LCOV - code coverage report
Current view: top level - include/llvm/ExecutionEngine - ExecutionEngine.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 26 47 55.3 %
Date: 2018-10-20 13:21:21 Functions: 6 18 33.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file defines the abstract interface that implements execution support
      11             : // for LLVM.
      12             : //
      13             : //===----------------------------------------------------------------------===//
      14             : 
      15             : #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
      16             : #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
      17             : 
      18             : #include "llvm-c/ExecutionEngine.h"
      19             : #include "llvm/ADT/ArrayRef.h"
      20             : #include "llvm/ADT/Optional.h"
      21             : #include "llvm/ADT/SmallVector.h"
      22             : #include "llvm/ADT/StringMap.h"
      23             : #include "llvm/ADT/StringRef.h"
      24             : #include "llvm/ExecutionEngine/JITSymbol.h"
      25             : #include "llvm/IR/DataLayout.h"
      26             : #include "llvm/IR/Module.h"
      27             : #include "llvm/Object/Binary.h"
      28             : #include "llvm/Support/CBindingWrapping.h"
      29             : #include "llvm/Support/CodeGen.h"
      30             : #include "llvm/Support/ErrorHandling.h"
      31             : #include "llvm/Support/Mutex.h"
      32             : #include "llvm/Target/TargetMachine.h"
      33             : #include "llvm/Target/TargetOptions.h"
      34             : #include <algorithm>
      35             : #include <cstdint>
      36             : #include <functional>
      37             : #include <map>
      38             : #include <memory>
      39             : #include <string>
      40             : #include <vector>
      41             : 
      42             : namespace llvm {
      43             : 
      44             : class Constant;
      45             : class Function;
      46             : struct GenericValue;
      47             : class GlobalValue;
      48             : class GlobalVariable;
      49             : class JITEventListener;
      50             : class MCJITMemoryManager;
      51             : class ObjectCache;
      52             : class RTDyldMemoryManager;
      53             : class Triple;
      54             : class Type;
      55             : 
      56             : namespace object {
      57             : 
      58             : class Archive;
      59             : class ObjectFile;
      60             : 
      61             : } // end namespace object
      62             : 
      63             : /// Helper class for helping synchronize access to the global address map
      64             : /// table.  Access to this class should be serialized under a mutex.
      65          65 : class ExecutionEngineState {
      66             : public:
      67             :   using GlobalAddressMapTy = StringMap<uint64_t>;
      68             : 
      69             : private:
      70             :   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
      71             :   /// their actualized version...
      72             :   GlobalAddressMapTy GlobalAddressMap;
      73             : 
      74             :   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
      75             :   /// used to convert raw addresses into the LLVM global value that is emitted
      76             :   /// at the address.  This map is not computed unless getGlobalValueAtAddress
      77             :   /// is called at some point.
      78             :   std::map<uint64_t, std::string> GlobalAddressReverseMap;
      79             : 
      80             : public:
      81             :   GlobalAddressMapTy &getGlobalAddressMap() {
      82         437 :     return GlobalAddressMap;
      83             :   }
      84             : 
      85             :   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
      86           1 :     return GlobalAddressReverseMap;
      87             :   }
      88             : 
      89             :   /// Erase an entry from the mapping table.
      90             :   ///
      91             :   /// \returns The address that \p ToUnmap was happed to.
      92             :   uint64_t RemoveMapping(StringRef Name);
      93             : };
      94             : 
      95             : using FunctionCreator = std::function<void *(const std::string &)>;
      96             : 
      97             : /// Abstract interface for implementation execution of LLVM modules,
      98             : /// designed to support both interpreter and just-in-time (JIT) compiler
      99             : /// implementations.
     100             : class ExecutionEngine {
     101             :   /// The state object holding the global address mapping, which must be
     102             :   /// accessed synchronously.
     103             :   //
     104             :   // FIXME: There is no particular need the entire map needs to be
     105             :   // synchronized.  Wouldn't a reader-writer design be better here?
     106             :   ExecutionEngineState EEState;
     107             : 
     108             :   /// The target data for the platform for which execution is being performed.
