Line data Source code
1 : //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file describes the target machine instruction set to the code generator.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 : #define LLVM_TARGET_TARGETINSTRINFO_H
16 :
17 : #include "llvm/ADT/ArrayRef.h"
18 : #include "llvm/ADT/DenseMap.h"
19 : #include "llvm/ADT/DenseMapInfo.h"
20 : #include "llvm/ADT/None.h"
21 : #include "llvm/CodeGen/LiveRegUnits.h"
22 : #include "llvm/CodeGen/MachineBasicBlock.h"
23 : #include "llvm/CodeGen/MachineCombinerPattern.h"
24 : #include "llvm/CodeGen/MachineFunction.h"
25 : #include "llvm/CodeGen/MachineInstr.h"
26 : #include "llvm/CodeGen/MachineLoopInfo.h"
27 : #include "llvm/CodeGen/MachineOperand.h"
28 : #include "llvm/CodeGen/MachineOutliner.h"
29 : #include "llvm/CodeGen/PseudoSourceValue.h"
30 : #include "llvm/MC/MCInstrInfo.h"
31 : #include "llvm/Support/BranchProbability.h"
32 : #include "llvm/Support/ErrorHandling.h"
33 : #include <cassert>
34 : #include <cstddef>
35 : #include <cstdint>
36 : #include <utility>
37 : #include <vector>
38 :
39 : namespace llvm {
40 :
41 : class DFAPacketizer;
42 : class InstrItineraryData;
43 : class LiveIntervals;
44 : class LiveVariables;
45 : class MachineMemOperand;
46 : class MachineRegisterInfo;
47 : class MCAsmInfo;
48 : class MCInst;
49 : struct MCSchedModel;
50 : class Module;
51 : class ScheduleDAG;
52 : class ScheduleHazardRecognizer;
53 : class SDNode;
54 : class SelectionDAG;
55 : class RegScavenger;
56 : class TargetRegisterClass;
57 : class TargetRegisterInfo;
58 : class TargetSchedModel;
59 : class TargetSubtargetInfo;
60 :
61 : template <class T> class SmallVectorImpl;
62 :
63 : //---------------------------------------------------------------------------
64 : ///
65 : /// TargetInstrInfo - Interface to description of machine instruction set
66 : ///
67 : class TargetInstrInfo : public MCInstrInfo {
68 : public:
69 : TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
70 : unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
71 41322 : : CallFrameSetupOpcode(CFSetupOpcode),
72 : CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
73 41322 : ReturnOpcode(ReturnOpcode) {}
74 : TargetInstrInfo(const TargetInstrInfo &) = delete;
75 : TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
76 : virtual ~TargetInstrInfo();
77 :
78 : static bool isGenericOpcode(unsigned Opc) {
79 : return Opc <= TargetOpcode::GENERIC_OP_END;
80 : }
81 :
82 : /// Given a machine instruction descriptor, returns the register
83 : /// class constraint for OpNum, or NULL.
84 : const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
85 : const TargetRegisterInfo *TRI,
86 : const MachineFunction &MF) const;
87 :
88 : /// Return true if the instruction is trivially rematerializable, meaning it
89 : /// has no side effects and requires no operands that aren't always available.
90 : /// This means the only allowed uses are constants and unallocatable physical
91 : /// registers so that the instructions result is independent of the place
92 : /// in the function.
93 849882 : bool isTriviallyReMaterializable(const MachineInstr &MI,
94 : AliasAnalysis *AA = nullptr) const {
95 1699764 : return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
96 1344590 : (MI.getDesc().isRematerializable() &&
97 789684 : (isReallyTriviallyReMaterializable(MI, AA) ||
98 294556 : isReallyTriviallyReMaterializableGeneric(MI, AA)));
99 : }
100 :
101 : protected:
102 : /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
103 : /// set, this hook lets the target specify whether the instruction is actually
104 : /// trivially rematerializable, taking into consideration its operands. This
105 : /// predicate must return false if the instruction has any side effects other
106 : /// than producing a value, or if it requres any address registers that are
107 : /// not always available.
108 : /// Requirements must be check as stated in isTriviallyReMaterializable() .
109 38878 : virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
110 : AliasAnalysis *AA) const {
111 38878 : return false;
112 : }
113 :
114 : /// This method commutes the operands of the given machine instruction MI.
115 : /// The operands to be commuted are specified by their indices OpIdx1 and
116 : /// OpIdx2.
117 : ///
118 : /// If a target has any instructions that are commutable but require
119 : /// converting to different instructions or making non-trivial changes
120 : /// to commute them, this method can be overloaded to do that.
121 : /// The default implementation simply swaps the commutable operands.
122 : ///
123 : /// If NewMI is false, MI is modified in place and returned; otherwise, a
124 : /// new machine instruction is created and returned.
125 : ///
126 : /// Do not call this method for a non-commutable instruction.
127 : /// Even though the instruction is commutable, the method may still
128 : /// fail to commute the operands, null pointer is returned in such cases.
129 : virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
130 : unsigned OpIdx1,
131 : unsigned OpIdx2) const;
132 :
133 : /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
134 : /// operand indices to (ResultIdx1, ResultIdx2).
135 : /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
136 : /// predefined to some indices or be undefined (designated by the special
137 : /// value 'CommuteAnyOperandIndex').
138 : /// The predefined result indices cannot be re-defined.
139 : /// The function returns true iff after the result pair redefinition
140 : /// the fixed result pair is equal to or equivalent to the source pair of
141 : /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
142 : /// the pairs (x,y) and (y,x) are equivalent.
143 : static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
144 : unsigned CommutableOpIdx1,
145 : unsigned CommutableOpIdx2);
146 :
147 : private:
148 : /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
149 : /// set and the target hook isReallyTriviallyReMaterializable returns false,
150 : /// this function does target-independent tests to determine if the
151 : /// instruction is really trivially rematerializable.
152 : bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
153 : AliasAnalysis *AA) const;
154 :
155 : public:
156 : /// These methods return the opcode of the frame setup/destroy instructions
157 : /// if they exist (-1 otherwise). Some targets use pseudo instructions in
158 : /// order to abstract away the difference between operating with a frame
159 : /// pointer and operating without, through the use of these two instructions.
160 : ///
161 0 : unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
162 0 : unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
163 :
164 : /// Returns true if the argument is a frame pseudo instruction.
165 : bool isFrameInstr(const MachineInstr &I) const {
166 156546 : return I.getOpcode() == getCallFrameSetupOpcode() ||
167 66325 : I.getOpcode() == getCallFrameDestroyOpcode();
168 : }
169 :
170 : /// Returns true if the argument is a frame setup pseudo instruction.
171 : bool isFrameSetup(const MachineInstr &I) const {
172 4450794 : return I.getOpcode() == getCallFrameSetupOpcode();
173 : }
174 :
175 : /// Returns size of the frame associated with the given frame instruction.
176 : /// For frame setup instruction this is frame that is set up space set up
177 : /// after the instruction. For frame destroy instruction this is the frame
178 : /// freed by the caller.
179 : /// Note, in some cases a call frame (or a part of it) may be prepared prior
180 : /// to the frame setup instruction. It occurs in the calls that involve
181 : /// inalloca arguments. This function reports only the size of the frame part
182 : /// that is set up between the frame setup and destroy pseudo instructions.
183 0 : int64_t getFrameSize(const MachineInstr &I) const {
184 : assert(isFrameInstr(I) && "Not a frame instruction");
185 : assert(I.getOperand(0).getImm() >= 0);
186 187104 : return I.getOperand(0).getImm();
187 : }
188 :
189 : /// Returns the total frame size, which is made up of the space set up inside
190 : /// the pair of frame start-stop instructions and the space that is set up
191 : /// prior to the pair.
192 : int64_t getFrameTotalSize(const MachineInstr &I) const {
193 249080 : if (isFrameSetup(I)) {
194 : assert(I.getOperand(1).getImm() >= 0 &&
195 : "Frame size must not be negative");
196 124540 : return getFrameSize(I) + I.getOperand(1).getImm();
197 : }
198 : return getFrameSize(I);
199 : }
200 :
201 0 : unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
202 0 : unsigned getReturnOpcode() const { return ReturnOpcode; }
203 :
204 : /// Returns the actual stack pointer adjustment made by an instruction
205 : /// as part of a call sequence. By default, only call frame setup/destroy
206 : /// instructions adjust the stack, but targets may want to override this
207 : /// to enable more fine-grained adjustment, or adjust by a different value.
208 : virtual int getSPAdjust(const MachineInstr &MI) const;
209 :
210 : /// Return true if the instruction is a "coalescable" extension instruction.
211 : /// That is, it's like a copy where it's legal for the source to overlap the
212 : /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
213 : /// expected the pre-extension value is available as a subreg of the result
214 : /// register. This also returns the sub-register index in SubIdx.
