
37 : /// entry:
38 : /// ; 1 = MemoryDef(0)
39 : /// %call = call noalias i8* @_Znwm(i64 4) #3
40 : /// %2 = bitcast i8* %call to i32*
41 : /// ; 2 = MemoryDef(1)
42 : /// %call1 = call noalias i8* @_Znwm(i64 4) #3
43 : /// %4 = bitcast i8* %call1 to i32*
44 : /// ; 3 = MemoryDef(2)
45 : /// store i32 5, i32* %2, align 4
46 : /// ; 4 = MemoryDef(3)
47 : /// store i32 7, i32* %4, align 4
48 : /// ; MemoryUse(3)
49 : /// %7 = load i32* %2, align 4
50 : /// ; MemoryUse(4)
51 : /// %8 = load i32* %4, align 4
52 : /// %add = add nsw i32 %7, %8
53 : /// ret i32 %add
54 : /// }
55 : ///
56 : /// Given this form, all the stores that could ever effect the load at %8 can be
57 : /// gotten by using the MemoryUse associated with it, and walking from use to
58 : /// def until you hit the top of the function.
59 : ///
60 : /// Each def also has a list of users associated with it, so you can walk from
61 : /// both def to users, and users to defs. Note that we disambiguate MemoryUses,
62 : /// but not the RHS of MemoryDefs. You can see this above at %7, which would
63 : /// otherwise be a MemoryUse(4). Being disambiguated means that for a given
64 : /// store, all the MemoryUses on its use lists are may-aliases of that store
65 : /// (but the MemoryDefs on its use list may not be).
66 : ///
67 : /// MemoryDefs are not disambiguated because it would require multiple reaching
68 : /// definitions, which would require multiple phis, and multiple memoryaccesses
69 : /// per instruction.
70 : //
71 : //===----------------------------------------------------------------------===//
72 :
73 : #ifndef LLVM_ANALYSIS_MEMORYSSA_H
74 : #define LLVM_ANALYSIS_MEMORYSSA_H
75 :
76 : #include "llvm/ADT/DenseMap.h"
77 : #include "llvm/ADT/GraphTraits.h"
78 : #include "llvm/ADT/SmallPtrSet.h"
79 : #include "llvm/ADT/SmallVector.h"
80 : #include "llvm/ADT/ilist.h"
81 : #include "llvm/ADT/ilist_node.h"
82 : #include "llvm/ADT/iterator.h"
83 : #include "llvm/ADT/iterator_range.h"
84 : #include "llvm/ADT/simple_ilist.h"
85 : #include "llvm/Analysis/AliasAnalysis.h"
86 : #include "llvm/Analysis/MemoryLocation.h"
87 : #include "llvm/Analysis/PHITransAddr.h"
88 : #include "llvm/IR/BasicBlock.h"
89 : #include "llvm/IR/DerivedUser.h"
90 : #include "llvm/IR/Dominators.h"
91 : #include "llvm/IR/Module.h"
92 : #include "llvm/IR/Type.h"
93 : #include "llvm/IR/Use.h"
94 : #include "llvm/IR/User.h"
95 : #include "llvm/IR/Value.h"
96 : #include "llvm/IR/ValueHandle.h"
97 : #include "llvm/Pass.h"
98 : #include "llvm/Support/Casting.h"
99 : #include <algorithm>
100 : #include <cassert>
101 : #include <cstddef>
102 : #include <iterator>
103 : #include <memory>
104 : #include <utility>
105 :
106 : namespace llvm {
107 :
108 : class Function;
109 : class Instruction;
110 : class MemoryAccess;
111 : class MemorySSAWalker;
112 : class LLVMContext;
113 : class raw_ostream;
114 :
115 : namespace MSSAHelpers {
116 :
117 : struct AllAccessTag {};
118 : struct DefsOnlyTag {};
119 :
120 : } // end namespace MSSAHelpers
121 :
122 : enum : unsigned {
123 : // Used to signify what the default invalid ID is for MemoryAccess's
124 : // getID()
125 : INVALID_MEMORYACCESS_ID = -1U
126 : };
127 :
128 : template <class T> class memoryaccess_def_iterator_base;
129 : using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
130 : using const_memoryaccess_def_iterator =
131 : memoryaccess_def_iterator_base<const MemoryAccess>;
132 :
133 : // The base for all memory accesses. All memory accesses in a block are
134 : // linked together using an intrusive list.
135 : class MemoryAccess
136 : : public DerivedUser,
137 : public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
138 : public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
139 : public:
140 : using AllAccessType =
141 : ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
142 : using DefsOnlyType =
143 : ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
144 :
145 : MemoryAccess(const MemoryAccess &) = delete;
146 : MemoryAccess &operator=(const MemoryAccess &) = delete;
147 :
148 : void *operator new(size_t) = delete;
149 :
150 : // Methods for support type inquiry through isa, cast, and
151 : // dyn_cast
152 : static bool classof(const Value *V) {
153 155 : unsigned ID = V->getValueID();
154 155 : return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
155 : }
156 :
157 0 : BasicBlock *getBlock() const { return Block; }
158 :
159 : void print(raw_ostream &OS) const;
160 : void dump() const;
161 :
162 : /// The user iterators for a memory access
163 : using iterator = user_iterator;
164 : using const_iterator = const_user_iterator;
165 :
166 : /// This iterator walks over all of the defs in a given
167 : /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
168 : /// MemoryUse/MemoryDef, this walks the defining access.
169 : memoryaccess_def_iterator defs_begin();
170 : const_memoryaccess_def_iterator defs_begin() const;
171 : memoryaccess_def_iterator defs_end();
172 : const_memoryaccess_def_iterator defs_end() const;
173 :
174 : /// Get the iterators for the all access list and the defs only list
175 : /// We default to the all access list.
