LCOV - code coverage report
Current view: top level - include/llvm/CodeGen - MachineBasicBlock.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 63 78 80.8 %
Date: 2018-10-20 13:21:21 Functions: 10 26 38.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // Collect the sequence of machine instructions for a basic block.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
      15             : #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
      16             : 
      17             : #include "llvm/ADT/GraphTraits.h"
      18             : #include "llvm/ADT/ilist.h"
      19             : #include "llvm/ADT/ilist_node.h"
      20             : #include "llvm/ADT/iterator_range.h"
      21             : #include "llvm/ADT/simple_ilist.h"
      22             : #include "llvm/CodeGen/MachineInstr.h"
      23             : #include "llvm/CodeGen/MachineInstrBundleIterator.h"
      24             : #include "llvm/IR/DebugLoc.h"
      25             : #include "llvm/MC/LaneBitmask.h"
      26             : #include "llvm/MC/MCRegisterInfo.h"
      27             : #include "llvm/Support/BranchProbability.h"
      28             : #include "llvm/Support/Printable.h"
      29             : #include <cassert>
      30             : #include <cstdint>
      31             : #include <functional>
      32             : #include <iterator>
      33             : #include <string>
      34             : #include <vector>
      35             : 
      36             : namespace llvm {
      37             : 
      38             : class BasicBlock;
      39             : class MachineFunction;
      40             : class MCSymbol;
      41             : class ModuleSlotTracker;
      42             : class Pass;
      43             : class SlotIndexes;
      44             : class StringRef;
      45             : class raw_ostream;
      46             : class TargetRegisterClass;
      47             : class TargetRegisterInfo;
      48             : 
      49             : template <> struct ilist_traits<MachineInstr> {
      50             : private:
      51             :   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
      52             : 
      53             :   MachineBasicBlock *Parent;
      54             : 
      55             :   using instr_iterator =
      56             :       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
      57             : 
      58             : public:
      59             :   void addNodeToList(MachineInstr *N);
      60             :   void removeNodeFromList(MachineInstr *N);
      61             :   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
      62             :                              instr_iterator Last);
      63             :   void deleteNode(MachineInstr *MI);
      64             : };
      65             : 
      66             : class MachineBasicBlock
      67             :     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
      68             : public:
      69             :   /// Pair of physical register and lane mask.
      70             :   /// This is not simply a std::pair typedef because the members should be named
      71             :   /// clearly as they both have an integer type.
      72             :   struct RegisterMaskPair {
      73             :   public:
      74             :     MCPhysReg PhysReg;
      75             :     LaneBitmask LaneMask;
      76             : 
      77             :     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
      78     2101923 :         : PhysReg(PhysReg), LaneMask(LaneMask) {}
      79             :   };
      80             : 
      81             : private:
      82             :   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
      83             : 
      84             :   Instructions Insts;
      85             :   const BasicBlock *BB;
      86             :   int Number;
      87             :   MachineFunction *xParent;
      88             : 
      89             :   /// Keep track of the predecessor / successor basic blocks.
      90             :   std::vector<MachineBasicBlock *> Predecessors;
      91             :   std::vector<MachineBasicBlock *> Successors;
      92             : 
      93             :   /// Keep track of the probabilities to the successors. This vector has the
      94             :   /// same order as Successors, or it is empty if we don't use it (disable
      95             :   /// optimization).
      96             :   std::vector<BranchProbability> Probs;
      97             :   using probability_iterator = std::vector<BranchProbability>::iterator;
      98             :   using const_probability_iterator =
      99             :       std::vector<BranchProbability>::const_iterator;
     100             : 
     101             :   Optional<uint64_t> IrrLoopHeaderWeight;
     102             : 
     103             :   /// Keep track of the physical registers that are livein of the basicblock.
     104             :   using LiveInVector = std::vector<RegisterMaskPair>;
     105             :   LiveInVector LiveIns;
     106             : 
     107             :   /// Alignment of the basic block. Zero if the basic block does not need to be
     108             :   /// aligned. The alignment is specified as log2(bytes).
     109             :   unsigned Alignment = 0;
     110             : 
     111             :   /// Indicate that this basic block is entered via an exception handler.
     112             :   bool IsEHPad = false;
     113             : 
     114             :   /// Indicate that this basic block is potentially the target of an indirect
     115             :   /// branch.
     116             :   bool AddressTaken = false;
     117             : 
     118             :   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
     119             :   /// the block that used to have a catchpad or cleanuppad instruction in the
     120             :   /// LLVM IR.
     121             :   bool IsEHScopeEntry = false;
     122             : 
     123             :   /// Indicate that this basic block is the entry block of an EH funclet.
     124             :   bool IsEHFuncletEntry = false;
     125             : 
     126             :   /// Indicate that this basic block is the entry block of a cleanup funclet.
     127             :   bool IsCleanupFuncletEntry = false;
     128             : 
     129             :   /// since getSymbol is a relatively heavy-weight operation, the symbol
     130             :   /// is only computed once and is cached.
     131             :   mutable MCSymbol *CachedMCSymbol = nullptr;
     132             : 
     133             :   // Intrusive list support
     134             :   MachineBasicBlock() = default;
     135             : 
     136             :   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
     137             : 
     138             :   ~MachineBasicBlock();
     139             : 
     140             :   // MachineBasicBlocks are allocated and owned by MachineFunction.
