Line data Source code
1 : //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file contains the declaration of the MachineInstr class, which is the
11 : // basic representation for all target dependent machine instructions used by
12 : // the back end.
13 : //
14 : //===----------------------------------------------------------------------===//
15 :
16 : #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 : #define LLVM_CODEGEN_MACHINEINSTR_H
18 :
19 : #include "llvm/ADT/DenseMapInfo.h"
20 : #include "llvm/ADT/PointerSumType.h"
21 : #include "llvm/ADT/ilist.h"
22 : #include "llvm/ADT/ilist_node.h"
23 : #include "llvm/ADT/iterator_range.h"
24 : #include "llvm/Analysis/AliasAnalysis.h"
25 : #include "llvm/CodeGen/MachineMemOperand.h"
26 : #include "llvm/CodeGen/MachineOperand.h"
27 : #include "llvm/CodeGen/TargetOpcodes.h"
28 : #include "llvm/IR/DebugLoc.h"
29 : #include "llvm/IR/InlineAsm.h"
30 : #include "llvm/MC/MCInstrDesc.h"
31 : #include "llvm/MC/MCSymbol.h"
32 : #include "llvm/Support/ArrayRecycler.h"
33 : #include "llvm/Support/TrailingObjects.h"
34 : #include <algorithm>
35 : #include <cassert>
36 : #include <cstdint>
37 : #include <utility>
38 :
39 : namespace llvm {
40 :
41 : template <typename T> class ArrayRef;
42 : class DIExpression;
43 : class DILocalVariable;
44 : class MachineBasicBlock;
45 : class MachineFunction;
46 : class MachineMemOperand;
47 : class MachineRegisterInfo;
48 : class ModuleSlotTracker;
49 : class raw_ostream;
50 : template <typename T> class SmallVectorImpl;
51 : class SmallBitVector;
52 : class StringRef;
53 : class TargetInstrInfo;
54 : class TargetRegisterClass;
55 : class TargetRegisterInfo;
56 :
57 : //===----------------------------------------------------------------------===//
58 : /// Representation of each machine instruction.
59 : ///
60 : /// This class isn't a POD type, but it must have a trivial destructor. When a
61 : /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62 : /// without having their destructor called.
63 : ///
64 : class MachineInstr
65 : : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66 : ilist_sentinel_tracking<true>> {
67 : public:
68 : using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69 :
70 : /// Flags to specify different kinds of comments to output in
71 : /// assembly code. These flags carry semantic information not
72 : /// otherwise easily derivable from the IR text.
73 : ///
74 : enum CommentFlag {
75 : ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
76 : NoSchedComment = 0x2,
77 : TAsmComments = 0x4 // Target Asm comments should start from this value.
78 : };
79 :
80 : enum MIFlag {
81 : NoFlags = 0,
82 : FrameSetup = 1 << 0, // Instruction is used as a part of
83 : // function frame setup code.
84 : FrameDestroy = 1 << 1, // Instruction is used as a part of
85 : // function frame destruction code.
86 : BundledPred = 1 << 2, // Instruction has bundled predecessors.
87 : BundledSucc = 1 << 3, // Instruction has bundled successors.
88 : FmNoNans = 1 << 4, // Instruction does not support Fast
89 : // math nan values.
90 : FmNoInfs = 1 << 5, // Instruction does not support Fast
91 : // math infinity values.
92 : FmNsz = 1 << 6, // Instruction is not required to retain
93 : // signed zero values.
94 : FmArcp = 1 << 7, // Instruction supports Fast math
95 : // reciprocal approximations.
96 : FmContract = 1 << 8, // Instruction supports Fast math
97 : // contraction operations like fma.
98 : FmAfn = 1 << 9, // Instruction may map to Fast math
99 : // instrinsic approximation.
100 : FmReassoc = 1 << 10, // Instruction supports Fast math
101 : // reassociation of operand order.
102 : NoUWrap = 1 << 11, // Instruction supports binary operator
103 : // no unsigned wrap.
104 : NoSWrap = 1 << 12, // Instruction supports binary operator
105 : // no signed wrap.
106 : IsExact = 1 << 13 // Instruction supports division is
107 : // known to be exact.
108 : };
109 :
110 : private:
111 : const MCInstrDesc *MCID; // Instruction descriptor.
112 : MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
113 :
114 : // Operands are allocated by an ArrayRecycler.
115 : MachineOperand *Operands = nullptr; // Pointer to the first operand.
116 : unsigned NumOperands = 0; // Number of operands on instruction.
117 : using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
118 : OperandCapacity CapOperands; // Capacity of the Operands array.
119 :
120 : uint16_t Flags = 0; // Various bits of additional
121 : // information about machine
122 : // instruction.
123 :
124 : uint8_t AsmPrinterFlags = 0; // Various bits of information used by
125 : // the AsmPrinter to emit helpful
126 : // comments. This is *not* semantic
127 : // information. Do not use this for
128 : // anything other than to convey comment
129 : // information to AsmPrinter.
130 :
131 : /// Internal implementation detail class that provides out-of-line storage for
132 : /// extra info used by the machine instruction when this info cannot be stored
133 : /// in-line within the instruction itself.
134 : ///
135 : /// This has to be defined eagerly due to the implementation constraints of
136 : /// `PointerSumType` where it is used.
137 : class ExtraInfo final
138 : : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> {
139 : public:
140 368564 : static ExtraInfo *create(BumpPtrAllocator &Allocator,
141 : ArrayRef<MachineMemOperand *> MMOs,
142 : MCSymbol *PreInstrSymbol = nullptr,
143 : MCSymbol *PostInstrSymbol = nullptr) {
144 368564 : bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
145 368564 : bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
146 368564 : auto *Result = new (Allocator.Allocate(
147 : totalSizeToAlloc<MachineMemOperand *, MCSymbol *>(
148 368564 : MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol),
149 : alignof(ExtraInfo)))
150 368564 : ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol);
151 :
152 : // Copy the actual data into the trailing objects.
153 : std::copy(MMOs.begin(), MMOs.end(),
154 : Result->getTrailingObjects<MachineMemOperand *>());
155 :
156 368564 : if (HasPreInstrSymbol)
157 2 : Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
158 368564 : if (HasPostInstrSymbol)
159 2 : Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
160 : PostInstrSymbol;
161 :
162 368564 : return Result;
163 : }
164 :
165 : ArrayRef<MachineMemOperand *> getMMOs() const {
166 5228226 : return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
167 : }
168 :
169 : MCSymbol *getPreInstrSymbol() const {
170 342742 : return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
171 : }
172 :
173 : MCSymbol *getPostInstrSymbol() const {
174 342742 : return HasPostInstrSymbol
175 342742 : ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
176 : : nullptr;
177 : }
178 :
179 : private:
180 : friend TrailingObjects;
181 :
182 : // Description of the extra info, used to interpret the actual optional
183 : // data appended.
184 : //
185 : // Note that this is not terribly space optimized. This leaves a great deal
186 : // of flexibility to fit more in here later.
187 : const int NumMMOs;
188 : const bool HasPreInstrSymbol;
189 : const bool HasPostInstrSymbol;
190 :
191 : // Implement the `TrailingObjects` internal API.
192 0 : size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
193 8 : return NumMMOs;
194 : }
195 : size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
196 : return HasPreInstrSymbol + HasPostInstrSymbol;
197 : }
198 :
199 : // Just a boring constructor to allow us to initialize the sizes. Always use
200 : // the `create` routine above.
201 : ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol)
202 368564 : : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
203 368564 : HasPostInstrSymbol(HasPostInstrSymbol) {}
204 : };
205 :
206 : /// Enumeration of the kinds of inline extra info available. It is important
207 : /// that the `MachineMemOperand` inline kind has a tag value of zero to make
208 : /// it accessible as an `ArrayRef`.
209 : enum ExtraInfoInlineKinds {
210 : EIIK_MMO = 0,
211 : EIIK_PreInstrSymbol,
212 : EIIK_PostInstrSymbol,
213 : EIIK_OutOfLine
214 : };
215 :
216 : // We store extra information about the instruction here. The common case is
217 : // expected to be nothing or a single pointer (typically a MMO or a symbol).