176 : AllAccessType::self_iterator getIterator() {
177 10 : return this->AllAccessType::getIterator();
178 : }
179 : AllAccessType::const_self_iterator getIterator() const {
180 : return this->AllAccessType::getIterator();
181 : }
182 : AllAccessType::reverse_self_iterator getReverseIterator() {
183 19 : return this->AllAccessType::getReverseIterator();
184 : }
185 : AllAccessType::const_reverse_self_iterator getReverseIterator() const {
186 : return this->AllAccessType::getReverseIterator();
187 : }
188 : DefsOnlyType::self_iterator getDefsIterator() {
189 11 : return this->DefsOnlyType::getIterator();
190 : }
191 : DefsOnlyType::const_self_iterator getDefsIterator() const {
192 : return this->DefsOnlyType::getIterator();
193 : }
194 : DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
195 33 : return this->DefsOnlyType::getReverseIterator();
196 : }
197 : DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
198 : return this->DefsOnlyType::getReverseIterator();
199 : }
200 :
201 : protected:
202 : friend class MemoryDef;
203 : friend class MemoryPhi;
204 : friend class MemorySSA;
205 : friend class MemoryUse;
206 : friend class MemoryUseOrDef;
207 :
208 : /// Used by MemorySSA to change the block of a MemoryAccess when it is
209 : /// moved.
210 70 : void setBlock(BasicBlock *BB) { Block = BB; }
211 :
212 : /// Used for debugging and tracking things about MemoryAccesses.
213 : /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
214 : inline unsigned getID() const;
215 :
216 : MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
217 : BasicBlock *BB, unsigned NumOperands)
218 1820878 : : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
219 3641755 : Block(BB) {}
220 :
221 : // Use deleteValue() to delete a generic MemoryAccess.
222 : ~MemoryAccess() = default;
223 :
224 : private:
225 : BasicBlock *Block;
226 : };
227 :
228 : template <>
229 : struct ilist_alloc_traits<MemoryAccess> {
230 0 : static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
231 : };
232 :
233 : inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
234 472 : MA.print(OS);
235 : return OS;
236 : }
237 :
238 : /// Class that has the common methods + fields of memory uses/defs. It's
239 : /// a little awkward to have, but there are many cases where we want either a
240 : /// use or def, and there are many cases where uses are needed (defs aren't
241 : /// acceptable), and vice-versa.
242 : ///
243 : /// This class should never be instantiated directly; make a MemoryUse or
244 : /// MemoryDef instead.
245 : class MemoryUseOrDef : public MemoryAccess {
246 : public:
247 : void *operator new(size_t) = delete;
248 :
249 : DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
250 :
251 : /// Get the instruction that this MemoryUse represents.
252 0 : Instruction *getMemoryInst() const { return MemoryInstruction; }
253 :
254 : /// Get the access that produces the memory state used by this Use.
255 : MemoryAccess *getDefiningAccess() const { return getOperand(0); }
256 :
257 : static bool classof(const Value *MA) {
258 7537108 : return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
259 : }
260 :
261 : // Sadly, these have to be public because they are needed in some of the
262 : // iterators.
263 : inline bool isOptimized() const;
264 : inline MemoryAccess *getOptimized() const;
265 : inline void setOptimized(MemoryAccess *);
266 :
267 : // Retrieve AliasResult type of the optimized access. Ideally this would be
268 : // returned by the caching walker and may go away in the future.
269 : Optional<AliasResult> getOptimizedAccessType() const {
270 : return OptimizedAccessAlias;
271 : }
272 :
273 : /// Reset the ID of what this MemoryUse was optimized to, causing it to
274 : /// be rewalked by the walker if necessary.
275 : /// This really should only be called by tests.
276 : inline void resetOptimized();
277 :
278 : protected:
279 : friend class MemorySSA;
280 : friend class MemorySSAUpdater;
281 :
282 1758268 : MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
283 : DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
284 : unsigned NumOperands)
285 1758268 : : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
286 1758267 : MemoryInstruction(MI), OptimizedAccessAlias(MayAlias) {
287 1758267 : setDefiningAccess(DMA);
288 1758267 : }
289 :
290 : // Use deleteValue() to delete a generic MemoryUseOrDef.
291 : ~MemoryUseOrDef() = default;
292 :
293 : void setOptimizedAccessType(Optional<AliasResult> AR) {
294 : OptimizedAccessAlias = AR;
295 : }
296 :
297 4003443 : void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
298 : Optional<AliasResult> AR = MayAlias) {
299 4003443 : if (!Optimized) {
300 : setOperand(0, DMA);
301 3499908 : return;
302 : }
303 503534 : setOptimized(DMA);
304 : setOptimizedAccessType(AR);
305 : }
306 :
307 : private:
308 : Instruction *MemoryInstruction;
309 : Optional<AliasResult> OptimizedAccessAlias;
310 : };
311 :
312 : /// Represents read-only accesses to memory
313 : ///
314 : /// In particular, the set of Instructions that will be represented by
315 : /// MemoryUse's is exactly the set of Instructions for which
316 : /// AliasAnalysis::getModRefInfo returns "Ref".
317 693314 : class MemoryUse final : public MemoryUseOrDef {
318 : public:
319 : DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
320 :
321 : MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
322 693314 : : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
323 693314 : /*NumOperands=*/1) {}
324 :
325 : // allocate space for exactly one operand
326 693314 : void *operator new(size_t s) { return User::operator new(s, 1); }
327 :
328 : static bool classof(const Value *MA) {
329 5659266 : return MA->getValueID() == MemoryUseVal;
330 : }
331 :
332 : void print(raw_ostream &OS) const;
333 :
334 : void setOptimized(MemoryAccess *DMA) {
335 667861 : OptimizedID = DMA->getID();
336 : setOperand(0, DMA);
337 : }
338 :
339 : bool isOptimized() const {
340 246542 : return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
341 : }
342 :
343 : MemoryAccess *getOptimized() const {
344 : return getDefiningAccess();
345 : }
346 :
347 0 : void resetOptimized() {
348 17 : OptimizedID = INVALID_MEMORYACCESS_ID;
349 0 : }
350 :
351 : protected:
352 : friend class MemorySSA;
353 :
354 : private:
355 : static void deleteMe(DerivedUser *Self);
356 :
357 : unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
358 : };
359 :
360 : template <>
361 : struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
362 667861 : DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
363 :
364 : /// Represents a read-write access to memory, whether it is a must-alias,
365 : /// or a may-alias.