     141             :   friend class MachineFunction;
     142             : 
     143             : public:
     144             :   /// Return the LLVM basic block that this instance corresponded to originally.
     145             :   /// Note that this may be NULL if this instance does not correspond directly
     146             :   /// to an LLVM basic block.
     147           0 :   const BasicBlock *getBasicBlock() const { return BB; }
     148             : 
     149             :   /// Return the name of the corresponding LLVM basic block, or an empty string.
     150             :   StringRef getName() const;
     151             : 
     152             :   /// Return a formatted string to identify this block and its parent function.
     153             :   std::string getFullName() const;
     154             : 
     155             :   /// Test whether this block is potentially the target of an indirect branch.
     156           0 :   bool hasAddressTaken() const { return AddressTaken; }
     157             : 
     158             :   /// Set this block to reflect that it potentially is the target of an indirect
     159             :   /// branch.
     160         748 :   void setHasAddressTaken() { AddressTaken = true; }
     161             : 
     162             :   /// Return the MachineFunction containing this basic block.
     163           0 :   const MachineFunction *getParent() const { return xParent; }
     164           0 :   MachineFunction *getParent() { return xParent; }
     165             : 
     166             :   using instr_iterator = Instructions::iterator;
     167             :   using const_instr_iterator = Instructions::const_iterator;
     168             :   using reverse_instr_iterator = Instructions::reverse_iterator;
     169             :   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
     170             : 
     171             :   using iterator = MachineInstrBundleIterator<MachineInstr>;
     172             :   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
     173             :   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
     174             :   using const_reverse_iterator =
     175             :       MachineInstrBundleIterator<const MachineInstr, true>;
     176             : 
     177      372035 :   unsigned size() const { return (unsigned)Insts.size(); }
     178             :   bool empty() const { return Insts.empty(); }
     179             : 
     180             :   MachineInstr       &instr_front()       { return Insts.front(); }
     181             :   MachineInstr       &instr_back()        { return Insts.back();  }
     182             :   const MachineInstr &instr_front() const { return Insts.front(); }
     183             :   const MachineInstr &instr_back()  const { return Insts.back();  }
     184             : 
     185             :   MachineInstr       &front()             { return Insts.front(); }
     186     1109830 :   MachineInstr       &back()              { return *--end();      }
     187             :   const MachineInstr &front()       const { return Insts.front(); }
     188     7454689 :   const MachineInstr &back()        const { return *--end();      }
     189             : 
     190             :   instr_iterator                instr_begin()       { return Insts.begin();  }
     191             :   const_instr_iterator          instr_begin() const { return Insts.begin();  }
     192             :   instr_iterator                  instr_end()       { return Insts.end();    }
     193             :   const_instr_iterator            instr_end() const { return Insts.end();    }
     194             :   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
     195             :   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
     196             :   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
     197             :   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
     198             : 
     199             :   using instr_range = iterator_range<instr_iterator>;
     200             :   using const_instr_range = iterator_range<const_instr_iterator>;
     201             :   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
     202             :   const_instr_range instrs() const {
     203             :     return const_instr_range(instr_begin(), instr_end());
     204             :   }
     205             : 
     206             :   iterator                begin()       { return instr_begin();  }
     207             :   const_iterator          begin() const { return instr_begin();  }
     208             :   iterator                end  ()       { return instr_end();    }
     209             :   const_iterator          end  () const { return instr_end();    }
     210             :   reverse_iterator rbegin() {
     211     1388743 :     return reverse_iterator::getAtBundleBegin(instr_rbegin());
     212             :   }
     213             :   const_reverse_iterator rbegin() const {
     214       22441 :     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
     215             :   }
     216             :   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
     217             :   const_reverse_iterator rend() const {
     218             :     return const_reverse_iterator(instr_rend());
     219             :   }
     220             : 
     221             :   /// Support for MachineInstr::getNextNode().
     222           0 :   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
     223           0 :     return &MachineBasicBlock::Insts;
     224             :   }
     225             : 
     226             :   inline iterator_range<iterator> terminators() {
     227     4066032 :     return make_range(getFirstTerminator(), end());
     228             :   }
     229             :   inline iterator_range<const_iterator> terminators() const {
     230             :     return make_range(getFirstTerminator(), end());
     231             :   }
     232             : 
     233             :   /// Returns a range that iterates over the phis in the basic block.
