LCOV - code coverage report
Current view: top level - include/llvm/CodeGen - MachineInstr.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 183 209 87.6 %
Date: 2018-10-20 13:21:21 Functions: 18 40 45.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file contains the declaration of the MachineInstr class, which is the
      11             : // basic representation for all target dependent machine instructions used by
      12             : // the back end.
      13             : //
      14             : //===----------------------------------------------------------------------===//
      15             : 
      16             : #ifndef LLVM_CODEGEN_MACHINEINSTR_H
      17             : #define LLVM_CODEGEN_MACHINEINSTR_H
      18             : 
      19             : #include "llvm/ADT/DenseMapInfo.h"
      20             : #include "llvm/ADT/PointerSumType.h"
      21             : #include "llvm/ADT/ilist.h"
      22             : #include "llvm/ADT/ilist_node.h"
      23             : #include "llvm/ADT/iterator_range.h"
      24             : #include "llvm/Analysis/AliasAnalysis.h"
      25             : #include "llvm/CodeGen/MachineMemOperand.h"
      26             : #include "llvm/CodeGen/MachineOperand.h"
      27             : #include "llvm/CodeGen/TargetOpcodes.h"
      28             : #include "llvm/IR/DebugLoc.h"
      29             : #include "llvm/IR/InlineAsm.h"
      30             : #include "llvm/MC/MCInstrDesc.h"
      31             : #include "llvm/MC/MCSymbol.h"
      32             : #include "llvm/Support/ArrayRecycler.h"
      33             : #include "llvm/Support/TrailingObjects.h"
      34             : #include <algorithm>
      35             : #include <cassert>
      36             : #include <cstdint>
      37             : #include <utility>
      38             : 
      39             : namespace llvm {
      40             : 
      41             : template <typename T> class ArrayRef;
      42             : class DIExpression;
      43             : class DILocalVariable;
      44             : class MachineBasicBlock;
      45             : class MachineFunction;
      46             : class MachineMemOperand;
      47             : class MachineRegisterInfo;
      48             : class ModuleSlotTracker;
      49             : class raw_ostream;
      50             : template <typename T> class SmallVectorImpl;
      51             : class SmallBitVector;
      52             : class StringRef;
      53             : class TargetInstrInfo;
      54             : class TargetRegisterClass;
      55             : class TargetRegisterInfo;
      56             : 
      57             : //===----------------------------------------------------------------------===//
      58             : /// Representation of each machine instruction.
      59             : ///
      60             : /// This class isn't a POD type, but it must have a trivial destructor. When a
      61             : /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
      62             : /// without having their destructor called.
      63             : ///
      64             : class MachineInstr
      65             :     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
      66             :                                     ilist_sentinel_tracking<true>> {
      67             : public:
      68             :   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
      69             : 
      70             :   /// Flags to specify different kinds of comments to output in
      71             :   /// assembly code.  These flags carry semantic information not
      72             :   /// otherwise easily derivable from the IR text.
      73             :   ///
      74             :   enum CommentFlag {
      75             :     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
      76             :     NoSchedComment = 0x2,
      77             :     TAsmComments = 0x4    // Target Asm comments should start from this value.
      78             :   };
      79             : 
      80             :   enum MIFlag {
      81             :     NoFlags      = 0,
      82             :     FrameSetup   = 1 << 0,              // Instruction is used as a part of
      83             :                                         // function frame setup code.
      84             :     FrameDestroy = 1 << 1,              // Instruction is used as a part of
      85             :                                         // function frame destruction code.
      86             :     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
      87             :     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
      88             :     FmNoNans     = 1 << 4,              // Instruction does not support Fast
      89             :                                         // math nan values.
      90             :     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
      91             :                                         // math infinity values.
      92             :     FmNsz        = 1 << 6,              // Instruction is not required to retain
      93             :                                         // signed zero values.
      94             :     FmArcp       = 1 << 7,              // Instruction supports Fast math
      95             :                                         // reciprocal approximations.
      96             :     FmContract   = 1 << 8,              // Instruction supports Fast math
      97             :                                         // contraction operations like fma.
      98             :     FmAfn        = 1 << 9,              // Instruction may map to Fast math
      99             :                                         // instrinsic approximation.
     100             :     FmReassoc    = 1 << 10,             // Instruction supports Fast math
     101             :                                         // reassociation of operand order.
     102             :     NoUWrap      = 1 << 11,             // Instruction supports binary operator
     103             :                                         // no unsigned wrap.
     104             :     NoSWrap      = 1 << 12,             // Instruction supports binary operator
     105             :                                         // no signed wrap.
     106             :     IsExact      = 1 << 13              // Instruction supports division is
     107             :                                         // known to be exact.
     108             :   };
     109             : 
     110             : private:
     111             :   const MCInstrDesc *MCID;              // Instruction descriptor.
     112             :   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
     113             : 
     114             :   // Operands are allocated by an ArrayRecycler.
     115             :   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
     116             :   unsigned NumOperands = 0;             // Number of operands on instruction.
     117             :   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
     118             :   OperandCapacity CapOperands;          // Capacity of the Operands array.
     119             : 
     120             :   uint16_t Flags = 0;                   // Various bits of additional
     121             :                                         // information about machine
     122             :                                         // instruction.
     123             : 
     124             :   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
     125             :                                         // the AsmPrinter to emit helpful
     126             :                                         // comments.  This is *not* semantic
     127             :                                         // information.  Do not use this for
     128             :                                         // anything other than to convey comment
     129             :                                         // information to AsmPrinter.
     130             : 
     131             :   /// Internal implementation detail class that provides out-of-line storage for
     132             :   /// extra info used by the machine instruction when this info cannot be stored
     133             :   /// in-line within the instruction itself.
     134             :   ///
     135             :   /// This has to be defined eagerly due to the implementation constraints of
     136             :   /// `PointerSumType` where it is used.
     137             :   class ExtraInfo final
     138             :       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> {
     139             :   public:
     140      368564 :     static ExtraInfo *create(BumpPtrAllocator &Allocator,
     141             :                              ArrayRef<MachineMemOperand *> MMOs,
     142             :                              MCSymbol *PreInstrSymbol = nullptr,
     143             :                              MCSymbol *PostInstrSymbol = nullptr) {
     144      368564 :       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
     145      368564 :       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
     146      368564 :       auto *Result = new (Allocator.Allocate(
     147             :           totalSizeToAlloc<MachineMemOperand *, MCSymbol *>(
     148      368564 :               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol),
     149             :           alignof(ExtraInfo)))
     150      368564 :           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol);
     151             : 
     152             :       // Copy the actual data into the trailing objects.
     153             :       std::copy(MMOs.begin(), MMOs.end(),
     154             :                 Result->getTrailingObjects<MachineMemOperand *>());
     155             : 
     156      368564 :       if (HasPreInstrSymbol)
     157           2 :         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
     158      368564 :       if (HasPostInstrSymbol)
     159           2 :         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
     160             :             PostInstrSymbol;
     161             : 
     162      368564 :       return Result;
     163             :     }
     164             : 
     165             :     ArrayRef<MachineMemOperand *> getMMOs() const {
     166     5228226 :       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
     167             :     }
     168             : 
     169             :     MCSymbol *getPreInstrSymbol() const {
     170      342742 :       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
     171             :     }
     172             : 
     173             :     MCSymbol *getPostInstrSymbol() const {
     174      342742 :       return HasPostInstrSymbol
     175      342742 :                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
     176             :                  : nullptr;
     177             :     }
     178             : 
     179             :   private:
     180             :     friend TrailingObjects;
     181             : 
     182             :     // Description of the extra info, used to interpret the actual optional
     183             :     // data appended.
     184             :     //
     185             :     // Note that this is not terribly space optimized. This leaves a great deal
     186             :     // of flexibility to fit more in here later.
     187             :     const int NumMMOs;
     188             :     const bool HasPreInstrSymbol;
     189             :     const bool HasPostInstrSymbol;
     190             : 
     191             :     // Implement the `TrailingObjects` internal API.
     192           0 :     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
     193           8 :       return NumMMOs;
     194             :     }
     195             :     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
     196             :       return HasPreInstrSymbol + HasPostInstrSymbol;
     197             :     }
     198             : 
     199             :     // Just a boring constructor to allow us to initialize the sizes. Always use
     200             :     // the `create` routine above.
     201             :     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol)
     202      368564 :         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
     203      368564 :           HasPostInstrSymbol(HasPostInstrSymbol) {}
     204             :   };
     205             : 
     206             :   /// Enumeration of the kinds of inline extra info available. It is important
     207             :   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
     208             :   /// it accessible as an `ArrayRef`.
     209             :   enum ExtraInfoInlineKinds {
     210             :     EIIK_MMO = 0,
     211             :     EIIK_PreInstrSymbol,
     212             :     EIIK_PostInstrSymbol,
     213             :     EIIK_OutOfLine
     214             :   };
     215             : 
     216             :   // We store extra information about the instruction here. The common case is
     217             :   // expected to be nothing or a single pointer (typically a MMO or a symbol).