366 : ///
367 : /// In particular, the set of Instructions that will be represented by
368 : /// MemoryDef's is exactly the set of Instructions for which
369 : /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
370 : /// Note that, in order to provide def-def chains, all defs also have a use
371 : /// associated with them. This use points to the nearest reaching
372 : /// MemoryDef/MemoryPhi.
373 1064954 : class MemoryDef final : public MemoryUseOrDef {
374 : public:
375 : friend class MemorySSA;
376 :
377 : DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
378 :
379 : MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
380 : unsigned Ver)
381 1064954 : : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
382 : /*NumOperands=*/2),
383 1064954 : ID(Ver) {}
384 :
385 : // allocate space for exactly two operands
386 1064954 : void *operator new(size_t s) { return User::operator new(s, 2); }
387 :
388 : static bool classof(const Value *MA) {
389 6206102 : return MA->getValueID() == MemoryDefVal;
390 : }
391 :
392 : void setOptimized(MemoryAccess *MA) {
393 : setOperand(1, MA);
394 54 : OptimizedID = MA->getID();
395 : }
396 :
397 : MemoryAccess *getOptimized() const {
398 : return cast_or_null<MemoryAccess>(getOperand(1));
399 : }
400 :
401 : bool isOptimized() const {
402 44 : return getOptimized() && OptimizedID == getOptimized()->getID();
403 : }
404 :
405 0 : void resetOptimized() {
406 711 : OptimizedID = INVALID_MEMORYACCESS_ID;
407 0 : }
408 :
409 : void print(raw_ostream &OS) const;
410 :
411 0 : unsigned getID() const { return ID; }
412 :
413 : private:
414 : static void deleteMe(DerivedUser *Self);
415 :
416 : const unsigned ID;
417 : unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
418 : };
419 :
420 : template <>
421 : struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
422 382 : DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
423 :
424 : template <>
425 : struct OperandTraits<MemoryUseOrDef> {
426 : static Use *op_begin(MemoryUseOrDef *MUD) {
427 : if (auto *MU = dyn_cast<MemoryUse>(MUD))
428 : return OperandTraits<MemoryUse>::op_begin(MU);
429 : return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
430 : }
431 :
432 : static Use *op_end(MemoryUseOrDef *MUD) {
433 : if (auto *MU = dyn_cast<MemoryUse>(MUD))
434 : return OperandTraits<MemoryUse>::op_end(MU);
435 : return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
436 : }
437 :
438 : static unsigned operands(const MemoryUseOrDef *MUD) {
439 : if (const auto *MU = dyn_cast<MemoryUse>(MUD))
440 : return OperandTraits<MemoryUse>::operands(MU);
441 : return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
442 : }
443 : };
444 3651595 : DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
445 :
446 : /// Represents phi nodes for memory accesses.
447 : ///
448 : /// These have the same semantic as regular phi nodes, with the exception that
449 : /// only one phi will ever exist in a given basic block.
450 : /// Guaranteeing one phi per block means guaranteeing there is only ever one
451 : /// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
452 : /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
453 : /// a MemoryPhi's operands.
454 : /// That is, given
455 : /// if (a) {
456 : /// store %a
457 : /// store %b
458 : /// }
459 : /// it *must* be transformed into
460 : /// if (a) {
461 : /// 1 = MemoryDef(liveOnEntry)
462 : /// store %a
463 : /// 2 = MemoryDef(1)
464 : /// store %b
465 : /// }
466 : /// and *not*
467 : /// if (a) {
468 : /// 1 = MemoryDef(liveOnEntry)
469 : /// store %a
470 : /// 2 = MemoryDef(liveOnEntry)
471 : /// store %b
472 : /// }
473 : /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
474 : /// end of the branch, and if there are not two phi nodes, one will be
475 : /// disconnected completely from the SSA graph below that point.
476 : /// Because MemoryUse's do not generate new definitions, they do not have this
477 : /// issue.
478 62610 : class MemoryPhi final : public MemoryAccess {
479 : // allocate space for exactly zero operands
480 62610 : void *operator new(size_t s) { return User::operator new(s); }
481 :
482 : public:
483 : /// Provide fast operand accessors
484 : DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
485 :
486 62610 : MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
487 62610 : : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
488 62610 : ReservedSpace(NumPreds) {
489 : allocHungoffUses(ReservedSpace);
490 62610 : }
491 :
492 : // Block iterator interface. This provides access to the list of incoming
493 : // basic blocks, which parallels the list of incoming values.