     234             :   inline iterator_range<iterator> phis() {
     235         213 :     return make_range(begin(), getFirstNonPHI());
     236             :   }
     237             :   inline iterator_range<const_iterator> phis() const {
     238             :     return const_cast<MachineBasicBlock *>(this)->phis();
     239             :   }
     240             : 
     241             :   // Machine-CFG iterators
     242             :   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
     243             :   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
     244             :   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
     245             :   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
     246             :   using pred_reverse_iterator =
     247             :       std::vector<MachineBasicBlock *>::reverse_iterator;
     248             :   using const_pred_reverse_iterator =
     249             :       std::vector<MachineBasicBlock *>::const_reverse_iterator;
     250             :   using succ_reverse_iterator =
     251             :       std::vector<MachineBasicBlock *>::reverse_iterator;
     252             :   using const_succ_reverse_iterator =
     253             :       std::vector<MachineBasicBlock *>::const_reverse_iterator;
     254             :   pred_iterator        pred_begin()       { return Predecessors.begin(); }
     255    16356103 :   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
     256             :   pred_iterator        pred_end()         { return Predecessors.end();   }
     257    16340787 :   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
     258             :   pred_reverse_iterator        pred_rbegin()
     259             :                                           { return Predecessors.rbegin();}
     260             :   const_pred_reverse_iterator  pred_rbegin() const
     261             :                                           { return Predecessors.rbegin();}
     262             :   pred_reverse_iterator        pred_rend()
     263             :                                           { return Predecessors.rend();  }
     264             :   const_pred_reverse_iterator  pred_rend()   const
     265             :                                           { return Predecessors.rend();  }
     266             :   unsigned             pred_size()  const {
     267    39005053 :     return (unsigned)Predecessors.size();
     268             :   }
     269             :   bool                 pred_empty() const { return Predecessors.empty(); }
     270             :   succ_iterator        succ_begin()       { return Successors.begin();   }
     271    11055952 :   const_succ_iterator  succ_begin() const { return Successors.begin();   }
     272             :   succ_iterator        succ_end()         { return Successors.end();     }
     273    31987894 :   const_succ_iterator  succ_end()   const { return Successors.end();     }
     274             :   succ_reverse_iterator        succ_rbegin()
     275             :                                           { return Successors.rbegin();  }
     276             :   const_succ_reverse_iterator  succ_rbegin() const
     277             :                                           { return Successors.rbegin();  }
     278             :   succ_reverse_iterator        succ_rend()
     279             :                                           { return Successors.rend();    }
     280             :   const_succ_reverse_iterator  succ_rend()   const
     281             :                                           { return Successors.rend();    }
     282             :   unsigned             succ_size()  const {
     283    16852728 :     return (unsigned)Successors.size();
     284             :   }
     285             :   bool                 succ_empty() const { return Successors.empty();   }
     286             : 
     287             :   inline iterator_range<pred_iterator> predecessors() {
     288             :     return make_range(pred_begin(), pred_end());
     289             :   }
     290             :   inline iterator_range<const_pred_iterator> predecessors() const {
     291             :     return make_range(pred_begin(), pred_end());
     292             :   }
     293             :   inline iterator_range<succ_iterator> successors() {
     294             :     return make_range(succ_begin(), succ_end());
     295             :   }
     296             :   inline iterator_range<const_succ_iterator> successors() const {
     297             :     return make_range(succ_begin(), succ_end());
     298             :   }
     299             : 
     300             :   // LiveIn management methods.
     301             : 
     302             :   /// Adds the specified register as a live in. Note that it is an error to add
     303             :   /// the same register to the same set more than once unless the intention is
     304             :   /// to call sortUniqueLiveIns after all registers are added.
     305             :   void addLiveIn(MCPhysReg PhysReg,
     306             :                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
     307     2129805 :     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
     308             :   }
     309             :   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
     310       19665 :     LiveIns.push_back(RegMaskPair);
     311             :   }
     312             : 
     313             :   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
     314             :   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
     315             :   /// LiveIn insertion.
     316             :   void sortUniqueLiveIns();
     317             : 
     318             :   /// Clear live in list.
     319             :   void clearLiveIns();
     320             : 
     321             :   /// Add PhysReg as live in to this block, and ensure that there is a copy of
     322             :   /// PhysReg to a virtual register of class RC. Return the virtual register
     323             :   /// that is a copy of the live in PhysReg.
     324             :   unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
     325             : 
     326             :   /// Remove the specified register from the live in set.
     327             :   void removeLiveIn(MCPhysReg Reg,
     328             :                     LaneBitmask LaneMask = LaneBitmask::getAll());
     329             : 
     330             :   /// Return true if the specified register is in the live in set.
     331             :   bool isLiveIn(MCPhysReg Reg,
     332             :                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
     333             : 
     334             :   // Iteration support for live in sets.  These sets are kept in sorted
     335             :   // order by their register number.
     336             :   using livein_iterator = LiveInVector::const_iterator;
     337             : #ifndef NDEBUG
     338             :   /// Unlike livein_begin, this method does not check that the liveness
     339             :   /// information is accurate. Still for debug purposes it may be useful
     340             :   /// to have iterators that won't assert if the liveness information
     341             :   /// is not current.
     342             :   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
     343             :   iterator_range<livein_iterator> liveins_dbg() const {
     344             :     return make_range(livein_begin_dbg(), livein_end());
     345             :   }
     346             : #endif
     347             :   livein_iterator livein_begin() const;
     348     9859664 :   livein_iterator livein_end()   const { return LiveIns.end(); }
     349             :   bool            livein_empty() const { return LiveIns.empty(); }
     350             :   iterator_range<livein_iterator> liveins() const {
     351     8964540 :     return make_range(livein_begin(), livein_end());
     352             :   }
     353             : 
     354             :   /// Remove entry from the livein set and return iterator to the next.