215 1084092 : virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
216 : unsigned &DstReg, unsigned &SubIdx) const {
217 1084092 : return false;
218 : }
219 :
220 : /// If the specified machine instruction is a direct
221 : /// load from a stack slot, return the virtual or physical register number of
222 : /// the destination along with the FrameIndex of the loaded stack slot. If
223 : /// not, return 0. This predicate must return 0 if the instruction has
224 : /// any side effects other than loading from the stack slot.
225 1706 : virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
226 : int &FrameIndex) const {
227 1706 : return 0;
228 : }
229 :
230 : /// Optional extension of isLoadFromStackSlot that returns the number of
231 : /// bytes loaded from the stack. This must be implemented if a backend
232 : /// supports partial stack slot spills/loads to further disambiguate
233 : /// what the load does.
234 14851 : virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
235 : int &FrameIndex,
236 : unsigned &MemBytes) const {
237 14851 : MemBytes = 0;
238 14851 : return isLoadFromStackSlot(MI, FrameIndex);
239 : }
240 :
241 : /// Check for post-frame ptr elimination stack locations as well.
242 : /// This uses a heuristic so it isn't reliable for correctness.
243 827370 : virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
244 : int &FrameIndex) const {
245 827370 : return 0;
246 : }
247 :
248 : /// If the specified machine instruction has a load from a stack slot,
249 : /// return true along with the FrameIndices of the loaded stack slot and the
250 : /// machine mem operands containing the reference.
251 : /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
252 : /// any instructions that loads from the stack. This is just a hint, as some
253 : /// cases may be missed.
254 : virtual bool hasLoadFromStackSlot(
255 : const MachineInstr &MI,
256 : SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
257 :
258 : /// If the specified machine instruction is a direct
259 : /// store to a stack slot, return the virtual or physical register number of
260 : /// the source reg along with the FrameIndex of the loaded stack slot. If
261 : /// not, return 0. This predicate must return 0 if the instruction has
262 : /// any side effects other than storing to the stack slot.
263 1030 : virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
264 : int &FrameIndex) const {
265 1030 : return 0;
266 : }
267 :
268 : /// Optional extension of isStoreToStackSlot that returns the number of
269 : /// bytes stored to the stack. This must be implemented if a backend
270 : /// supports partial stack slot spills/loads to further disambiguate
271 : /// what the store does.
272 1267 : virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
273 : int &FrameIndex,
274 : unsigned &MemBytes) const {
275 1267 : MemBytes = 0;
276 1267 : return isStoreToStackSlot(MI, FrameIndex);
277 : }
278 :
279 : /// Check for post-frame ptr elimination stack locations as well.
280 : /// This uses a heuristic, so it isn't reliable for correctness.
281 806836 : virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
282 : int &FrameIndex) const {
283 806836 : return 0;
284 : }
285 :
286 : /// If the specified machine instruction has a store to a stack slot,
287 : /// return true along with the FrameIndices of the loaded stack slot and the
288 : /// machine mem operands containing the reference.
289 : /// If not, return false. Unlike isStoreToStackSlot,
290 : /// this returns true for any instructions that stores to the
291 : /// stack. This is just a hint, as some cases may be missed.
292 : virtual bool hasStoreToStackSlot(
293 : const MachineInstr &MI,
294 : SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
295 :
296 : /// Return true if the specified machine instruction
297 : /// is a copy of one stack slot to another and has no other effect.
298 : /// Provide the identity of the two frame indices.
299 719224 : virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
300 : int &SrcFrameIndex) const {
301 719224 : return false;
302 : }
303 :
304 : /// Compute the size in bytes and offset within a stack slot of a spilled
305 : /// register or subregister.
306 : ///
307 : /// \param [out] Size in bytes of the spilled value.
308 : /// \param [out] Offset in bytes within the stack slot.
309 : /// \returns true if both Size and Offset are successfully computed.
310 : ///
311 : /// Not all subregisters have computable spill slots. For example,
312 : /// subregisters registers may not be byte-sized, and a pair of discontiguous
313 : /// subregisters has no single offset.
314 : ///
315 : /// Targets with nontrivial bigendian implementations may need to override
316 : /// this, particularly to support spilled vector registers.
317 : virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
318 : unsigned &Size, unsigned &Offset,
319 : const MachineFunction &MF) const;
320 :
321 : /// Returns the size in bytes of the specified MachineInstr, or ~0U
322 : /// when this function is not implemented by a target.
323 0 : virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
324 0 : return ~0U;
325 : }
326 :
327 : /// Return true if the instruction is as cheap as a move instruction.
328 : ///
329 : /// Targets for different archs need to override this, and different
330 : /// micro-architectures can also be finely tuned inside.
331 574760 : virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
332 574760 : return MI.isAsCheapAsAMove();
333 : }
334 :
335 : /// Return true if the instruction should be sunk by MachineSink.
336 : ///
337 : /// MachineSink determines on its own whether the instruction is safe to sink;
338 : /// this gives the target a hook to override the default behavior with regards
339 : /// to which instructions should be sunk.
340 3644791 : virtual bool shouldSink(const MachineInstr &MI) const { return true; }
341 :
342 : /// Re-issue the specified 'original' instruction at the
343 : /// specific location targeting a new destination register.
344 : /// The register in Orig->getOperand(0).getReg() will be substituted by
345 : /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
346 : /// SubIdx.
347 : virtual void reMaterialize(MachineBasicBlock &MBB,
348 : MachineBasicBlock::iterator MI, unsigned DestReg,
349 : unsigned SubIdx, const MachineInstr &Orig,
350 : const TargetRegisterInfo &TRI) const;
351 :
352 : /// Clones instruction or the whole instruction bundle \p Orig and
353 : /// insert into \p MBB before \p InsertBefore. The target may update operands
354 : /// that are required to be unique.
355 : ///
356 : /// \p Orig must not return true for MachineInstr::isNotDuplicable().
357 : virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
358 : MachineBasicBlock::iterator InsertBefore,
359 : const MachineInstr &Orig) const;
360 :
361 : /// This method must be implemented by targets that
362 : /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
363 : /// may be able to convert a two-address instruction into one or more true
364 : /// three-address instructions on demand. This allows the X86 target (for
365 : /// example) to convert ADD and SHL instructions into LEA instructions if they
366 : /// would require register copies due to two-addressness.
367 : ///
368 : /// This method returns a null pointer if the transformation cannot be
369 : /// performed, otherwise it returns the last new instruction.
370 : ///
371 0 : virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
372 : MachineInstr &MI,
373 : LiveVariables *LV) const {
374 0 : return nullptr;
375 : }
376 :
377 : // This constant can be used as an input value of operand index passed to
378 : // the method findCommutedOpIndices() to tell the method that the
379 : // corresponding operand index is not pre-defined and that the method
380 : // can pick any commutable operand.
381 : static const unsigned CommuteAnyOperandIndex = ~0U;
382 :
383 : /// This method commutes the operands of the given machine instruction MI.
384 : ///
385 : /// The operands to be commuted are specified by their indices OpIdx1 and
386 : /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
387 : /// 'CommuteAnyOperandIndex', which means that the method is free to choose
388 : /// any arbitrarily chosen commutable operand. If both arguments are set to
389 : /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
390 : /// operands; then commutes them if such operands could be found.
391 : ///
392 : /// If NewMI is false, MI is modified in place and returned; otherwise, a
393 : /// new machine instruction is created and returned.
394 : ///
395 : /// Do not call this method for a non-commutable instruction or
396 : /// for non-commuable operands.
397 : /// Even though the instruction is commutable, the method may still
398 : /// fail to commute the operands, null pointer is returned in such cases.
399 : MachineInstr *
400 : commuteInstruction(MachineInstr &MI, bool NewMI = false,
401 : unsigned OpIdx1 = CommuteAnyOperandIndex,
402 : unsigned OpIdx2 = CommuteAnyOperandIndex) const;
403 :
404 : /// Returns true iff the routine could find two commutable operands in the
405 : /// given machine instruction.
406 : /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
407 : /// If any of the INPUT values is set to the special value
408 : /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
409 : /// operand, then returns its index in the corresponding argument.
410 : /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
411 : /// looks for 2 commutable operands.
412 : /// If INPUT values refer to some operands of MI, then the method simply
413 : /// returns true if the corresponding operands are commutable and returns
414 : /// false otherwise.
415 : ///
416 : /// For example, calling this method this way:
417 : /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
418 : /// findCommutedOpIndices(MI, Op1, Op2);
419 : /// can be interpreted as a query asking to find an operand that would be
420 : /// commutable with the operand#1.