     218             :   // We work to optimize this common case by storing it inline here rather than
     219             :   // requiring a separate allocation, but we fall back to an allocation when
     220             :   // multiple pointers are needed.
     221             :   PointerSumType<ExtraInfoInlineKinds,
     222             :                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
     223             :                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
     224             :                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
     225             :                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
     226             :       Info;
     227             : 
     228             :   DebugLoc debugLoc;                    // Source line information.
     229             : 
     230             :   // Intrusive list support
     231             :   friend struct ilist_traits<MachineInstr>;
     232             :   friend struct ilist_callback_traits<MachineBasicBlock>;
     233    54457550 :   void setParent(MachineBasicBlock *P) { Parent = P; }
     234             : 
     235             :   /// This constructor creates a copy of the given
     236             :   /// MachineInstr in the given MachineFunction.
     237             :   MachineInstr(MachineFunction &, const MachineInstr &);
     238             : 
     239             :   /// This constructor create a MachineInstr and add the implicit operands.
     240             :   /// It reserves space for number of operands specified by
     241             :   /// MCInstrDesc.  An explicit DebugLoc is supplied.
     242             :   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
     243             :                bool NoImp = false);
     244             : 
     245             :   // MachineInstrs are pool-allocated and owned by MachineFunction.
     246             :   friend class MachineFunction;
     247             : 
     248             : public:
     249             :   MachineInstr(const MachineInstr &) = delete;
     250             :   MachineInstr &operator=(const MachineInstr &) = delete;
     251             :   // Use MachineFunction::DeleteMachineInstr() instead.
     252             :   ~MachineInstr() = delete;
     253             : 
     254           0 :   const MachineBasicBlock* getParent() const { return Parent; }
     255           0 :   MachineBasicBlock* getParent() { return Parent; }
     256             : 
     257             :   /// Return the function that contains the basic block that this instruction
     258             :   /// belongs to.
     259             :   ///
     260             :   /// Note: this is undefined behaviour if the instruction does not have a
     261             :   /// parent.
     262             :   const MachineFunction *getMF() const;
     263             :   MachineFunction *getMF() {
     264             :     return const_cast<MachineFunction *>(
     265    25191353 :         static_cast<const MachineInstr *>(this)->getMF());
     266             :   }
     267             : 
     268             :   /// Return the asm printer flags bitvector.
     269           0 :   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
     270             : 
     271             :   /// Clear the AsmPrinter bitvector.
     272             :   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
     273             : 
     274             :   /// Return whether an AsmPrinter flag is set.
     275           0 :   bool getAsmPrinterFlag(CommentFlag Flag) const {
     276           0 :     return AsmPrinterFlags & Flag;
     277             :   }
     278             : 
     279             :   /// Set a flag for the AsmPrinter.
     280             :   void setAsmPrinterFlag(uint8_t Flag) {
     281           8 :     AsmPrinterFlags |= Flag;
     282             :   }
     283             : 
     284             :   /// Clear specific AsmPrinter flags.
     285             :   void clearAsmPrinterFlag(CommentFlag Flag) {
     286             :     AsmPrinterFlags &= ~Flag;
     287             :   }
     288             : 
     289             :   /// Return the MI flags bitvector.
     290           0 :   uint16_t getFlags() const {
     291           0 :     return Flags;
     292             :   }
     293             : 
     294             :   /// Return whether an MI flag is set.
     295           0 :   bool getFlag(MIFlag Flag) const {
     296    24931978 :     return Flags & Flag;
     297             :   }
     298             : 
     299             :   /// Set a MI flag.
     300           0 :   void setFlag(MIFlag Flag) {
     301     1198252 :     Flags |= (uint16_t)Flag;
     302           0 :   }
     303             : 
     304           0 :   void setFlags(unsigned flags) {
     305             :     // Filter out the automatically maintained flags.
     306             :     unsigned Mask = BundledPred | BundledSucc;
     307      188510 :     Flags = (Flags & Mask) | (flags & ~Mask);
     308           0 :   }
     309             : 
     310             :   /// clearFlag - Clear a MI flag.
     311           0 :   void clearFlag(MIFlag Flag) {
     312       81352 :     Flags &= ~((uint16_t)Flag);
     313           0 :   }
     314             : 
     315             :   /// Return true if MI is in a bundle (but not the first MI in a bundle).
     316             :   ///
     317             :   /// A bundle looks like this before it's finalized:
     318             :   ///   ----------------
     319             :   ///   |      MI      |
     320             :   ///   ----------------
     321             :   ///          |
     322             :   ///   ----------------
     323             :   ///   |      MI    * |
     324             :   ///   ----------------
     325             :   ///          |
     326             :   ///   ----------------
     327             :   ///   |      MI    * |
     328             :   ///   ----------------
     329             :   /// In this case, the first MI starts a bundle but is not inside a bundle, the
     330             :   /// next 2 MIs are considered "inside" the bundle.
     331             :   ///
     332             :   /// After a bundle is finalized, it looks like this:
     333             :   ///   ----------------
     334             :   ///   |    Bundle    |
     335             :   ///   ----------------
     336             :   ///          |
     337             :   ///   ----------------
     338             :   ///   |      MI    * |
     339             :   ///   ----------------
     340             :   ///          |
     341             :   ///   ----------------
     342             :   ///   |      MI    * |
     343             :   ///   ----------------
     344             :   ///          |
     345             :   ///   ----------------
     346             :   ///   |      MI    * |
     347             :   ///   ----------------
     348             :   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
     349             :   /// a bundle, but the next three MIs are.
     350             :   bool isInsideBundle() const {
     351    54724937 :     return getFlag(BundledPred);
     352             :   }
     353             : 
     354             :   /// Return true if this instruction part of a bundle. This is true
     355             :   /// if either itself or its following instruction is marked "InsideBundle".
     356             :   bool isBundled() const {
     357   479457250 :     return isBundledWithPred() || isBundledWithSucc();
     358             :   }
     359             : 
     360             :   /// Return true if this instruction is part of a bundle, and it is not the
     361             :   /// first instruction in the bundle.
     362   710481564 :   bool isBundledWithPred() const { return getFlag(BundledPred); }
     363             : 
     364             :   /// Return true if this instruction is part of a bundle, and it is not the
     365             :   /// last instruction in the bundle.
     366   508105252 :   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
     367             : 
     368             :   /// Bundle this instruction with its predecessor. This can be an unbundled
     369             :   /// instruction, or it can be the first instruction in a bundle.
     370             :   void bundleWithPred();
     371             : 
     372             :   /// Bundle this instruction with its successor. This can be an unbundled
     373             :   /// instruction, or it can be the last instruction in a bundle.
     374             :   void bundleWithSucc();
     375             : 
     376             :   /// Break bundle above this instruction.
     377             :   void unbundleFromPred();
     378             : 
     379             :   /// Break bundle below this instruction.
     380             :   void unbundleFromSucc();
     381             : 
     382             :   /// Returns the debug location id of this MachineInstr.
     383    12791527 :   const DebugLoc &getDebugLoc() const { return debugLoc; }
     384             : 
     385             :   /// Return the debug variable referenced by
     386             :   /// this DBG_VALUE instruction.
     387             :   const DILocalVariable *getDebugVariable() const;
     388             : 
     389             :   /// Return the complex address expression referenced by
     390             :   /// this DBG_VALUE instruction.
     391             :   const DIExpression *getDebugExpression() const;
     392             : 
     393             :   /// Return the debug label referenced by
     394             :   /// this DBG_LABEL instruction.
     395             :   const DILabel *getDebugLabel() const;
     396             : 
     397             :   /// Emit an error referring to the source location of this instruction.
     398             :   /// This should only be used for inline assembly that is somehow
     399             :   /// impossible to compile. Other errors should have been handled much
     400             :   /// earlier.
     401             :   ///
     402             :   /// If this method returns, the caller should try to recover from the error.
     403             :   void emitError(StringRef Msg) const;
     404             : 
     405             :   /// Returns the target instruction descriptor of this MachineInstr.
     406           0 :   const MCInstrDesc &getDesc() const { return *MCID; }
     407             : 
     408             :   /// Returns the opcode of this MachineInstr.
     409   786152032 :   unsigned getOpcode() const { return MCID->Opcode; }
     410             : 
     411             :   /// Retuns the total number of operands.
     412           0 :   unsigned getNumOperands() const { return NumOperands; }
     413             : 
     414           0 :   const MachineOperand& getOperand(unsigned i) const {
     415             :     assert(i < getNumOperands() && "getOperand() out of range!");
     416   661568580 :     return Operands[i];
     417             :   }
     418           0 :   MachineOperand& getOperand(unsigned i) {
     419             :     assert(i < getNumOperands() && "getOperand() out of range!");
     420   844229496 :     return Operands[i];
     421             :   }
     422             : 
     423             :   /// Returns the total number of definitions.
     424      103559 :   unsigned getNumDefs() const {
     425      103559 :     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
     426             :   }
     427             : 
     428             :   /// Return true if operand \p OpIdx is a subregister index.