     355             :   livein_iterator removeLiveIn(livein_iterator I);
     356             : 
     357             :   /// Get the clobber mask for the start of this basic block. Funclets use this
     358             :   /// to prevent register allocation across funclet transitions.
     359             :   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
     360             : 
     361             :   /// Get the clobber mask for the end of the basic block.
     362             :   /// \see getBeginClobberMask()
     363             :   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
     364             : 
     365             :   /// Return alignment of the basic block. The alignment is specified as
     366             :   /// log2(bytes).
     367           0 :   unsigned getAlignment() const { return Alignment; }
     368             : 
     369             :   /// Set alignment of the basic block. The alignment is specified as
     370             :   /// log2(bytes).
     371       10778 :   void setAlignment(unsigned Align) { Alignment = Align; }
     372             : 
     373             :   /// Returns true if the block is a landing pad. That is this basic block is
     374             :   /// entered via an exception handler.
     375           0 :   bool isEHPad() const { return IsEHPad; }
     376             : 
     377             :   /// Indicates the block is a landing pad.  That is this basic block is entered
     378             :   /// via an exception handler.
     379      842052 :   void setIsEHPad(bool V = true) { IsEHPad = V; }
     380             : 
     381             :   bool hasEHPadSuccessor() const;
     382             : 
     383             :   /// Returns true if this is the entry block of an EH scope, i.e., the block
     384             :   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
     385           0 :   bool isEHScopeEntry() const { return IsEHScopeEntry; }
     386             : 
     387             :   /// Indicates if this is the entry block of an EH scope, i.e., the block that
     388             :   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
     389         315 :   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
     390             : 
     391             :   /// Returns true if this is the entry block of an EH funclet.
     392           0 :   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
     393             : 
     394             :   /// Indicates if this is the entry block of an EH funclet.
     395         274 :   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
     396             : 
     397             :   /// Returns true if this is the entry block of a cleanup funclet.
     398           0 :   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
     399             : 
     400             :   /// Indicates if this is the entry block of a cleanup funclet.
     401          40 :   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
     402             : 
     403             :   /// Returns true if it is legal to hoist instructions into this block.
     404             :   bool isLegalToHoistInto() const;
     405             : 
     406             :   // Code Layout methods.
     407             : 
     408             :   /// Move 'this' block before or after the specified block.  This only moves
     409             :   /// the block, it does not modify the CFG or adjust potential fall-throughs at
     410             :   /// the end of the block.
     411             :   void moveBefore(MachineBasicBlock *NewAfter);
     412             :   void moveAfter(MachineBasicBlock *NewBefore);
     413             : 
     414             :   /// Update the terminator instructions in block to account for changes to the
     415             :   /// layout. If the block previously used a fallthrough, it may now need a
     416             :   /// branch, and if it previously used branching it may now be able to use a
     417             :   /// fallthrough.
     418             :   void updateTerminator();
     419             : 
     420             :   // Machine-CFG mutators
     421             : 
     422             :   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
     423             :   /// of Succ is automatically updated. PROB parameter is stored in
     424             :   /// Probabilities list. The default probability is set as unknown. Mixing
     425             :   /// known and unknown probabilities in successor list is not allowed. When all
     426             :   /// successors have unknown probabilities, 1 / N is returned as the
     427             :   /// probability for each successor, where N is the number of successors.
     428             :   ///
     429             :   /// Note that duplicate Machine CFG edges are not allowed.
     430             :   void addSuccessor(MachineBasicBlock *Succ,
     431             :                     BranchProbability Prob = BranchProbability::getUnknown());
     432             : 
     433             :   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
     434             :   /// of Succ is automatically updated. The probability is not provided because
     435             :   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
     436             :   /// won't be used. Using this interface can save some space.
     437             :   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
     438             : 
     439             :   /// Set successor probability of a given iterator.
     440             :   void setSuccProbability(succ_iterator I, BranchProbability Prob);
     441             : 
     442             :   /// Normalize probabilities of all successors so that the sum of them becomes
     443             :   /// one. This is usually done when the current update on this MBB is done, and
     444             :   /// the sum of its successors' probabilities is not guaranteed to be one. The
     445             :   /// user is responsible for the correct use of this function.
     446             :   /// MBB::removeSuccessor() has an option to do this automatically.
     447             :   void normalizeSuccProbs() {
     448      608220 :     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
     449             :   }
     450             : 
     451             :   /// Validate successors' probabilities and check if the sum of them is
     452             :   /// approximate one. This only works in DEBUG mode.
     453             :   void validateSuccProbs() const;
     454             : 
     455             :   /// Remove successor from the successors list of this MachineBasicBlock. The
     456             :   /// Predecessors list of Succ is automatically updated.
     457             :   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
     458             :   /// after the successor is removed.
     459             :   void removeSuccessor(MachineBasicBlock *Succ,
     460             :                        bool NormalizeSuccProbs = false);
     461             : 
     462             :   /// Remove specified successor from the successors list of this
     463             :   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
     464             :   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
     465             :   /// after the successor is removed.
     466             :   /// Return the iterator to the element after the one removed.
     467             :   succ_iterator removeSuccessor(succ_iterator I,
     468             :                                 bool NormalizeSuccProbs = false);
     469             : 
     470             :   /// Replace successor OLD with NEW and update probability info.