218 : // We work to optimize this common case by storing it inline here rather than
219 : // requiring a separate allocation, but we fall back to an allocation when
220 : // multiple pointers are needed.
221 : PointerSumType<ExtraInfoInlineKinds,
222 : PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
223 : PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
224 : PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
225 : PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
226 : Info;
227 :
228 : DebugLoc debugLoc; // Source line information.
229 :
230 : // Intrusive list support
231 : friend struct ilist_traits<MachineInstr>;
232 : friend struct ilist_callback_traits<MachineBasicBlock>;
233 54457550 : void setParent(MachineBasicBlock *P) { Parent = P; }
234 :
235 : /// This constructor creates a copy of the given
236 : /// MachineInstr in the given MachineFunction.
237 : MachineInstr(MachineFunction &, const MachineInstr &);
238 :
239 : /// This constructor create a MachineInstr and add the implicit operands.
240 : /// It reserves space for number of operands specified by
241 : /// MCInstrDesc. An explicit DebugLoc is supplied.
242 : MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
243 : bool NoImp = false);
244 :
245 : // MachineInstrs are pool-allocated and owned by MachineFunction.
246 : friend class MachineFunction;
247 :
248 : public:
249 : MachineInstr(const MachineInstr &) = delete;
250 : MachineInstr &operator=(const MachineInstr &) = delete;
251 : // Use MachineFunction::DeleteMachineInstr() instead.
252 : ~MachineInstr() = delete;
253 :
254 0 : const MachineBasicBlock* getParent() const { return Parent; }
255 0 : MachineBasicBlock* getParent() { return Parent; }
256 :
257 : /// Return the function that contains the basic block that this instruction
258 : /// belongs to.
259 : ///
260 : /// Note: this is undefined behaviour if the instruction does not have a
261 : /// parent.
262 : const MachineFunction *getMF() const;
263 : MachineFunction *getMF() {
264 : return const_cast<MachineFunction *>(
265 25191353 : static_cast<const MachineInstr *>(this)->getMF());
266 : }
267 :
268 : /// Return the asm printer flags bitvector.
269 0 : uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
270 :
271 : /// Clear the AsmPrinter bitvector.
272 : void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
273 :
274 : /// Return whether an AsmPrinter flag is set.
275 0 : bool getAsmPrinterFlag(CommentFlag Flag) const {
276 0 : return AsmPrinterFlags & Flag;
277 : }
278 :
279 : /// Set a flag for the AsmPrinter.
280 : void setAsmPrinterFlag(uint8_t Flag) {
281 8 : AsmPrinterFlags |= Flag;
282 : }
283 :
284 : /// Clear specific AsmPrinter flags.
285 : void clearAsmPrinterFlag(CommentFlag Flag) {
286 : AsmPrinterFlags &= ~Flag;
287 : }
288 :
289 : /// Return the MI flags bitvector.
290 0 : uint16_t getFlags() const {
291 0 : return Flags;
292 : }
293 :
294 : /// Return whether an MI flag is set.
295 0 : bool getFlag(MIFlag Flag) const {
296 24931978 : return Flags & Flag;
297 : }
298 :
299 : /// Set a MI flag.
300 0 : void setFlag(MIFlag Flag) {
301 1198252 : Flags |= (uint16_t)Flag;
302 0 : }
303 :
304 0 : void setFlags(unsigned flags) {
305 : // Filter out the automatically maintained flags.
306 : unsigned Mask = BundledPred | BundledSucc;
307 188510 : Flags = (Flags & Mask) | (flags & ~Mask);
308 0 : }
309 :
310 : /// clearFlag - Clear a MI flag.
311 0 : void clearFlag(MIFlag Flag) {
312 81352 : Flags &= ~((uint16_t)Flag);
313 0 : }
314 :
315 : /// Return true if MI is in a bundle (but not the first MI in a bundle).
316 : ///
317 : /// A bundle looks like this before it's finalized:
318 : /// ----------------
319 : /// | MI |
320 : /// ----------------
321 : /// |
322 : /// ----------------
323 : /// | MI * |
324 : /// ----------------
325 : /// |
326 : /// ----------------
327 : /// | MI * |
328 : /// ----------------
329 : /// In this case, the first MI starts a bundle but is not inside a bundle, the
330 : /// next 2 MIs are considered "inside" the bundle.
331 : ///
332 : /// After a bundle is finalized, it looks like this:
333 : /// ----------------
334 : /// | Bundle |
335 : /// ----------------
336 : /// |
337 : /// ----------------
338 : /// | MI * |
339 : /// ----------------
340 : /// |
341 : /// ----------------
342 : /// | MI * |
343 : /// ----------------
344 : /// |
345 : /// ----------------
346 : /// | MI * |
347 : /// ----------------
348 : /// The first instruction has the special opcode "BUNDLE". It's not "inside"
349 : /// a bundle, but the next three MIs are.
350 : bool isInsideBundle() const {
351 54724937 : return getFlag(BundledPred);
352 : }
353 :
354 : /// Return true if this instruction part of a bundle. This is true
355 : /// if either itself or its following instruction is marked "InsideBundle".
356 : bool isBundled() const {
357 479457250 : return isBundledWithPred() || isBundledWithSucc();
358 : }
359 :
360 : /// Return true if this instruction is part of a bundle, and it is not the
361 : /// first instruction in the bundle.
362 710481564 : bool isBundledWithPred() const { return getFlag(BundledPred); }
363 :
364 : /// Return true if this instruction is part of a bundle, and it is not the
365 : /// last instruction in the bundle.
366 508105252 : bool isBundledWithSucc() const { return getFlag(BundledSucc); }
367 :
368 : /// Bundle this instruction with its predecessor. This can be an unbundled
369 : /// instruction, or it can be the first instruction in a bundle.
370 : void bundleWithPred();
371 :
372 : /// Bundle this instruction with its successor. This can be an unbundled
373 : /// instruction, or it can be the last instruction in a bundle.
374 : void bundleWithSucc();
375 :
376 : /// Break bundle above this instruction.
377 : void unbundleFromPred();
378 :
379 : /// Break bundle below this instruction.
380 : void unbundleFromSucc();
381 :
382 : /// Returns the debug location id of this MachineInstr.
383 12791527 : const DebugLoc &getDebugLoc() const { return debugLoc; }
384 :
385 : /// Return the debug variable referenced by
386 : /// this DBG_VALUE instruction.
387 : const DILocalVariable *getDebugVariable() const;
388 :
389 : /// Return the complex address expression referenced by
390 : /// this DBG_VALUE instruction.
391 : const DIExpression *getDebugExpression() const;
392 :
393 : /// Return the debug label referenced by
394 : /// this DBG_LABEL instruction.
395 : const DILabel *getDebugLabel() const;
396 :
397 : /// Emit an error referring to the source location of this instruction.
398 : /// This should only be used for inline assembly that is somehow
399 : /// impossible to compile. Other errors should have been handled much
400 : /// earlier.
401 : ///
402 : /// If this method returns, the caller should try to recover from the error.
403 : void emitError(StringRef Msg) const;
404 :
405 : /// Returns the target instruction descriptor of this MachineInstr.
406 0 : const MCInstrDesc &getDesc() const { return *MCID; }
407 :
408 : /// Returns the opcode of this MachineInstr.
409 786152032 : unsigned getOpcode() const { return MCID->Opcode; }
410 :
411 : /// Retuns the total number of operands.
412 0 : unsigned getNumOperands() const { return NumOperands; }
413 :
414 0 : const MachineOperand& getOperand(unsigned i) const {
415 : assert(i < getNumOperands() && "getOperand() out of range!");
416 661568580 : return Operands[i];
417 : }
418 0 : MachineOperand& getOperand(unsigned i) {
419 : assert(i < getNumOperands() && "getOperand() out of range!");
420 844229496 : return Operands[i];
421 : }
422 :
423 : /// Returns the total number of definitions.
424 103559 : unsigned getNumDefs() const {
425 103559 : return getNumExplicitDefs() + MCID->getNumImplicitDefs();
426 : }
427 :
428 : /// Return true if operand \p OpIdx is a subregister index.