421 : virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
422 : unsigned &SrcOpIdx2) const;
423 :
424 : /// A pair composed of a register and a sub-register index.
425 : /// Used to give some type checking when modeling Reg:SubReg.
426 : struct RegSubRegPair {
427 : unsigned Reg;
428 : unsigned SubReg;
429 :
430 : RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
431 2968070 : : Reg(Reg), SubReg(SubReg) {}
432 : };
433 :
434 : /// A pair composed of a pair of a register and a sub-register index,
435 : /// and another sub-register index.
436 : /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
437 : struct RegSubRegPairAndIdx : RegSubRegPair {
438 : unsigned SubIdx;
439 :
440 : RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
441 : unsigned SubIdx = 0)
442 736981 : : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
443 : };
444 :
445 : /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
446 : /// and \p DefIdx.
447 : /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
448 : /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
449 : /// flag are not added to this list.
450 : /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
451 : /// two elements:
452 : /// - %1:sub1, sub0
453 : /// - %2<:0>, sub1
454 : ///
455 : /// \returns true if it is possible to build such an input sequence
456 : /// with the pair \p MI, \p DefIdx. False otherwise.
457 : ///
458 : /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
459 : ///
460 : /// \note The generic implementation does not provide any support for
461 : /// MI.isRegSequenceLike(). In other words, one has to override
462 : /// getRegSequenceLikeInputs for target specific instructions.
463 : bool
464 : getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
465 : SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
466 :
467 : /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
468 : /// and \p DefIdx.
469 : /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
470 : /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
471 : /// - %1:sub1, sub0
472 : ///
473 : /// \returns true if it is possible to build such an input sequence
474 : /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
475 : /// False otherwise.
476 : ///
477 : /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
478 : ///
479 : /// \note The generic implementation does not provide any support for
480 : /// MI.isExtractSubregLike(). In other words, one has to override
481 : /// getExtractSubregLikeInputs for target specific instructions.
482 : bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
483 : RegSubRegPairAndIdx &InputReg) const;
484 :
485 : /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
486 : /// and \p DefIdx.
487 : /// \p [out] BaseReg and \p [out] InsertedReg contain
488 : /// the equivalent inputs of INSERT_SUBREG.
489 : /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
490 : /// - BaseReg: %0:sub0
491 : /// - InsertedReg: %1:sub1, sub3
492 : ///
493 : /// \returns true if it is possible to build such an input sequence
494 : /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
495 : /// False otherwise.
496 : ///
497 : /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
498 : ///
499 : /// \note The generic implementation does not provide any support for
500 : /// MI.isInsertSubregLike(). In other words, one has to override
501 : /// getInsertSubregLikeInputs for target specific instructions.
502 : bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
503 : RegSubRegPair &BaseReg,
504 : RegSubRegPairAndIdx &InsertedReg) const;
505 :
506 : /// Return true if two machine instructions would produce identical values.
507 : /// By default, this is only true when the two instructions
508 : /// are deemed identical except for defs. If this function is called when the
509 : /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
510 : /// aggressive checks.
511 : virtual bool produceSameValue(const MachineInstr &MI0,
512 : const MachineInstr &MI1,
513 : const MachineRegisterInfo *MRI = nullptr) const;
514 :
515 : /// \returns true if a branch from an instruction with opcode \p BranchOpc
516 : /// bytes is capable of jumping to a position \p BrOffset bytes away.
517 0 : virtual bool isBranchOffsetInRange(unsigned BranchOpc,
518 : int64_t BrOffset) const {
519 0 : llvm_unreachable("target did not implement");
520 : }
521 :
522 : /// \returns The block that branch instruction \p MI jumps to.
523 0 : virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
524 0 : llvm_unreachable("target did not implement");
525 : }
526 :
527 : /// Insert an unconditional indirect branch at the end of \p MBB to \p
528 : /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to
529 : /// the offset of the position to insert the new branch.
530 : ///
531 : /// \returns The number of bytes added to the block.
532 0 : virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
533 : MachineBasicBlock &NewDestBB,
534 : const DebugLoc &DL,
535 : int64_t BrOffset = 0,
536 : RegScavenger *RS = nullptr) const {
537 0 : llvm_unreachable("target did not implement");
538 : }
539 :
540 : /// Analyze the branching code at the end of MBB, returning
541 : /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
542 : /// implemented for a target). Upon success, this returns false and returns
543 : /// with the following information in various cases:
544 : ///
545 : /// 1. If this block ends with no branches (it just falls through to its succ)
546 : /// just return false, leaving TBB/FBB null.
547 : /// 2. If this block ends with only an unconditional branch, it sets TBB to be
548 : /// the destination block.
549 : /// 3. If this block ends with a conditional branch and it falls through to a
550 : /// successor block, it sets TBB to be the branch destination block and a
551 : /// list of operands that evaluate the condition. These operands can be
552 : /// passed to other TargetInstrInfo methods to create new branches.
553 : /// 4. If this block ends with a conditional branch followed by an
554 : /// unconditional branch, it returns the 'true' destination in TBB, the
555 : /// 'false' destination in FBB, and a list of operands that evaluate the
556 : /// condition. These operands can be passed to other TargetInstrInfo
557 : /// methods to create new branches.
558 : ///
559 : /// Note that removeBranch and insertBranch must be implemented to support
560 : /// cases where this method returns success.
561 : ///
562 : /// If AllowModify is true, then this routine is allowed to modify the basic
563 : /// block (e.g. delete instructions after the unconditional branch).
564 : ///
565 : /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
566 : /// before calling this function.
567 0 : virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
568 : MachineBasicBlock *&FBB,
569 : SmallVectorImpl<MachineOperand> &Cond,
570 : bool AllowModify = false) const {
571 0 : return true;
572 : }
573 :
574 : /// Represents a predicate at the MachineFunction level. The control flow a
575 : /// MachineBranchPredicate represents is:
576 : ///
577 : /// Reg = LHS `Predicate` RHS == ConditionDef
578 : /// if Reg then goto TrueDest else goto FalseDest
579 : ///
580 : struct MachineBranchPredicate {
581 : enum ComparePredicate {
582 : PRED_EQ, // True if two values are equal
583 : PRED_NE, // True if two values are not equal
584 : PRED_INVALID // Sentinel value
585 : };
586 :
587 : ComparePredicate Predicate = PRED_INVALID;
588 : MachineOperand LHS = MachineOperand::CreateImm(0);
589 : MachineOperand RHS = MachineOperand::CreateImm(0);
590 : MachineBasicBlock *TrueDest = nullptr;
591 : MachineBasicBlock *FalseDest = nullptr;
592 : MachineInstr *ConditionDef = nullptr;
593 :
594 : /// SingleUseCondition is true if ConditionDef is dead except for the
595 : /// branch(es) at the end of the basic block.
596 : ///
597 : bool SingleUseCondition = false;
598 :
599 122 : explicit MachineBranchPredicate() = default;
600 : };
601 :
602 : /// Analyze the branching code at the end of MBB and parse it into the
603 : /// MachineBranchPredicate structure if possible. Returns false on success
604 : /// and true on failure.
605 : ///
606 : /// If AllowModify is true, then this routine is allowed to modify the basic
607 : /// block (e.g. delete instructions after the unconditional branch).
608 : ///
609 0 : virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
610 : MachineBranchPredicate &MBP,
611 : bool AllowModify = false) const {
612 0 : return true;
613 : }
614 :
615 : /// Remove the branching code at the end of the specific MBB.
616 : /// This is only invoked in cases where AnalyzeBranch returns success. It
617 : /// returns the number of instructions that were removed.
618 : /// If \p BytesRemoved is non-null, report the change in code size from the
619 : /// removed instructions.
620 0 : virtual unsigned removeBranch(MachineBasicBlock &MBB,
621 : int *BytesRemoved = nullptr) const {
622 0 : llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
623 : }
624 :
625 : /// Insert branch code into the end of the specified MachineBasicBlock. The
626 : /// operands to this method are the same as those returned by AnalyzeBranch.
627 : /// This is only invoked in cases where AnalyzeBranch returns success. It
628 : /// returns the number of instructions inserted. If \p BytesAdded is non-null,
629 : /// report the change in code size from the added instructions.
630 : ///
631 : /// It is also invoked by tail merging to add unconditional branches in
632 : /// cases where AnalyzeBranch doesn't apply because there was no original
633 : /// branch to analyze. At least this much must be implemented, else tail
634 : /// merging needs to be disabled.
635 : ///
636 : /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
637 : /// before calling this function.