     429       72187 :   bool isOperandSubregIdx(unsigned OpIdx) const {
     430             :     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
     431             :            "Expected MO_Immediate operand type.");
     432           7 :     if (isExtractSubreg() && OpIdx == 2)
     433             :       return true;
     434       72180 :     if (isInsertSubreg() && OpIdx == 3)
     435             :       return true;
     436       72093 :     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
     437             :       return true;
     438       71648 :     if (isSubregToReg() && OpIdx == 3)
     439         666 :       return true;
     440             :     return false;
     441             :   }
     442             : 
     443             :   /// Returns the number of non-implicit operands.
     444             :   unsigned getNumExplicitOperands() const;
     445             : 
     446             :   /// Returns the number of non-implicit definitions.
     447             :   unsigned getNumExplicitDefs() const;
     448             : 
     449             :   /// iterator/begin/end - Iterate over all operands of a machine instruction.
     450             :   using mop_iterator = MachineOperand *;
     451             :   using const_mop_iterator = const MachineOperand *;
     452             : 
     453           0 :   mop_iterator operands_begin() { return Operands; }
     454    61114318 :   mop_iterator operands_end() { return Operands + NumOperands; }
     455             : 
     456           0 :   const_mop_iterator operands_begin() const { return Operands; }
     457    38364276 :   const_mop_iterator operands_end() const { return Operands + NumOperands; }
     458             : 
     459             :   iterator_range<mop_iterator> operands() {
     460   111781432 :     return make_range(operands_begin(), operands_end());
     461             :   }
     462             :   iterator_range<const_mop_iterator> operands() const {
     463    64211445 :     return make_range(operands_begin(), operands_end());
     464             :   }
     465             :   iterator_range<mop_iterator> explicit_operands() {
     466             :     return make_range(operands_begin(),
     467      806061 :                       operands_begin() + getNumExplicitOperands());
     468             :   }
     469             :   iterator_range<const_mop_iterator> explicit_operands() const {
     470             :     return make_range(operands_begin(),
     471     4709942 :                       operands_begin() + getNumExplicitOperands());
     472             :   }
     473             :   iterator_range<mop_iterator> implicit_operands() {
     474      804500 :     return make_range(explicit_operands().end(), operands_end());
     475             :   }
     476             :   iterator_range<const_mop_iterator> implicit_operands() const {
     477     4243338 :     return make_range(explicit_operands().end(), operands_end());
     478             :   }
     479             :   /// Returns a range over all explicit operands that are register definitions.
     480             :   /// Implicit definition are not included!
     481             :   iterator_range<mop_iterator> defs() {
     482             :     return make_range(operands_begin(),
     483      936506 :                       operands_begin() + getNumExplicitDefs());
     484             :   }
     485             :   /// \copydoc defs()
     486             :   iterator_range<const_mop_iterator> defs() const {
     487             :     return make_range(operands_begin(),
     488      895637 :                       operands_begin() + getNumExplicitDefs());
     489             :   }
     490             :   /// Returns a range that includes all operands that are register uses.
     491             :   /// This may include unrelated operands which are not register uses.
     492             :   iterator_range<mop_iterator> uses() {
     493      278471 :     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
     494             :   }
     495             :   /// \copydoc uses()
     496             :   iterator_range<const_mop_iterator> uses() const {
     497      580793 :     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
     498             :   }
     499       35503 :   iterator_range<mop_iterator> explicit_uses() {
     500       71006 :     return make_range(operands_begin() + getNumExplicitDefs(),
     501       35503 :                       operands_begin() + getNumExplicitOperands());
     502             :   }
     503          33 :   iterator_range<const_mop_iterator> explicit_uses() const {
     504          66 :     return make_range(operands_begin() + getNumExplicitDefs(),
     505          33 :                       operands_begin() + getNumExplicitOperands());
     506             :   }
     507             : 
     508             :   /// Returns the number of the operand iterator \p I points to.
     509             :   unsigned getOperandNo(const_mop_iterator I) const {
     510      765972 :     return I - operands_begin();
     511             :   }
     512             : 
     513             :   /// Access to memory operands of the instruction. If there are none, that does
     514             :   /// not imply anything about whether the function accesses memory. Instead,
     515             :   /// the caller must behave conservatively.
     516   128616935 :   ArrayRef<MachineMemOperand *> memoperands() const {
     517   128616935 :     if (!Info)
     518    84517300 :       return {};
     519             : 
     520    44099635 :     if (Info.is<EIIK_MMO>())
     521             :       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
     522             : 
     523     5228226 :     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
     524             :       return EI->getMMOs();
     525             : 
     526         248 :     return {};
     527             :   }
     528             : 
     529             :   /// Access to memory operands of the instruction.
     530             :   ///
     531             :   /// If `memoperands_begin() == memoperands_end()`, that does not imply
     532             :   /// anything about whether the function accesses memory. Instead, the caller
     533             :   /// must behave conservatively.
     534    46142747 :   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
     535             : 
     536             :   /// Access to memory operands of the instruction.
     537             :   ///
     538             :   /// If `memoperands_begin() == memoperands_end()`, that does not imply
     539             :   /// anything about whether the function accesses memory. Instead, the caller
     540             :   /// must behave conservatively.
     541    43531671 :   mmo_iterator memoperands_end() const { return memoperands().end(); }
     542             : 
     543             :   /// Return true if we don't have any memory operands which described the
     544             :   /// memory access done by this instruction.  If this is true, calling code
     545             :   /// must be conservative.
     546    15008884 :   bool memoperands_empty() const { return memoperands().empty(); }
     547             : 
     548             :   /// Return true if this instruction has exactly one MachineMemOperand.
     549     4520670 :   bool hasOneMemOperand() const { return memoperands().size() == 1; }
     550             : 
     551             :   /// Return the number of memory operands.
     552       48370 :   unsigned getNumMemOperands() const { return memoperands().size(); }
     553             : 
     554             :   /// Helper to extract a pre-instruction symbol if one has been added.
     555    52919585 :   MCSymbol *getPreInstrSymbol() const {
     556    52919585 :     if (!Info)
     557             :       return nullptr;
     558           4 :     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
     559             :       return S;
     560      342742 :     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
     561             :       return EI->getPreInstrSymbol();
     562             : 
     563             :     return nullptr;
     564             :   }
     565             : 
     566             :   /// Helper to extract a post-instruction symbol if one has been added.
     567    52919637 :   MCSymbol *getPostInstrSymbol() const {
     568    52919637 :     if (!Info)
     569             :       return nullptr;
     570          55 :     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
     571             :       return S;
     572      342742 :     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
     573             :       return EI->getPostInstrSymbol();
     574             : 
     575             :     return nullptr;
     576             :   }
     577             : 
     578             :   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
     579             :   /// queries but they are bundle aware.
     580             : 
     581             :   enum QueryType {
     582             :     IgnoreBundle,    // Ignore bundles
     583             :     AnyInBundle,     // Return true if any instruction in bundle has property
     584             :     AllInBundle      // Return true if all instructions in bundle have property
     585             :   };
     586             : 
     587             :   /// Return true if the instruction (or in the case of a bundle,
     588             :   /// the instructions inside the bundle) has the specified property.
     589             :   /// The first argument is the property being queried.
     590             :   /// The second argument indicates whether the query should look inside
     591             :   /// instruction bundles.
     592   657387781 :   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
     593             :     assert(MCFlag < 64 &&
     594             :            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
     595             :     // Inline the fast path for unbundled or bundle-internal instructions.
     596   657584590 :     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
     597   657200720 :       return getDesc().getFlags() & (1ULL << MCFlag);
     598             : 
     599             :     // If this is the first instruction in a bundle, take the slow path.
     600      187061 :     return hasPropertyInBundle(1ULL << MCFlag, Type);
     601             :   }
     602             : 
     603             :   /// Return true if this instruction can have a variable number of operands.
     604             :   /// In this case, the variable operands will be after the normal
     605             :   /// operands but before the implicit definitions and uses (if any are
     606             :   /// present).
     607             :   bool isVariadic(QueryType Type = IgnoreBundle) const {
     608    41213424 :     return hasProperty(MCID::Variadic, Type);
     609             :   }
     610             : 
     611             :   /// Set if this instruction has an optional definition, e.g.
     612             :   /// ARM instructions which can set condition code if 's' bit is set.
     613             :   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
     614        1217 :     return hasProperty(MCID::HasOptionalDef, Type);
     615             :   }
     616             : 
     617             :   /// Return true if this is a pseudo instruction that doesn't
     618             :   /// correspond to a real machine instruction.
     619             :   bool isPseudo(QueryType Type = IgnoreBundle) const {
     620    34335102 :     return hasProperty(MCID::Pseudo, Type);
     621             :   }
     622             : 
     623             :   bool isReturn(QueryType Type = AnyInBundle) const {
     624    25163206 :     return hasProperty(MCID::Return, Type);
     625             :   }
     626             : 
     627             :   /// Return true if this is an instruction that marks the end of an EH scope,
     628             :   /// i.e., a catchpad or a cleanuppad instruction.