     471             :   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
     472             : 
     473             :   /// Copy a successor (and any probability info) from original block to this
     474             :   /// block's. Uses an iterator into the original blocks successors.
     475             :   ///
     476             :   /// This is useful when doing a partial clone of successors. Afterward, the
     477             :   /// probabilities may need to be normalized.
     478             :   void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
     479             : 
     480             :   /// Split the old successor into old plus new and updates the probability
     481             :   /// info.
     482             :   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
     483             :                       bool NormalizeSuccProbs = false);
     484             : 
     485             :   /// Transfers all the successors from MBB to this machine basic block (i.e.,
     486             :   /// copies all the successors FromMBB and remove all the successors from
     487             :   /// FromMBB).
     488             :   void transferSuccessors(MachineBasicBlock *FromMBB);
     489             : 
     490             :   /// Transfers all the successors, as in transferSuccessors, and update PHI
     491             :   /// operands in the successor blocks which refer to FromMBB to refer to this.
     492             :   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
     493             : 
     494             :   /// Return true if any of the successors have probabilities attached to them.
     495             :   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
     496             : 
     497             :   /// Return true if the specified MBB is a predecessor of this block.
     498             :   bool isPredecessor(const MachineBasicBlock *MBB) const;
     499             : 
     500             :   /// Return true if the specified MBB is a successor of this block.
     501             :   bool isSuccessor(const MachineBasicBlock *MBB) const;
     502             : 
     503             :   /// Return true if the specified MBB will be emitted immediately after this
     504             :   /// block, such that if this block exits by falling through, control will
     505             :   /// transfer to the specified MBB. Note that MBB need not be a successor at
     506             :   /// all, for example if this block ends with an unconditional branch to some
     507             :   /// other block.
     508             :   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
     509             : 
     510             :   /// Return the fallthrough block if the block can implicitly
     511             :   /// transfer control to the block after it by falling off the end of
     512             :   /// it.  This should return null if it can reach the block after
     513             :   /// it, but it uses an explicit branch to do so (e.g., a table
     514             :   /// jump).  Non-null return  is a conservative answer.
     515             :   MachineBasicBlock *getFallThrough();
     516             : 
     517             :   /// Return true if the block can implicitly transfer control to the
     518             :   /// block after it by falling off the end of it.  This should return
     519             :   /// false if it can reach the block after it, but it uses an
     520             :   /// explicit branch to do so (e.g., a table jump).  True is a
     521             :   /// conservative answer.
     522             :   bool canFallThrough();
     523             : 
     524             :   /// Returns a pointer to the first instruction in this block that is not a
     525             :   /// PHINode instruction. When adding instructions to the beginning of the
     526             :   /// basic block, they should be added before the returned value, not before
     527             :   /// the first instruction, which might be PHI.
     528             :   /// Returns end() is there's no non-PHI instruction.
     529             :   iterator getFirstNonPHI();
     530             : 
     531             :   /// Return the first instruction in MBB after I that is not a PHI or a label.
     532             :   /// This is the correct point to insert lowered copies at the beginning of a
     533             :   /// basic block that must be before any debugging information.
     534             :   iterator SkipPHIsAndLabels(iterator I);
     535             : 
     536             :   /// Return the first instruction in MBB after I that is not a PHI, label or
     537             :   /// debug.  This is the correct point to insert copies at the beginning of a
     538             :   /// basic block.
     539             :   iterator SkipPHIsLabelsAndDebug(iterator I);
     540             : 
     541             :   /// Returns an iterator to the first terminator instruction of this basic
     542             :   /// block. If a terminator does not exist, it returns end().
     543             :   iterator getFirstTerminator();
     544             :   const_iterator getFirstTerminator() const {
     545      229783 :     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
     546             :   }
     547             : 
     548             :   /// Same getFirstTerminator but it ignores bundles and return an
     549             :   /// instr_iterator instead.
     550             :   instr_iterator getFirstInstrTerminator();
     551             : 
     552             :   /// Returns an iterator to the first non-debug instruction in the basic block,
     553             :   /// or end().
     554             :   iterator getFirstNonDebugInstr();
     555             :   const_iterator getFirstNonDebugInstr() const {
     556             :     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
     557             :   }
     558             : 
     559             :   /// Returns an iterator to the last non-debug instruction in the basic block,
     560             :   /// or end().
     561             :   iterator getLastNonDebugInstr();
     562             :   const_iterator getLastNonDebugInstr() const {
     563     1103431 :     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
     564             :   }
     565             : 
     566             :   /// Convenience function that returns true if the block ends in a return
     567             :   /// instruction.
     568     4584171 :   bool isReturnBlock() const {
     569     9142577 :     return !empty() && back().isReturn();
     570             :   }
     571             : 
     572             :   /// Convenience function that returns true if the bock ends in a EH scope
     573             :   /// return instruction.
     574        1979 :   bool isEHScopeReturnBlock() const {
     575        3936 :     return !empty() && back().isEHScopeReturn();
     576             :   }
     577             : 
     578             :   /// Split the critical edge from this block to the given successor block, and
     579             :   /// return the newly created block, or null if splitting is not possible.
     580             :   ///
     581             :   /// This function updates LiveVariables, MachineDominatorTree, and
     582             :   /// MachineLoopInfo, as applicable.