     109             :   ///
     110             :   /// Note: the DataLayout is LLVMContext specific because it has an
     111             :   /// internal cache based on type pointers. It makes unsafe to reuse the
     112             :   /// ExecutionEngine across context, we don't enforce this rule but undefined
     113             :   /// behavior can occurs if the user tries to do it.
     114             :   const DataLayout DL;
     115             : 
     116             :   /// Whether lazy JIT compilation is enabled.
     117             :   bool CompilingLazily;
     118             : 
     119             :   /// Whether JIT compilation of external global variables is allowed.
     120             :   bool GVCompilationDisabled;
     121             : 
     122             :   /// Whether the JIT should perform lookups of external symbols (e.g.,
     123             :   /// using dlsym).
     124             :   bool SymbolSearchingDisabled;
     125             : 
     126             :   /// Whether the JIT should verify IR modules during compilation.
     127             :   bool VerifyModules;
     128             : 
     129             :   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
     130             : 
     131             : protected:
     132             :   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
     133             :   /// optimize for the case where there is only one module.
     134             :   SmallVector<std::unique_ptr<Module>, 1> Modules;
     135             : 
     136             :   /// getMemoryforGV - Allocate memory for a global variable.
     137             :   virtual char *getMemoryForGV(const GlobalVariable *GV);
     138             : 
     139             :   static ExecutionEngine *(*MCJITCtor)(
     140             :       std::unique_ptr<Module> M, std::string *ErrorStr,
     141             :       std::shared_ptr<MCJITMemoryManager> MM,
     142             :       std::shared_ptr<LegacyJITSymbolResolver> SR,
     143             :       std::unique_ptr<TargetMachine> TM);
     144             : 
     145             :   static ExecutionEngine *(*OrcMCJITReplacementCtor)(
     146             :       std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MM,
     147             :       std::shared_ptr<LegacyJITSymbolResolver> SR,
     148             :       std::unique_ptr<TargetMachine> TM);
     149             : 
     150             :   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
     151             :                                         std::string *ErrorStr);
     152             : 
     153             :   /// LazyFunctionCreator - If an unknown function is needed, this function
     154             :   /// pointer is invoked to create it.  If this returns null, the JIT will
     155             :   /// abort.
     156             :   FunctionCreator LazyFunctionCreator;
     157             : 
     158             :   /// getMangledName - Get mangled name.
     159             :   std::string getMangledName(const GlobalValue *GV);
     160             : 
     161             : public:
     162             :   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
     163             :   /// be held while changing the internal state of any of those classes.
     164             :   sys::Mutex lock;
     165             : 
     166             :   //===--------------------------------------------------------------------===//
     167             :   //  ExecutionEngine Startup
     168             :   //===--------------------------------------------------------------------===//
     169             : 
     170             :   virtual ~ExecutionEngine();
     171             : 
     172             :   /// Add a Module to the list of modules that we can JIT from.
     173           0 :   virtual void addModule(std::unique_ptr<Module> M) {
     174           0 :     Modules.push_back(std::move(M));
     175           0 :   }
     176             : 
     177             :   /// addObjectFile - Add an ObjectFile to the execution engine.
     178             :   ///
     179             :   /// This method is only supported by MCJIT.  MCJIT will immediately load the
     180             :   /// object into memory and adds its symbols to the list used to resolve
     181             :   /// external symbols while preparing other objects for execution.
     182             :   ///
     183             :   /// Objects added using this function will not be made executable until
     184             :   /// needed by another object.
     185             :   ///
     186             :   /// MCJIT will take ownership of the ObjectFile.
     187             :   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
     188             :   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
     189             : 
     190             :   /// addArchive - Add an Archive to the execution engine.
     191             :   ///
     192             :   /// This method is only supported by MCJIT.  MCJIT will use the archive to
     193             :   /// resolve external symbols in objects it is loading.  If a symbol is found
     194             :   /// in the Archive the contained object file will be extracted (in memory)
     195             :   /// and loaded for possible execution.
     196             :   virtual void addArchive(object::OwningBinary<object::Archive> A);
     197             : 
     198             :   //===--------------------------------------------------------------------===//
     199             : 
     200         810 :   const DataLayout &getDataLayout() const { return DL; }
     201             : 
     202             :   /// removeModule - Removes a Module from the list of modules, but does not
     203             :   /// free the module's memory. Returns true if M is found, in which case the
     204             :   /// caller assumes responsibility for deleting the module.