     629             :   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
     630        1957 :     return hasProperty(MCID::EHScopeReturn, Type);
     631             :   }
     632             : 
     633             :   bool isCall(QueryType Type = AnyInBundle) const {
     634   138553623 :     return hasProperty(MCID::Call, Type);
     635             :   }
     636             : 
     637             :   /// Returns true if the specified instruction stops control flow
     638             :   /// from executing the instruction immediately following it.  Examples include
     639             :   /// unconditional branches and return instructions.
     640             :   bool isBarrier(QueryType Type = AnyInBundle) const {
     641    10340244 :     return hasProperty(MCID::Barrier, Type);
     642             :   }
     643             : 
     644             :   /// Returns true if this instruction part of the terminator for a basic block.
     645             :   /// Typically this is things like return and branch instructions.
     646             :   ///
     647             :   /// Various passes use this to insert code into the bottom of a basic block,
     648             :   /// but before control flow occurs.
     649             :   bool isTerminator(QueryType Type = AnyInBundle) const {
     650   111084406 :     return hasProperty(MCID::Terminator, Type);
     651             :   }
     652             : 
     653             :   /// Returns true if this is a conditional, unconditional, or indirect branch.
     654             :   /// Predicates below can be used to discriminate between
     655             :   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
     656             :   /// get more information.
     657             :   bool isBranch(QueryType Type = AnyInBundle) const {
     658    20391251 :     return hasProperty(MCID::Branch, Type);
     659             :   }
     660             : 
     661             :   /// Return true if this is an indirect branch, such as a
     662             :   /// branch through a register.
     663             :   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
     664     8760706 :     return hasProperty(MCID::IndirectBranch, Type);
     665             :   }
     666             : 
     667             :   /// Return true if this is a branch which may fall
     668             :   /// through to the next instruction or may transfer control flow to some other
     669             :   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
     670             :   /// information about this branch.
     671     4386585 :   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
     672     4386584 :     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
     673             :   }
     674             : 
     675             :   /// Return true if this is a branch which always
     676             :   /// transfers control flow to some other block.  The
     677             :   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
     678             :   /// about this branch.
     679      459832 :   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
     680      459832 :     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
     681             :   }
     682             : 
     683             :   /// Return true if this instruction has a predicate operand that
     684             :   /// controls execution.  It may be set to 'always', or may be set to other
     685             :   /// values.   There are various methods in TargetInstrInfo that can be used to
     686             :   /// control and modify the predicate in this instruction.
     687             :   bool isPredicable(QueryType Type = AllInBundle) const {
     688             :     // If it's a bundle than all bundled instructions must be predicable for this
     689             :     // to return true.
     690     3177189 :     return hasProperty(MCID::Predicable, Type);
     691             :   }
     692             : 
     693             :   /// Return true if this instruction is a comparison.
     694             :   bool isCompare(QueryType Type = IgnoreBundle) const {
     695     5165834 :     return hasProperty(MCID::Compare, Type);
     696             :   }
     697             : 
     698             :   /// Return true if this instruction is a move immediate
     699             :   /// (including conditional moves) instruction.
     700             :   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
     701      170558 :     return hasProperty(MCID::MoveImm, Type);
     702             :   }
     703             : 
     704             :   /// Return true if this instruction is a register move.
     705             :   /// (including moving values from subreg to reg)
     706             :   bool isMoveReg(QueryType Type = IgnoreBundle) const {
     707      409689 :     return hasProperty(MCID::MoveReg, Type);
     708             :   }
     709             : 
     710             :   /// Return true if this instruction is a bitcast instruction.
     711             :   bool isBitcast(QueryType Type = IgnoreBundle) const {
     712     1420165 :     return hasProperty(MCID::Bitcast, Type);
     713             :   }
     714             : 
     715             :   /// Return true if this instruction is a select instruction.
     716             :   bool isSelect(QueryType Type = IgnoreBundle) const {
     717     4285322 :     return hasProperty(MCID::Select, Type);
     718             :   }
     719             : 
     720             :   /// Return true if this instruction cannot be safely duplicated.
     721             :   /// For example, if the instruction has a unique labels attached
     722             :   /// to it, duplicating it would cause multiple definition errors.
     723             :   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
     724     1567681 :     return hasProperty(MCID::NotDuplicable, Type);
     725             :   }
     726             : 
     727             :   /// Return true if this instruction is convergent.
     728             :   /// Convergent instructions can not be made control-dependent on any
     729             :   /// additional values.
     730     2838886 :   bool isConvergent(QueryType Type = AnyInBundle) const {
     731     2838886 :     if (isInlineAsm()) {
     732         685 :       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
     733         685 :       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
     734             :         return true;
     735             :     }
     736     2838884 :     return hasProperty(MCID::Convergent, Type);
     737             :   }
     738             : 
     739             :   /// Returns true if the specified instruction has a delay slot
     740             :   /// which must be filled by the code generator.
     741             :   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
     742      136701 :     return hasProperty(MCID::DelaySlot, Type);
     743             :   }
     744             : 
     745             :   /// Return true for instructions that can be folded as
     746             :   /// memory operands in other instructions. The most common use for this
     747             :   /// is instructions that are simple loads from memory that don't modify
     748             :   /// the loaded value in any way, but it can also be used for instructions
     749             :   /// that can be expressed as constant-pool loads, such as V_SETALLONES
     750             :   /// on x86, to allow them to be folded when it is beneficial.
     751             :   /// This should only be set on instructions that return a value in their
     752             :   /// only virtual register definition.
     753             :   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
     754      423763 :     return hasProperty(MCID::FoldableAsLoad, Type);
     755             :   }
     756             : 
     757             :   /// Return true if this instruction behaves
     758             :   /// the same way as the generic REG_SEQUENCE instructions.
     759             :   /// E.g., on ARM,
     760             :   /// dX VMOVDRR rY, rZ
     761             :   /// is equivalent to
     762             :   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
     763             :   ///
     764             :   /// Note that for the optimizers to be able to take advantage of
     765             :   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
     766             :   /// override accordingly.
     767             :   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
     768     1172110 :     return hasProperty(MCID::RegSequence, Type);
     769             :   }
     770             : 
     771             :   /// Return true if this instruction behaves
     772             :   /// the same way as the generic EXTRACT_SUBREG instructions.
     773             :   /// E.g., on ARM,
     774             :   /// rX, rY VMOVRRD dZ
     775             :   /// is equivalent to two EXTRACT_SUBREG:
     776             :   /// rX = EXTRACT_SUBREG dZ, ssub_0
     777             :   /// rY = EXTRACT_SUBREG dZ, ssub_1
     778             :   ///
     779             :   /// Note that for the optimizers to be able to take advantage of
     780             :   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
     781             :   /// override accordingly.
     782             :   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
     783     1141751 :     return hasProperty(MCID::ExtractSubreg, Type);
     784             :   }
     785             : 
     786             :   /// Return true if this instruction behaves
     787             :   /// the same way as the generic INSERT_SUBREG instructions.
     788             :   /// E.g., on ARM,
     789             :   /// dX = VSETLNi32 dY, rZ, Imm
     790             :   /// is equivalent to a INSERT_SUBREG:
     791             :   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
     792             :   ///
     793             :   /// Note that for the optimizers to be able to take advantage of
     794             :   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
     795             :   /// override accordingly.
     796             :   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
     797     1141944 :     return hasProperty(MCID::InsertSubreg, Type);
     798             :   }
     799             : 
     800             :   //===--------------------------------------------------------------------===//
     801             :   // Side Effect Analysis
     802             :   //===--------------------------------------------------------------------===//
     803             : 
     804             :   /// Return true if this instruction could possibly read memory.
     805             :   /// Instructions with this flag set are not necessarily simple load
     806             :   /// instructions, they may load a value and modify it, for example.
     807    52598621 :   bool mayLoad(QueryType Type = AnyInBundle) const {
     808    52598621 :     if (isInlineAsm()) {
     809       48890 :       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
     810       48890 :       if (ExtraInfo & InlineAsm::Extra_MayLoad)
     811             :         return true;
     812             :     }
     813    52579271 :     return hasProperty(MCID::MayLoad, Type);
     814             :   }
     815             : 
     816             :   /// Return true if this instruction could possibly modify memory.
     817             :   /// Instructions with this flag set are not necessarily simple store
     818             :   /// instructions, they may store a modified value based on their operands, or
     819             :   /// may not actually modify anything, for example.
     820    56836160 :   bool mayStore(QueryType Type = AnyInBundle) const {
     821    56836160 :     if (isInlineAsm()) {
     822       56510 :       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
     823       56510 :       if (ExtraInfo & InlineAsm::Extra_MayStore)
     824             :         return true;
     825             :     }
     826    56830356 :     return hasProperty(MCID::MayStore, Type);
     827             :   }
     828             : 
     829             :   /// Return true if this instruction could possibly read or modify memory.