     583             :   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
     584             : 
     585             :   /// Check if the edge between this block and the given successor \p
     586             :   /// Succ, can be split. If this returns true a subsequent call to
     587             :   /// SplitCriticalEdge is guaranteed to return a valid basic block if
     588             :   /// no changes occurred in the meantime.
     589             :   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
     590             : 
     591             :   void pop_front() { Insts.pop_front(); }
     592             :   void pop_back() { Insts.pop_back(); }
     593        2786 :   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
     594             : 
     595             :   /// Insert MI into the instruction list before I, possibly inside a bundle.
     596             :   ///
     597             :   /// If the insertion point is inside a bundle, MI will be added to the bundle,
     598             :   /// otherwise MI will not be added to any bundle. That means this function
     599             :   /// alone can't be used to prepend or append instructions to bundles. See
     600             :   /// MIBundleBuilder::insert() for a more reliable way of doing that.
     601             :   instr_iterator insert(instr_iterator I, MachineInstr *M);
     602             : 
     603             :   /// Insert a range of instructions into the instruction list before I.
     604             :   template<typename IT>
     605             :   void insert(iterator I, IT S, IT E) {
     606             :     assert((I == end() || I->getParent() == this) &&
     607             :            "iterator points outside of basic block");
     608       38448 :     Insts.insert(I.getInstrIterator(), S, E);
     609             :   }
     610             : 
     611             :   /// Insert MI into the instruction list before I.
     612             :   iterator insert(iterator I, MachineInstr *MI) {
     613             :     assert((I == end() || I->getParent() == this) &&
     614             :            "iterator points outside of basic block");
     615             :     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
     616             :            "Cannot insert instruction with bundle flags");
     617    52493073 :     return Insts.insert(I.getInstrIterator(), MI);
     618             :   }
     619             : 
     620             :   /// Insert MI into the instruction list after I.
     621             :   iterator insertAfter(iterator I, MachineInstr *MI) {
     622             :     assert((I == end() || I->getParent() == this) &&
     623             :            "iterator points outside of basic block");
     624             :     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
     625             :            "Cannot insert instruction with bundle flags");
     626        2113 :     return Insts.insertAfter(I.getInstrIterator(), MI);
     627             :   }
     628             : 
     629             :   /// Remove an instruction from the instruction list and delete it.
     630             :   ///
     631             :   /// If the instruction is part of a bundle, the other instructions in the
     632             :   /// bundle will still be bundled after removing the single instruction.
     633             :   instr_iterator erase(instr_iterator I);
     634             : 
     635             :   /// Remove an instruction from the instruction list and delete it.
     636             :   ///
     637             :   /// If the instruction is part of a bundle, the other instructions in the
     638             :   /// bundle will still be bundled after removing the single instruction.
     639             :   instr_iterator erase_instr(MachineInstr *I) {
     640      621412 :     return erase(instr_iterator(I));
     641             :   }
     642             : 
     643             :   /// Remove a range of instructions from the instruction list and delete them.
     644             :   iterator erase(iterator I, iterator E) {
     645    17182745 :     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
     646             :   }
     647             : 
     648             :   /// Remove an instruction or bundle from the instruction list and delete it.
     649             :   ///
     650             :   /// If I points to a bundle of instructions, they are all erased.
     651    17149104 :   iterator erase(iterator I) {
     652    17149104 :     return erase(I, std::next(I));
     653             :   }
     654             : 
     655             :   /// Remove an instruction from the instruction list and delete it.
     656             :   ///
     657             :   /// If I is the head of a bundle of instructions, the whole bundle will be
     658             :   /// erased.
     659             :   iterator erase(MachineInstr *I) {
     660    12329345 :     return erase(iterator(I));
     661             :   }
     662             : 
     663             :   /// Remove the unbundled instruction from the instruction list without
     664             :   /// deleting it.
     665             :   ///
     666             :   /// This function can not be used to remove bundled instructions, use
     667             :   /// remove_instr to remove individual instructions from a bundle.
     668             :   MachineInstr *remove(MachineInstr *I) {
     669             :     assert(!I->isBundled() && "Cannot remove bundled instructions");
     670     1736839 :     return Insts.remove(instr_iterator(I));
     671             :   }
     672             : 
     673             :   /// Remove the possibly bundled instruction from the instruction list
     674             :   /// without deleting it.
     675             :   ///
     676             :   /// If the instruction is part of a bundle, the other instructions in the
     677             :   /// bundle will still be bundled after removing the single instruction.
     678             :   MachineInstr *remove_instr(MachineInstr *I);
     679             : 
     680             :   void clear() {
     681         146 :     Insts.clear();
     682             :   }
     683             : 
     684             :   /// Take an instruction from MBB 'Other' at the position From, and insert it
     685             :   /// into this MBB right before 'Where'.
     686             :   ///
     687             :   /// If From points to a bundle of instructions, the whole bundle is moved.
     688     1331269 :   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
     689             :     // The range splice() doesn't allow noop moves, but this one does.
     690     1331269 :     if (Where != From)
     691     1206685 :       splice(Where, Other, From, std::next(From));
     692     1331269 :   }
     693             : 
     694             :   /// Take a block of instructions from MBB 'Other' in the range [From, To),
     695             :   /// and insert them into this MBB right before 'Where'.
