Line data Source code
1 : //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements the LiveVariables analysis pass. For each machine
11 : // instruction in the function, this pass calculates the set of registers that
12 : // are immediately dead after the instruction (i.e., the instruction calculates
13 : // the value, but it is never used) and the set of registers that are used by
14 : // the instruction, but are never used after the instruction (i.e., they are
15 : // killed).
16 : //
17 : // This class computes live variables using a sparse implementation based on
18 : // the machine code SSA form. This class computes live variable information for
19 : // each virtual and _register allocatable_ physical register in a function. It
20 : // uses the dominance properties of SSA form to efficiently compute live
21 : // variables for virtual registers, and assumes that physical registers are only
22 : // live within a single basic block (allowing it to do a single local analysis
23 : // to resolve physical register lifetimes in each basic block). If a physical
24 : // register is not register allocatable, it is not tracked. This is useful for
25 : // things like the stack pointer and condition codes.
26 : //
27 : //===----------------------------------------------------------------------===//
28 :
29 : #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30 : #define LLVM_CODEGEN_LIVEVARIABLES_H
31 :
32 : #include "llvm/ADT/DenseMap.h"
33 : #include "llvm/ADT/IndexedMap.h"
34 : #include "llvm/ADT/SmallSet.h"
35 : #include "llvm/ADT/SmallVector.h"
36 : #include "llvm/ADT/SparseBitVector.h"
37 : #include "llvm/CodeGen/MachineFunctionPass.h"
38 : #include "llvm/CodeGen/MachineInstr.h"
39 : #include "llvm/CodeGen/TargetRegisterInfo.h"
40 :
41 : namespace llvm {
42 :
43 : class MachineBasicBlock;
44 : class MachineRegisterInfo;
45 :
46 : class LiveVariables : public MachineFunctionPass {
47 : public:
48 : static char ID; // Pass identification, replacement for typeid
49 21385 : LiveVariables() : MachineFunctionPass(ID) {
50 21385 : initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51 21385 : }
52 :
53 : /// VarInfo - This represents the regions where a virtual register is live in
54 : /// the program. We represent this with three different pieces of
55 : /// information: the set of blocks in which the instruction is live
56 : /// throughout, the set of blocks in which the instruction is actually used,
57 : /// and the set of non-phi instructions that are the last users of the value.
58 : ///
59 : /// In the common case where a value is defined and killed in the same block,
60 : /// There is one killing instruction, and AliveBlocks is empty.
61 : ///
62 : /// Otherwise, the value is live out of the block. If the value is live
63 : /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks
64 : /// where the liveness range ends are not included in AliveBlocks, instead
65 : /// being captured by the Kills set. In these blocks, the value is live into
66 : /// the block (unless the value is defined and killed in the same block) and
67 : /// lives until the specified instruction. Note that there cannot ever be a
68 : /// value whose Kills set contains two instructions from the same basic block.
69 : ///
70 : /// PHI nodes complicate things a bit. If a PHI node is the last user of a
71 : /// value in one of its predecessor blocks, it is not listed in the kills set,
72 : /// but does include the predecessor block in the AliveBlocks set (unless that
73 : /// block also defines the value). This leads to the (perfectly sensical)
74 : /// situation where a value is defined in a block, and the last use is a phi
75 : /// node in the successor. In this case, AliveBlocks is empty (the value is
76 : /// not live across any blocks) and Kills is empty (phi nodes are not
77 : /// included). This is sensical because the value must be live to the end of
78 : /// the block, but is not live in any successor blocks.
79 3519563 : struct VarInfo {
80 : /// AliveBlocks - Set of blocks in which this value is alive completely
81 : /// through. This is a bit set which uses the basic block number as an
82 : /// index.
83 : ///
84 : SparseBitVector<> AliveBlocks;
85 :
86 : /// Kills - List of MachineInstruction's which are the last use of this
87 : /// virtual register (kill it) in their basic block.
88 : ///
89 : std::vector<MachineInstr*> Kills;
90 :
91 : /// removeKill - Delete a kill corresponding to the specified
92 : /// machine instruction. Returns true if there was a kill
93 : /// corresponding to this instruction, false otherwise.
94 249998 : bool removeKill(MachineInstr &MI) {
95 249998 : std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96 249998 : if (I == Kills.end())
97 : return false;
98 246456 : Kills.erase(I);
99 246456 : return true;
100 : }
101 :
102 : /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
103 : MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104 :
105 : /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106 : /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107 : /// MBB, it is not considered live in.
108 : bool isLiveIn(const MachineBasicBlock &MBB,
109 : unsigned Reg,
110 : MachineRegisterInfo &MRI);
111 :
112 : void dump() const;
113 : };
114 :
115 : private:
116 : /// VirtRegInfo - This list is a mapping from virtual register number to
117 : /// variable information.
118 : ///
119 : IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120 :
121 : /// PHIJoins - list of virtual registers that are PHI joins. These registers
122 : /// may have multiple definitions, and they require special handling when
123 : /// building live intervals.
124 : SparseBitVector<> PHIJoins;
125 :
126 : private: // Intermediate data structures
127 : MachineFunction *MF;
128 :
129 : MachineRegisterInfo* MRI;
130 :
131 : const TargetRegisterInfo *TRI;
132 :
133 : // PhysRegInfo - Keep track of which instruction was the last def of a
134 : // physical register. This is a purely local property, because all physical
135 : // register references are presumed dead across basic blocks.
136 : std::vector<MachineInstr *> PhysRegDef;
137 :
138 : // PhysRegInfo - Keep track of which instruction was the last use of a
139 : // physical register. This is a purely local property, because all physical
140 : // register references are presumed dead across basic blocks.