     830      351275 :   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
     831      351275 :     return mayLoad(Type) || mayStore(Type);
     832             :   }
     833             : 
     834             :   //===--------------------------------------------------------------------===//
     835             :   // Flags that indicate whether an instruction can be modified by a method.
     836             :   //===--------------------------------------------------------------------===//
     837             : 
     838             :   /// Return true if this may be a 2- or 3-address
     839             :   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
     840             :   /// result if Y and Z are exchanged.  If this flag is set, then the
     841             :   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
     842             :   /// instruction.
     843             :   ///
     844             :   /// Note that this flag may be set on instructions that are only commutable
     845             :   /// sometimes.  In these cases, the call to commuteInstruction will fail.
     846             :   /// Also note that some instructions require non-trivial modification to
     847             :   /// commute them.
     848             :   bool isCommutable(QueryType Type = IgnoreBundle) const {
     849     5709633 :     return hasProperty(MCID::Commutable, Type);
     850             :   }
     851             : 
     852             :   /// Return true if this is a 2-address instruction
     853             :   /// which can be changed into a 3-address instruction if needed.  Doing this
     854             :   /// transformation can be profitable in the register allocator, because it
     855             :   /// means that the instruction can use a 2-address form if possible, but
     856             :   /// degrade into a less efficient form if the source and dest register cannot
     857             :   /// be assigned to the same register.  For example, this allows the x86
     858             :   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
     859             :   /// is the same speed as the shift but has bigger code size.
     860             :   ///
     861             :   /// If this returns true, then the target must implement the
     862             :   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
     863             :   /// is allowed to fail if the transformation isn't valid for this specific
     864             :   /// instruction (e.g. shl reg, 4 on x86).
     865             :   ///
     866             :   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
     867      278618 :     return hasProperty(MCID::ConvertibleTo3Addr, Type);
     868             :   }
     869             : 
     870             :   /// Return true if this instruction requires
     871             :   /// custom insertion support when the DAG scheduler is inserting it into a
     872             :   /// machine basic block.  If this is true for the instruction, it basically
     873             :   /// means that it is a pseudo instruction used at SelectionDAG time that is
     874             :   /// expanded out into magic code by the target when MachineInstrs are formed.
     875             :   ///
     876             :   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
     877             :   /// is used to insert this into the MachineBasicBlock.
     878             :   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
     879    41273449 :     return hasProperty(MCID::UsesCustomInserter, Type);
     880             :   }
     881             : 
     882             :   /// Return true if this instruction requires *adjustment*
     883             :   /// after instruction selection by calling a target hook. For example, this
     884             :   /// can be used to fill in ARM 's' optional operand depending on whether
     885             :   /// the conditional flag register is used.
     886             :   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
     887             :     return hasProperty(MCID::HasPostISelHook, Type);
     888             :   }
     889             : 
     890             :   /// Returns true if this instruction is a candidate for remat.
     891             :   /// This flag is deprecated, please don't use it anymore.  If this
     892             :   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
     893             :   /// verify the instruction is really rematable.
     894             :   bool isRematerializable(QueryType Type = AllInBundle) const {
     895             :     // It's only possible to re-mat a bundle if all bundled instructions are
     896             :     // re-materializable.
     897             :     return hasProperty(MCID::Rematerializable, Type);
     898             :   }
     899             : 
     900             :   /// Returns true if this instruction has the same cost (or less) than a move
     901             :   /// instruction. This is useful during certain types of optimizations
     902             :   /// (e.g., remat during two-address conversion or machine licm)
     903             :   /// where we would like to remat or hoist the instruction, but not if it costs
     904             :   /// more than moving the instruction into the appropriate register. Note, we
     905             :   /// are not marking copies from and to the same register class with this flag.
     906             :   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
     907             :     // Only returns true for a bundle if all bundled instructions are cheap.
     908      590506 :     return hasProperty(MCID::CheapAsAMove, Type);
     909             :   }
     910             : 
     911             :   /// Returns true if this instruction source operands
     912             :   /// have special register allocation requirements that are not captured by the
     913             :   /// operand register classes. e.g. ARM::STRD's two source registers must be an
     914             :   /// even / odd pair, ARM::STM registers have to be in ascending order.
     915             :   /// Post-register allocation passes should not attempt to change allocations
     916             :   /// for sources of instructions with this flag.
     917             :   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
     918    10153695 :     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
     919             :   }
     920             : 
     921             :   /// Returns true if this instruction def operands
     922             :   /// have special register allocation requirements that are not captured by the
     923             :   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
     924             :   /// even / odd pair, ARM::LDM registers have to be in ascending order.
     925             :   /// Post-register allocation passes should not attempt to change allocations
     926             :   /// for definitions of instructions with this flag.
     927             :   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
     928     6950287 :     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
     929             :   }
     930             : 
     931             :   enum MICheckType {
     932             :     CheckDefs,      // Check all operands for equality
     933             :     CheckKillDead,  // Check all operands including kill / dead markers
     934             :     IgnoreDefs,     // Ignore all definitions
     935             :     IgnoreVRegDefs  // Ignore virtual register definitions
     936             :   };
     937             : 
     938             :   /// Return true if this instruction is identical to \p Other.
     939             :   /// Two instructions are identical if they have the same opcode and all their
     940             :   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
     941             :   /// Note that this means liveness related flags (dead, undef, kill) do not
     942             :   /// affect the notion of identical.
     943             :   bool isIdenticalTo(const MachineInstr &Other,
     944             :                      MICheckType Check = CheckDefs) const;
     945             : 
     946             :   /// Unlink 'this' from the containing basic block, and return it without
     947             :   /// deleting it.
     948             :   ///
     949             :   /// This function can not be used on bundled instructions, use
     950             :   /// removeFromBundle() to remove individual instructions from a bundle.
     951             :   MachineInstr *removeFromParent();
     952             : 
     953             :   /// Unlink this instruction from its basic block and return it without
     954             :   /// deleting it.
     955             :   ///
     956             :   /// If the instruction is part of a bundle, the other instructions in the
     957             :   /// bundle remain bundled.
     958             :   MachineInstr *removeFromBundle();
     959             : 
     960             :   /// Unlink 'this' from the containing basic block and delete it.
     961             :   ///
     962             :   /// If this instruction is the header of a bundle, the whole bundle is erased.
     963             :   /// This function can not be used for instructions inside a bundle, use
     964             :   /// eraseFromBundle() to erase individual bundled instructions.
     965             :   void eraseFromParent();
     966             : 
     967             :   /// Unlink 'this' from the containing basic block and delete it.
     968             :   ///
     969             :   /// For all definitions mark their uses in DBG_VALUE nodes
     970             :   /// as undefined. Otherwise like eraseFromParent().
     971             :   void eraseFromParentAndMarkDBGValuesForRemoval();
     972             : 
     973             :   /// Unlink 'this' form its basic block and delete it.
     974             :   ///
     975             :   /// If the instruction is part of a bundle, the other instructions in the
     976             :   /// bundle remain bundled.
     977             :   void eraseFromBundle();
     978             : 
     979    91564887 :   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
     980             :   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
     981             :   bool isAnnotationLabel() const {
     982             :     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
     983             :   }
     984             : 
     985             :   /// Returns true if the MachineInstr represents a label.
     986             :   bool isLabel() const {
     987    62106992 :     return isEHLabel() || isGCLabel() || isAnnotationLabel();
     988             :   }
     989             : 
     990             :   bool isCFIInstruction() const {
     991     3212711 :     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
     992             :   }
     993             : 
     994             :   // True if the instruction represents a position in the function.
     995    59131120 :   bool isPosition() const { return isLabel() || isCFIInstruction(); }
     996             : 
     997   213458679 :   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
     998             :   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
     999   210112214 :   bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
    1000             : 
    1001             :   /// A DBG_VALUE is indirect iff the first operand is a register and
    1002             :   /// the second operand is an immediate.
    1003             :   bool isIndirectDebugValue() const {
    1004             :     return isDebugValue()
    1005       48234 :       && getOperand(0).isReg()
    1006       47750 :       && getOperand(1).isImm();
    1007             :   }
    1008             : 
    1009             :   bool isPHI() const {
    1010    89679285 :     return getOpcode() == TargetOpcode::PHI ||
    1011             :            getOpcode() == TargetOpcode::G_PHI;
    1012             :   }
    1013      177757 :   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    1014    15956317 :   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    1015   505120892 :   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    1016             : 
    1017             :   bool isMSInlineAsm() const {
    1018             :     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    1019             :   }
    1020             : 
    1021             :   bool isStackAligningInlineAsm() const;
    1022             :   InlineAsm::AsmDialect getInlineAsmDialect() const;
    1023             : 
    1024             :   bool isInsertSubreg() const {
    1025     1735929 :     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    1026             :   }
    1027             : 
    1028             :   bool isSubregToReg() const {
    1029      290491 :     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    1030             :   }
    1031             : 
    1032             :   bool isRegSequence() const {
    1033    41933330 :     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    1034             :   }
    1035             : 
    1036             :   bool isBundle() const {
    1037     7067833 :     return getOpcode() == TargetOpcode::BUNDLE;
    1038             :   }
    1039             : 
    1040             :   bool isCopy() const {
    1041   115738808 :     return getOpcode() == TargetOpcode::COPY;
    1042             :   }
    1043             : 
    1044             :   bool isFullCopy() const {
    1045     1743684 :     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    1046             :   }
    1047             : 
    1048             :   bool isExtractSubreg() const {
    1049      364101 :     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    1050             :   }
    1051             : 
    1052             :   /// Return true if the instruction behaves like a copy.