     205             :   //
     206             :   // FIXME: This stealth ownership transfer is horrible. This will probably be
     207             :   //        fixed by deleting ExecutionEngine.
     208             :   virtual bool removeModule(Module *M);
     209             : 
     210             :   /// FindFunctionNamed - Search all of the active modules to find the function that
     211             :   /// defines FnName.  This is very slow operation and shouldn't be used for
     212             :   /// general code.
     213             :   virtual Function *FindFunctionNamed(StringRef FnName);
     214             : 
     215             :   /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
     216             :   /// that defines Name.  This is very slow operation and shouldn't be used for
     217             :   /// general code.
     218             :   virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
     219             : 
     220             :   /// runFunction - Execute the specified function with the specified arguments,
     221             :   /// and return the result.
     222             :   ///
     223             :   /// For MCJIT execution engines, clients are encouraged to use the
     224             :   /// "GetFunctionAddress" method (rather than runFunction) and cast the
     225             :   /// returned uint64_t to the desired function pointer type. However, for
     226             :   /// backwards compatibility MCJIT's implementation can execute 'main-like'
     227             :   /// function (i.e. those returning void or int, and taking either no
     228             :   /// arguments or (int, char*[])).
     229             :   virtual GenericValue runFunction(Function *F,
     230             :                                    ArrayRef<GenericValue> ArgValues) = 0;
     231             : 
     232             :   /// getPointerToNamedFunction - This method returns the address of the
     233             :   /// specified function by using the dlsym function call.  As such it is only
     234             :   /// useful for resolving library symbols, not code generated symbols.
     235             :   ///
     236             :   /// If AbortOnFailure is false and no function with the given name is
     237             :   /// found, this function silently returns a null pointer. Otherwise,
     238             :   /// it prints a message to stderr and aborts.
     239             :   ///
     240             :   /// This function is deprecated for the MCJIT execution engine.
     241             :   virtual void *getPointerToNamedFunction(StringRef Name,
     242             :                                           bool AbortOnFailure = true) = 0;
     243             : 
     244             :   /// mapSectionAddress - map a section to its target address space value.
     245             :   /// Map the address of a JIT section as returned from the memory manager
     246             :   /// to the address in the target process as the running code will see it.
     247             :   /// This is the address which will be used for relocation resolution.
     248           0 :   virtual void mapSectionAddress(const void *LocalAddress,
     249             :                                  uint64_t TargetAddress) {
     250           0 :     llvm_unreachable("Re-mapping of section addresses not supported with this "
     251             :                      "EE!");
     252             :   }
     253             : 
     254             :   /// generateCodeForModule - Run code generation for the specified module and
     255             :   /// load it into memory.
     256             :   ///
     257             :   /// When this function has completed, all code and data for the specified
     258             :   /// module, and any module on which this module depends, will be generated
     259             :   /// and loaded into memory, but relocations will not yet have been applied
     260             :   /// and all memory will be readable and writable but not executable.
     261             :   ///
     262             :   /// This function is primarily useful when generating code for an external
     263             :   /// target, allowing the client an opportunity to remap section addresses
     264             :   /// before relocations are applied.  Clients that intend to execute code
     265             :   /// locally can use the getFunctionAddress call, which will generate code
     266             :   /// and apply final preparations all in one step.
     267             :   ///
     268             :   /// This method has no effect for the interpeter.
     269           0 :   virtual void generateCodeForModule(Module *M) {}
     270             : 
     271             :   /// finalizeObject - ensure the module is fully processed and is usable.
     272             :   ///
     273             :   /// It is the user-level function for completing the process of making the
     274             :   /// object usable for execution.  It should be called after sections within an
     275             :   /// object have been relocated using mapSectionAddress.  When this method is
     276             :   /// called the MCJIT execution engine will reapply relocations for a loaded
     277             :   /// object.  This method has no effect for the interpeter.
     278           0 :   virtual void finalizeObject() {}
     279             : 
     280             :   /// runStaticConstructorsDestructors - This method is used to execute all of
     281             :   /// the static constructors or destructors for a program.
     282             :   ///
     283             :   /// \param isDtors - Run the destructors instead of constructors.
