LCOV - code coverage report
Current view: top level - include/llvm/IR - DerivedTypes.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 137 170 80.6 %
Date: 2018-10-20 13:21:21 Functions: 44 57 77.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file contains the declarations of classes that represent "derived
      11             : // types".  These are things like "arrays of x" or "structure of x, y, z" or
      12             : // "function returning x taking (y,z) as parameters", etc...
      13             : //
      14             : // The implementations of these classes live in the Type.cpp file.
      15             : //
      16             : //===----------------------------------------------------------------------===//
      17             : 
      18             : #ifndef LLVM_IR_DERIVEDTYPES_H
      19             : #define LLVM_IR_DERIVEDTYPES_H
      20             : 
      21             : #include "llvm/ADT/ArrayRef.h"
      22             : #include "llvm/ADT/STLExtras.h"
      23             : #include "llvm/ADT/StringRef.h"
      24             : #include "llvm/IR/Type.h"
      25             : #include "llvm/Support/Casting.h"
      26             : #include "llvm/Support/Compiler.h"
      27             : #include <cassert>
      28             : #include <cstdint>
      29             : 
      30             : namespace llvm {
      31             : 
      32             : class Value;
      33             : class APInt;
      34             : class LLVMContext;
      35             : 
      36             : /// Class to represent integer types. Note that this class is also used to
      37             : /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
      38             : /// Int64Ty.
      39             : /// Integer representation type
      40             : class IntegerType : public Type {
      41             :   friend class LLVMContextImpl;
      42             : 
      43             : protected:
      44             :   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
      45             :     setSubclassData(NumBits);
      46             :   }
      47             : 
      48             : public:
      49             :   /// This enum is just used to hold constants we need for IntegerType.
      50             :   enum {
      51             :     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
      52             :     MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
      53             :       ///< Note that bit width is stored in the Type classes SubclassData field
      54             :       ///< which has 24 bits. This yields a maximum bit width of 16,777,215
      55             :       ///< bits.
      56             :   };
      57             : 
      58             :   /// This static method is the primary way of constructing an IntegerType.
      59             :   /// If an IntegerType with the same NumBits value was previously instantiated,
      60             :   /// that instance will be returned. Otherwise a new one will be created. Only
      61             :   /// one instance with a given NumBits value is ever created.
      62             :   /// Get or create an IntegerType instance.
      63             :   static IntegerType *get(LLVMContext &C, unsigned NumBits);
      64             : 
      65             :   /// Get the number of bits in this IntegerType
      66             :   unsigned getBitWidth() const { return getSubclassData(); }
      67             : 
      68             :   /// Return a bitmask with ones set for all of the bits that can be set by an
      69             :   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
      70             :   uint64_t getBitMask() const {
      71          38 :     return ~uint64_t(0UL) >> (64-getBitWidth());
      72             :   }
      73             : 
      74             :   /// Return a uint64_t with just the most significant bit set (the sign bit, if
      75             :   /// the value is treated as a signed number).
      76             :   uint64_t getSignBit() const {
      77           0 :     return 1ULL << (getBitWidth()-1);
      78             :   }
      79             : 
      80             :   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
      81             :   /// @returns a bit mask with ones set for all the bits of this type.
      82             :   /// Get a bit mask for this type.
      83             :   APInt getMask() const;
      84             : 
      85             :   /// This method determines if the width of this IntegerType is a power-of-2
      86             :   /// in terms of 8 bit bytes.
      87             :   /// @returns true if this is a power-of-2 byte width.
      88             :   /// Is this a power-of-2 byte-width IntegerType ?
      89             :   bool isPowerOf2ByteWidth() const;
      90             : 
      91             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
      92             :   static bool classof(const Type *T) {
      93           0 :     return T->getTypeID() == IntegerTyID;
      94             :   }
      95             : };
      96             : 
      97             : unsigned Type::getIntegerBitWidth() const {
      98             :   return cast<IntegerType>(this)->getBitWidth();
      99             : }
     100             : 
     101             : /// Class to represent function types
     102             : ///
     103             : class FunctionType : public Type {
     104             :   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
     105             : 
     106             : public:
     107             :   FunctionType(const FunctionType &) = delete;
     108             :   FunctionType &operator=(const FunctionType &) = delete;
     109             : 
     110             :   /// This static method is the primary way of constructing a FunctionType.
     111             :   static FunctionType *get(Type *Result,
     112             :                            ArrayRef<Type*> Params, bool isVarArg);
     113             : 
     114             :   /// Create a FunctionType taking no parameters.
     115             :   static FunctionType *get(Type *Result, bool isVarArg);
     116             : 
     117             :   /// Return true if the specified type is valid as a return type.