    1053             :   /// This does not include native copy instructions.
    1054             :   bool isCopyLike() const {
    1055    15161075 :     return isCopy() || isSubregToReg();
    1056             :   }
    1057             : 
    1058             :   /// Return true is the instruction is an identity copy.
    1059             :   bool isIdentityCopy() const {
    1060     4868392 :     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    1061             :       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    1062             :   }
    1063             : 
    1064             :   /// Return true if this instruction doesn't produce any output in the form of
    1065             :   /// executable instructions.
    1066             :   bool isMetaInstruction() const {
    1067     6626089 :     switch (getOpcode()) {
    1068             :     default:
    1069             :       return false;
    1070             :     case TargetOpcode::IMPLICIT_DEF:
    1071             :     case TargetOpcode::KILL:
    1072             :     case TargetOpcode::CFI_INSTRUCTION:
    1073             :     case TargetOpcode::EH_LABEL:
    1074             :     case TargetOpcode::GC_LABEL:
    1075             :     case TargetOpcode::DBG_VALUE:
    1076             :     case TargetOpcode::DBG_LABEL:
    1077             :     case TargetOpcode::LIFETIME_START:
    1078             :     case TargetOpcode::LIFETIME_END:
    1079             :       return true;
    1080             :     }
    1081             :   }
    1082             : 
    1083             :   /// Return true if this is a transient instruction that is either very likely
    1084             :   /// to be eliminated during register allocation (such as copy-like
    1085             :   /// instructions), or if this instruction doesn't have an execution-time cost.
    1086             :   bool isTransient() const {
    1087    14709674 :     switch (getOpcode()) {
    1088             :     default:
    1089             :       return isMetaInstruction();
    1090             :     // Copy-like instructions are usually eliminated during register allocation.
    1091             :     case TargetOpcode::PHI:
    1092             :     case TargetOpcode::G_PHI:
    1093             :     case TargetOpcode::COPY:
    1094             :     case TargetOpcode::INSERT_SUBREG:
    1095             :     case TargetOpcode::SUBREG_TO_REG:
    1096             :     case TargetOpcode::REG_SEQUENCE:
    1097             :       return true;
    1098             :     }
    1099             :   }
    1100             : 
    1101             :   /// Return the number of instructions inside the MI bundle, excluding the
    1102             :   /// bundle header.
    1103             :   ///
    1104             :   /// This is the number of instructions that MachineBasicBlock::iterator
    1105             :   /// skips, 0 for unbundled instructions.
    1106             :   unsigned getBundleSize() const;
    1107             : 
    1108             :   /// Return true if the MachineInstr reads the specified register.
    1109             :   /// If TargetRegisterInfo is passed, then it also checks if there
    1110             :   /// is a read of a super-register.
    1111             :   /// This does not count partial redefines of virtual registers as reads:
    1112             :   ///   %reg1024:6 = OP.
    1113             :   bool readsRegister(unsigned Reg,
    1114             :                      const TargetRegisterInfo *TRI = nullptr) const {
    1115     1377353 :     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    1116             :   }
    1117             : 
    1118             :   /// Return true if the MachineInstr reads the specified virtual register.
    1119             :   /// Take into account that a partial define is a
    1120             :   /// read-modify-write operation.
    1121             :   bool readsVirtualRegister(unsigned Reg) const {
    1122      245442 :     return readsWritesVirtualRegister(Reg).first;
    1123             :   }
    1124             : 
    1125             :   /// Return a pair of bools (reads, writes) indicating if this instruction
    1126             :   /// reads or writes Reg. This also considers partial defines.
    1127             :   /// If Ops is not null, all operand indices for Reg are added.
    1128             :   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    1129             :                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    1130             : 
    1131             :   /// Return true if the MachineInstr kills the specified register.
    1132             :   /// If TargetRegisterInfo is passed, then it also checks if there is
    1133             :   /// a kill of a super-register.
    1134             :   bool killsRegister(unsigned Reg,
    1135             :                      const TargetRegisterInfo *TRI = nullptr) const {
    1136      459220 :     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    1137             :   }
    1138             : 
    1139             :   /// Return true if the MachineInstr fully defines the specified register.
    1140             :   /// If TargetRegisterInfo is passed, then it also checks
    1141             :   /// if there is a def of a super-register.
    1142             :   /// NOTE: It's ignoring subreg indices on virtual registers.
    1143             :   bool definesRegister(unsigned Reg,
    1144             :                        const TargetRegisterInfo *TRI = nullptr) const {
    1145     1178344 :     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    1146             :   }
    1147             : 
    1148             :   /// Return true if the MachineInstr modifies (fully define or partially
    1149             :   /// define) the specified register.
    1150             :   /// NOTE: It's ignoring subreg indices on virtual registers.
    1151             :   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    1152     5087138 :     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    1153             :   }
    1154             : 
    1155             :   /// Returns true if the register is dead in this machine instruction.
    1156             :   /// If TargetRegisterInfo is passed, then it also checks
    1157             :   /// if there is a dead def of a super-register.
    1158             :   bool registerDefIsDead(unsigned Reg,
    1159             :                          const TargetRegisterInfo *TRI = nullptr) const {
    1160     1318894 :     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    1161             :   }
    1162             : 
    1163             :   /// Returns true if the MachineInstr has an implicit-use operand of exactly
    1164             :   /// the given register (not considering sub/super-registers).
    1165             :   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
    1166             : 
    1167             :   /// Returns the operand index that is a use of the specific register or -1
    1168             :   /// if it is not found. It further tightens the search criteria to a use
    1169             :   /// that kills the register if isKill is true.
    1170             :   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    1171             :                                 const TargetRegisterInfo *TRI = nullptr) const;
    1172             : 
    1173             :   /// Wrapper for findRegisterUseOperandIdx, it returns
    1174             :   /// a pointer to the MachineOperand rather than an index.
    1175             :   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    1176             :                                       const TargetRegisterInfo *TRI = nullptr) {
    1177       21520 :     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    1178       21520 :     return (Idx == -1) ? nullptr : &getOperand(Idx);
    1179             :   }
    1180             : 
    1181             :   const MachineOperand *findRegisterUseOperand(
    1182             :     unsigned Reg, bool isKill = false,
    1183             :     const TargetRegisterInfo *TRI = nullptr) const {
    1184             :     return const_cast<MachineInstr *>(this)->
    1185             :       findRegisterUseOperand(Reg, isKill, TRI);
    1186             :   }
    1187             : 
    1188             :   /// Returns the operand index that is a def of the specified register or
    1189             :   /// -1 if it is not found. If isDead is true, defs that are not dead are
    1190             :   /// skipped. If Overlap is true, then it also looks for defs that merely
    1191             :   /// overlap the specified register. If TargetRegisterInfo is non-null,
    1192             :   /// then it also checks if there is a def of a super-register.
    1193             :   /// This may also return a register mask operand when Overlap is true.
    1194             :   int findRegisterDefOperandIdx(unsigned Reg,
    1195             :                                 bool isDead = false, bool Overlap = false,
    1196             :                                 const TargetRegisterInfo *TRI = nullptr) const;
    1197             : 
    1198             :   /// Wrapper for findRegisterDefOperandIdx, it returns
    1199             :   /// a pointer to the MachineOperand rather than an index.
    1200             :   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    1201             :                                       const TargetRegisterInfo *TRI = nullptr) {
    1202     3558976 :     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    1203     3558976 :     return (Idx == -1) ? nullptr : &getOperand(Idx);
    1204             :   }
    1205             : 
    1206             :   /// Find the index of the first operand in the
    1207             :   /// operand list that is used to represent the predicate. It returns -1 if
    1208             :   /// none is found.
    1209             :   int findFirstPredOperandIdx() const;
    1210             : 
    1211             :   /// Find the index of the flag word operand that
    1212             :   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    1213             :   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    1214             :   ///
    1215             :   /// If GroupNo is not NULL, it will receive the number of the operand group
    1216             :   /// containing OpIdx.
    1217             :   ///
    1218             :   /// The flag operand is an immediate that can be decoded with methods like
    1219             :   /// InlineAsm::hasRegClassConstraint().
    1220             :   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
    1221             : 
    1222             :   /// Compute the static register class constraint for operand OpIdx.
    1223             :   /// For normal instructions, this is derived from the MCInstrDesc.
    1224             :   /// For inline assembly it is derived from the flag words.
    1225             :   ///
    1226             :   /// Returns NULL if the static register class constraint cannot be
    1227             :   /// determined.