     284             :   virtual void runStaticConstructorsDestructors(bool isDtors);
     285             : 
     286             :   /// This method is used to execute all of the static constructors or
     287             :   /// destructors for a particular module.
     288             :   ///
     289             :   /// \param isDtors - Run the destructors instead of constructors.
     290             :   void runStaticConstructorsDestructors(Module &module, bool isDtors);
     291             : 
     292             : 
     293             :   /// runFunctionAsMain - This is a helper function which wraps runFunction to
     294             :   /// handle the common task of starting up main with the specified argc, argv,
     295             :   /// and envp parameters.
     296             :   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
     297             :                         const char * const * envp);
     298             : 
     299             : 
     300             :   /// addGlobalMapping - Tell the execution engine that the specified global is
     301             :   /// at the specified location.  This is used internally as functions are JIT'd
     302             :   /// and as global variables are laid out in memory.  It can and should also be
     303             :   /// used by clients of the EE that want to have an LLVM global overlay
     304             :   /// existing data in memory. Values to be mapped should be named, and have
     305             :   /// external or weak linkage. Mappings are automatically removed when their
     306             :   /// GlobalValue is destroyed.
     307             :   void addGlobalMapping(const GlobalValue *GV, void *Addr);
     308             :   void addGlobalMapping(StringRef Name, uint64_t Addr);
     309             : 
     310             :   /// clearAllGlobalMappings - Clear all global mappings and start over again,
     311             :   /// for use in dynamic compilation scenarios to move globals.
     312             :   void clearAllGlobalMappings();
     313             : 
     314             :   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
     315             :   /// particular module, because it has been removed from the JIT.
     316             :   void clearGlobalMappingsFromModule(Module *M);
     317             : 
     318             :   /// updateGlobalMapping - Replace an existing mapping for GV with a new
     319             :   /// address.  This updates both maps as required.  If "Addr" is null, the
     320             :   /// entry for the global is removed from the mappings.  This returns the old
     321             :   /// value of the pointer, or null if it was not in the map.
     322             :   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
     323             :   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
     324             : 
     325             :   /// getAddressToGlobalIfAvailable - This returns the address of the specified
     326             :   /// global symbol.
     327             :   uint64_t getAddressToGlobalIfAvailable(StringRef S);
     328             : 
     329             :   /// getPointerToGlobalIfAvailable - This returns the address of the specified
     330             :   /// global value if it is has already been codegen'd, otherwise it returns
     331             :   /// null.
     332             :   void *getPointerToGlobalIfAvailable(StringRef S);
     333             :   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
     334             : 
     335             :   /// getPointerToGlobal - This returns the address of the specified global
     336             :   /// value. This may involve code generation if it's a function.
     337             :   ///
     338             :   /// This function is deprecated for the MCJIT execution engine.  Use
     339             :   /// getGlobalValueAddress instead.
     340             :   void *getPointerToGlobal(const GlobalValue *GV);
     341             : 
     342             :   /// getPointerToFunction - The different EE's represent function bodies in
     343             :   /// different ways.  They should each implement this to say what a function
     344             :   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
     345             :   /// remove its global mapping and free any machine code.  Be sure no threads
     346             :   /// are running inside F when that happens.
     347             :   ///
     348             :   /// This function is deprecated for the MCJIT execution engine.  Use
     349             :   /// getFunctionAddress instead.
     350             :   virtual void *getPointerToFunction(Function *F) = 0;
     351             : 
     352             :   /// getPointerToFunctionOrStub - If the specified function has been
     353             :   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
     354             :   /// a stub to implement lazy compilation if available.  See
     355             :   /// getPointerToFunction for the requirements on destroying F.
     356             :   ///
     357             :   /// This function is deprecated for the MCJIT execution engine.  Use
     358             :   /// getFunctionAddress instead.
     359          34 :   virtual void *getPointerToFunctionOrStub(Function *F) {
     360             :     // Default implementation, just codegen the function.
     361          34 :     return getPointerToFunction(F);
     362             :   }
     363             : 
     364             :   /// getGlobalValueAddress - Return the address of the specified global
     365             :   /// value. This may involve code generation.
     366             :   ///
     367             :   /// This function should not be called with the interpreter engine.