494 : using block_iterator = BasicBlock **;
495 : using const_block_iterator = BasicBlock *const *;
496 :
497 : block_iterator block_begin() {
498 144323 : auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
499 0 : return reinterpret_cast<block_iterator>(Ref + 1);
500 : }
501 :
502 : const_block_iterator block_begin() const {
503 : const auto *Ref =
504 338 : reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
505 : return reinterpret_cast<const_block_iterator>(Ref + 1);
506 : }
507 :
508 6 : block_iterator block_end() { return block_begin() + getNumOperands(); }
509 :
510 : const_block_iterator block_end() const {
511 : return block_begin() + getNumOperands();
512 : }
513 :
514 : iterator_range<block_iterator> blocks() {
515 : return make_range(block_begin(), block_end());
516 : }
517 :
518 : iterator_range<const_block_iterator> blocks() const {
519 : return make_range(block_begin(), block_end());
520 : }
521 :
522 12 : op_range incoming_values() { return operands(); }
523 :
524 : const_op_range incoming_values() const { return operands(); }
525 :
526 : /// Return the number of incoming edges
527 : unsigned getNumIncomingValues() const { return getNumOperands(); }
528 :
529 : /// Return incoming value number x
530 : MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
531 : void setIncomingValue(unsigned I, MemoryAccess *V) {
532 : assert(V && "PHI node got a null value!");
533 46 : setOperand(I, V);
534 : }
535 :
536 : static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
537 : static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
538 :
539 : /// Return incoming basic block number @p i.
540 213 : BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
541 :
542 : /// Return incoming basic block corresponding
543 : /// to an operand of the PHI.
544 : BasicBlock *getIncomingBlock(const Use &U) const {
545 : assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
546 259 : return getIncomingBlock(unsigned(&U - op_begin()));
547 : }
548 :
549 : /// Return incoming basic block corresponding
550 : /// to value use iterator.
551 : BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
552 : return getIncomingBlock(I.getUse());
553 : }
554 :
555 : void setIncomingBlock(unsigned I, BasicBlock *BB) {
556 : assert(BB && "PHI node got a null basic block!");
557 144337 : block_begin()[I] = BB;
558 : }
559 :
560 : /// Add an incoming value to the end of the PHI list
561 144459 : void addIncoming(MemoryAccess *V, BasicBlock *BB) {
562 144459 : if (getNumOperands() == ReservedSpace)
563 79204 : growOperands(); // Get more space!
564 : // Initialize some new operands.
565 144459 : setNumHungOffUseOperands(getNumOperands() + 1);
566 144459 : setIncomingValue(getNumOperands() - 1, V);
567 144459 : setIncomingBlock(getNumOperands() - 1, BB);
568 144459 : }
569 :
570 : /// Return the first index of the specified basic
571 : /// block in the value list for this PHI. Returns -1 if no instance.
572 29 : int getBasicBlockIndex(const BasicBlock *BB) const {
573 33 : for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
574 33 : if (block_begin()[I] == BB)
575 29 : return I;
576 : return -1;
577 : }
578 :
579 1 : MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
580 1 : int Idx = getBasicBlockIndex(BB);
581 : assert(Idx >= 0 && "Invalid basic block argument!");
582 2 : return getIncomingValue(Idx);
583 : }
584 :
585 : // After deleting incoming position I, the order of incoming may be changed.
586 5 : void unorderedDeleteIncoming(unsigned I) {
587 : unsigned E = getNumOperands();
588 : assert(I < E && "Cannot remove out of bounds Phi entry.");
589 : // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
590 : // itself should be deleted.
591 : assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
592 : "at least 2 values.");
593 5 : setIncomingValue(I, getIncomingValue(E - 1));
594 5 : setIncomingBlock(I, block_begin()[E - 1]);
595 5 : setOperand(E - 1, nullptr);
596 5 : block_begin()[E - 1] = nullptr;
597 5 : setNumHungOffUseOperands(getNumOperands() - 1);
598 5 : }
599 :
600 : // After deleting entries that satisfy Pred, remaining entries may have
601 : // changed order.
602 5 : template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
603 15 : for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
604 10 : if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
605 5 : unorderedDeleteIncoming(I);
606 : E = getNumOperands();
607 5 : --I;
608 : }
609 : assert(getNumOperands() >= 1 &&
610 : "Cannot remove all incoming blocks in a MemoryPhi.");
611 5 : }
612 5 :
613 15 : // After deleting incoming block BB, the incoming blocks order may be changed.
614 10 : void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
615 5 : unorderedDeleteIncomingIf(
616 : [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
617 5 : }
618 :
619 : // After deleting incoming memory access MA, the incoming accesses order may
620 : // be changed.
621 5 : void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
622 0 : unorderedDeleteIncomingIf(
623 0 : [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
624 0 : }
625 0 :
626 : static bool classof(const Value *V) {
627 2340219 : return V->getValueID() == MemoryPhiVal;
628 : }
629 :
630 : void print(raw_ostream &OS) const;
631 0 :
632 0 : unsigned getID() const { return ID; }
633 0 :
634 0 : protected:
635 0 : friend class MemorySSA;
636 :
637 0 : /// this is more complicated than the generic
638 : /// User::allocHungoffUses, because we have to allocate Uses for the incoming
639 : /// values and pointers to the incoming blocks, all in one allocation.
640 : void allocHungoffUses(unsigned N) {
641 62610 : User::allocHungoffUses(N, /* IsPhi */ true);
642 : }
643 :
644 : private:
645 0 : // For debugging only
646 0 : const unsigned ID;
647 : unsigned ReservedSpace;
648 :
649 : /// This grows the operand list in response to a push_back style of
650 : /// operation. This grows the number of ops by 1.5 times.
651 79130 : void growOperands() {
652 : unsigned E = getNumOperands();
653 : // 2 op PHI nodes are VERY common, so reserve at least enough for that.