    1228             :   const TargetRegisterClass*
    1229             :   getRegClassConstraint(unsigned OpIdx,
    1230             :                         const TargetInstrInfo *TII,
    1231             :                         const TargetRegisterInfo *TRI) const;
    1232             : 
    1233             :   /// Applies the constraints (def/use) implied by this MI on \p Reg to
    1234             :   /// the given \p CurRC.
    1235             :   /// If \p ExploreBundle is set and MI is part of a bundle, all the
    1236             :   /// instructions inside the bundle will be taken into account. In other words,
    1237             :   /// this method accumulates all the constraints of the operand of this MI and
    1238             :   /// the related bundle if MI is a bundle or inside a bundle.
    1239             :   ///
    1240             :   /// Returns the register class that satisfies both \p CurRC and the
    1241             :   /// constraints set by MI. Returns NULL if such a register class does not
    1242             :   /// exist.
    1243             :   ///
    1244             :   /// \pre CurRC must not be NULL.
    1245             :   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
    1246             :       unsigned Reg, const TargetRegisterClass *CurRC,
    1247             :       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
    1248             :       bool ExploreBundle = false) const;
    1249             : 
    1250             :   /// Applies the constraints (def/use) implied by the \p OpIdx operand
    1251             :   /// to the given \p CurRC.
    1252             :   ///
    1253             :   /// Returns the register class that satisfies both \p CurRC and the
    1254             :   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
    1255             :   /// does not exist.
    1256             :   ///
    1257             :   /// \pre CurRC must not be NULL.
    1258             :   /// \pre The operand at \p OpIdx must be a register.
    1259             :   const TargetRegisterClass *
    1260             :   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
    1261             :                               const TargetInstrInfo *TII,
    1262             :                               const TargetRegisterInfo *TRI) const;
    1263             : 
    1264             :   /// Add a tie between the register operands at DefIdx and UseIdx.
    1265             :   /// The tie will cause the register allocator to ensure that the two
    1266             :   /// operands are assigned the same physical register.
    1267             :   ///
    1268             :   /// Tied operands are managed automatically for explicit operands in the
    1269             :   /// MCInstrDesc. This method is for exceptional cases like inline asm.
    1270             :   void tieOperands(unsigned DefIdx, unsigned UseIdx);
    1271             : 
    1272             :   /// Given the index of a tied register operand, find the
    1273             :   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
    1274             :   /// index of the tied operand which must exist.
    1275             :   unsigned findTiedOperandIdx(unsigned OpIdx) const;
    1276             : 
    1277             :   /// Given the index of a register def operand,
    1278             :   /// check if the register def is tied to a source operand, due to either
    1279             :   /// two-address elimination or inline assembly constraints. Returns the
    1280             :   /// first tied use operand index by reference if UseOpIdx is not null.
    1281     2347114 :   bool isRegTiedToUseOperand(unsigned DefOpIdx,
    1282             :                              unsigned *UseOpIdx = nullptr) const {
    1283     2347114 :     const MachineOperand &MO = getOperand(DefOpIdx);
    1284     2347114 :     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
    1285             :       return false;
    1286      200214 :     if (UseOpIdx)
    1287        9986 :       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
    1288             :     return true;
    1289             :   }
    1290             : 
    1291             :   /// Return true if the use operand of the specified index is tied to a def
    1292             :   /// operand. It also returns the def operand index by reference if DefOpIdx
    1293             :   /// is not null.
    1294   236164653 :   bool isRegTiedToDefOperand(unsigned UseOpIdx,
    1295             :                              unsigned *DefOpIdx = nullptr) const {
    1296   236164653 :     const MachineOperand &MO = getOperand(UseOpIdx);
    1297   236164653 :     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
    1298             :       return false;
    1299     3430923 :     if (DefOpIdx)
    1300     2335864 :       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
    1301             :     return true;
    1302             :   }
    1303             : 
    1304             :   /// Clears kill flags on all operands.
    1305             :   void clearKillInfo();
    1306             : 
    1307             :   /// Replace all occurrences of FromReg with ToReg:SubIdx,
    1308             :   /// properly composing subreg indices where necessary.
    1309             :   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
    1310             :                           const TargetRegisterInfo &RegInfo);
    1311             : 
    1312             :   /// We have determined MI kills a register. Look for the
    1313             :   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
    1314             :   /// add a implicit operand if it's not found. Returns true if the operand
    1315             :   /// exists / is added.
    1316             :   bool addRegisterKilled(unsigned IncomingReg,
    1317             :                          const TargetRegisterInfo *RegInfo,
    1318             :                          bool AddIfNotFound = false);
    1319             : 
    1320             :   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
    1321             :   /// all aliasing registers.
    1322             :   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
    1323             : 
    1324             :   /// We have determined MI defined a register without a use.
    1325             :   /// Look for the operand that defines it and mark it as IsDead. If
    1326             :   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
    1327             :   /// true if the operand exists / is added.
    1328             :   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
    1329             :                        bool AddIfNotFound = false);
    1330             : 
    1331             :   /// Clear all dead flags on operands defining register @p Reg.
    1332             :   void clearRegisterDeads(unsigned Reg);
    1333             : 
    1334             :   /// Mark all subregister defs of register @p Reg with the undef flag.
    1335             :   /// This function is used when we determined to have a subregister def in an
    1336             :   /// otherwise undefined super register.
    1337             :   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
    1338             : 
    1339             :   /// We have determined MI defines a register. Make sure there is an operand
    1340             :   /// defining Reg.
    1341             :   void addRegisterDefined(unsigned Reg,
    1342             :                           const TargetRegisterInfo *RegInfo = nullptr);
    1343             : 
    1344             :   /// Mark every physreg used by this instruction as
    1345             :   /// dead except those in the UsedRegs list.
    1346             :   ///
    1347             :   /// On instructions with register mask operands, also add implicit-def
    1348             :   /// operands for all registers in UsedRegs.
    1349             :   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
    1350             :                              const TargetRegisterInfo &TRI);
    1351             : 
    1352             :   /// Return true if it is safe to move this instruction. If
    1353             :   /// SawStore is set to true, it means that there is a store (or call) between
    1354             :   /// the instruction's location and its intended destination.
    1355             :   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
    1356             : 
    1357             :   /// Returns true if this instruction's memory access aliases the memory
    1358             :   /// access of Other.
    1359             :   //
    1360             :   /// Assumes any physical registers used to compute addresses
    1361             :   /// have the same value for both instructions.  Returns false if neither
    1362             :   /// instruction writes to memory.
    1363             :   ///
    1364             :   /// @param AA Optional alias analysis, used to compare memory operands.
    1365             :   /// @param Other MachineInstr to check aliasing against.
    1366             :   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
    1367             :   bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
    1368             : 
    1369             :   /// Return true if this instruction may have an ordered
    1370             :   /// or volatile memory reference, or if the information describing the memory
    1371             :   /// reference is not available. Return false if it is known to have no
    1372             :   /// ordered or volatile memory references.
    1373             :   bool hasOrderedMemoryRef() const;
    1374             : 
    1375             :   /// Return true if this load instruction never traps and points to a memory
    1376             :   /// location whose value doesn't change during the execution of this function.
    1377             :   ///
    1378             :   /// Examples include loading a value from the constant pool or from the
    1379             :   /// argument area of a function (if it does not change).  If the instruction
    1380             :   /// does multiple loads, this returns true only if all of the loads are
    1381             :   /// dereferenceable and invariant.
    1382             :   bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
    1383             : 
    1384             :   /// If the specified instruction is a PHI that always merges together the
    1385             :   /// same virtual register, return the register, otherwise return 0.
    1386             :   unsigned isConstantValuePHI() const;
    1387             : 
    1388             :   /// Return true if this instruction has side effects that are not modeled
    1389             :   /// by mayLoad / mayStore, etc.
    1390             :   /// For all instructions, the property is encoded in MCInstrDesc::Flags
    1391             :   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
    1392             :   /// INLINEASM instruction, in which case the side effect property is encoded
    1393             :   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
    1394             :   ///
    1395             :   bool hasUnmodeledSideEffects() const;
    1396             : 
    1397             :   /// Returns true if it is illegal to fold a load across this instruction.
    1398             :   bool isLoadFoldBarrier() const;
    1399             : 
    1400             :   /// Return true if all the defs of this instruction are dead.
    1401             :   bool allDefsAreDead() const;
    1402             : 
    1403             :   /// Copy implicit register operands from specified
    1404             :   /// instruction to this instruction.
    1405             :   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
    1406             : 
    1407             :   /// Debugging support
    1408             :   /// @{
    1409             :   /// Determine the generic type to be printed (if needed) on uses and defs.
    1410             :   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
    1411             :                      const MachineRegisterInfo &MRI) const;
    1412             : 
    1413             :   /// Return true when an instruction has tied register that can't be determined
    1414             :   /// by the instruction's descriptor. This is useful for MIR printing, to
    1415             :   /// determine whether we need to print the ties or not.