     118             :   static bool isValidReturnType(Type *RetTy);
     119             : 
     120             :   /// Return true if the specified type is valid as an argument type.
     121             :   static bool isValidArgumentType(Type *ArgTy);
     122             : 
     123    19392797 :   bool isVarArg() const { return getSubclassData()!=0; }
     124    26777321 :   Type *getReturnType() const { return ContainedTys[0]; }
     125             : 
     126             :   using param_iterator = Type::subtype_iterator;
     127             : 
     128    16855594 :   param_iterator param_begin() const { return ContainedTys + 1; }
     129    16677042 :   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
     130             :   ArrayRef<Type *> params() const {
     131    15766458 :     return makeArrayRef(param_begin(), param_end());
     132             :   }
     133             : 
     134             :   /// Parameter type accessors.
     135    12938053 :   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
     136             : 
     137             :   /// Return the number of fixed parameters this function type requires.
     138             :   /// This does not consider varargs.
     139    12631589 :   unsigned getNumParams() const { return NumContainedTys - 1; }
     140             : 
     141             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     142             :   static bool classof(const Type *T) {
     143           0 :     return T->getTypeID() == FunctionTyID;
     144             :   }
     145             : };
     146             : static_assert(alignof(FunctionType) >= alignof(Type *),
     147             :               "Alignment sufficient for objects appended to FunctionType");
     148             : 
     149             : bool Type::isFunctionVarArg() const {
     150             :   return cast<FunctionType>(this)->isVarArg();
     151             : }
     152             : 
     153             : Type *Type::getFunctionParamType(unsigned i) const {
     154          20 :   return cast<FunctionType>(this)->getParamType(i);
     155             : }
     156             : 
     157             : unsigned Type::getFunctionNumParams() const {
     158             :   return cast<FunctionType>(this)->getNumParams();
     159             : }
     160             : 
     161             : /// Common super class of ArrayType, StructType and VectorType.
     162             : class CompositeType : public Type {
     163             : protected:
     164             :   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
     165             : 
     166             : public:
     167             :   /// Given an index value into the type, return the type of the element.
     168             :   Type *getTypeAtIndex(const Value *V) const;
     169             :   Type *getTypeAtIndex(unsigned Idx) const;
     170             :   bool indexValid(const Value *V) const;
     171             :   bool indexValid(unsigned Idx) const;
     172             : 
     173             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     174             :   static bool classof(const Type *T) {
     175    11321505 :     return T->getTypeID() == ArrayTyID ||
     176    49317121 :            T->getTypeID() == StructTyID ||
     177             :            T->getTypeID() == VectorTyID;
     178             :   }
     179             : };
     180             : 
     181             : /// Class to represent struct types. There are two different kinds of struct
     182             : /// types: Literal structs and Identified structs.
     183             : ///
     184             : /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
     185             : /// always have a body when created.  You can get one of these by using one of
     186             : /// the StructType::get() forms.
     187             : ///
     188             : /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
     189             : /// uniqued.  The names for identified structs are managed at the LLVMContext
     190             : /// level, so there can only be a single identified struct with a given name in
     191             : /// a particular LLVMContext.  Identified structs may also optionally be opaque
     192             : /// (have no body specified).  You get one of these by using one of the
     193             : /// StructType::create() forms.
     194             : ///
     195             : /// Independent of what kind of struct you have, the body of a struct type are
     196             : /// laid out in memory consecutively with the elements directly one after the
     197             : /// other (if the struct is packed) or (if not packed) with padding between the
     198             : /// elements as defined by DataLayout (which is required to match what the code
     199             : /// generator for a target expects).
     200             : ///
     201             : class StructType : public CompositeType {
     202      582584 :   StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
     203             : 
     204             :   enum {
     205             :     /// This is the contents of the SubClassData field.
     206             :     SCDB_HasBody = 1,
     207             :     SCDB_Packed = 2,
     208             :     SCDB_IsLiteral = 4,
     209             :     SCDB_IsSized = 8
     210             :   };
     211             : 
     212             :   /// For a named struct that actually has a name, this is a pointer to the
     213             :   /// symbol table entry (maintained by LLVMContext) for the struct.
     214             :   /// This is null if the type is an literal struct or if it is a identified
     215             :   /// type that has an empty name.
     216             :   void *SymbolTableEntry = nullptr;
     217             : 
     218             : public:
     219             :   StructType(const StructType &) = delete;
     220             :   StructType &operator=(const StructType &) = delete;
     221             : 
     222             :   /// This creates an identified struct.