     368           0 :   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
     369             :     // Default implementation for the interpreter.  MCJIT will override this.
     370             :     // JIT and interpreter clients should use getPointerToGlobal instead.
     371           0 :     return 0;
     372             :   }
     373             : 
     374             :   /// getFunctionAddress - Return the address of the specified function.
     375             :   /// This may involve code generation.
     376           0 :   virtual uint64_t getFunctionAddress(const std::string &Name) {
     377             :     // Default implementation for the interpreter.  MCJIT will override this.
     378             :     // Interpreter clients should use getPointerToFunction instead.
     379           0 :     return 0;
     380             :   }
     381             : 
     382             :   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
     383             :   /// at the specified address.
     384             :   ///
     385             :   const GlobalValue *getGlobalValueAtAddress(void *Addr);
     386             : 
     387             :   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
     388             :   /// Ptr is the address of the memory at which to store Val, cast to
     389             :   /// GenericValue *.  It is not a pointer to a GenericValue containing the
     390             :   /// address at which to store Val.
     391             :   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
     392             :                           Type *Ty);
     393             : 
     394             :   void InitializeMemory(const Constant *Init, void *Addr);
     395             : 
     396             :   /// getOrEmitGlobalVariable - Return the address of the specified global
     397             :   /// variable, possibly emitting it to memory if needed.  This is used by the
     398             :   /// Emitter.
     399             :   ///
     400             :   /// This function is deprecated for the MCJIT execution engine.  Use
     401             :   /// getGlobalValueAddress instead.
     402          16 :   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
     403          16 :     return getPointerToGlobal((const GlobalValue *)GV);
     404             :   }
     405             : 
     406             :   /// Registers a listener to be called back on various events within
     407             :   /// the JIT.  See JITEventListener.h for more details.  Does not
     408             :   /// take ownership of the argument.  The argument may be NULL, in
     409             :   /// which case these functions do nothing.
     410         276 :   virtual void RegisterJITEventListener(JITEventListener *) {}
     411           0 :   virtual void UnregisterJITEventListener(JITEventListener *) {}
     412             : 
     413             :   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
     414             :   /// not changed.  Supported by MCJIT but not the interpreter.
     415           0 :   virtual void setObjectCache(ObjectCache *) {
     416           0 :     llvm_unreachable("No support for an object cache");
     417             :   }
     418             : 
     419             :   /// setProcessAllSections (MCJIT Only): By default, only sections that are
     420             :   /// "required for execution" are passed to the RTDyldMemoryManager, and other
     421             :   /// sections are discarded. Passing 'true' to this method will cause
     422             :   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
     423             :   /// of whether they are "required to execute" in the usual sense.
     424             :   ///
     425             :   /// Rationale: Some MCJIT clients want to be able to inspect metadata
     426             :   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
     427             :   /// performance. Passing these sections to the memory manager allows the
     428             :   /// client to make policy about the relevant sections, rather than having
     429             :   /// MCJIT do it.
     430           0 :   virtual void setProcessAllSections(bool ProcessAllSections) {
     431           0 :     llvm_unreachable("No support for ProcessAllSections option");
     432             :   }
     433             : 
     434             :   /// Return the target machine (if available).
     435           0 :   virtual TargetMachine *getTargetMachine() { return nullptr; }
     436             : 
     437             :   /// DisableLazyCompilation - When lazy compilation is off (the default), the
     438             :   /// JIT will eagerly compile every function reachable from the argument to
     439             :   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
     440             :   /// compile the one function and emit stubs to compile the rest when they're
     441             :   /// first called.  If lazy compilation is turned off again while some lazy
     442             :   /// stubs are still around, and one of those stubs is called, the program will
     443             :   /// abort.
     444             :   ///
     445             :   /// In order to safely compile lazily in a threaded program, the user must
     446             :   /// ensure that 1) only one thread at a time can call any particular lazy
     447             :   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
     448             :   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
     449             :   /// lazy stub.  See http://llvm.org/PR5184 for details.
     450             :   void DisableLazyCompilation(bool Disabled = true) {
     451         181 :     CompilingLazily = !Disabled;
     452             :   }
     453             :   bool isCompilingLazily() const {
     454             :     return CompilingLazily;
     455             :   }
     456             : 
     457             :   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
     458             :   /// allocate space and populate a GlobalVariable that is not internal to
     459             :   /// the module.