638 0 : virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
639 : MachineBasicBlock *FBB,
640 : ArrayRef<MachineOperand> Cond,
641 : const DebugLoc &DL,
642 : int *BytesAdded = nullptr) const {
643 0 : llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
644 : }
645 :
646 : unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
647 : MachineBasicBlock *DestBB,
648 : const DebugLoc &DL,
649 : int *BytesAdded = nullptr) const {
650 1 : return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
651 1 : BytesAdded);
652 : }
653 :
654 : /// Analyze the loop code, return true if it cannot be understoo. Upon
655 : /// success, this function returns false and returns information about the
656 : /// induction variable and compare instruction used at the end.
657 0 : virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
658 : MachineInstr *&CmpInst) const {
659 0 : return true;
660 : }
661 :
662 : /// Generate code to reduce the loop iteration by one and check if the loop
663 : /// is finished. Return the value/register of the new loop count. We need
664 : /// this function when peeling off one or more iterations of a loop. This
665 : /// function assumes the nth iteration is peeled first.
666 0 : virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
667 : MachineInstr &Cmp,
668 : SmallVectorImpl<MachineOperand> &Cond,
669 : SmallVectorImpl<MachineInstr *> &PrevInsts,
670 : unsigned Iter, unsigned MaxIter) const {
671 0 : llvm_unreachable("Target didn't implement ReduceLoopCount");
672 : }
673 :
674 : /// Delete the instruction OldInst and everything after it, replacing it with
675 : /// an unconditional branch to NewDest. This is used by the tail merging pass.
676 : virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
677 : MachineBasicBlock *NewDest) const;
678 :
679 : /// Return true if it's legal to split the given basic
680 : /// block at the specified instruction (i.e. instruction would be the start
681 : /// of a new basic block).
682 7773 : virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
683 : MachineBasicBlock::iterator MBBI) const {
684 7773 : return true;
685 : }
686 :
687 : /// Return true if it's profitable to predicate
688 : /// instructions with accumulated instruction latency of "NumCycles"
689 : /// of the specified basic block, where the probability of the instructions
690 : /// being executed is given by Probability, and Confidence is a measure
691 : /// of our confidence that it will be properly predicted.
692 0 : virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
693 : unsigned ExtraPredCycles,
694 : BranchProbability Probability) const {
695 0 : return false;
696 : }
697 :
698 : /// Second variant of isProfitableToIfCvt. This one
699 : /// checks for the case where two basic blocks from true and false path
700 : /// of a if-then-else (diamond) are predicated on mutally exclusive
701 : /// predicates, where the probability of the true path being taken is given
702 : /// by Probability, and Confidence is a measure of our confidence that it
703 : /// will be properly predicted.
704 0 : virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
705 : unsigned ExtraTCycles,
706 : MachineBasicBlock &FMBB, unsigned NumFCycles,
707 : unsigned ExtraFCycles,
708 : BranchProbability Probability) const {
709 0 : return false;
710 : }
711 :
712 : /// Return true if it's profitable for if-converter to duplicate instructions
713 : /// of specified accumulated instruction latencies in the specified MBB to
714 : /// enable if-conversion.
715 : /// The probability of the instructions being executed is given by
716 : /// Probability, and Confidence is a measure of our confidence that it
717 : /// will be properly predicted.
718 0 : virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
719 : unsigned NumCycles,
720 : BranchProbability Probability) const {
721 0 : return false;
722 : }
723 :
724 : /// Return true if it's profitable to unpredicate
725 : /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
726 : /// exclusive predicates.
727 : /// e.g.
728 : /// subeq r0, r1, #1
729 : /// addne r0, r1, #1
730 : /// =>
731 : /// sub r0, r1, #1
732 : /// addne r0, r1, #1
733 : ///
734 : /// This may be profitable is conditional instructions are always executed.
735 16 : virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
736 : MachineBasicBlock &FMBB) const {
737 16 : return false;
738 : }
739 :
740 : /// Return true if it is possible to insert a select
741 : /// instruction that chooses between TrueReg and FalseReg based on the
742 : /// condition code in Cond.
743 : ///
744 : /// When successful, also return the latency in cycles from TrueReg,
745 : /// FalseReg, and Cond to the destination register. In most cases, a select
746 : /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
747 : ///
748 : /// Some x86 implementations have 2-cycle cmov instructions.
749 : ///
750 : /// @param MBB Block where select instruction would be inserted.
751 : /// @param Cond Condition returned by AnalyzeBranch.
752 : /// @param TrueReg Virtual register to select when Cond is true.
753 : /// @param FalseReg Virtual register to select when Cond is false.
754 : /// @param CondCycles Latency from Cond+Branch to select output.
755 : /// @param TrueCycles Latency from TrueReg to select output.
756 : /// @param FalseCycles Latency from FalseReg to select output.
757 0 : virtual bool canInsertSelect(const MachineBasicBlock &MBB,
758 : ArrayRef<MachineOperand> Cond, unsigned TrueReg,
759 : unsigned FalseReg, int &CondCycles,
760 : int &TrueCycles, int &FalseCycles) const {
761 0 : return false;
762 : }
763 :
764 : /// Insert a select instruction into MBB before I that will copy TrueReg to
765 : /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
766 : ///
767 : /// This function can only be called after canInsertSelect() returned true.
768 : /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
769 : /// that the same flags or registers required by Cond are available at the
770 : /// insertion point.
771 : ///
772 : /// @param MBB Block where select instruction should be inserted.
773 : /// @param I Insertion point.
774 : /// @param DL Source location for debugging.
775 : /// @param DstReg Virtual register to be defined by select instruction.
776 : /// @param Cond Condition as computed by AnalyzeBranch.
777 : /// @param TrueReg Virtual register to copy when Cond is true.
778 : /// @param FalseReg Virtual register to copy when Cons is false.
779 0 : virtual void insertSelect(MachineBasicBlock &MBB,
780 : MachineBasicBlock::iterator I, const DebugLoc &DL,
781 : unsigned DstReg, ArrayRef<MachineOperand> Cond,
782 : unsigned TrueReg, unsigned FalseReg) const {
783 0 : llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
784 : }
785 :
786 : /// Analyze the given select instruction, returning true if
787 : /// it cannot be understood. It is assumed that MI->isSelect() is true.
788 : ///
789 : /// When successful, return the controlling condition and the operands that
790 : /// determine the true and false result values.
791 : ///
792 : /// Result = SELECT Cond, TrueOp, FalseOp
793 : ///
794 : /// Some targets can optimize select instructions, for example by predicating
795 : /// the instruction defining one of the operands. Such targets should set
796 : /// Optimizable.
797 : ///
798 : /// @param MI Select instruction to analyze.
799 : /// @param Cond Condition controlling the select.
800 : /// @param TrueOp Operand number of the value selected when Cond is true.
801 : /// @param FalseOp Operand number of the value selected when Cond is false.
802 : /// @param Optimizable Returned as true if MI is optimizable.
803 : /// @returns False on success.
804 407 : virtual bool analyzeSelect(const MachineInstr &MI,
805 : SmallVectorImpl<MachineOperand> &Cond,
806 : unsigned &TrueOp, unsigned &FalseOp,
807 : bool &Optimizable) const {
808 : assert(MI.getDesc().isSelect() && "MI must be a select instruction");
809 407 : return true;
810 : }
811 :
812 : /// Given a select instruction that was understood by
813 : /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
814 : /// merging it with one of its operands. Returns NULL on failure.
815 : ///
816 : /// When successful, returns the new select instruction. The client is
817 : /// responsible for deleting MI.
818 : ///
819 : /// If both sides of the select can be optimized, PreferFalse is used to pick
820 : /// a side.
821 : ///
822 : /// @param MI Optimizable select instruction.
823 : /// @param NewMIs Set that record all MIs in the basic block up to \p
824 : /// MI. Has to be updated with any newly created MI or deleted ones.
825 : /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
826 : /// @returns Optimized instruction or NULL.
827 0 : virtual MachineInstr *optimizeSelect(MachineInstr &MI,
828 : SmallPtrSetImpl<MachineInstr *> &NewMIs,
829 : bool PreferFalse = false) const {
830 : // This function must be implemented if Optimizable is ever set.
831 0 : llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
832 : }
833 :
834 : /// Emit instructions to copy a pair of physical registers.
835 : ///
836 : /// This function should support copies within any legal register class as
837 : /// well as any cross-class copies created during instruction selection.
838 : ///
839 : /// The source and destination registers may overlap, which may require a
840 : /// careful implementation when multiple copy instructions are required for
841 : /// large registers. See for example the ARM target.
842 0 : virtual void copyPhysReg(MachineBasicBlock &MBB,
843 : MachineBasicBlock::iterator MI, const DebugLoc &DL,
844 : unsigned DestReg, unsigned SrcReg,
845 : bool KillSrc) const {
846 0 : llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
847 : }
848 :
849 : protected:
850 : /// Target-dependent implemenation for IsCopyInstr.