654 79130 : ReservedSpace = std::max(E + E / 2, 2u);
655 79130 : growHungoffUses(ReservedSpace, /* IsPhi */ true);
656 79130 : }
657 28190 :
658 : static void deleteMe(DerivedUser *Self);
659 : };
660 :
661 : inline unsigned MemoryAccess::getID() const {
662 0 : assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
663 : "only memory defs and phis have ids");
664 : if (const auto *MD = dyn_cast<MemoryDef>(this))
665 628135 : return MD->getID();
666 286670 : return cast<MemoryPhi>(this)->getID();
667 : }
668 :
669 246598 : inline bool MemoryUseOrDef::isOptimized() const {
670 : if (const auto *MD = dyn_cast<MemoryDef>(this))
671 : return MD->isOptimized();
672 : return cast<MemoryUse>(this)->isOptimized();
673 : }
674 :
675 : inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
676 : if (const auto *MD = dyn_cast<MemoryDef>(this))
677 : return MD->getOptimized();
678 : return cast<MemoryUse>(this)->getOptimized();
679 : }
680 :
681 667989 : inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
682 : if (auto *MD = dyn_cast<MemoryDef>(this))
683 : MD->setOptimized(MA);
684 74 : else
685 74 : cast<MemoryUse>(this)->setOptimized(MA);
686 667989 : }
687 :
688 : inline void MemoryUseOrDef::resetOptimized() {
689 : if (auto *MD = dyn_cast<MemoryDef>(this))
690 : MD->resetOptimized();
691 : else
692 : cast<MemoryUse>(this)->resetOptimized();
693 : }
694 :
695 0 : template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
696 1043869 : DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
697 :
698 : /// Encapsulates MemorySSA, including all data associated with memory
699 : /// accesses.
700 : class MemorySSA {
701 : public:
702 : MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
703 : ~MemorySSA();
704 :
705 : MemorySSAWalker *getWalker();
706 :
707 : /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
708 : /// access associated with it. If passed a basic block gets the memory phi
709 : /// node that exists for that block, if there is one. Otherwise, this will get
710 : /// a MemoryUseOrDef.
711 573861 : MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
712 1147722 : return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
713 : }
714 :
715 1826 : MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
716 3652 : return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
717 : }
718 :
719 : void dump() const;
720 : void print(raw_ostream &) const;
721 :
722 : /// Return true if \p MA represents the live on entry value
723 : ///
724 : /// Loads and stores from pointer arguments and other global values may be
725 : /// defined by memory operations that do not occur in the current function, so
726 746 : /// they may be live on entry to the function. MemorySSA represents such
727 : /// memory state by the live on entry definition, which is guaranteed to occur
728 : /// before any other memory access in the function.
729 : inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
730 11 : return MA == LiveOnEntryDef.get();
731 : }
732 :
733 : inline MemoryAccess *getLiveOnEntryDef() const {
734 : return LiveOnEntryDef.get();
735 : }
736 :
737 : // Sadly, iplists, by default, owns and deletes pointers added to the
738 : // list. It's not currently possible to have two iplists for the same type,
739 : // where one owns the pointers, and one does not. This is because the traits
740 : // are per-type, not per-tag. If this ever changes, we should make the
741 16 : // DefList an iplist.
742 32 : using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
743 : using DefsList =
744 : simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
745 1283 :
746 2566 : /// Return the list of MemoryAccess's for a given basic block.
747 : ///
748 : /// This list is not modifiable by the user.
749 : const AccessList *getBlockAccesses(const BasicBlock *BB) const {
750 : return getWritableBlockAccesses(BB);
751 : }
752 :
753 : /// Return the list of MemoryDef's and MemoryPhi's for a given basic
754 : /// block.
755 : ///
756 : /// This list is not modifiable by the user.
757 : const DefsList *getBlockDefs(const BasicBlock *BB) const {
758 : return getWritableBlockDefs(BB);
759 : }
760 :
761 : /// Given two memory accesses in the same basic block, determine
762 : /// whether MemoryAccess \p A dominates MemoryAccess \p B.
763 : bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
764 :
765 : /// Given two memory accesses in potentially different blocks,
766 : /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
767 : bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
768 :
769 : /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
770 : /// dominates Use \p B.
771 : bool dominates(const MemoryAccess *A, const Use &B) const;
772 :
773 : /// Verify that MemorySSA is self consistent (IE definitions dominate
774 : /// all uses, uses appear in the right places). This is used by unit tests.
775 : void verifyMemorySSA() const;
776 :
777 : /// Check clobber sanity for an access.
778 : void checkClobberSanityAccess(const MemoryAccess *MA) const;
779 :
780 : /// Used in various insertion functions to specify whether we are talking
781 : /// about the beginning or end of a block.
782 : enum InsertionPlace { Beginning, End };
783 :
784 : protected:
785 : // Used by Memory SSA annotater, dumpers, and wrapper pass
786 : friend class MemorySSAAnnotatedWriter;
787 : friend class MemorySSAPrinterLegacyPass;
788 : friend class MemorySSAUpdater;
789 :
790 : void verifyDefUses(Function &F) const;
791 : void verifyDomination(Function &F) const;
792 : void verifyOrdering(Function &F) const;
793 : void verifyDominationNumbers(const Function &F) const;
794 : void verifyClobberSanity(const Function &F) const;
795 :
796 : // This is used by the use optimizer and updater.
797 : AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
798 304381 : auto It = PerBlockAccesses.find(BB);
799 304381 : return It == PerBlockAccesses.end() ? nullptr : It->second.get();
800 : }
801 :
802 : // This is used by the use optimizer and updater.
803 : DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
804 1286 : auto It = PerBlockDefs.find(BB);
805 1286 : return It == PerBlockDefs.end() ? nullptr : It->second.get();
806 : }
807 :
808 : // These is used by the updater to perform various internal MemorySSA
809 : // machinsations. They do not always leave the IR in a correct state, and
810 : // relies on the updater to fixup what it breaks, so it is not public.
811 :
812 : void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
813 : void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
814 :
815 : // Rename the dominator tree branch rooted at BB.