429 72187 : bool isOperandSubregIdx(unsigned OpIdx) const {
430 : assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
431 : "Expected MO_Immediate operand type.");
432 7 : if (isExtractSubreg() && OpIdx == 2)
433 : return true;
434 72180 : if (isInsertSubreg() && OpIdx == 3)
435 : return true;
436 72093 : if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
437 : return true;
438 71648 : if (isSubregToReg() && OpIdx == 3)
439 666 : return true;
440 : return false;
441 : }
442 :
443 : /// Returns the number of non-implicit operands.
444 : unsigned getNumExplicitOperands() const;
445 :
446 : /// Returns the number of non-implicit definitions.
447 : unsigned getNumExplicitDefs() const;
448 :
449 : /// iterator/begin/end - Iterate over all operands of a machine instruction.
450 : using mop_iterator = MachineOperand *;
451 : using const_mop_iterator = const MachineOperand *;
452 :
453 0 : mop_iterator operands_begin() { return Operands; }
454 61114318 : mop_iterator operands_end() { return Operands + NumOperands; }
455 :
456 0 : const_mop_iterator operands_begin() const { return Operands; }
457 38364276 : const_mop_iterator operands_end() const { return Operands + NumOperands; }
458 :
459 : iterator_range<mop_iterator> operands() {
460 111781432 : return make_range(operands_begin(), operands_end());
461 : }
462 : iterator_range<const_mop_iterator> operands() const {
463 64211445 : return make_range(operands_begin(), operands_end());
464 : }
465 : iterator_range<mop_iterator> explicit_operands() {
466 : return make_range(operands_begin(),
467 806061 : operands_begin() + getNumExplicitOperands());
468 : }
469 : iterator_range<const_mop_iterator> explicit_operands() const {
470 : return make_range(operands_begin(),
471 4709942 : operands_begin() + getNumExplicitOperands());
472 : }
473 : iterator_range<mop_iterator> implicit_operands() {
474 804500 : return make_range(explicit_operands().end(), operands_end());
475 : }
476 : iterator_range<const_mop_iterator> implicit_operands() const {
477 4243338 : return make_range(explicit_operands().end(), operands_end());
478 : }
479 : /// Returns a range over all explicit operands that are register definitions.
480 : /// Implicit definition are not included!
481 : iterator_range<mop_iterator> defs() {
482 : return make_range(operands_begin(),
483 936506 : operands_begin() + getNumExplicitDefs());
484 : }
485 : /// \copydoc defs()
486 : iterator_range<const_mop_iterator> defs() const {
487 : return make_range(operands_begin(),
488 895637 : operands_begin() + getNumExplicitDefs());
489 : }
490 : /// Returns a range that includes all operands that are register uses.
491 : /// This may include unrelated operands which are not register uses.
492 : iterator_range<mop_iterator> uses() {
493 278471 : return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
494 : }
495 : /// \copydoc uses()
496 : iterator_range<const_mop_iterator> uses() const {
497 580793 : return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
498 : }
499 35503 : iterator_range<mop_iterator> explicit_uses() {
500 71006 : return make_range(operands_begin() + getNumExplicitDefs(),
501 35503 : operands_begin() + getNumExplicitOperands());
502 : }
503 33 : iterator_range<const_mop_iterator> explicit_uses() const {
504 66 : return make_range(operands_begin() + getNumExplicitDefs(),
505 33 : operands_begin() + getNumExplicitOperands());
506 : }
507 :
508 : /// Returns the number of the operand iterator \p I points to.
509 : unsigned getOperandNo(const_mop_iterator I) const {
510 765972 : return I - operands_begin();
511 : }
512 :
513 : /// Access to memory operands of the instruction. If there are none, that does
514 : /// not imply anything about whether the function accesses memory. Instead,
515 : /// the caller must behave conservatively.
516 128616935 : ArrayRef<MachineMemOperand *> memoperands() const {
517 128616935 : if (!Info)
518 84517300 : return {};
519 :
520 44099635 : if (Info.is<EIIK_MMO>())
521 : return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
522 :
523 5228226 : if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
524 : return EI->getMMOs();
525 :
526 248 : return {};
527 : }
528 :
529 : /// Access to memory operands of the instruction.
530 : ///
531 : /// If `memoperands_begin() == memoperands_end()`, that does not imply
532 : /// anything about whether the function accesses memory. Instead, the caller
533 : /// must behave conservatively.
534 46142747 : mmo_iterator memoperands_begin() const { return memoperands().begin(); }
535 :
536 : /// Access to memory operands of the instruction.
537 : ///
538 : /// If `memoperands_begin() == memoperands_end()`, that does not imply
539 : /// anything about whether the function accesses memory. Instead, the caller
540 : /// must behave conservatively.
541 43531671 : mmo_iterator memoperands_end() const { return memoperands().end(); }
542 :
543 : /// Return true if we don't have any memory operands which described the
544 : /// memory access done by this instruction. If this is true, calling code
545 : /// must be conservative.
546 15008884 : bool memoperands_empty() const { return memoperands().empty(); }
547 :
548 : /// Return true if this instruction has exactly one MachineMemOperand.
549 4520670 : bool hasOneMemOperand() const { return memoperands().size() == 1; }
550 :
551 : /// Return the number of memory operands.
552 48370 : unsigned getNumMemOperands() const { return memoperands().size(); }
553 :
554 : /// Helper to extract a pre-instruction symbol if one has been added.
555 52919585 : MCSymbol *getPreInstrSymbol() const {
556 52919585 : if (!Info)
557 : return nullptr;
558 4 : if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
559 : return S;
560 342742 : if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
561 : return EI->getPreInstrSymbol();
562 :
563 : return nullptr;
564 : }
565 :
566 : /// Helper to extract a post-instruction symbol if one has been added.
567 52919637 : MCSymbol *getPostInstrSymbol() const {
568 52919637 : if (!Info)
569 : return nullptr;
570 55 : if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
571 : return S;
572 342742 : if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
573 : return EI->getPostInstrSymbol();
574 :
575 : return nullptr;
576 : }
577 :
578 : /// API for querying MachineInstr properties. They are the same as MCInstrDesc
579 : /// queries but they are bundle aware.
580 :
581 : enum QueryType {
582 : IgnoreBundle, // Ignore bundles
583 : AnyInBundle, // Return true if any instruction in bundle has property
584 : AllInBundle // Return true if all instructions in bundle have property
585 : };
586 :
587 : /// Return true if the instruction (or in the case of a bundle,
588 : /// the instructions inside the bundle) has the specified property.
589 : /// The first argument is the property being queried.
590 : /// The second argument indicates whether the query should look inside
591 : /// instruction bundles.
592 657387781 : bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
593 : assert(MCFlag < 64 &&
594 : "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
595 : // Inline the fast path for unbundled or bundle-internal instructions.
596 657584590 : if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
597 657200720 : return getDesc().getFlags() & (1ULL << MCFlag);
598 :
599 : // If this is the first instruction in a bundle, take the slow path.
600 187061 : return hasPropertyInBundle(1ULL << MCFlag, Type);
601 : }
602 :
603 : /// Return true if this instruction can have a variable number of operands.
604 : /// In this case, the variable operands will be after the normal
605 : /// operands but before the implicit definitions and uses (if any are
606 : /// present).
607 : bool isVariadic(QueryType Type = IgnoreBundle) const {
608 41213424 : return hasProperty(MCID::Variadic, Type);
609 : }
610 :
611 : /// Set if this instruction has an optional definition, e.g.
612 : /// ARM instructions which can set condition code if 's' bit is set.
613 : bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
614 1217 : return hasProperty(MCID::HasOptionalDef, Type);
615 : }
616 :
617 : /// Return true if this is a pseudo instruction that doesn't
618 : /// correspond to a real machine instruction.
619 : bool isPseudo(QueryType Type = IgnoreBundle) const {
620 34335102 : return hasProperty(MCID::Pseudo, Type);
621 : }
622 :
623 : bool isReturn(QueryType Type = AnyInBundle) const {
624 25163206 : return hasProperty(MCID::Return, Type);
625 : }
626 :
627 : /// Return true if this is an instruction that marks the end of an EH scope,
628 : /// i.e., a catchpad or a cleanuppad instruction.