851 : /// If the specific machine instruction is a instruction that moves/copies
852 : /// value from one register to another register return true along with
853 : /// @Source machine operand and @Destination machine operand.
854 341 : virtual bool isCopyInstrImpl(const MachineInstr &MI,
855 : const MachineOperand *&Source,
856 : const MachineOperand *&Destination) const {
857 341 : return false;
858 : }
859 :
860 : public:
861 : /// If the specific machine instruction is a instruction that moves/copies
862 : /// value from one register to another register return true along with
863 : /// @Source machine operand and @Destination machine operand.
864 : /// For COPY-instruction the method naturally returns true, for all other
865 : /// instructions the method calls target-dependent implementation.
866 : bool isCopyInstr(const MachineInstr &MI, const MachineOperand *&Source,
867 : const MachineOperand *&Destination) const {
868 410030 : if (MI.isCopy()) {
869 0 : Destination = &MI.getOperand(0);
870 0 : Source = &MI.getOperand(1);
871 : return true;
872 : }
873 410030 : return isCopyInstrImpl(MI, Source, Destination);
874 : }
875 :
876 : /// Store the specified register of the given register class to the specified
877 : /// stack frame index. The store instruction is to be added to the given
878 : /// machine basic block before the specified machine instruction. If isKill
879 : /// is true, the register operand is the last use and must be marked kill.
880 0 : virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
881 : MachineBasicBlock::iterator MI,
882 : unsigned SrcReg, bool isKill, int FrameIndex,
883 : const TargetRegisterClass *RC,
884 : const TargetRegisterInfo *TRI) const {
885 0 : llvm_unreachable("Target didn't implement "
886 : "TargetInstrInfo::storeRegToStackSlot!");
887 : }
888 :
889 : /// Load the specified register of the given register class from the specified
890 : /// stack frame index. The load instruction is to be added to the given
891 : /// machine basic block before the specified machine instruction.
892 0 : virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
893 : MachineBasicBlock::iterator MI,
894 : unsigned DestReg, int FrameIndex,
895 : const TargetRegisterClass *RC,
896 : const TargetRegisterInfo *TRI) const {
897 0 : llvm_unreachable("Target didn't implement "
898 : "TargetInstrInfo::loadRegFromStackSlot!");
899 : }
900 :
901 : /// This function is called for all pseudo instructions
902 : /// that remain after register allocation. Many pseudo instructions are
903 : /// created to help register allocation. This is the place to convert them
904 : /// into real instructions. The target can edit MI in place, or it can insert
905 : /// new instructions and erase MI. The function should return true if
906 : /// anything was changed.
907 6791 : virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
908 :
909 : /// Check whether the target can fold a load that feeds a subreg operand
910 : /// (or a subreg operand that feeds a store).
911 : /// For example, X86 may want to return true if it can fold
912 : /// movl (%esp), %eax
913 : /// subb, %al, ...
914 : /// Into:
915 : /// subb (%esp), ...
916 : ///
917 : /// Ideally, we'd like the target implementation of foldMemoryOperand() to
918 : /// reject subregs - but since this behavior used to be enforced in the
919 : /// target-independent code, moving this responsibility to the targets
920 : /// has the potential of causing nasty silent breakage in out-of-tree targets.
921 6870 : virtual bool isSubregFoldable() const { return false; }
922 :
923 : /// Attempt to fold a load or store of the specified stack
924 : /// slot into the specified machine instruction for the specified operand(s).
925 : /// If this is possible, a new instruction is returned with the specified
926 : /// operand folded, otherwise NULL is returned.
927 : /// The new instruction is inserted before MI, and the client is responsible
928 : /// for removing the old instruction.
929 : MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
930 : int FI,
931 : LiveIntervals *LIS = nullptr) const;
932 :
933 : /// Same as the previous version except it allows folding of any load and
934 : /// store from / to any address, not just from a specific stack slot.
935 : MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
936 : MachineInstr &LoadMI,
937 : LiveIntervals *LIS = nullptr) const;
938 :
939 : /// Return true when there is potentially a faster code sequence
940 : /// for an instruction chain ending in \p Root. All potential patterns are
941 : /// returned in the \p Pattern vector. Pattern should be sorted in priority
942 : /// order since the pattern evaluator stops checking as soon as it finds a
943 : /// faster sequence.
944 : /// \param Root - Instruction that could be combined with one of its operands
945 : /// \param Patterns - Vector of possible combination patterns
946 : virtual bool getMachineCombinerPatterns(
947 : MachineInstr &Root,
948 : SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
949 :
950 : /// Return true when a code sequence can improve throughput. It
951 : /// should be called only for instructions in loops.
952 : /// \param Pattern - combiner pattern
953 : virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
954 :
955 : /// Return true if the input \P Inst is part of a chain of dependent ops
956 : /// that are suitable for reassociation, otherwise return false.
957 : /// If the instruction's operands must be commuted to have a previous
958 : /// instruction of the same type define the first source operand, \P Commuted
959 : /// will be set to true.
960 : bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
961 :
962 : /// Return true when \P Inst is both associative and commutative.
963 0 : virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
964 0 : return false;
965 : }
966 :
967 : /// Return true when \P Inst has reassociable operands in the same \P MBB.
968 : virtual bool hasReassociableOperands(const MachineInstr &Inst,
969 : const MachineBasicBlock *MBB) const;
970 :
971 : /// Return true when \P Inst has reassociable sibling.
972 : bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
973 :
974 : /// When getMachineCombinerPatterns() finds patterns, this function generates
975 : /// the instructions that could replace the original code sequence. The client
976 : /// has to decide whether the actual replacement is beneficial or not.
977 : /// \param Root - Instruction that could be combined with one of its operands
978 : /// \param Pattern - Combination pattern for Root
979 : /// \param InsInstrs - Vector of new instructions that implement P
980 : /// \param DelInstrs - Old instructions, including Root, that could be
981 : /// replaced by InsInstr
982 : /// \param InstIdxForVirtReg - map of virtual register to instruction in
983 : /// InsInstr that defines it
984 : virtual void genAlternativeCodeSequence(
985 : MachineInstr &Root, MachineCombinerPattern Pattern,
986 : SmallVectorImpl<MachineInstr *> &InsInstrs,
987 : SmallVectorImpl<MachineInstr *> &DelInstrs,
988 : DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
989 :
990 : /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
991 : /// reduce critical path length.
992 : void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
993 : MachineCombinerPattern Pattern,
994 : SmallVectorImpl<MachineInstr *> &InsInstrs,
995 : SmallVectorImpl<MachineInstr *> &DelInstrs,
996 : DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
997 :
998 : /// This is an architecture-specific helper function of reassociateOps.
999 : /// Set special operand attributes for new instructions after reassociation.
1000 270 : virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1001 : MachineInstr &NewMI1,
1002 270 : MachineInstr &NewMI2) const {}
1003 :
1004 : /// Return true when a target supports MachineCombiner.
1005 0 : virtual bool useMachineCombiner() const { return false; }
1006 :
1007 : /// Return true if the given SDNode can be copied during scheduling
1008 : /// even if it has glue.
1009 46 : virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1010 :
1011 : protected:
1012 : /// Target-dependent implementation for foldMemoryOperand.
1013 : /// Target-independent code in foldMemoryOperand will
1014 : /// take care of adding a MachineMemOperand to the newly created instruction.
1015 : /// The instruction and any auxiliary instructions necessary will be inserted
1016 : /// at InsertPt.
1017 : virtual MachineInstr *
1018 5698 : foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1019 : ArrayRef<unsigned> Ops,
1020 : MachineBasicBlock::iterator InsertPt, int FrameIndex,
1021 : LiveIntervals *LIS = nullptr) const {
1022 5698 : return nullptr;
1023 : }
1024 :
1025 : /// Target-dependent implementation for foldMemoryOperand.
1026 : /// Target-independent code in foldMemoryOperand will
1027 : /// take care of adding a MachineMemOperand to the newly created instruction.
1028 : /// The instruction and any auxiliary instructions necessary will be inserted
1029 : /// at InsertPt.
1030 40 : virtual MachineInstr *foldMemoryOperandImpl(
1031 : MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1032 : MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1033 : LiveIntervals *LIS = nullptr) const {
1034 40 : return nullptr;
1035 : }
1036 :
1037 : /// Target-dependent implementation of getRegSequenceInputs.
1038 : ///
1039 : /// \returns true if it is possible to build the equivalent
1040 : /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1041 : ///
1042 : /// \pre MI.isRegSequenceLike().
1043 : ///
1044 : /// \see TargetInstrInfo::getRegSequenceInputs.