     460             :   void DisableGVCompilation(bool Disabled = true) {
     461             :     GVCompilationDisabled = Disabled;
     462             :   }
     463             :   bool isGVCompilationDisabled() const {
     464             :     return GVCompilationDisabled;
     465             :   }
     466             : 
     467             :   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
     468             :   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
     469             :   /// resolve symbols in a custom way.
     470             :   void DisableSymbolSearching(bool Disabled = true) {
     471             :     SymbolSearchingDisabled = Disabled;
     472             :   }
     473           0 :   bool isSymbolSearchingDisabled() const {
     474           0 :     return SymbolSearchingDisabled;
     475             :   }
     476             : 
     477             :   /// Enable/Disable IR module verification.
     478             :   ///
     479             :   /// Note: Module verification is enabled by default in Debug builds, and
     480             :   /// disabled by default in Release. Use this method to override the default.
     481             :   void setVerifyModules(bool Verify) {
     482         198 :     VerifyModules = Verify;
     483             :   }
     484           0 :   bool getVerifyModules() const {
     485           0 :     return VerifyModules;
     486             :   }
     487             : 
     488             :   /// InstallLazyFunctionCreator - If an unknown function is needed, the
     489             :   /// specified function pointer is invoked to create it.  If it returns null,
     490             :   /// the JIT will abort.
     491             :   void InstallLazyFunctionCreator(FunctionCreator C) {
     492           2 :     LazyFunctionCreator = std::move(C);
     493             :   }
     494             : 
     495             : protected:
     496         154 :   ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
     497             :   explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
     498             :   explicit ExecutionEngine(std::unique_ptr<Module> M);
     499             : 
     500             :   void emitGlobals();
     501             : 
     502             :   void EmitGlobalVariable(const GlobalVariable *GV);
     503             : 
     504             :   GenericValue getConstantValue(const Constant *C);
     505             :   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
     506             :                            Type *Ty);
     507             : 
     508             : private:
     509             :   void Init(std::unique_ptr<Module> M);
     510             : };
     511             : 
     512             : namespace EngineKind {
     513             : 
     514             :   // These are actually bitmasks that get or-ed together.
     515             :   enum Kind {
     516             :     JIT         = 0x1,
     517             :     Interpreter = 0x2
     518             :   };
     519             :   const static Kind Either = (Kind)(JIT | Interpreter);
     520             : 
     521             : } // end namespace EngineKind
     522             : 
     523             : /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
     524             : /// chaining the various set* methods, and terminating it with a .create()
     525             : /// call.
     526         168 : class EngineBuilder {
     527             : private:
     528             :   std::unique_ptr<Module> M;
     529             :   EngineKind::Kind WhichEngine;
     530             :   std::string *ErrorStr;
     531             :   CodeGenOpt::Level OptLevel;
     532             :   std::shared_ptr<MCJITMemoryManager> MemMgr;
     533             :   std::shared_ptr<LegacyJITSymbolResolver> Resolver;
     534             :   TargetOptions Options;
     535             :   Optional<Reloc::Model> RelocModel;
     536             :   Optional<CodeModel::Model> CMModel;
     537             :   std::string MArch;
     538             :   std::string MCPU;
     539             :   SmallVector<std::string, 4> MAttrs;
     540             :   bool VerifyModules;
     541             :   bool UseOrcMCJITReplacement;
     542             :   bool EmulatedTLS = true;
     543             : 
     544             : public:
     545             :   /// Default constructor for EngineBuilder.
     546             :   EngineBuilder();
     547             : 
     548             :   /// Constructor for EngineBuilder.
     549             :   EngineBuilder(std::unique_ptr<Module> M);
     550             : 
     551             :   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
     552             :   ~EngineBuilder();
     553             : 
     554             :   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
     555             :   /// or whichever engine works.  This option defaults to EngineKind::Either.