629 : bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
630 1957 : return hasProperty(MCID::EHScopeReturn, Type);
631 : }
632 :
633 : bool isCall(QueryType Type = AnyInBundle) const {
634 138553623 : return hasProperty(MCID::Call, Type);
635 : }
636 :
637 : /// Returns true if the specified instruction stops control flow
638 : /// from executing the instruction immediately following it. Examples include
639 : /// unconditional branches and return instructions.
640 : bool isBarrier(QueryType Type = AnyInBundle) const {
641 10340244 : return hasProperty(MCID::Barrier, Type);
642 : }
643 :
644 : /// Returns true if this instruction part of the terminator for a basic block.
645 : /// Typically this is things like return and branch instructions.
646 : ///
647 : /// Various passes use this to insert code into the bottom of a basic block,
648 : /// but before control flow occurs.
649 : bool isTerminator(QueryType Type = AnyInBundle) const {
650 111084406 : return hasProperty(MCID::Terminator, Type);
651 : }
652 :
653 : /// Returns true if this is a conditional, unconditional, or indirect branch.
654 : /// Predicates below can be used to discriminate between
655 : /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
656 : /// get more information.
657 : bool isBranch(QueryType Type = AnyInBundle) const {
658 20391251 : return hasProperty(MCID::Branch, Type);
659 : }
660 :
661 : /// Return true if this is an indirect branch, such as a
662 : /// branch through a register.
663 : bool isIndirectBranch(QueryType Type = AnyInBundle) const {
664 8760706 : return hasProperty(MCID::IndirectBranch, Type);
665 : }
666 :
667 : /// Return true if this is a branch which may fall
668 : /// through to the next instruction or may transfer control flow to some other
669 : /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
670 : /// information about this branch.
671 4386585 : bool isConditionalBranch(QueryType Type = AnyInBundle) const {
672 4386584 : return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
673 : }
674 :
675 : /// Return true if this is a branch which always
676 : /// transfers control flow to some other block. The
677 : /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
678 : /// about this branch.
679 459832 : bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
680 459832 : return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
681 : }
682 :
683 : /// Return true if this instruction has a predicate operand that
684 : /// controls execution. It may be set to 'always', or may be set to other
685 : /// values. There are various methods in TargetInstrInfo that can be used to
686 : /// control and modify the predicate in this instruction.
687 : bool isPredicable(QueryType Type = AllInBundle) const {
688 : // If it's a bundle than all bundled instructions must be predicable for this
689 : // to return true.
690 3177189 : return hasProperty(MCID::Predicable, Type);
691 : }
692 :
693 : /// Return true if this instruction is a comparison.
694 : bool isCompare(QueryType Type = IgnoreBundle) const {
695 5165834 : return hasProperty(MCID::Compare, Type);
696 : }
697 :
698 : /// Return true if this instruction is a move immediate
699 : /// (including conditional moves) instruction.
700 : bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
701 170558 : return hasProperty(MCID::MoveImm, Type);
702 : }
703 :
704 : /// Return true if this instruction is a register move.
705 : /// (including moving values from subreg to reg)
706 : bool isMoveReg(QueryType Type = IgnoreBundle) const {
707 409689 : return hasProperty(MCID::MoveReg, Type);
708 : }
709 :
710 : /// Return true if this instruction is a bitcast instruction.
711 : bool isBitcast(QueryType Type = IgnoreBundle) const {
712 1420165 : return hasProperty(MCID::Bitcast, Type);
713 : }
714 :
715 : /// Return true if this instruction is a select instruction.
716 : bool isSelect(QueryType Type = IgnoreBundle) const {
717 4285322 : return hasProperty(MCID::Select, Type);
718 : }
719 :
720 : /// Return true if this instruction cannot be safely duplicated.
721 : /// For example, if the instruction has a unique labels attached
722 : /// to it, duplicating it would cause multiple definition errors.
723 : bool isNotDuplicable(QueryType Type = AnyInBundle) const {
724 1567681 : return hasProperty(MCID::NotDuplicable, Type);
725 : }
726 :
727 : /// Return true if this instruction is convergent.
728 : /// Convergent instructions can not be made control-dependent on any
729 : /// additional values.
730 2838886 : bool isConvergent(QueryType Type = AnyInBundle) const {
731 2838886 : if (isInlineAsm()) {
732 685 : unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
733 685 : if (ExtraInfo & InlineAsm::Extra_IsConvergent)
734 : return true;
735 : }
736 2838884 : return hasProperty(MCID::Convergent, Type);
737 : }
738 :
739 : /// Returns true if the specified instruction has a delay slot
740 : /// which must be filled by the code generator.
741 : bool hasDelaySlot(QueryType Type = AnyInBundle) const {
742 136701 : return hasProperty(MCID::DelaySlot, Type);
743 : }
744 :
745 : /// Return true for instructions that can be folded as
746 : /// memory operands in other instructions. The most common use for this
747 : /// is instructions that are simple loads from memory that don't modify
748 : /// the loaded value in any way, but it can also be used for instructions
749 : /// that can be expressed as constant-pool loads, such as V_SETALLONES
750 : /// on x86, to allow them to be folded when it is beneficial.
751 : /// This should only be set on instructions that return a value in their
752 : /// only virtual register definition.
753 : bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
754 423763 : return hasProperty(MCID::FoldableAsLoad, Type);
755 : }
756 :
757 : /// Return true if this instruction behaves
758 : /// the same way as the generic REG_SEQUENCE instructions.
759 : /// E.g., on ARM,
760 : /// dX VMOVDRR rY, rZ
761 : /// is equivalent to
762 : /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
763 : ///
764 : /// Note that for the optimizers to be able to take advantage of
765 : /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
766 : /// override accordingly.
767 : bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
768 1172110 : return hasProperty(MCID::RegSequence, Type);
769 : }
770 :
771 : /// Return true if this instruction behaves
772 : /// the same way as the generic EXTRACT_SUBREG instructions.
773 : /// E.g., on ARM,
774 : /// rX, rY VMOVRRD dZ
775 : /// is equivalent to two EXTRACT_SUBREG:
776 : /// rX = EXTRACT_SUBREG dZ, ssub_0
777 : /// rY = EXTRACT_SUBREG dZ, ssub_1
778 : ///
779 : /// Note that for the optimizers to be able to take advantage of
780 : /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
781 : /// override accordingly.
782 : bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
783 1141751 : return hasProperty(MCID::ExtractSubreg, Type);
784 : }
785 :
786 : /// Return true if this instruction behaves
787 : /// the same way as the generic INSERT_SUBREG instructions.
788 : /// E.g., on ARM,
789 : /// dX = VSETLNi32 dY, rZ, Imm
790 : /// is equivalent to a INSERT_SUBREG:
791 : /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
792 : ///
793 : /// Note that for the optimizers to be able to take advantage of
794 : /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
795 : /// override accordingly.
796 : bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
797 1141944 : return hasProperty(MCID::InsertSubreg, Type);
798 : }
799 :
800 : //===--------------------------------------------------------------------===//
801 : // Side Effect Analysis
802 : //===--------------------------------------------------------------------===//
803 :
804 : /// Return true if this instruction could possibly read memory.
805 : /// Instructions with this flag set are not necessarily simple load
806 : /// instructions, they may load a value and modify it, for example.
807 52598621 : bool mayLoad(QueryType Type = AnyInBundle) const {
808 52598621 : if (isInlineAsm()) {
809 48890 : unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
810 48890 : if (ExtraInfo & InlineAsm::Extra_MayLoad)
811 : return true;
812 : }
813 52579271 : return hasProperty(MCID::MayLoad, Type);
814 : }
815 :
816 : /// Return true if this instruction could possibly modify memory.
817 : /// Instructions with this flag set are not necessarily simple store
818 : /// instructions, they may store a modified value based on their operands, or
819 : /// may not actually modify anything, for example.
820 56836160 : bool mayStore(QueryType Type = AnyInBundle) const {
821 56836160 : if (isInlineAsm()) {
822 56510 : unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
823 56510 : if (ExtraInfo & InlineAsm::Extra_MayStore)
824 : return true;
825 : }
826 56830356 : return hasProperty(MCID::MayStore, Type);
827 : }
828 :
829 : /// Return true if this instruction could possibly read or modify memory.