1045 0 : virtual bool getRegSequenceLikeInputs(
1046 : const MachineInstr &MI, unsigned DefIdx,
1047 : SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1048 0 : return false;
1049 : }
1050 :
1051 : /// Target-dependent implementation of getExtractSubregInputs.
1052 : ///
1053 : /// \returns true if it is possible to build the equivalent
1054 : /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1055 : ///
1056 : /// \pre MI.isExtractSubregLike().
1057 : ///
1058 : /// \see TargetInstrInfo::getExtractSubregInputs.
1059 0 : virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1060 : unsigned DefIdx,
1061 : RegSubRegPairAndIdx &InputReg) const {
1062 0 : return false;
1063 : }
1064 :
1065 : /// Target-dependent implementation of getInsertSubregInputs.
1066 : ///
1067 : /// \returns true if it is possible to build the equivalent
1068 : /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1069 : ///
1070 : /// \pre MI.isInsertSubregLike().
1071 : ///
1072 : /// \see TargetInstrInfo::getInsertSubregInputs.
1073 : virtual bool
1074 0 : getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1075 : RegSubRegPair &BaseReg,
1076 : RegSubRegPairAndIdx &InsertedReg) const {
1077 0 : return false;
1078 : }
1079 :
1080 : public:
1081 : /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1082 : /// (e.g. stack) the target returns the corresponding address space.
1083 : virtual unsigned
1084 3020610 : getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
1085 3020610 : return 0;
1086 : }
1087 :
1088 : /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1089 : /// a store or a load and a store into two or more instruction. If this is
1090 : /// possible, returns true as well as the new instructions by reference.
1091 : virtual bool
1092 0 : unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1093 : bool UnfoldLoad, bool UnfoldStore,
1094 : SmallVectorImpl<MachineInstr *> &NewMIs) const {
1095 0 : return false;
1096 : }
1097 :
1098 0 : virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1099 : SmallVectorImpl<SDNode *> &NewNodes) const {
1100 0 : return false;
1101 : }
1102 :
1103 : /// Returns the opcode of the would be new
1104 : /// instruction after load / store are unfolded from an instruction of the
1105 : /// specified opcode. It returns zero if the specified unfolding is not
1106 : /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1107 : /// index of the operand which will hold the register holding the loaded
1108 : /// value.
1109 : virtual unsigned
1110 630 : getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1111 : unsigned *LoadRegIndex = nullptr) const {
1112 630 : return 0;
1113 : }
1114 :
1115 : /// This is used by the pre-regalloc scheduler to determine if two loads are
1116 : /// loading from the same base address. It should only return true if the base
1117 : /// pointers are the same and the only differences between the two addresses
1118 : /// are the offset. It also returns the offsets by reference.
1119 311126 : virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1120 : int64_t &Offset1,
1121 : int64_t &Offset2) const {
1122 311126 : return false;
1123 : }
1124 :
1125 : /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1126 : /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1127 : /// On some targets if two loads are loading from
1128 : /// addresses in the same cache line, it's better if they are scheduled
1129 : /// together. This function takes two integers that represent the load offsets
1130 : /// from the common base address. It returns true if it decides it's desirable
1131 : /// to schedule the two loads together. "NumLoads" is the number of loads that
1132 : /// have already been scheduled after Load1.
1133 0 : virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1134 : int64_t Offset1, int64_t Offset2,
1135 : unsigned NumLoads) const {
1136 0 : return false;
1137 : }
1138 :
1139 : /// Get the base register and byte offset of an instruction that reads/writes
1140 : /// memory.
1141 0 : virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1142 : int64_t &Offset,
1143 : const TargetRegisterInfo *TRI) const {
1144 0 : return false;
1145 : }
1146 :
1147 : /// Return true if the instruction contains a base register and offset. If
1148 : /// true, the function also sets the operand position in the instruction
1149 : /// for the base register and offset.
1150 0 : virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1151 : unsigned &BasePos,
1152 : unsigned &OffsetPos) const {
1153 0 : return false;
1154 : }
1155 :
1156 : /// If the instruction is an increment of a constant value, return the amount.
1157 0 : virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1158 0 : return false;
1159 : }
1160 :
1161 : /// Returns true if the two given memory operations should be scheduled
1162 : /// adjacent. Note that you have to add:
1163 : /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1164 : /// or
1165 : /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1166 : /// to TargetPassConfig::createMachineScheduler() to have an effect.
1167 0 : virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
1168 : MachineInstr &SecondLdSt, unsigned BaseReg2,
1169 : unsigned NumLoads) const {
1170 0 : llvm_unreachable("target did not implement shouldClusterMemOps()");
1171 : }
1172 :
1173 : /// Reverses the branch condition of the specified condition list,
1174 : /// returning false on success and true if it cannot be reversed.
1175 : virtual bool
1176 19 : reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1177 19 : return true;
1178 : }
1179 :
1180 : /// Insert a noop into the instruction stream at the specified point.
1181 : virtual void insertNoop(MachineBasicBlock &MBB,
1182 : MachineBasicBlock::iterator MI) const;
1183 :
1184 : /// Return the noop instruction to use for a noop.
1185 : virtual void getNoop(MCInst &NopInst) const;
1186 :
1187 : /// Return true for post-incremented instructions.
1188 0 : virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1189 :
1190 : /// Returns true if the instruction is already predicated.
1191 4274727 : virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1192 :
1193 : /// Returns true if the instruction is a
1194 : /// terminator instruction that has not been predicated.
1195 : virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1196 :
1197 : /// Returns true if MI is an unconditional tail call.
1198 779 : virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1199 779 : return false;
1200 : }
1201 :
1202 : /// Returns true if the tail call can be made conditional on BranchCond.
1203 0 : virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1204 : const MachineInstr &TailCall) const {
1205 0 : return false;
1206 : }
1207 :
1208 : /// Replace the conditional branch in MBB with a conditional tail call.
1209 0 : virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1210 : SmallVectorImpl<MachineOperand> &Cond,
1211 : const MachineInstr &TailCall) const {
1212 0 : llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1213 : }
1214 :
1215 : /// Convert the instruction into a predicated instruction.
1216 : /// It returns true if the operation was successful.
1217 : virtual bool PredicateInstruction(MachineInstr &MI,
1218 : ArrayRef<MachineOperand> Pred) const;
1219 :
1220 : /// Returns true if the first specified predicate
1221 : /// subsumes the second, e.g. GE subsumes GT.
1222 0 : virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1223 : ArrayRef<MachineOperand> Pred2) const {
1224 0 : return false;
1225 : }
1226 :
1227 : /// If the specified instruction defines any predicate
1228 : /// or condition code register(s) used for predication, returns true as well
1229 : /// as the definition predicate(s) by reference.
1230 11132 : virtual bool DefinesPredicate(MachineInstr &MI,
1231 : std::vector<MachineOperand> &Pred) const {
1232 11132 : return false;
1233 : }
1234 :
1235 : /// Return true if the specified instruction can be predicated.
1236 : /// By default, this returns true for every instruction with a
1237 : /// PredicateOperand.
1238 0 : virtual bool isPredicable(const MachineInstr &MI) const {
1239 1054 : return MI.getDesc().isPredicable();
1240 : }
1241 :
1242 : /// Return true if it's safe to move a machine
1243 : /// instruction that defines the specified register class.
1244 76616 : virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1245 76616 : return true;
1246 : }
1247 :
1248 : /// Test if the given instruction should be considered a scheduling boundary.
1249 : /// This primarily includes labels and terminators.
1250 : virtual bool isSchedulingBoundary(const MachineInstr &MI,
1251 : const MachineBasicBlock *MBB,
1252 : const MachineFunction &MF) const;
1253 :
1254 : /// Measure the specified inline asm to determine an approximation of its
1255 : /// length.
1256 : virtual unsigned getInlineAsmLength(const char *Str,
1257 : const MCAsmInfo &MAI) const;
1258 :
1259 : /// Allocate and return a hazard recognizer to use for this target when
1260 : /// scheduling the machine instructions before register allocation.
1261 : virtual ScheduleHazardRecognizer *
1262 : CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1263 : const ScheduleDAG *DAG) const;
1264 :
1265 : /// Allocate and return a hazard recognizer to use for this target when
1266 : /// scheduling the machine instructions before register allocation.
1267 : virtual ScheduleHazardRecognizer *
1268 : CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1269 : const ScheduleDAG *DAG) const;
1270 :
1271 : /// Allocate and return a hazard recognizer to use for this target when
1272 : /// scheduling the machine instructions after register allocation.
1273 : virtual ScheduleHazardRecognizer *
1274 : CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1275 : const ScheduleDAG *DAG) const;
1276 :
1277 : /// Allocate and return a hazard recognizer to use for by non-scheduling
1278 : /// passes.