     696             :   ///
     697             :   /// The instruction at 'Where' must not be included in the range of
     698             :   /// instructions to move.
     699             :   void splice(iterator Where, MachineBasicBlock *Other,
     700             :               iterator From, iterator To) {
     701     2606805 :     Insts.splice(Where.getInstrIterator(), Other->Insts,
     702             :                  From.getInstrIterator(), To.getInstrIterator());
     703             :   }
     704             : 
     705             :   /// This method unlinks 'this' from the containing function, and returns it,
     706             :   /// but does not delete it.
     707             :   MachineBasicBlock *removeFromParent();
     708             : 
     709             :   /// This method unlinks 'this' from the containing function and deletes it.
     710             :   void eraseFromParent();
     711             : 
     712             :   /// Given a machine basic block that branched to 'Old', change the code and
     713             :   /// CFG so that it branches to 'New' instead.
     714             :   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
     715             : 
     716             :   /// Various pieces of code can cause excess edges in the CFG to be inserted.
     717             :   /// If we have proven that MBB can only branch to DestA and DestB, remove any
     718             :   /// other MBB successors from the CFG. DestA and DestB can be null. Besides
     719             :   /// DestA and DestB, retain other edges leading to LandingPads (currently
     720             :   /// there can be only one; we don't check or require that here). Note it is
     721             :   /// possible that DestA and/or DestB are LandingPads.
     722             :   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
     723             :                             MachineBasicBlock *DestB,
     724             :                             bool IsCond);
     725             : 
     726             :   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
     727             :   /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
     728             :   DebugLoc findDebugLoc(instr_iterator MBBI);
     729             :   DebugLoc findDebugLoc(iterator MBBI) {
     730     3234482 :     return findDebugLoc(MBBI.getInstrIterator());
     731             :   }
     732             : 
     733             :   /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
     734             :   /// instructions.  Return UnknownLoc if there is none.
     735             :   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
     736             :   DebugLoc findPrevDebugLoc(iterator MBBI) {
     737        3227 :     return findPrevDebugLoc(MBBI.getInstrIterator());
     738             :   }
     739             : 
     740             :   /// Find and return the merged DebugLoc of the branch instructions of the
     741             :   /// block. Return UnknownLoc if there is none.
     742             :   DebugLoc findBranchDebugLoc();
     743             : 
     744             :   /// Possible outcome of a register liveness query to computeRegisterLiveness()
     745             :   enum LivenessQueryResult {
     746             :     LQR_Live,   ///< Register is known to be (at least partially) live.
     747             :     LQR_Dead,   ///< Register is known to be fully dead.
     748             :     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
     749             :   };
     750             : 
     751             :   /// Return whether (physical) register \p Reg has been defined and not
     752             :   /// killed as of just before \p Before.
     753             :   ///
     754             :   /// Search is localised to a neighborhood of \p Neighborhood instructions
     755             :   /// before (searching for defs or kills) and \p Neighborhood instructions
     756             :   /// after (searching just for defs) \p Before.
     757             :   ///
     758             :   /// \p Reg must be a physical register.
     759             :   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
     760             :                                               unsigned Reg,
     761             :                                               const_iterator Before,
     762             :                                               unsigned Neighborhood = 10) const;
     763             : 
     764             :   // Debugging methods.
     765             :   void dump() const;
     766             :   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
     767             :              bool IsStandalone = true) const;
     768             :   void print(raw_ostream &OS, ModuleSlotTracker &MST,
     769             :              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
     770             : 
     771             :   // Printing method used by LoopInfo.
     772             :   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
     773             : 
     774             :   /// MachineBasicBlocks are uniquely numbered at the function level, unless
     775             :   /// they're not in a MachineFunction yet, in which case this will return -1.
     776           0 :   int getNumber() const { return Number; }
     777      774656 :   void setNumber(int N) { Number = N; }
     778             : 
     779             :   /// Return the MCSymbol for this basic block.
     780             :   MCSymbol *getSymbol() const;
     781             : 
     782             :   Optional<uint64_t> getIrrLoopHeaderWeight() const {
     783             :     return IrrLoopHeaderWeight;
     784             :   }
     785             : 
     786             :   void setIrrLoopHeaderWeight(uint64_t Weight) {
     787             :     IrrLoopHeaderWeight = Weight;
     788             :   }
     789             : 
     790             : private:
     791             :   /// Return probability iterator corresponding to the I successor iterator.
     792             :   probability_iterator getProbabilityIterator(succ_iterator I);
     793             :   const_probability_iterator
     794             :   getProbabilityIterator(const_succ_iterator I) const;
     795             : 
     796             :   friend class MachineBranchProbabilityInfo;
     797             :   friend class MIPrinter;
     798             : 
     799             :   /// Return probability of the edge from this block to MBB. This method should
     800             :   /// NOT be called directly, but by using getEdgeProbability method from
     801             :   /// MachineBranchProbabilityInfo class.
     802             :   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
     803             : 
     804             :   // Methods used to maintain doubly linked list of blocks...