141 : std::vector<MachineInstr *> PhysRegUse;
142 :
143 : std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144 :
145 : // DistanceMap - Keep track the distance of a MI from the start of the
146 : // current basic block.
147 : DenseMap<MachineInstr*, unsigned> DistanceMap;
148 :
149 : /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150 : /// uses. Pay special attention to the sub-register uses which may come below
151 : /// the last use of the whole register.
152 : bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
153 :
154 : /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155 : void HandleRegMask(const MachineOperand&);
156 :
157 : void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
158 : void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
159 : SmallVectorImpl<unsigned> &Defs);
160 : void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161 :
162 : /// FindLastRefOrPartRef - Return the last reference or partial reference of
163 : /// the specified register.
164 : MachineInstr *FindLastRefOrPartRef(unsigned Reg);
165 :
166 : /// FindLastPartialDef - Return the last partial def of the specified
167 : /// register. Also returns the sub-registers that're defined by the
168 : /// instruction.
169 : MachineInstr *FindLastPartialDef(unsigned Reg,
170 : SmallSet<unsigned,4> &PartDefRegs);
171 :
172 : /// analyzePHINodes - Gather information about the PHI nodes in here. In
173 : /// particular, we want to map the variable information of a virtual
174 : /// register which is used in a PHI node. We map that to the BB the vreg
175 : /// is coming from.
176 : void analyzePHINodes(const MachineFunction& Fn);
177 :
178 : void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179 :
180 : void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181 : public:
182 :
183 : bool runOnMachineFunction(MachineFunction &MF) override;
184 :
185 : /// RegisterDefIsDead - Return true if the specified instruction defines the
186 : /// specified register, but that definition is dead.
187 : bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
188 :
189 : //===--------------------------------------------------------------------===//
190 : // API to update live variable information
191 :
192 : /// replaceKillInstruction - Update register kill info by replacing a kill
193 : /// instruction with a new one.
194 : void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
195 : MachineInstr &NewMI);
196 :
197 : /// addVirtualRegisterKilled - Add information about the fact that the
198 : /// specified register is killed after being used by the specified
199 : /// instruction. If AddIfNotFound is true, add a implicit operand if it's
200 : /// not found.
201 513911 : void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
202 : bool AddIfNotFound = false) {
203 513911 : if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
204 513911 : getVarInfo(IncomingReg).Kills.push_back(&MI);
205 513911 : }
206 :
207 : /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
208 : /// register from the live variable information. Returns true if the
209 : /// variable was marked as killed by the specified instruction,
210 : /// false otherwise.
211 2052 : bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
212 2052 : if (!getVarInfo(reg).removeKill(MI))
213 : return false;
214 :
215 : bool Removed = false;
216 5494 : for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
217 5494 : MachineOperand &MO = MI.getOperand(i);
218 5494 : if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
219 : MO.setIsKill(false);
220 : Removed = true;
221 2052 : break;
222 : }
223 : }
224 :
225 : assert(Removed && "Register is not used by this instruction!");
226 : (void)Removed;
227 : return true;
228 : }
229 :
230 : /// removeVirtualRegistersKilled - Remove all killed info for the specified
231 : /// instruction.
232 : void removeVirtualRegistersKilled(MachineInstr &MI);
233 :
234 : /// addVirtualRegisterDead - Add information about the fact that the specified
235 : /// register is dead after being used by the specified instruction. If
236 : /// AddIfNotFound is true, add a implicit operand if it's not found.
237 3 : void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
238 : bool AddIfNotFound = false) {
239 3 : if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
240 3 : getVarInfo(IncomingReg).Kills.push_back(&MI);
241 3 : }
242 :
243 : /// removeVirtualRegisterDead - Remove the specified kill of the virtual
244 : /// register from the live variable information. Returns true if the
245 : /// variable was marked dead at the specified instruction, false
246 : /// otherwise.
247 3545 : bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
248 3545 : if (!getVarInfo(reg).removeKill(MI))
249 : return false;
250 :
251 : bool Removed = false;
252 3 : for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
253 3 : MachineOperand &MO = MI.getOperand(i);
254 3 : if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
255 : MO.setIsDead(false);
256 : Removed = true;
257 3 : break;
258 : }
259 : }
260 : assert(Removed && "Register is not defined by this instruction!");
261 : (void)Removed;
262 : return true;
263 : }
264 :
265 : void getAnalysisUsage(AnalysisUsage &AU) const override;
266 :
267 205976 : void releaseMemory() override {
268 : VirtRegInfo.clear();
269 205976 : }
270 :
271 : /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
272 : /// register.
273 : VarInfo &getVarInfo(unsigned RegIdx);
274 :
275 : void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
276 : MachineBasicBlock *BB);
277 : void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
278 : MachineBasicBlock *BB,
279 : std::vector<MachineBasicBlock*> &WorkList);
280 : void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
281 : void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
282 :
283 8590 : bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
284 8590 : return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
285 : }
286 :
287 : /// isLiveOut - Determine if Reg is live out from MBB, when not considering
288 : /// PHI nodes. This means that Reg is either killed by a successor block or
289 : /// passed through one.
290 : bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
291 :
292 : /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
293 : /// variables that are live out of DomBB and live into SuccBB will be marked
294 : /// as passing live through BB. This method assumes that the machine code is
295 : /// still in SSA form.
296 : void addNewBlock(MachineBasicBlock *BB,
297 : MachineBasicBlock *DomBB,
298 : MachineBasicBlock *SuccBB);
299 :
300 : /// isPHIJoin - Return true if Reg is a phi join register.
301 : bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
302 :
303 : /// setPHIJoin - Mark Reg as a phi join register.
304 86228 : void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
305 : };
306 :
307 : } // End llvm namespace
308 :
309 : #endif
|