1279 : virtual ScheduleHazardRecognizer *
1280 0 : CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1281 0 : return nullptr;
1282 : }
1283 :
1284 : /// Provide a global flag for disabling the PreRA hazard recognizer that
1285 : /// targets may choose to honor.
1286 : bool usePreRAHazardRecognizer() const;
1287 :
1288 : /// For a comparison instruction, return the source registers
1289 : /// in SrcReg and SrcReg2 if having two register operands, and the value it
1290 : /// compares against in CmpValue. Return true if the comparison instruction
1291 : /// can be analyzed.
1292 4616 : virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1293 : unsigned &SrcReg2, int &Mask, int &Value) const {
1294 4616 : return false;
1295 : }
1296 :
1297 : /// See if the comparison instruction can be converted
1298 : /// into something more efficient. E.g., on ARM most instructions can set the
1299 : /// flags register, obviating the need for a separate CMP.
1300 882 : virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1301 : unsigned SrcReg2, int Mask, int Value,
1302 : const MachineRegisterInfo *MRI) const {
1303 882 : return false;
1304 : }
1305 71404 : virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1306 :
1307 : /// Try to remove the load by folding it to a register operand at the use.
1308 : /// We fold the load instructions if and only if the
1309 : /// def and use are in the same BB. We only look at one load and see
1310 : /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1311 : /// defined by the load we are trying to fold. DefMI returns the machine
1312 : /// instruction that defines FoldAsLoadDefReg, and the function returns
1313 : /// the machine instruction generated due to folding.
1314 13954 : virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1315 : const MachineRegisterInfo *MRI,
1316 : unsigned &FoldAsLoadDefReg,
1317 : MachineInstr *&DefMI) const {
1318 13954 : return nullptr;
1319 : }
1320 :
1321 : /// 'Reg' is known to be defined by a move immediate instruction,
1322 : /// try to fold the immediate into the use instruction.
1323 : /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1324 : /// then the caller may assume that DefMI has been erased from its parent
1325 : /// block. The caller may assume that it will not be erased by this
1326 : /// function otherwise.
1327 9475 : virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1328 : unsigned Reg, MachineRegisterInfo *MRI) const {
1329 9475 : return false;
1330 : }
1331 :
1332 : /// Return the number of u-operations the given machine
1333 : /// instruction will be decoded to on the target cpu. The itinerary's
1334 : /// IssueWidth is the number of microops that can be dispatched each
1335 : /// cycle. An instruction with zero microops takes no dispatch resources.
1336 : virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1337 : const MachineInstr &MI) const;
1338 :
1339 : /// Return true for pseudo instructions that don't consume any
1340 : /// machine resources in their current form. These are common cases that the
1341 : /// scheduler should consider free, rather than conservatively handling them
1342 : /// as instructions with no itinerary.
1343 0 : bool isZeroCost(unsigned Opcode) const {
1344 0 : return Opcode <= TargetOpcode::COPY;
1345 : }
1346 :
1347 : virtual int getOperandLatency(const InstrItineraryData *ItinData,
1348 : SDNode *DefNode, unsigned DefIdx,
1349 : SDNode *UseNode, unsigned UseIdx) const;
1350 :
1351 : /// Compute and return the use operand latency of a given pair of def and use.
1352 : /// In most cases, the static scheduling itinerary was enough to determine the
1353 : /// operand latency. But it may not be possible for instructions with variable
1354 : /// number of defs / uses.
1355 : ///
1356 : /// This is a raw interface to the itinerary that may be directly overridden
1357 : /// by a target. Use computeOperandLatency to get the best estimate of
1358 : /// latency.
1359 : virtual int getOperandLatency(const InstrItineraryData *ItinData,
1360 : const MachineInstr &DefMI, unsigned DefIdx,
1361 : const MachineInstr &UseMI,
1362 : unsigned UseIdx) const;
1363 :
1364 : /// Compute the instruction latency of a given instruction.
1365 : /// If the instruction has higher cost when predicated, it's returned via
1366 : /// PredCost.
1367 : virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1368 : const MachineInstr &MI,
1369 : unsigned *PredCost = nullptr) const;
1370 :
1371 : virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1372 :
1373 : virtual int getInstrLatency(const InstrItineraryData *ItinData,
1374 : SDNode *Node) const;
1375 :
1376 : /// Return the default expected latency for a def based on its opcode.
1377 : unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1378 : const MachineInstr &DefMI) const;
1379 :
1380 : int computeDefOperandLatency(const InstrItineraryData *ItinData,
1381 : const MachineInstr &DefMI) const;
1382 :
1383 : /// Return true if this opcode has high latency to its result.
1384 553464 : virtual bool isHighLatencyDef(int opc) const { return false; }
1385 :
1386 : /// Compute operand latency between a def of 'Reg'
1387 : /// and a use in the current loop. Return true if the target considered
1388 : /// it 'high'. This is used by optimization passes such as machine LICM to
1389 : /// determine whether it makes sense to hoist an instruction out even in a
1390 : /// high register pressure situation.
1391 1397 : virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1392 : const MachineRegisterInfo *MRI,
1393 : const MachineInstr &DefMI, unsigned DefIdx,
1394 : const MachineInstr &UseMI,
1395 : unsigned UseIdx) const {
1396 1397 : return false;
1397 : }
1398 :
1399 : /// Compute operand latency of a def of 'Reg'. Return true
1400 : /// if the target considered it 'low'.
1401 : virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1402 : const MachineInstr &DefMI,
1403 : unsigned DefIdx) const;
1404 :
1405 : /// Perform target-specific instruction verification.
1406 6413246 : virtual bool verifyInstruction(const MachineInstr &MI,
1407 : StringRef &ErrInfo) const {
1408 6413246 : return true;
1409 : }
1410 :
1411 : /// Return the current execution domain and bit mask of
1412 : /// possible domains for instruction.
1413 : ///
1414 : /// Some micro-architectures have multiple execution domains, and multiple
1415 : /// opcodes that perform the same operation in different domains. For
1416 : /// example, the x86 architecture provides the por, orps, and orpd
1417 : /// instructions that all do the same thing. There is a latency penalty if a
1418 : /// register is written in one domain and read in another.
1419 : ///
1420 : /// This function returns a pair (domain, mask) containing the execution
1421 : /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1422 : /// function can be used to change the opcode to one of the domains in the
1423 : /// bit mask. Instructions whose execution domain can't be changed should
1424 : /// return a 0 mask.
1425 : ///
1426 : /// The execution domain numbers don't have any special meaning except domain
1427 : /// 0 is used for instructions that are not associated with any interesting
1428 : /// execution domain.
1429 : ///
1430 : virtual std::pair<uint16_t, uint16_t>
1431 0 : getExecutionDomain(const MachineInstr &MI) const {
1432 0 : return std::make_pair(0, 0);
1433 : }
1434 :
1435 : /// Change the opcode of MI to execute in Domain.
1436 : ///
1437 : /// The bit (1 << Domain) must be set in the mask returned from
1438 : /// getExecutionDomain(MI).
1439 0 : virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1440 :
1441 : /// Returns the preferred minimum clearance
1442 : /// before an instruction with an unwanted partial register update.
1443 : ///
1444 : /// Some instructions only write part of a register, and implicitly need to
1445 : /// read the other parts of the register. This may cause unwanted stalls
1446 : /// preventing otherwise unrelated instructions from executing in parallel in
1447 : /// an out-of-order CPU.
1448 : ///
1449 : /// For example, the x86 instruction cvtsi2ss writes its result to bits
1450 : /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1451 : /// the instruction needs to wait for the old value of the register to become
1452 : /// available:
1453 : ///
1454 : /// addps %xmm1, %xmm0
1455 : /// movaps %xmm0, (%rax)
1456 : /// cvtsi2ss %rbx, %xmm0
1457 : ///
1458 : /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1459 : /// instruction before it can issue, even though the high bits of %xmm0
1460 : /// probably aren't needed.
1461 : ///
1462 : /// This hook returns the preferred clearance before MI, measured in
1463 : /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1464 : /// instructions before MI. It should only return a positive value for
1465 : /// unwanted dependencies. If the old bits of the defined register have
1466 : /// useful values, or if MI is determined to otherwise read the dependency,
1467 : /// the hook should return 0.
1468 : ///
1469 : /// The unwanted dependency may be handled by:
1470 : ///
1471 : /// 1. Allocating the same register for an MI def and use. That makes the
1472 : /// unwanted dependency identical to a required dependency.
1473 : ///
1474 : /// 2. Allocating a register for the def that has no defs in the previous N
1475 : /// instructions.
1476 : ///
1477 : /// 3. Calling breakPartialRegDependency() with the same arguments. This
1478 : /// allows the target to insert a dependency breaking instruction.