     556             :   EngineBuilder &setEngineKind(EngineKind::Kind w) {
     557         217 :     WhichEngine = w;
     558             :     return *this;
     559             :   }
     560             : 
     561             :   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
     562             :   /// clients to customize their memory allocation policies for the MCJIT. This
     563             :   /// is only appropriate for the MCJIT; setting this and configuring the builder
     564             :   /// to create anything other than MCJIT will cause a runtime error. If create()
     565             :   /// is called and is successful, the created engine takes ownership of the
     566             :   /// memory manager. This option defaults to NULL.
     567             :   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
     568             : 
     569             :   EngineBuilder&
     570             :   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
     571             : 
     572             :   EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
     573             : 
     574             :   /// setErrorStr - Set the error string to write to on error.  This option
     575             :   /// defaults to NULL.
     576             :   EngineBuilder &setErrorStr(std::string *e) {
     577         222 :     ErrorStr = e;
     578             :     return *this;
     579             :   }
     580             : 
     581             :   /// setOptLevel - Set the optimization level for the JIT.  This option
     582             :   /// defaults to CodeGenOpt::Default.
     583             :   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
     584         217 :     OptLevel = l;
     585             :     return *this;
     586             :   }
     587             : 
     588             :   /// setTargetOptions - Set the target options that the ExecutionEngine
     589             :   /// target is using. Defaults to TargetOptions().
     590             :   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
     591         189 :     Options = Opts;
     592             :     return *this;
     593             :   }
     594             : 
     595             :   /// setRelocationModel - Set the relocation model that the ExecutionEngine
     596             :   /// target is using. Defaults to target specific default "Reloc::Default".
     597             :   EngineBuilder &setRelocationModel(Reloc::Model RM) {
     598             :     RelocModel = RM;
     599             :     return *this;
     600             :   }
     601             : 
     602             :   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
     603             :   /// data is using. Defaults to target specific default
     604             :   /// "CodeModel::JITDefault".
     605             :   EngineBuilder &setCodeModel(CodeModel::Model M) {
     606             :     CMModel = M;
     607             :     return *this;
     608             :   }
     609             : 
     610             :   /// setMArch - Override the architecture set by the Module's triple.
     611             :   EngineBuilder &setMArch(StringRef march) {
     612          28 :     MArch.assign(march.begin(), march.end());
     613             :     return *this;
     614             :   }
     615             : 
     616             :   /// setMCPU - Target a specific cpu type.
     617             :   EngineBuilder &setMCPU(StringRef mcpu) {
     618          28 :     MCPU.assign(mcpu.begin(), mcpu.end());
     619             :     return *this;
     620             :   }
     621             : 
     622             :   /// setVerifyModules - Set whether the JIT implementation should verify
     623             :   /// IR modules during compilation.
     624             :   EngineBuilder &setVerifyModules(bool Verify) {
     625             :     VerifyModules = Verify;
     626             :     return *this;
     627             :   }
     628             : 
     629             :   /// setMAttrs - Set cpu-specific attributes.
     630             :   template<typename StringSequence>
     631         181 :   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
     632         181 :     MAttrs.clear();
     633         181 :     MAttrs.append(mattrs.begin(), mattrs.end());
     634         181 :     return *this;
     635             :   }
     636             : 
     637             :   // Use OrcMCJITReplacement instead of MCJIT. Off by default.
     638             :   void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
     639         181 :     this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
     640             :   }
     641             : 
     642             :   void setEmulatedTLS(bool EmulatedTLS) {
     643             :     this->EmulatedTLS = EmulatedTLS;
     644             :   }
     645             : 
     646             :   TargetMachine *selectTarget();
     647             : 
     648             :   /// selectTarget - Pick a target either via -march or by guessing the native
     649             :   /// arch.  Add any CPU features specified via -mcpu or -mattr.
     650             :   TargetMachine *selectTarget(const Triple &TargetTriple,
     651             :                               StringRef MArch,
     652             :                               StringRef MCPU,
     653             :                               const SmallVectorImpl<std::string>& MAttrs);
     654             : 
     655             :   ExecutionEngine *create() {
     656         222 :     return create(selectTarget());
     657             :   }
     658             : 
     659             :   ExecutionEngine *create(TargetMachine *TM);
     660             : };
     661             : 
     662             : // Create wrappers for C Binding types (see CBindingWrapping.h).
     663             : DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
     664             : 
     665             : } // end namespace llvm
     666             : 
     667             : #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H

Generated by: LCOV version 1.13