816 : void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
817 : SmallPtrSetImpl<BasicBlock *> &Visited) {
818 : renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
819 : }
820 :
821 : void removeFromLookups(MemoryAccess *);
822 : void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
823 : void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
824 : InsertionPlace);
825 : void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
826 : AccessList::iterator);
827 : MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
828 446 : const MemoryUseOrDef *Template = nullptr);
829 446 :
830 : private:
831 : class CachingWalker;
832 : class OptimizeUses;
833 :
834 319 : CachingWalker *getWalkerImpl();
835 319 : void buildMemorySSA();
836 : void optimizeUses();
837 :
838 : void prepareForMoveTo(MemoryAccess *, BasicBlock *);
839 : void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
840 :
841 : using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
842 : using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
843 :
844 : void
845 : determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
846 1 : void markUnreachableAsLiveOnEntry(BasicBlock *BB);
847 : bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
848 2 : MemoryPhi *createMemoryPhi(BasicBlock *BB);
849 1 : MemoryUseOrDef *createNewAccess(Instruction *,
850 : const MemoryUseOrDef *Template = nullptr);
851 : MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
852 : void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
853 : MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
854 : void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
855 : void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
856 : SmallPtrSetImpl<BasicBlock *> &Visited,
857 : bool SkipVisited = false, bool RenameAllUses = false);
858 : AccessList *getOrCreateAccessList(const BasicBlock *);
859 : DefsList *getOrCreateDefsList(const BasicBlock *);
860 : void renumberBlock(const BasicBlock *) const;
861 : AliasAnalysis *AA;
862 : DominatorTree *DT;
863 : Function &F;
864 :
865 : // Memory SSA mappings
866 : DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
867 :
868 : // These two mappings contain the main block to access/def mappings for
869 : // MemorySSA. The list contained in PerBlockAccesses really owns all the
870 : // MemoryAccesses.
871 : // Both maps maintain the invariant that if a block is found in them, the
872 : // corresponding list is not empty, and if a block is not found in them, the
873 : // corresponding list is empty.
874 : AccessMap PerBlockAccesses;
875 : DefsMap PerBlockDefs;
876 : std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
877 :
878 : // Domination mappings
879 : // Note that the numbering is local to a block, even though the map is
880 : // global.
881 : mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
882 : mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
883 :
884 : // Memory SSA building info
885 : std::unique_ptr<CachingWalker> Walker;
886 : unsigned NextID;
887 : };
888 :
889 : // Internal MemorySSA utils, for use by MemorySSA classes and walkers
890 : class MemorySSAUtil {
891 : protected:
892 : friend class GVNHoist;
893 : friend class MemorySSAWalker;
894 :
895 : // This function should not be used by new passes.
896 : static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
897 : AliasAnalysis &AA);
898 : };
899 :
900 : // This pass does eager building and then printing of MemorySSA. It is used by
901 : // the tests to be able to build, dump, and verify Memory SSA.
902 : class MemorySSAPrinterLegacyPass : public FunctionPass {
903 : public:
904 : MemorySSAPrinterLegacyPass();
905 :
906 : bool runOnFunction(Function &) override;
907 : void getAnalysisUsage(AnalysisUsage &AU) const override;
908 :
909 : static char ID;
910 : };
911 :
912 : /// An analysis that produces \c MemorySSA for a function.
913 : ///
914 : class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
915 : friend AnalysisInfoMixin<MemorySSAAnalysis>;
916 :
917 : static AnalysisKey Key;
918 :
919 : public:
920 : // Wrap MemorySSA result to ensure address stability of internal MemorySSA
921 : // pointers after construction. Use a wrapper class instead of plain
922 : // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
923 392 : struct Result {
924 : Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
925 :
926 : MemorySSA &getMSSA() { return *MSSA.get(); }
927 :
928 : std::unique_ptr<MemorySSA> MSSA;
929 : };
930 :
931 : Result run(Function &F, FunctionAnalysisManager &AM);
932 : };
933 :
934 : /// Printer pass for \c MemorySSA.
935 : class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
936 : raw_ostream &OS;
937 :
938 : public:
939 20 : explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
940 :
941 : PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
942 : };
943 :
944 : /// Verifier pass for \c MemorySSA.
945 : struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
946 : PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
947 : };
948 :
949 : /// Legacy analysis pass which computes \c MemorySSA.
950 : class MemorySSAWrapperPass : public FunctionPass {
951 : public:
952 : MemorySSAWrapperPass();
953 :
954 : static char ID;
955 :
956 : bool runOnFunction(Function &) override;
957 : void releaseMemory() override;
958 : MemorySSA &getMSSA() { return *MSSA; }
959 : const MemorySSA &getMSSA() const { return *MSSA; }
960 :
961 : void getAnalysisUsage(AnalysisUsage &AU) const override;
962 :
963 : void verifyAnalysis() const override;
964 : void print(raw_ostream &OS, const Module *M = nullptr) const override;
965 :
966 : private:
967 : std::unique_ptr<MemorySSA> MSSA;
968 : };
969 :
970 : /// This is the generic walker interface for walkers of MemorySSA.
971 : /// Walkers are used to be able to further disambiguate the def-use chains
972 : /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
973 : /// you.
974 : /// In particular, while the def-use chains provide basic information, and are
975 : /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
976 : /// MemoryUse as AliasAnalysis considers it, a user mant want better or other
977 : /// information. In particular, they may want to use SCEV info to further
978 : /// disambiguate memory accesses, or they may want the nearest dominating
979 : /// may-aliasing MemoryDef for a call or a store. This API enables a
980 : /// standardized interface to getting and using that info.
981 : class MemorySSAWalker {
982 : public:
983 : MemorySSAWalker(MemorySSA *);
984 0 : virtual ~MemorySSAWalker() = default;
985 :
986 : using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
987 :
988 : /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
989 : /// will give you the nearest dominating MemoryAccess that Mod's the location
990 : /// the instruction accesses (by skipping any def which AA can prove does not
991 : /// alias the location(s) accessed by the instruction given).