1479 : ///
1480 : virtual unsigned
1481 0 : getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1482 : const TargetRegisterInfo *TRI) const {
1483 : // The default implementation returns 0 for no partial register dependency.
1484 0 : return 0;
1485 : }
1486 :
1487 : /// Return the minimum clearance before an instruction that reads an
1488 : /// unused register.
1489 : ///
1490 : /// For example, AVX instructions may copy part of a register operand into
1491 : /// the unused high bits of the destination register.
1492 : ///
1493 : /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1494 : ///
1495 : /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1496 : /// false dependence on any previous write to %xmm0.
1497 : ///
1498 : /// This hook works similarly to getPartialRegUpdateClearance, except that it
1499 : /// does not take an operand index. Instead sets \p OpNum to the index of the
1500 : /// unused register.
1501 129876 : virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1502 : const TargetRegisterInfo *TRI) const {
1503 : // The default implementation returns 0 for no undef register dependency.
1504 129876 : return 0;
1505 : }
1506 :
1507 : /// Insert a dependency-breaking instruction
1508 : /// before MI to eliminate an unwanted dependency on OpNum.
1509 : ///
1510 : /// If it wasn't possible to avoid a def in the last N instructions before MI
1511 : /// (see getPartialRegUpdateClearance), this hook will be called to break the
1512 : /// unwanted dependency.
1513 : ///
1514 : /// On x86, an xorps instruction can be used as a dependency breaker:
1515 : ///
1516 : /// addps %xmm1, %xmm0
1517 : /// movaps %xmm0, (%rax)
1518 : /// xorps %xmm0, %xmm0
1519 : /// cvtsi2ss %rbx, %xmm0
1520 : ///
1521 : /// An <imp-kill> operand should be added to MI if an instruction was
1522 : /// inserted. This ties the instructions together in the post-ra scheduler.
1523 : ///
1524 0 : virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1525 0 : const TargetRegisterInfo *TRI) const {}
1526 :
1527 : /// Create machine specific model for scheduling.
1528 : virtual DFAPacketizer *
1529 0 : CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1530 0 : return nullptr;
1531 : }
1532 :
1533 : /// Sometimes, it is possible for the target
1534 : /// to tell, even without aliasing information, that two MIs access different
1535 : /// memory addresses. This function returns true if two MIs access different
1536 : /// memory addresses and false otherwise.
1537 : ///
1538 : /// Assumes any physical registers used to compute addresses have the same
1539 : /// value for both instructions. (This is the most useful assumption for
1540 : /// post-RA scheduling.)
1541 : ///
1542 : /// See also MachineInstr::mayAlias, which is implemented on top of this
1543 : /// function.
1544 : virtual bool
1545 3126930 : areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1546 : AliasAnalysis *AA = nullptr) const {
1547 : assert((MIa.mayLoad() || MIa.mayStore()) &&
1548 : "MIa must load from or modify a memory location");
1549 : assert((MIb.mayLoad() || MIb.mayStore()) &&
1550 : "MIb must load from or modify a memory location");
1551 3126930 : return false;
1552 : }
1553 :
1554 : /// Return the value to use for the MachineCSE's LookAheadLimit,
1555 : /// which is a heuristic used for CSE'ing phys reg defs.
1556 178030 : virtual unsigned getMachineCSELookAheadLimit() const {
1557 : // The default lookahead is small to prevent unprofitable quadratic
1558 : // behavior.
1559 178030 : return 5;
1560 : }
1561 :
1562 : /// Return an array that contains the ids of the target indices (used for the
1563 : /// TargetIndex machine operand) and their names.
1564 : ///
1565 : /// MIR Serialization is able to serialize only the target indices that are
1566 : /// defined by this method.
1567 : virtual ArrayRef<std::pair<int, const char *>>
1568 0 : getSerializableTargetIndices() const {
1569 0 : return None;
1570 : }
1571 :
1572 : /// Decompose the machine operand's target flags into two values - the direct
1573 : /// target flag value and any of bit flags that are applied.
1574 : virtual std::pair<unsigned, unsigned>
1575 138 : decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1576 138 : return std::make_pair(0u, 0u);
1577 : }
1578 :
1579 : /// Return an array that contains the direct target flag values and their
1580 : /// names.
1581 : ///
1582 : /// MIR Serialization is able to serialize only the target flags that are
1583 : /// defined by this method.
1584 : virtual ArrayRef<std::pair<unsigned, const char *>>
1585 0 : getSerializableDirectMachineOperandTargetFlags() const {
1586 0 : return None;
1587 : }
1588 :
1589 : /// Return an array that contains the bitmask target flag values and their
1590 : /// names.
1591 : ///
1592 : /// MIR Serialization is able to serialize only the target flags that are
1593 : /// defined by this method.
1594 : virtual ArrayRef<std::pair<unsigned, const char *>>
1595 1 : getSerializableBitmaskMachineOperandTargetFlags() const {
1596 1 : return None;
1597 : }
1598 :
1599 : /// Return an array that contains the MMO target flag values and their
1600 : /// names.
1601 : ///
1602 : /// MIR Serialization is able to serialize only the MMO target flags that are
1603 : /// defined by this method.
1604 : virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1605 0 : getSerializableMachineMemOperandTargetFlags() const {
1606 0 : return None;
1607 : }
1608 :
1609 : /// Determines whether \p Inst is a tail call instruction. Override this
1610 : /// method on targets that do not properly set MCID::Return and MCID::Call on
1611 : /// tail call instructions."
1612 362 : virtual bool isTailCall(const MachineInstr &Inst) const {
1613 464 : return Inst.isReturn() && Inst.isCall();
1614 : }
1615 :
1616 : /// True if the instruction is bound to the top of its basic block and no
1617 : /// other instructions shall be inserted before it. This can be implemented
1618 : /// to prevent register allocator to insert spills before such instructions.
1619 1469615 : virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1620 1469615 : return false;
1621 : }
1622 :
1623 : /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1624 : /// information for a set of outlining candidates.
1625 0 : virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1626 : std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1627 0 : llvm_unreachable(
1628 : "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1629 : }
1630 :
1631 : /// Returns how or if \p MI should be outlined.
1632 : virtual outliner::InstrType
1633 0 : getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1634 0 : llvm_unreachable(
1635 : "Target didn't implement TargetInstrInfo::getOutliningType!");
1636 : }
1637 :
1638 : /// Returns target-defined flags defining properties of the MBB for
1639 : /// the outliner.
1640 24 : virtual unsigned getMachineOutlinerMBBFlags(MachineBasicBlock &MBB) const {
1641 24 : return 0x0;
1642 : }
1643 :
1644 : /// Insert a custom frame for outlined functions.
1645 0 : virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1646 : const outliner::OutlinedFunction &OF) const {
1647 0 : llvm_unreachable(
1648 : "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1649 : }
1650 :
1651 : /// Insert a call to an outlined function into the program.
1652 : /// Returns an iterator to the spot where we inserted the call. This must be
1653 : /// implemented by the target.
1654 : virtual MachineBasicBlock::iterator
1655 0 : insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1656 : MachineBasicBlock::iterator &It, MachineFunction &MF,
1657 : const outliner::Candidate &C) const {
1658 0 : llvm_unreachable(
1659 : "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1660 : }
1661 :
1662 : /// Return true if the function can safely be outlined from.
1663 : /// A function \p MF is considered safe for outlining if an outlined function
1664 : /// produced from instructions in F will produce a program which produces the
1665 : /// same output for any set of given inputs.
1666 0 : virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1667 : bool OutlineFromLinkOnceODRs) const {
1668 0 : llvm_unreachable("Target didn't implement "
1669 : "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1670 : }
1671 :
1672 : /// Return true if the function should be outlined from by default.
1673 0 : virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1674 0 : return false;
1675 : }
1676 :
1677 : private:
1678 : unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1679 : unsigned CatchRetOpcode;
1680 : unsigned ReturnOpcode;
1681 : };
1682 :
1683 : /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1684 : template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1685 : using RegInfo = DenseMapInfo<unsigned>;
1686 :
1687 : static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1688 : return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1689 : RegInfo::getEmptyKey());
1690 : }
1691 :
1692 : static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1693 : return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1694 : RegInfo::getTombstoneKey());
1695 : }
1696 :
1697 : /// Reuse getHashValue implementation from
1698 : /// std::pair<unsigned, unsigned>.
1699 : static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1700 2947652 : std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1701 2947652 : return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1702 : }
1703 :
1704 : static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1705 : const TargetInstrInfo::RegSubRegPair &RHS) {
1706 11787579 : return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1707 7243755 : RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1708 : }
1709 : };
1710 :
1711 : } // end namespace llvm
1712 :
1713 : #endif // LLVM_TARGET_TARGETINSTRINFO_H
|