830 351275 : bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
831 351275 : return mayLoad(Type) || mayStore(Type);
832 : }
833 :
834 : //===--------------------------------------------------------------------===//
835 : // Flags that indicate whether an instruction can be modified by a method.
836 : //===--------------------------------------------------------------------===//
837 :
838 : /// Return true if this may be a 2- or 3-address
839 : /// instruction (of the form "X = op Y, Z, ..."), which produces the same
840 : /// result if Y and Z are exchanged. If this flag is set, then the
841 : /// TargetInstrInfo::commuteInstruction method may be used to hack on the
842 : /// instruction.
843 : ///
844 : /// Note that this flag may be set on instructions that are only commutable
845 : /// sometimes. In these cases, the call to commuteInstruction will fail.
846 : /// Also note that some instructions require non-trivial modification to
847 : /// commute them.
848 : bool isCommutable(QueryType Type = IgnoreBundle) const {
849 5709633 : return hasProperty(MCID::Commutable, Type);
850 : }
851 :
852 : /// Return true if this is a 2-address instruction
853 : /// which can be changed into a 3-address instruction if needed. Doing this
854 : /// transformation can be profitable in the register allocator, because it
855 : /// means that the instruction can use a 2-address form if possible, but
856 : /// degrade into a less efficient form if the source and dest register cannot
857 : /// be assigned to the same register. For example, this allows the x86
858 : /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
859 : /// is the same speed as the shift but has bigger code size.
860 : ///
861 : /// If this returns true, then the target must implement the
862 : /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
863 : /// is allowed to fail if the transformation isn't valid for this specific
864 : /// instruction (e.g. shl reg, 4 on x86).
865 : ///
866 : bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
867 278618 : return hasProperty(MCID::ConvertibleTo3Addr, Type);
868 : }
869 :
870 : /// Return true if this instruction requires
871 : /// custom insertion support when the DAG scheduler is inserting it into a
872 : /// machine basic block. If this is true for the instruction, it basically
873 : /// means that it is a pseudo instruction used at SelectionDAG time that is
874 : /// expanded out into magic code by the target when MachineInstrs are formed.
875 : ///
876 : /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
877 : /// is used to insert this into the MachineBasicBlock.
878 : bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
879 41273449 : return hasProperty(MCID::UsesCustomInserter, Type);
880 : }
881 :
882 : /// Return true if this instruction requires *adjustment*
883 : /// after instruction selection by calling a target hook. For example, this
884 : /// can be used to fill in ARM 's' optional operand depending on whether
885 : /// the conditional flag register is used.
886 : bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
887 : return hasProperty(MCID::HasPostISelHook, Type);
888 : }
889 :
890 : /// Returns true if this instruction is a candidate for remat.
891 : /// This flag is deprecated, please don't use it anymore. If this
892 : /// flag is set, the isReallyTriviallyReMaterializable() method is called to
893 : /// verify the instruction is really rematable.
894 : bool isRematerializable(QueryType Type = AllInBundle) const {
895 : // It's only possible to re-mat a bundle if all bundled instructions are
896 : // re-materializable.
897 : return hasProperty(MCID::Rematerializable, Type);
898 : }
899 :
900 : /// Returns true if this instruction has the same cost (or less) than a move
901 : /// instruction. This is useful during certain types of optimizations
902 : /// (e.g., remat during two-address conversion or machine licm)
903 : /// where we would like to remat or hoist the instruction, but not if it costs
904 : /// more than moving the instruction into the appropriate register. Note, we
905 : /// are not marking copies from and to the same register class with this flag.
906 : bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
907 : // Only returns true for a bundle if all bundled instructions are cheap.
908 590506 : return hasProperty(MCID::CheapAsAMove, Type);
909 : }
910 :
911 : /// Returns true if this instruction source operands
912 : /// have special register allocation requirements that are not captured by the
913 : /// operand register classes. e.g. ARM::STRD's two source registers must be an
914 : /// even / odd pair, ARM::STM registers have to be in ascending order.
915 : /// Post-register allocation passes should not attempt to change allocations
916 : /// for sources of instructions with this flag.
917 : bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
918 10153695 : return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
919 : }
920 :
921 : /// Returns true if this instruction def operands
922 : /// have special register allocation requirements that are not captured by the
923 : /// operand register classes. e.g. ARM::LDRD's two def registers must be an
924 : /// even / odd pair, ARM::LDM registers have to be in ascending order.
925 : /// Post-register allocation passes should not attempt to change allocations
926 : /// for definitions of instructions with this flag.
927 : bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
928 6950287 : return hasProperty(MCID::ExtraDefRegAllocReq, Type);
929 : }
930 :
931 : enum MICheckType {
932 : CheckDefs, // Check all operands for equality
933 : CheckKillDead, // Check all operands including kill / dead markers
934 : IgnoreDefs, // Ignore all definitions
935 : IgnoreVRegDefs // Ignore virtual register definitions
936 : };
937 :
938 : /// Return true if this instruction is identical to \p Other.
939 : /// Two instructions are identical if they have the same opcode and all their
940 : /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
941 : /// Note that this means liveness related flags (dead, undef, kill) do not
942 : /// affect the notion of identical.
943 : bool isIdenticalTo(const MachineInstr &Other,
944 : MICheckType Check = CheckDefs) const;
945 :
946 : /// Unlink 'this' from the containing basic block, and return it without
947 : /// deleting it.
948 : ///
949 : /// This function can not be used on bundled instructions, use
950 : /// removeFromBundle() to remove individual instructions from a bundle.
951 : MachineInstr *removeFromParent();
952 :
953 : /// Unlink this instruction from its basic block and return it without
954 : /// deleting it.
955 : ///
956 : /// If the instruction is part of a bundle, the other instructions in the
957 : /// bundle remain bundled.
958 : MachineInstr *removeFromBundle();
959 :
960 : /// Unlink 'this' from the containing basic block and delete it.
961 : ///
962 : /// If this instruction is the header of a bundle, the whole bundle is erased.
963 : /// This function can not be used for instructions inside a bundle, use
964 : /// eraseFromBundle() to erase individual bundled instructions.
965 : void eraseFromParent();
966 :
967 : /// Unlink 'this' from the containing basic block and delete it.
968 : ///
969 : /// For all definitions mark their uses in DBG_VALUE nodes
970 : /// as undefined. Otherwise like eraseFromParent().
971 : void eraseFromParentAndMarkDBGValuesForRemoval();
972 :
973 : /// Unlink 'this' form its basic block and delete it.
974 : ///
975 : /// If the instruction is part of a bundle, the other instructions in the
976 : /// bundle remain bundled.
977 : void eraseFromBundle();
978 :
979 91564887 : bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
980 : bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
981 : bool isAnnotationLabel() const {
982 : return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
983 : }
984 :
985 : /// Returns true if the MachineInstr represents a label.
986 : bool isLabel() const {
987 62106992 : return isEHLabel() || isGCLabel() || isAnnotationLabel();
988 : }
989 :
990 : bool isCFIInstruction() const {
991 3212711 : return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
992 : }
993 :
994 : // True if the instruction represents a position in the function.
995 59131120 : bool isPosition() const { return isLabel() || isCFIInstruction(); }
996 :
997 213458679 : bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
998 : bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
999 210112214 : bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
1000 :
1001 : /// A DBG_VALUE is indirect iff the first operand is a register and
1002 : /// the second operand is an immediate.
1003 : bool isIndirectDebugValue() const {
1004 : return isDebugValue()
1005 48234 : && getOperand(0).isReg()
1006 47750 : && getOperand(1).isImm();
1007 : }
1008 :
1009 : bool isPHI() const {
1010 89679285 : return getOpcode() == TargetOpcode::PHI ||
1011 : getOpcode() == TargetOpcode::G_PHI;
1012 : }
1013 177757 : bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1014 15956317 : bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1015 505120892 : bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
1016 :
1017 : bool isMSInlineAsm() const {
1018 : return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
1019 : }
1020 :
1021 : bool isStackAligningInlineAsm() const;
1022 : InlineAsm::AsmDialect getInlineAsmDialect() const;
1023 :
1024 : bool isInsertSubreg() const {
1025 1735929 : return getOpcode() == TargetOpcode::INSERT_SUBREG;
1026 : }
1027 :
1028 : bool isSubregToReg() const {
1029 290491 : return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1030 : }
1031 :
1032 : bool isRegSequence() const {
1033 41933330 : return getOpcode() == TargetOpcode::REG_SEQUENCE;
1034 : }
1035 :
1036 : bool isBundle() const {
1037 7067833 : return getOpcode() == TargetOpcode::BUNDLE;
1038 : }
1039 :
1040 : bool isCopy() const {
1041 115738808 : return getOpcode() == TargetOpcode::COPY;
1042 : }
1043 :
1044 : bool isFullCopy() const {
1045 1743684 : return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1046 : }
1047 :
1048 : bool isExtractSubreg() const {
1049 364101 : return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1050 : }
1051 :
1052 : /// Return true if the instruction behaves like a copy.