     223             :   static StructType *create(LLVMContext &Context, StringRef Name);
     224             :   static StructType *create(LLVMContext &Context);
     225             : 
     226             :   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
     227             :                             bool isPacked = false);
     228             :   static StructType *create(ArrayRef<Type *> Elements);
     229             :   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
     230             :                             StringRef Name, bool isPacked = false);
     231             :   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
     232             :   template <class... Tys>
     233             :   static typename std::enable_if<are_base_of<Type, Tys...>::value,
     234             :                                  StructType *>::type
     235        8345 :   create(StringRef Name, Type *elt1, Tys *... elts) {
     236             :     assert(elt1 && "Cannot create a struct type with no elements with this");
     237        8345 :     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
     238        8345 :     return create(StructFields, Name);
     239             :   }
     240         671 : 
     241             :   /// This static method is the primary way to create a literal StructType.
     242         671 :   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
     243         671 :                          bool isPacked = false);
     244             : 
     245         819 :   /// Create an empty structure type.
     246             :   static StructType *get(LLVMContext &Context, bool isPacked = false);
     247         819 : 
     248         819 :   /// This static method is a convenience method for creating structure types by
     249             :   /// specifying the elements as arguments. Note that this method always returns
     250         543 :   /// a non-packed struct, and requires at least one element type.
     251             :   template <class... Tys>
     252         543 :   static typename std::enable_if<are_base_of<Type, Tys...>::value,
     253         543 :                                  StructType *>::type
     254      387940 :   get(Type *elt1, Tys *... elts) {
     255         543 :     assert(elt1 && "Cannot create a struct type with no elements with this");
     256      387940 :     LLVMContext &Ctx = elt1->getContext();
     257      388483 :     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
     258      388483 :     return llvm::StructType::get(Ctx, StructFields);
     259             :   }
     260         391 : 
     261      524148 :   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
     262         391 : 
     263         391 :   /// Return true if this type is uniqued by structural equivalence, false if it
     264         227 :   /// is a struct definition.
     265         288 :   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
     266       45704 : 
     267         164 :   /// Return true if this is a type with an identity that has no body specified
     268       45868 :   /// yet. These prints as 'opaque' in .ll files.
     269       45715 :   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
     270       45868 : 
     271             :   /// isSized - Return true if this is a sized type.
     272      311773 :   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
     273         208 : 
     274      311609 :   /// Return true if this is a named struct that has a non-empty name.
     275      311773 :   bool hasName() const { return SymbolTableEntry != nullptr; }
     276      311609 : 
     277         164 :   /// Return the name for this struct type if it has an identity.
     278         252 :   /// This may return an empty string for an unnamed struct type.  Do not call
     279             :   /// this on an literal type.
     280         252 :   StringRef getName() const;
     281          88 : 
     282         252 :   /// Change the name of this type to the specified name, or to a name with a
     283         164 :   /// suffix if there is a collision. Do not call this on an literal type.
     284           2 :   void setName(StringRef Name);
     285         164 : 
     286           2 :   /// Specify a body for an opaque identified type.
     287         166 :   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
     288         166 : 
     289             :   template <typename... Tys>
     290         195 :   typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
     291             :   setBody(Type *elt1, Tys *... elts) {
     292         195 :     assert(elt1 && "Cannot create a struct type with no elements with this");
     293         195 :     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
     294          31 :     setBody(StructFields);
     295        1414 :   }
     296             : 
     297        1553 :   /// Return true if the specified type is valid as a element type.
     298        1414 :   static bool isValidElementType(Type *ElemTy);
     299             : 
     300        1793 :   // Iterator access to the elements.
     301             :   using element_iterator = Type::subtype_iterator;
     302        1793 : 
     303        1793 :   element_iterator element_begin() const { return ContainedTys; }
     304     2599912 :   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
     305        1414 :   ArrayRef<Type *> const elements() const {
     306      509889 :     return makeArrayRef(element_begin(), element_end());
     307        1414 :   }
     308        1414 : 
     309             :   /// Return true if this is layout identical to the specified struct.
     310             :   bool isLayoutIdentical(StructType *Other) const;
     311             : 
     312             :   /// Random access to the elements
     313           0 :   unsigned getNumElements() const { return NumContainedTys; }
     314           0 :   Type *getElementType(unsigned N) const {
     315             :     assert(N < NumContainedTys && "Element number out of range!");
     316    25166748 :     return ContainedTys[N];
     317             :   }
     318             : 
     319             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     320             :   static bool classof(const Type *T) {
     321           0 :     return T->getTypeID() == StructTyID;
     322             :   }
     323             : };
     324           1 : 
     325           0 : StringRef Type::getStructName() const {
     326           1 :   return cast<StructType>(this)->getName();
     327           1 : }
     328         116 : 
     329             : unsigned Type::getStructNumElements() const {
     330        4304 :   return cast<StructType>(this)->getNumElements();
     331        4409 : }
     332             : 
     333           0 : Type *Type::getStructElementType(unsigned N) const {
     334        4004 :   return cast<StructType>(this)->getElementType(N);
     335             : }
     336             : 
     337             : /// This is the superclass of the array and vector type classes. Both of these
     338             : /// represent "arrays" in memory. The array type represents a specifically sized
     339             : /// array, and the vector type represents a specifically sized array that allows
     340             : /// for use of SIMD instructions. SequentialType holds the common features of
     341             : /// both, which stem from the fact that both lay their components out in memory
     342             : /// identically.