     805             :   friend struct ilist_callback_traits<MachineBasicBlock>;
     806             : 
     807             :   // Machine-CFG mutators
     808             : 
     809             :   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
     810             :   /// unless you know what you're doing, because it doesn't update Pred's
     811             :   /// successors list. Use Pred->addSuccessor instead.
     812             :   void addPredecessor(MachineBasicBlock *Pred);
     813             : 
     814             :   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
     815             :   /// unless you know what you're doing, because it doesn't update Pred's
     816             :   /// successors list. Use Pred->removeSuccessor instead.
     817             :   void removePredecessor(MachineBasicBlock *Pred);
     818             : };
     819             : 
     820             : raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
     821             : 
     822             : /// Prints a machine basic block reference.
     823             : ///
     824             : /// The format is:
     825             : ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
     826             : ///
     827             : /// Usage: OS << printMBBReference(MBB) << '\n';
     828             : Printable printMBBReference(const MachineBasicBlock &MBB);
     829             : 
     830             : // This is useful when building IndexedMaps keyed on basic block pointers.
     831             : struct MBB2NumberFunctor {
     832             :   using argument_type = const MachineBasicBlock *;
     833           0 :   unsigned operator()(const MachineBasicBlock *MBB) const {
     834     3992315 :     return MBB->getNumber();
     835             :   }
     836             : };
     837             : 
     838             : //===--------------------------------------------------------------------===//
     839             : // GraphTraits specializations for machine basic block graphs (machine-CFGs)
     840             : //===--------------------------------------------------------------------===//
     841             : 
     842             : // Provide specializations of GraphTraits to be able to treat a
     843             : // MachineFunction as a graph of MachineBasicBlocks.
     844             : //
     845             : 
     846             : template <> struct GraphTraits<MachineBasicBlock *> {
     847             :   using NodeRef = MachineBasicBlock *;
     848             :   using ChildIteratorType = MachineBasicBlock::succ_iterator;
     849             : 
     850             :   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
     851             :   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
     852             :   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
     853             : };
     854             : 
     855             : template <> struct GraphTraits<const MachineBasicBlock *> {
     856             :   using NodeRef = const MachineBasicBlock *;
     857             :   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
     858             : 
     859             :   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
     860             :   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
     861             :   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
     862             : };
     863             : 
     864             : // Provide specializations of GraphTraits to be able to treat a
     865             : // MachineFunction as a graph of MachineBasicBlocks and to walk it
     866             : // in inverse order.  Inverse order for a function is considered
     867             : // to be when traversing the predecessor edges of a MBB
     868             : // instead of the successor edges.
     869             : //
     870             : template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
     871             :   using NodeRef = MachineBasicBlock *;
     872             :   using ChildIteratorType = MachineBasicBlock::pred_iterator;
     873             : 
     874             :   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
     875             :     return G.Graph;
     876             :   }
     877             : 
     878             :   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
     879             :   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
     880             : };
     881             : 
     882             : template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
     883             :   using NodeRef = const MachineBasicBlock *;
     884             :   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
     885             : 
     886             :   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
     887           0 :     return G.Graph;
     888             :   }
     889             : 
     890             :   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
     891             :   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
     892             : };
     893             : 
     894             : /// MachineInstrSpan provides an interface to get an iteration range
     895             : /// containing the instruction it was initialized with, along with all
     896             : /// those instructions inserted prior to or following that instruction
     897             : /// at some point after the MachineInstrSpan is constructed.
     898             : class MachineInstrSpan {
     899             :   MachineBasicBlock &MBB;
     900             :   MachineBasicBlock::iterator I, B, E;
     901             : 
     902             : public:
     903       57831 :   MachineInstrSpan(MachineBasicBlock::iterator I)
     904       57831 :     : MBB(*I->getParent()),
     905             :       I(I),
     906       57831 :       B(I == MBB.begin() ? MBB.end() : std::prev(I)),
     907      115662 :       E(std::next(I)) {}
     908             : 
     909       35730 :   MachineBasicBlock::iterator begin() {
     910      102668 :     return B == MBB.end() ? MBB.begin() : std::next(B);
     911             :   }
     912           0 :   MachineBasicBlock::iterator end() { return E; }
     913             :   bool empty() { return begin() == end(); }
     914             : 
     915             :   MachineBasicBlock::iterator getInitial() { return I; }
     916             : };
     917             : 
     918             : /// Increment \p It until it points to a non-debug instruction or to \p End
     919             : /// and return the resulting iterator. This function should only be used
     920             : /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
     921             : /// const_instr_iterator} and the respective reverse iterators.
     922             : template<typename IterT>
     923     8514786 : inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
     924    12120526 :   while (It != End && It->isDebugInstr())
     925             :     It++;
     926     8514786 :   return It;
     927             : }
     928             : 
     929             : /// Decrement \p It until it points to a non-debug instruction or to \p Begin
     930             : /// and return the resulting iterator. This function should only be used
     931             : /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
     932             : /// const_instr_iterator} and the respective reverse iterators.
     933             : template<class IterT>
     934     3509931 : inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
     935     3562586 :   while (It != Begin && It->isDebugInstr())
     936             :     It--;
     937     3509931 :   return It;
     938             : }
     939             : 
     940             : } // end namespace llvm
     941             : 
     942             : #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H

Generated by: LCOV version 1.13