1053 : /// This does not include native copy instructions.
1054 : bool isCopyLike() const {
1055 15161075 : return isCopy() || isSubregToReg();
1056 : }
1057 :
1058 : /// Return true is the instruction is an identity copy.
1059 : bool isIdentityCopy() const {
1060 4868392 : return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1061 : getOperand(0).getSubReg() == getOperand(1).getSubReg();
1062 : }
1063 :
1064 : /// Return true if this instruction doesn't produce any output in the form of
1065 : /// executable instructions.
1066 : bool isMetaInstruction() const {
1067 6626089 : switch (getOpcode()) {
1068 : default:
1069 : return false;
1070 : case TargetOpcode::IMPLICIT_DEF:
1071 : case TargetOpcode::KILL:
1072 : case TargetOpcode::CFI_INSTRUCTION:
1073 : case TargetOpcode::EH_LABEL:
1074 : case TargetOpcode::GC_LABEL:
1075 : case TargetOpcode::DBG_VALUE:
1076 : case TargetOpcode::DBG_LABEL:
1077 : case TargetOpcode::LIFETIME_START:
1078 : case TargetOpcode::LIFETIME_END:
1079 : return true;
1080 : }
1081 : }
1082 :
1083 : /// Return true if this is a transient instruction that is either very likely
1084 : /// to be eliminated during register allocation (such as copy-like
1085 : /// instructions), or if this instruction doesn't have an execution-time cost.
1086 : bool isTransient() const {
1087 14709674 : switch (getOpcode()) {
1088 : default:
1089 : return isMetaInstruction();
1090 : // Copy-like instructions are usually eliminated during register allocation.
1091 : case TargetOpcode::PHI:
1092 : case TargetOpcode::G_PHI:
1093 : case TargetOpcode::COPY:
1094 : case TargetOpcode::INSERT_SUBREG:
1095 : case TargetOpcode::SUBREG_TO_REG:
1096 : case TargetOpcode::REG_SEQUENCE:
1097 : return true;
1098 : }
1099 : }
1100 :
1101 : /// Return the number of instructions inside the MI bundle, excluding the
1102 : /// bundle header.
1103 : ///
1104 : /// This is the number of instructions that MachineBasicBlock::iterator
1105 : /// skips, 0 for unbundled instructions.
1106 : unsigned getBundleSize() const;
1107 :
1108 : /// Return true if the MachineInstr reads the specified register.
1109 : /// If TargetRegisterInfo is passed, then it also checks if there
1110 : /// is a read of a super-register.
1111 : /// This does not count partial redefines of virtual registers as reads:
1112 : /// %reg1024:6 = OP.
1113 : bool readsRegister(unsigned Reg,
1114 : const TargetRegisterInfo *TRI = nullptr) const {
1115 1377353 : return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1116 : }
1117 :
1118 : /// Return true if the MachineInstr reads the specified virtual register.
1119 : /// Take into account that a partial define is a
1120 : /// read-modify-write operation.
1121 : bool readsVirtualRegister(unsigned Reg) const {
1122 245442 : return readsWritesVirtualRegister(Reg).first;
1123 : }
1124 :
1125 : /// Return a pair of bools (reads, writes) indicating if this instruction
1126 : /// reads or writes Reg. This also considers partial defines.
1127 : /// If Ops is not null, all operand indices for Reg are added.
1128 : std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
1129 : SmallVectorImpl<unsigned> *Ops = nullptr) const;
1130 :
1131 : /// Return true if the MachineInstr kills the specified register.
1132 : /// If TargetRegisterInfo is passed, then it also checks if there is
1133 : /// a kill of a super-register.
1134 : bool killsRegister(unsigned Reg,
1135 : const TargetRegisterInfo *TRI = nullptr) const {
1136 459220 : return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1137 : }
1138 :
1139 : /// Return true if the MachineInstr fully defines the specified register.
1140 : /// If TargetRegisterInfo is passed, then it also checks
1141 : /// if there is a def of a super-register.
1142 : /// NOTE: It's ignoring subreg indices on virtual registers.
1143 : bool definesRegister(unsigned Reg,
1144 : const TargetRegisterInfo *TRI = nullptr) const {
1145 1178344 : return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1146 : }
1147 :
1148 : /// Return true if the MachineInstr modifies (fully define or partially
1149 : /// define) the specified register.
1150 : /// NOTE: It's ignoring subreg indices on virtual registers.
1151 : bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
1152 5087138 : return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1153 : }
1154 :
1155 : /// Returns true if the register is dead in this machine instruction.
1156 : /// If TargetRegisterInfo is passed, then it also checks
1157 : /// if there is a dead def of a super-register.
1158 : bool registerDefIsDead(unsigned Reg,
1159 : const TargetRegisterInfo *TRI = nullptr) const {
1160 1318894 : return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1161 : }
1162 :
1163 : /// Returns true if the MachineInstr has an implicit-use operand of exactly
1164 : /// the given register (not considering sub/super-registers).
1165 : bool hasRegisterImplicitUseOperand(unsigned Reg) const;
1166 :
1167 : /// Returns the operand index that is a use of the specific register or -1
1168 : /// if it is not found. It further tightens the search criteria to a use
1169 : /// that kills the register if isKill is true.
1170 : int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
1171 : const TargetRegisterInfo *TRI = nullptr) const;
1172 :
1173 : /// Wrapper for findRegisterUseOperandIdx, it returns
1174 : /// a pointer to the MachineOperand rather than an index.
1175 : MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
1176 : const TargetRegisterInfo *TRI = nullptr) {
1177 21520 : int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1178 21520 : return (Idx == -1) ? nullptr : &getOperand(Idx);
1179 : }
1180 :
1181 : const MachineOperand *findRegisterUseOperand(
1182 : unsigned Reg, bool isKill = false,
1183 : const TargetRegisterInfo *TRI = nullptr) const {
1184 : return const_cast<MachineInstr *>(this)->
1185 : findRegisterUseOperand(Reg, isKill, TRI);
1186 : }
1187 :
1188 : /// Returns the operand index that is a def of the specified register or
1189 : /// -1 if it is not found. If isDead is true, defs that are not dead are
1190 : /// skipped. If Overlap is true, then it also looks for defs that merely
1191 : /// overlap the specified register. If TargetRegisterInfo is non-null,
1192 : /// then it also checks if there is a def of a super-register.
1193 : /// This may also return a register mask operand when Overlap is true.
1194 : int findRegisterDefOperandIdx(unsigned Reg,
1195 : bool isDead = false, bool Overlap = false,
1196 : const TargetRegisterInfo *TRI = nullptr) const;
1197 :
1198 : /// Wrapper for findRegisterDefOperandIdx, it returns
1199 : /// a pointer to the MachineOperand rather than an index.
1200 : MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
1201 : const TargetRegisterInfo *TRI = nullptr) {
1202 3558976 : int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
1203 3558976 : return (Idx == -1) ? nullptr : &getOperand(Idx);
1204 : }
1205 :
1206 : /// Find the index of the first operand in the
1207 : /// operand list that is used to represent the predicate. It returns -1 if
1208 : /// none is found.
1209 : int findFirstPredOperandIdx() const;
1210 :
1211 : /// Find the index of the flag word operand that
1212 : /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1213 : /// getOperand(OpIdx) does not belong to an inline asm operand group.
1214 : ///
1215 : /// If GroupNo is not NULL, it will receive the number of the operand group
1216 : /// containing OpIdx.