992 : ///
993 : /// Note that this will return a single access, and it must dominate the
994 : /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
995 : /// this will return the MemoryPhi, not the operand. This means that
996 : /// given:
997 : /// if (a) {
998 : /// 1 = MemoryDef(liveOnEntry)
999 : /// store %a
1000 : /// } else {
1001 : /// 2 = MemoryDef(liveOnEntry)
1002 : /// store %b
1003 : /// }
1004 : /// 3 = MemoryPhi(2, 1)
1005 : /// MemoryUse(3)
1006 : /// load %a
1007 : ///
1008 : /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
1009 : /// in the if (a) branch.
1010 246074 : MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
1011 246074 : MemoryAccess *MA = MSSA->getMemoryAccess(I);
1012 : assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
1013 246074 : return getClobberingMemoryAccess(MA);
1014 : }
1015 :
1016 : /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
1017 : /// but takes a MemoryAccess instead of an Instruction.
1018 : virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
1019 :
1020 : /// Given a potentially clobbering memory access and a new location,
1021 : /// calling this will give you the nearest dominating clobbering MemoryAccess
1022 : /// (by skipping non-aliasing def links).
1023 : ///
1024 : /// This version of the function is mainly used to disambiguate phi translated
1025 : /// pointers, where the value of a pointer may have changed from the initial
1026 : /// memory access. Note that this expects to be handed either a MemoryUse,
1027 : /// or an already potentially clobbering access. Unlike the above API, if
1028 : /// given a MemoryDef that clobbers the pointer as the starting access, it
1029 : /// will return that MemoryDef, whereas the above would return the clobber
1030 : /// starting from the use side of the memory def.
1031 : virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1032 : const MemoryLocation &) = 0;
1033 :
1034 : /// Given a memory access, invalidate anything this walker knows about
1035 : /// that access.
1036 : /// This API is used by walkers that store information to perform basic cache
1037 : /// invalidation. This will be called by MemorySSA at appropriate times for
1038 : /// the walker it uses or returns.
1039 0 : virtual void invalidateInfo(MemoryAccess *) {}
1040 :
1041 0 : virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
1042 :
1043 : protected:
1044 : friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
1045 : // constructor.
1046 : MemorySSA *MSSA;
1047 : };
1048 :
1049 : /// A MemorySSAWalker that does no alias queries, or anything else. It
1050 : /// simply returns the links as they were constructed by the builder.
1051 : class DoNothingMemorySSAWalker final : public MemorySSAWalker {
1052 : public:
1053 : // Keep the overrides below from hiding the Instruction overload of
1054 : // getClobberingMemoryAccess.
1055 : using MemorySSAWalker::getClobberingMemoryAccess;
1056 :
1057 : MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
1058 : MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1059 : const MemoryLocation &) override;
1060 : };
1061 :
1062 : using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
1063 : using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
1064 :
1065 : /// Iterator base class used to implement const and non-const iterators
1066 : /// over the defining accesses of a MemoryAccess.
1067 : template <class T>
1068 : class memoryaccess_def_iterator_base
1069 : : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
1070 : std::forward_iterator_tag, T, ptrdiff_t, T *,
1071 : T *> {
1072 : using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
1073 :
1074 : public:
1075 267709 : memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
1076 0 : memoryaccess_def_iterator_base() = default;
1077 :
1078 0 : bool operator==(const memoryaccess_def_iterator_base &Other) const {
1079 610844 : return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
1080 : }
1081 :
1082 : // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1083 : // block from the operand in constant time (In a PHINode, the uselist has
1084 : // both, so it's just subtraction). We provide it as part of the
1085 : // iterator to avoid callers having to linear walk to get the block.
1086 : // If the operation becomes constant time on MemoryPHI's, this bit of
1087 : // abstraction breaking should be removed.
1088 0 : BasicBlock *getPhiArgBlock() const {
1089 0 : MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
1090 : assert(MP && "Tried to get phi arg block when not iterating over a PHI");
1091 0 : return MP->getIncomingBlock(ArgNo);
1092 : }
1093 :
1094 610844 : typename BaseT::iterator::pointer operator*() const {
1095 : assert(Access && "Tried to access past the end of our iterator");
1096 : // Go to the first argument for phis, and the defining access for everything
1097 : // else.
1098 610844 : if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
1099 610844 : return MP->getIncomingValue(ArgNo);
1100 : return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
1101 : }
1102 :
1103 : using BaseT::operator++;
1104 : memoryaccess_def_iterator &operator++() {
1105 : assert(Access && "Hit end of iterator");
1106 610844 : if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
1107 1221688 : if (++ArgNo >= MP->getNumIncomingValues()) {
1108 267709 : ArgNo = 0;
1109 267709 : Access = nullptr;
1110 : }
1111 : } else {
1112 0 : Access = nullptr;
1113 : }
1114 : return *this;
1115 : }
1116 :
1117 : private:
1118 : T *Access = nullptr;
1119 : unsigned ArgNo = 0;
1120 : };
1121 :
1122 : inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
1123 : return memoryaccess_def_iterator(this);
1124 : }
1125 :
1126 : inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
1127 : return const_memoryaccess_def_iterator(this);
1128 : }
1129 :
1130 0 : inline memoryaccess_def_iterator MemoryAccess::defs_end() {
1131 0 : return memoryaccess_def_iterator();
1132 : }
1133 :
1134 : inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
1135 : return const_memoryaccess_def_iterator();
1136 : }
1137 :
1138 : /// GraphTraits for a MemoryAccess, which walks defs in the normal case,
1139 : /// and uses in the inverse case.
