Line data Source code
1 : //===---- LatencyPriorityQueue.h - A latency-oriented priority queue ------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file declares the LatencyPriorityQueue class, which is a
11 : // SchedulingPriorityQueue that schedules using latency information to
12 : // reduce the length of the critical path through the basic block.
13 : //
14 : //===----------------------------------------------------------------------===//
15 :
16 : #ifndef LLVM_CODEGEN_LATENCYPRIORITYQUEUE_H
17 : #define LLVM_CODEGEN_LATENCYPRIORITYQUEUE_H
18 :
19 : #include "llvm/CodeGen/ScheduleDAG.h"
20 : #include "llvm/Config/llvm-config.h"
21 :
22 : namespace llvm {
23 : class LatencyPriorityQueue;
24 :
25 : /// Sorting functions for the Available queue.
26 : struct latency_sort {
27 : LatencyPriorityQueue *PQ;
28 37400 : explicit latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
29 :
30 : bool operator()(const SUnit* LHS, const SUnit* RHS) const;
31 : };
32 :
33 : class LatencyPriorityQueue : public SchedulingPriorityQueue {
34 : // SUnits - The SUnits for the current graph.
35 : std::vector<SUnit> *SUnits;
36 :
37 : /// NumNodesSolelyBlocking - This vector contains, for every node in the
38 : /// Queue, the number of nodes that the node is the sole unscheduled
39 : /// predecessor for. This is used as a tie-breaker heuristic for better
40 : /// mobility.
41 : std::vector<unsigned> NumNodesSolelyBlocking;
42 :
43 : /// Queue - The queue.
44 : std::vector<SUnit*> Queue;
45 : latency_sort Picker;
46 :
47 : public:
48 74800 : LatencyPriorityQueue() : Picker(this) {
49 : }
50 :
51 0 : bool isBottomUp() const override { return false; }
52 :
53 0 : void initNodes(std::vector<SUnit> &sunits) override {
54 425285 : SUnits = &sunits;
55 850570 : NumNodesSolelyBlocking.resize(SUnits->size(), 0);
56 0 : }
57 :
58 0 : void addNode(const SUnit *SU) override {
59 0 : NumNodesSolelyBlocking.resize(SUnits->size(), 0);
60 0 : }
61 :
62 0 : void updateNode(const SUnit *SU) override {
63 0 : }
64 :
65 0 : void releaseState() override {
66 425285 : SUnits = nullptr;
67 0 : }
68 :
69 0 : unsigned getLatency(unsigned NodeNum) const {
70 : assert(NodeNum < (*SUnits).size());
71 4602732 : return (*SUnits)[NodeNum].getHeight();
72 : }
73 :
74 : unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
75 : assert(NodeNum < NumNodesSolelyBlocking.size());
76 11647122 : return NumNodesSolelyBlocking[NodeNum];
77 : }
78 :
79 1872234 : bool empty() const override { return Queue.empty(); }
80 :
81 : void push(SUnit *U) override;
82 :
83 : SUnit *pop() override;
84 :
85 : void remove(SUnit *SU) override;
86 :
87 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
88 : LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override;
89 : #endif
90 :
91 : // scheduledNode - As nodes are scheduled, we look to see if there are any
92 : // successor nodes that have a single unscheduled predecessor. If so, that
93 : // single predecessor has a higher priority, since scheduling it will make
94 : // the node available.
95 : void scheduledNode(SUnit *SU) override;
96 :
97 : private:
98 : void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
99 : SUnit *getSingleUnscheduledPred(SUnit *SU);
100 : };
101 : }
102 :
103 : #endif
|