1217 : ///
1218 : /// The flag operand is an immediate that can be decoded with methods like
1219 : /// InlineAsm::hasRegClassConstraint().
1220 : int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1221 :
1222 : /// Compute the static register class constraint for operand OpIdx.
1223 : /// For normal instructions, this is derived from the MCInstrDesc.
1224 : /// For inline assembly it is derived from the flag words.
1225 : ///
1226 : /// Returns NULL if the static register class constraint cannot be
1227 : /// determined.
1228 : const TargetRegisterClass*
1229 : getRegClassConstraint(unsigned OpIdx,
1230 : const TargetInstrInfo *TII,
1231 : const TargetRegisterInfo *TRI) const;
1232 :
1233 : /// Applies the constraints (def/use) implied by this MI on \p Reg to
1234 : /// the given \p CurRC.
1235 : /// If \p ExploreBundle is set and MI is part of a bundle, all the
1236 : /// instructions inside the bundle will be taken into account. In other words,
1237 : /// this method accumulates all the constraints of the operand of this MI and
1238 : /// the related bundle if MI is a bundle or inside a bundle.
1239 : ///
1240 : /// Returns the register class that satisfies both \p CurRC and the
1241 : /// constraints set by MI. Returns NULL if such a register class does not
1242 : /// exist.
1243 : ///
1244 : /// \pre CurRC must not be NULL.
1245 : const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1246 : unsigned Reg, const TargetRegisterClass *CurRC,
1247 : const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1248 : bool ExploreBundle = false) const;
1249 :
1250 : /// Applies the constraints (def/use) implied by the \p OpIdx operand
1251 : /// to the given \p CurRC.
1252 : ///
1253 : /// Returns the register class that satisfies both \p CurRC and the
1254 : /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1255 : /// does not exist.
1256 : ///
1257 : /// \pre CurRC must not be NULL.
1258 : /// \pre The operand at \p OpIdx must be a register.
1259 : const TargetRegisterClass *
1260 : getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1261 : const TargetInstrInfo *TII,
1262 : const TargetRegisterInfo *TRI) const;
1263 :
1264 : /// Add a tie between the register operands at DefIdx and UseIdx.
1265 : /// The tie will cause the register allocator to ensure that the two
1266 : /// operands are assigned the same physical register.
1267 : ///
1268 : /// Tied operands are managed automatically for explicit operands in the
1269 : /// MCInstrDesc. This method is for exceptional cases like inline asm.
1270 : void tieOperands(unsigned DefIdx, unsigned UseIdx);
1271 :
1272 : /// Given the index of a tied register operand, find the
1273 : /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1274 : /// index of the tied operand which must exist.
1275 : unsigned findTiedOperandIdx(unsigned OpIdx) const;
1276 :
1277 : /// Given the index of a register def operand,
1278 : /// check if the register def is tied to a source operand, due to either
1279 : /// two-address elimination or inline assembly constraints. Returns the
1280 : /// first tied use operand index by reference if UseOpIdx is not null.
1281 2347114 : bool isRegTiedToUseOperand(unsigned DefOpIdx,
1282 : unsigned *UseOpIdx = nullptr) const {
1283 2347114 : const MachineOperand &MO = getOperand(DefOpIdx);
1284 2347114 : if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1285 : return false;
1286 200214 : if (UseOpIdx)
1287 9986 : *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1288 : return true;
1289 : }
1290 :
1291 : /// Return true if the use operand of the specified index is tied to a def
1292 : /// operand. It also returns the def operand index by reference if DefOpIdx
1293 : /// is not null.
1294 236164653 : bool isRegTiedToDefOperand(unsigned UseOpIdx,
1295 : unsigned *DefOpIdx = nullptr) const {
1296 236164653 : const MachineOperand &MO = getOperand(UseOpIdx);
1297 236164653 : if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1298 : return false;
1299 3430923 : if (DefOpIdx)
1300 2335864 : *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1301 : return true;
1302 : }
1303 :
1304 : /// Clears kill flags on all operands.
1305 : void clearKillInfo();
1306 :
1307 : /// Replace all occurrences of FromReg with ToReg:SubIdx,
1308 : /// properly composing subreg indices where necessary.
1309 : void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1310 : const TargetRegisterInfo &RegInfo);
1311 :
1312 : /// We have determined MI kills a register. Look for the
1313 : /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1314 : /// add a implicit operand if it's not found. Returns true if the operand
1315 : /// exists / is added.
1316 : bool addRegisterKilled(unsigned IncomingReg,
1317 : const TargetRegisterInfo *RegInfo,
1318 : bool AddIfNotFound = false);
1319 :
1320 : /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1321 : /// all aliasing registers.
1322 : void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1323 :
1324 : /// We have determined MI defined a register without a use.
1325 : /// Look for the operand that defines it and mark it as IsDead. If
1326 : /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1327 : /// true if the operand exists / is added.
1328 : bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1329 : bool AddIfNotFound = false);
1330 :
1331 : /// Clear all dead flags on operands defining register @p Reg.
1332 : void clearRegisterDeads(unsigned Reg);
1333 :
1334 : /// Mark all subregister defs of register @p Reg with the undef flag.
1335 : /// This function is used when we determined to have a subregister def in an
1336 : /// otherwise undefined super register.
1337 : void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1338 :
1339 : /// We have determined MI defines a register. Make sure there is an operand
1340 : /// defining Reg.
1341 : void addRegisterDefined(unsigned Reg,
1342 : const TargetRegisterInfo *RegInfo = nullptr);
1343 :
1344 : /// Mark every physreg used by this instruction as
1345 : /// dead except those in the UsedRegs list.
1346 : ///
1347 : /// On instructions with register mask operands, also add implicit-def
1348 : /// operands for all registers in UsedRegs.
1349 : void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1350 : const TargetRegisterInfo &TRI);
1351 :
1352 : /// Return true if it is safe to move this instruction. If
1353 : /// SawStore is set to true, it means that there is a store (or call) between
1354 : /// the instruction's location and its intended destination.
1355 : bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1356 :
1357 : /// Returns true if this instruction's memory access aliases the memory
1358 : /// access of Other.
1359 : //
1360 : /// Assumes any physical registers used to compute addresses
1361 : /// have the same value for both instructions. Returns false if neither
1362 : /// instruction writes to memory.
1363 : ///
1364 : /// @param AA Optional alias analysis, used to compare memory operands.
1365 : /// @param Other MachineInstr to check aliasing against.
1366 : /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1367 : bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
1368 :
1369 : /// Return true if this instruction may have an ordered
1370 : /// or volatile memory reference, or if the information describing the memory
1371 : /// reference is not available. Return false if it is known to have no
1372 : /// ordered or volatile memory references.
1373 : bool hasOrderedMemoryRef() const;
1374 :
1375 : /// Return true if this load instruction never traps and points to a memory
1376 : /// location whose value doesn't change during the execution of this function.
1377 : ///
1378 : /// Examples include loading a value from the constant pool or from the
1379 : /// argument area of a function (if it does not change). If the instruction
1380 : /// does multiple loads, this returns true only if all of the loads are
1381 : /// dereferenceable and invariant.
1382 : bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
1383 :
1384 : /// If the specified instruction is a PHI that always merges together the
1385 : /// same virtual register, return the register, otherwise return 0.
1386 : unsigned isConstantValuePHI() const;
1387 :
1388 : /// Return true if this instruction has side effects that are not modeled
1389 : /// by mayLoad / mayStore, etc.
1390 : /// For all instructions, the property is encoded in MCInstrDesc::Flags
1391 : /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1392 : /// INLINEASM instruction, in which case the side effect property is encoded
1393 : /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1394 : ///
1395 : bool hasUnmodeledSideEffects() const;
1396 :
1397 : /// Returns true if it is illegal to fold a load across this instruction.
1398 : bool isLoadFoldBarrier() const;
1399 :
1400 : /// Return true if all the defs of this instruction are dead.
1401 : bool allDefsAreDead() const;
1402 :
1403 : /// Copy implicit register operands from specified
1404 : /// instruction to this instruction.
1405 : void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1406 :
1407 : /// Debugging support
1408 : /// @{
1409 : /// Determine the generic type to be printed (if needed) on uses and defs.