1140 : template <> struct GraphTraits<MemoryAccess *> {
1141 : using NodeRef = MemoryAccess *;
1142 : using ChildIteratorType = memoryaccess_def_iterator;
1143 :
1144 : static NodeRef getEntryNode(NodeRef N) { return N; }
1145 : static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
1146 : static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
1147 : };
1148 :
1149 : template <> struct GraphTraits<Inverse<MemoryAccess *>> {
1150 : using NodeRef = MemoryAccess *;
1151 : using ChildIteratorType = MemoryAccess::iterator;
1152 :
1153 : static NodeRef getEntryNode(NodeRef N) { return N; }
1154 : static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
1155 : static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
1156 : };
1157 :
1158 : /// Provide an iterator that walks defs, giving both the memory access,
1159 : /// and the current pointer location, updating the pointer location as it
1160 : /// changes due to phi node translation.
1161 : ///
1162 : /// This iterator, while somewhat specialized, is what most clients actually
1163 : /// want when walking upwards through MemorySSA def chains. It takes a pair of
1164 : /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1165 : /// memory location through phi nodes for the user.
1166 : class upward_defs_iterator
1167 : : public iterator_facade_base<upward_defs_iterator,
1168 : std::forward_iterator_tag,
1169 : const MemoryAccessPair> {
1170 : using BaseT = upward_defs_iterator::iterator_facade_base;
1171 :
1172 : public:
1173 267709 : upward_defs_iterator(const MemoryAccessPair &Info)
1174 267709 : : DefIterator(Info.first), Location(Info.second),
1175 267709 : OriginalAccess(Info.first) {
1176 : CurrentPair.first = nullptr;
1177 :
1178 267709 : WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
1179 267709 : fillInCurrentPair();
1180 267709 : }
1181 :
1182 0 : upward_defs_iterator() { CurrentPair.first = nullptr; }
1183 :
1184 : bool operator==(const upward_defs_iterator &Other) const {
1185 878553 : return DefIterator == Other.DefIterator;
1186 : }
1187 :
1188 : BaseT::iterator::reference operator*() const {
1189 : assert(DefIterator != OriginalAccess->defs_end() &&
1190 : "Tried to access past the end of our iterator");
1191 : return CurrentPair;
1192 : }
1193 :
1194 : using BaseT::operator++;
1195 610844 : upward_defs_iterator &operator++() {
1196 : assert(DefIterator != OriginalAccess->defs_end() &&
1197 : "Tried to access past the end of the iterator");
1198 : ++DefIterator;
1199 : if (DefIterator != OriginalAccess->defs_end())
1200 343135 : fillInCurrentPair();
1201 610844 : return *this;
1202 : }
1203 :
1204 : BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
1205 :
1206 : private:
1207 610844 : void fillInCurrentPair() {
1208 610844 : CurrentPair.first = *DefIterator;
1209 610844 : if (WalkingPhi && Location.Ptr) {
1210 : PHITransAddr Translator(
1211 603127 : const_cast<Value *>(Location.Ptr),
1212 603127 : OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
1213 603127 : if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
1214 : DefIterator.getPhiArgBlock(), nullptr,
1215 : false))
1216 0 : if (Translator.getAddr() != Location.Ptr) {
1217 0 : CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
1218 : return;
1219 : }
1220 : }
1221 610844 : CurrentPair.second = Location;
1222 : }
1223 :
1224 : MemoryAccessPair CurrentPair;
1225 : memoryaccess_def_iterator DefIterator;
1226 : MemoryLocation Location;
1227 : MemoryAccess *OriginalAccess = nullptr;
1228 : bool WalkingPhi = false;
1229 : };
1230 :
1231 : inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
1232 267709 : return upward_defs_iterator(Pair);
1233 : }
1234 :
1235 : inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
1236 :
1237 : inline iterator_range<upward_defs_iterator>
1238 : upward_defs(const MemoryAccessPair &Pair) {
1239 : return make_range(upward_defs_begin(Pair), upward_defs_end());
1240 : }
1241 :
1242 : /// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1243 : /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1244 : /// comparing against a null def_chain_iterator, this will compare equal only
1245 : /// after walking said Phi/liveOnEntry.
1246 : ///
1247 : /// The UseOptimizedChain flag specifies whether to walk the clobbering
1248 : /// access chain, or all the accesses.
1249 : ///
1250 : /// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1251 : /// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1252 : /// a phi node. The optimized chain walks the clobbering access of a store.
1253 : /// So if you are just trying to find, given a store, what the next
1254 : /// thing that would clobber the same memory is, you want the optimized chain.
1255 : template <class T, bool UseOptimizedChain = false>
1256 : struct def_chain_iterator
1257 : : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
1258 : std::forward_iterator_tag, MemoryAccess *> {
1259 : def_chain_iterator() : MA(nullptr) {}
1260 : def_chain_iterator(T MA) : MA(MA) {}
1261 :
1262 0 : T operator*() const { return MA; }
1263 :
1264 : def_chain_iterator &operator++() {
1265 : // N.B. liveOnEntry has a null defining access.
1266 : if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1267 : if (UseOptimizedChain && MUD->isOptimized())
1268 : MA = MUD->getOptimized();
1269 : else
1270 : MA = MUD->getDefiningAccess();
1271 : } else {
1272 : MA = nullptr;
1273 : }
1274 :
1275 : return *this;
1276 : }
1277 :
1278 0 : bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
1279 :
1280 : private:
1281 : T MA;
1282 : };
1283 :
1284 : template <class T>
1285 : inline iterator_range<def_chain_iterator<T>>
1286 : def_chain(T MA, MemoryAccess *UpTo = nullptr) {
1287 : #ifdef EXPENSIVE_CHECKS
1288 : assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
1289 : "UpTo isn't in the def chain!");
1290 : #endif
1291 : return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
1292 : }
1293 :
1294 : template <class T>
1295 : inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
1296 : return make_range(def_chain_iterator<T, true>(MA),
1297 : def_chain_iterator<T, true>(nullptr));
1298 : }
1299 :
1300 : } // end namespace llvm
1301 :
1302 : #endif // LLVM_ANALYSIS_MEMORYSSA_H
|