    1416             :   bool hasComplexRegisterTies() const;
    1417             : 
    1418             :   /// Print this MI to \p OS.
    1419             :   /// Don't print information that can be inferred from other instructions if
    1420             :   /// \p IsStandalone is false. It is usually true when only a fragment of the
    1421             :   /// function is printed.
    1422             :   /// Only print the defs and the opcode if \p SkipOpers is true.
    1423             :   /// Otherwise, also print operands if \p SkipDebugLoc is true.
    1424             :   /// Otherwise, also print the debug loc, with a terminating newline.
    1425             :   /// \p TII is used to print the opcode name.  If it's not present, but the
    1426             :   /// MI is in a function, the opcode will be printed using the function's TII.
    1427             :   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
    1428             :              bool SkipDebugLoc = false, bool AddNewLine = true,
    1429             :              const TargetInstrInfo *TII = nullptr) const;
    1430             :   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
    1431             :              bool SkipOpers = false, bool SkipDebugLoc = false,
    1432             :              bool AddNewLine = true,
    1433             :              const TargetInstrInfo *TII = nullptr) const;
    1434             :   void dump() const;
    1435             :   /// @}
    1436             : 
    1437             :   //===--------------------------------------------------------------------===//
    1438             :   // Accessors used to build up machine instructions.
    1439             : 
    1440             :   /// Add the specified operand to the instruction.  If it is an implicit
    1441             :   /// operand, it is added to the end of the operand list.  If it is an
    1442             :   /// explicit operand it is added at the end of the explicit operand list
    1443             :   /// (before the first implicit operand).
    1444             :   ///
    1445             :   /// MF must be the machine function that was used to allocate this
    1446             :   /// instruction.
    1447             :   ///
    1448             :   /// MachineInstrBuilder provides a more convenient interface for creating
    1449             :   /// instructions and adding operands.
    1450             :   void addOperand(MachineFunction &MF, const MachineOperand &Op);
    1451             : 
    1452             :   /// Add an operand without providing an MF reference. This only works for
    1453             :   /// instructions that are inserted in a basic block.
    1454             :   ///
    1455             :   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
    1456             :   /// preferred.
    1457             :   void addOperand(const MachineOperand &Op);
    1458             : 
    1459             :   /// Replace the instruction descriptor (thus opcode) of
    1460             :   /// the current instruction with a new one.
    1461     1587603 :   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
    1462             : 
    1463             :   /// Replace current source information with new such.
    1464             :   /// Avoid using this, the constructor argument is preferable.
    1465             :   void setDebugLoc(DebugLoc dl) {
    1466             :     debugLoc = std::move(dl);
    1467             :     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    1468             :   }
    1469             : 
    1470             :   /// Erase an operand from an instruction, leaving it with one
    1471             :   /// fewer operand than it started with.
    1472             :   void RemoveOperand(unsigned OpNo);
    1473             : 
    1474             :   /// Clear this MachineInstr's memory reference descriptor list.  This resets
    1475             :   /// the memrefs to their most conservative state.  This should be used only
    1476             :   /// as a last resort since it greatly pessimizes our knowledge of the memory
    1477             :   /// access performed by the instruction.
    1478             :   void dropMemRefs(MachineFunction &MF);
    1479             : 
    1480             :   /// Assign this MachineInstr's memory reference descriptor list.
    1481             :   ///
    1482             :   /// Unlike other methods, this *will* allocate them into a new array
    1483             :   /// associated with the provided `MachineFunction`.
    1484             :   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
    1485             : 
    1486             :   /// Add a MachineMemOperand to the machine instruction.
    1487             :   /// This function should be used only occasionally. The setMemRefs function
    1488             :   /// is the primary method for setting up a MachineInstr's MemRefs list.
    1489             :   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
    1490             : 
    1491             :   /// Clone another MachineInstr's memory reference descriptor list and replace
    1492             :   /// ours with it.
    1493             :   ///
    1494             :   /// Note that `*this` may be the incoming MI!
    1495             :   ///
    1496             :   /// Prefer this API whenever possible as it can avoid allocations in common
    1497             :   /// cases.
    1498             :   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
    1499             : 
    1500             :   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
    1501             :   /// list and replace ours with it.
    1502             :   ///
    1503             :   /// Note that `*this` may be one of the incoming MIs!
    1504             :   ///
    1505             :   /// Prefer this API whenever possible as it can avoid allocations in common
    1506             :   /// cases.
    1507             :   void cloneMergedMemRefs(MachineFunction &MF,
    1508             :                           ArrayRef<const MachineInstr *> MIs);
    1509             : 
    1510             :   /// Set a symbol that will be emitted just prior to the instruction itself.
    1511             :   ///
    1512             :   /// Setting this to a null pointer will remove any such symbol.
    1513             :   ///
    1514             :   /// FIXME: This is not fully implemented yet.
    1515             :   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
    1516             : 
    1517             :   /// Set a symbol that will be emitted just after the instruction itself.
    1518             :   ///
    1519             :   /// Setting this to a null pointer will remove any such symbol.
    1520             :   ///
    1521             :   /// FIXME: This is not fully implemented yet.
    1522             :   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
    1523             : 
    1524             :   /// Return the MIFlags which represent both MachineInstrs. This
    1525             :   /// should be used when merging two MachineInstrs into one. This routine does
    1526             :   /// not modify the MIFlags of this MachineInstr.
    1527             :   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
    1528             : 
    1529             :   /// Copy all flags to MachineInst MIFlags
    1530             :   void copyIRFlags(const Instruction &I);
    1531             : 
    1532             :   /// Break any tie involving OpIdx.
    1533      785888 :   void untieRegOperand(unsigned OpIdx) {
    1534      785888 :     MachineOperand &MO = getOperand(OpIdx);
    1535      785888 :     if (MO.isReg() && MO.isTied()) {
    1536       52063 :       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
    1537       52063 :       MO.TiedTo = 0;
    1538             :     }
    1539      785888 :   }
    1540             : 
    1541             :   /// Add all implicit def and use operands to this instruction.
    1542             :   void addImplicitDefUseOperands(MachineFunction &MF);
    1543             : 
    1544             :   /// Scan instructions following MI and collect any matching DBG_VALUEs.
    1545             :   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
    1546             : 
    1547             :   /// Find all DBG_VALUEs immediately following this instruction that point
    1548             :   /// to a register def in this instruction and point them to \p Reg instead.
    1549             :   void changeDebugValuesDefReg(unsigned Reg);
    1550             : 
    1551             : private:
    1552             :   /// If this instruction is embedded into a MachineFunction, return the
    1553             :   /// MachineRegisterInfo object for the current function, otherwise
    1554             :   /// return null.
    1555             :   MachineRegisterInfo *getRegInfo();
    1556             : 
    1557             :   /// Unlink all of the register operands in this instruction from their
    1558             :   /// respective use lists.  This requires that the operands already be on their
    1559             :   /// use lists.
    1560             :   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
    1561             : 
    1562             :   /// Add all of the register operands in this instruction from their
    1563             :   /// respective use lists.  This requires that the operands not be on their
    1564             :   /// use lists yet.
    1565             :   void AddRegOperandsToUseLists(MachineRegisterInfo&);
    1566             : 
    1567             :   /// Slow path for hasProperty when we're dealing with a bundle.
    1568             :   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
    1569             : 
    1570             :   /// Implements the logic of getRegClassConstraintEffectForVReg for the
    1571             :   /// this MI and the given operand index \p OpIdx.
    1572             :   /// If the related operand does not constrained Reg, this returns CurRC.
    1573             :   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
    1574             :       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
    1575             :       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
    1576             : };
    1577             : 
    1578             : /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
    1579             : /// instruction rather than by pointer value.
    1580             : /// The hashing and equality testing functions ignore definitions so this is
    1581             : /// useful for CSE, etc.
    1582             : struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
    1583             :   static inline MachineInstr *getEmptyKey() {
    1584             :     return nullptr;
    1585             :   }
    1586             : 
    1587             :   static inline MachineInstr *getTombstoneKey() {
    1588             :     return reinterpret_cast<MachineInstr*>(-1);
    1589             :   }
    1590             : 
    1591             :   static unsigned getHashValue(const MachineInstr* const &MI);
    1592             : 
    1593           0 :   static bool isEqual(const MachineInstr* const &LHS,
    1594             :                       const MachineInstr* const &RHS) {
    1595           0 :     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
    1596           0 :         LHS == getEmptyKey() || LHS == getTombstoneKey())
    1597           0 :       return LHS == RHS;
    1598           0 :     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
    1599             :   }
    1600             : };
    1601             : 
    1602             : //===----------------------------------------------------------------------===//
    1603             : // Debugging Support
    1604             : 
    1605             : inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
    1606           1 :   MI.print(OS);
    1607             :   return OS;
    1608             : }
    1609             : 
    1610             : } // end namespace llvm
    1611             : 
    1612             : #endif // LLVM_CODEGEN_MACHINEINSTR_H

Generated by: LCOV version 1.13