1410 : LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1411 : const MachineRegisterInfo &MRI) const;
1412 :
1413 : /// Return true when an instruction has tied register that can't be determined
1414 : /// by the instruction's descriptor. This is useful for MIR printing, to
1415 : /// determine whether we need to print the ties or not.
1416 : bool hasComplexRegisterTies() const;
1417 :
1418 : /// Print this MI to \p OS.
1419 : /// Don't print information that can be inferred from other instructions if
1420 : /// \p IsStandalone is false. It is usually true when only a fragment of the
1421 : /// function is printed.
1422 : /// Only print the defs and the opcode if \p SkipOpers is true.
1423 : /// Otherwise, also print operands if \p SkipDebugLoc is true.
1424 : /// Otherwise, also print the debug loc, with a terminating newline.
1425 : /// \p TII is used to print the opcode name. If it's not present, but the
1426 : /// MI is in a function, the opcode will be printed using the function's TII.
1427 : void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1428 : bool SkipDebugLoc = false, bool AddNewLine = true,
1429 : const TargetInstrInfo *TII = nullptr) const;
1430 : void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1431 : bool SkipOpers = false, bool SkipDebugLoc = false,
1432 : bool AddNewLine = true,
1433 : const TargetInstrInfo *TII = nullptr) const;
1434 : void dump() const;
1435 : /// @}
1436 :
1437 : //===--------------------------------------------------------------------===//
1438 : // Accessors used to build up machine instructions.
1439 :
1440 : /// Add the specified operand to the instruction. If it is an implicit
1441 : /// operand, it is added to the end of the operand list. If it is an
1442 : /// explicit operand it is added at the end of the explicit operand list
1443 : /// (before the first implicit operand).
1444 : ///
1445 : /// MF must be the machine function that was used to allocate this
1446 : /// instruction.
1447 : ///
1448 : /// MachineInstrBuilder provides a more convenient interface for creating
1449 : /// instructions and adding operands.
1450 : void addOperand(MachineFunction &MF, const MachineOperand &Op);
1451 :
1452 : /// Add an operand without providing an MF reference. This only works for
1453 : /// instructions that are inserted in a basic block.
1454 : ///
1455 : /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1456 : /// preferred.
1457 : void addOperand(const MachineOperand &Op);
1458 :
1459 : /// Replace the instruction descriptor (thus opcode) of
1460 : /// the current instruction with a new one.
1461 1587603 : void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1462 :
1463 : /// Replace current source information with new such.
1464 : /// Avoid using this, the constructor argument is preferable.
1465 : void setDebugLoc(DebugLoc dl) {
1466 : debugLoc = std::move(dl);
1467 : assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1468 : }
1469 :
1470 : /// Erase an operand from an instruction, leaving it with one
1471 : /// fewer operand than it started with.
1472 : void RemoveOperand(unsigned OpNo);
1473 :
1474 : /// Clear this MachineInstr's memory reference descriptor list. This resets
1475 : /// the memrefs to their most conservative state. This should be used only
1476 : /// as a last resort since it greatly pessimizes our knowledge of the memory
1477 : /// access performed by the instruction.
1478 : void dropMemRefs(MachineFunction &MF);
1479 :
1480 : /// Assign this MachineInstr's memory reference descriptor list.
1481 : ///
1482 : /// Unlike other methods, this *will* allocate them into a new array
1483 : /// associated with the provided `MachineFunction`.
1484 : void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1485 :
1486 : /// Add a MachineMemOperand to the machine instruction.
1487 : /// This function should be used only occasionally. The setMemRefs function
1488 : /// is the primary method for setting up a MachineInstr's MemRefs list.
1489 : void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1490 :
1491 : /// Clone another MachineInstr's memory reference descriptor list and replace
1492 : /// ours with it.
1493 : ///
1494 : /// Note that `*this` may be the incoming MI!
1495 : ///
1496 : /// Prefer this API whenever possible as it can avoid allocations in common
1497 : /// cases.
1498 : void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1499 :
1500 : /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1501 : /// list and replace ours with it.
1502 : ///
1503 : /// Note that `*this` may be one of the incoming MIs!
1504 : ///
1505 : /// Prefer this API whenever possible as it can avoid allocations in common
1506 : /// cases.
1507 : void cloneMergedMemRefs(MachineFunction &MF,
1508 : ArrayRef<const MachineInstr *> MIs);
1509 :
1510 : /// Set a symbol that will be emitted just prior to the instruction itself.
1511 : ///
1512 : /// Setting this to a null pointer will remove any such symbol.
1513 : ///
1514 : /// FIXME: This is not fully implemented yet.
1515 : void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1516 :
1517 : /// Set a symbol that will be emitted just after the instruction itself.
1518 : ///
1519 : /// Setting this to a null pointer will remove any such symbol.
1520 : ///
1521 : /// FIXME: This is not fully implemented yet.
1522 : void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1523 :
1524 : /// Return the MIFlags which represent both MachineInstrs. This
1525 : /// should be used when merging two MachineInstrs into one. This routine does
1526 : /// not modify the MIFlags of this MachineInstr.
1527 : uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1528 :
1529 : /// Copy all flags to MachineInst MIFlags
1530 : void copyIRFlags(const Instruction &I);
1531 :
1532 : /// Break any tie involving OpIdx.
1533 785888 : void untieRegOperand(unsigned OpIdx) {
1534 785888 : MachineOperand &MO = getOperand(OpIdx);
1535 785888 : if (MO.isReg() && MO.isTied()) {
1536 52063 : getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1537 52063 : MO.TiedTo = 0;
1538 : }
1539 785888 : }
1540 :
1541 : /// Add all implicit def and use operands to this instruction.
1542 : void addImplicitDefUseOperands(MachineFunction &MF);
1543 :
1544 : /// Scan instructions following MI and collect any matching DBG_VALUEs.
1545 : void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1546 :
1547 : /// Find all DBG_VALUEs immediately following this instruction that point
1548 : /// to a register def in this instruction and point them to \p Reg instead.
1549 : void changeDebugValuesDefReg(unsigned Reg);
1550 :
1551 : private:
1552 : /// If this instruction is embedded into a MachineFunction, return the
1553 : /// MachineRegisterInfo object for the current function, otherwise
1554 : /// return null.
1555 : MachineRegisterInfo *getRegInfo();
1556 :
1557 : /// Unlink all of the register operands in this instruction from their
1558 : /// respective use lists. This requires that the operands already be on their
1559 : /// use lists.
1560 : void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1561 :
1562 : /// Add all of the register operands in this instruction from their
1563 : /// respective use lists. This requires that the operands not be on their
1564 : /// use lists yet.
1565 : void AddRegOperandsToUseLists(MachineRegisterInfo&);
1566 :
1567 : /// Slow path for hasProperty when we're dealing with a bundle.
1568 : bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1569 :
1570 : /// Implements the logic of getRegClassConstraintEffectForVReg for the
1571 : /// this MI and the given operand index \p OpIdx.
1572 : /// If the related operand does not constrained Reg, this returns CurRC.
1573 : const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1574 : unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1575 : const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1576 : };
1577 :
1578 : /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1579 : /// instruction rather than by pointer value.
1580 : /// The hashing and equality testing functions ignore definitions so this is
1581 : /// useful for CSE, etc.
1582 : struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1583 : static inline MachineInstr *getEmptyKey() {
1584 : return nullptr;
1585 : }
1586 :
1587 : static inline MachineInstr *getTombstoneKey() {
1588 : return reinterpret_cast<MachineInstr*>(-1);
1589 : }
1590 :
1591 : static unsigned getHashValue(const MachineInstr* const &MI);
1592 :
1593 0 : static bool isEqual(const MachineInstr* const &LHS,
1594 : const MachineInstr* const &RHS) {
1595 0 : if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1596 0 : LHS == getEmptyKey() || LHS == getTombstoneKey())
1597 0 : return LHS == RHS;
1598 0 : return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1599 : }
1600 : };
1601 :
1602 : //===----------------------------------------------------------------------===//
1603 : // Debugging Support
1604 :
1605 : inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1606 1 : MI.print(OS);
1607 : return OS;
1608 : }
1609 :
1610 : } // end namespace llvm
1611 :
1612 : #endif // LLVM_CODEGEN_MACHINEINSTR_H
|