     343             : class SequentialType : public CompositeType {
     344             :   Type *ContainedType;               ///< Storage for the single contained type.
     345             :   uint64_t NumElements;
     346             : 
     347             : protected:
     348             :   SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
     349      202890 :     : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
     350      405780 :       NumElements(NumElements) {
     351      202890 :     ContainedTys = &ContainedType;
     352      202890 :     NumContainedTys = 1;
     353             :   }
     354             : 
     355             : public:
     356             :   SequentialType(const SequentialType &) = delete;
     357           0 :   SequentialType &operator=(const SequentialType &) = delete;
     358             : 
     359           0 :   uint64_t getNumElements() const { return NumElements; }
     360           0 :   Type *getElementType() const { return ContainedType; }
     361        1578 : 
     362             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     363        1578 :   static bool classof(const Type *T) {
     364   165280984 :     return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
     365        1578 :   }
     366         543 : };
     367             : 
     368         543 : /// Class to represent array types.
     369         543 : class ArrayType : public SequentialType {
     370         543 :   ArrayType(Type *ElType, uint64_t NumEl);
     371         164 : 
     372           0 : public:
     373         164 :   ArrayType(const ArrayType &) = delete;
     374         164 :   ArrayType &operator=(const ArrayType &) = delete;
     375         164 : 
     376         707 :   /// This static method is the primary way to construct an ArrayType
     377           0 :   static ArrayType *get(Type *ElementType, uint64_t NumElements);
     378         707 : 
     379         707 :   /// Return true if the specified type is valid as a element type.
     380         707 :   static bool isValidElementType(Type *ElemTy);
     381         164 : 
     382             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     383         164 :   static bool classof(const Type *T) {
     384         164 :     return T->getTypeID() == ArrayTyID;
     385         164 :   }
     386             : };
     387             : 
     388             : uint64_t Type::getArrayNumElements() const {
     389        6574 :   return cast<ArrayType>(this)->getNumElements();
     390             : }
     391             : 
     392             : /// Class to represent vector types.
     393             : class VectorType : public SequentialType {
     394             :   VectorType(Type *ElType, unsigned NumEl);
     395           0 : 
     396           0 : public:
     397             :   VectorType(const VectorType &) = delete;
     398             :   VectorType &operator=(const VectorType &) = delete;
     399             : 
     400             :   /// This static method is the primary way to construct an VectorType.
     401             :   static VectorType *get(Type *ElementType, unsigned NumElements);
     402           0 : 
     403             :   /// This static method gets a VectorType with the same number of elements as
     404             :   /// the input type, and the element type is an integer type of the same width
     405             :   /// as the input element type.
     406         224 :   static VectorType *getInteger(VectorType *VTy) {
     407         224 :     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
     408             :     assert(EltBits && "Element size must be of a non-zero size");
     409         224 :     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
     410         224 :     return VectorType::get(EltTy, VTy->getNumElements());
     411             :   }
     412             : 
     413             :   /// This static method is like getInteger except that the element types are
     414             :   /// twice as wide as the elements in the input type.
     415        2275 :   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
     416        2275 :     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
     417        2275 :     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
     418        2275 :     return VectorType::get(EltTy, VTy->getNumElements());
     419             :   }
     420             : 
     421             :   /// This static method is like getInteger except that the element types are
     422             :   /// half as wide as the elements in the input type.
     423        5356 :   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
     424        5704 :     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
     425         348 :     assert((EltBits & 1) == 0 &&
     426             :            "Cannot truncate vector element with odd bit-width");
     427        5704 :     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
     428        5704 :     return VectorType::get(EltTy, VTy->getNumElements());
     429             :   }
     430             : 
     431             :   /// This static method returns a VectorType with half as many elements as the
     432             :   /// input type and the same element type.
     433          54 :   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
     434          54 :     unsigned NumElts = VTy->getNumElements();
     435          54 :     assert ((NumElts & 1) == 0 &&
     436          54 :             "Cannot halve vector with odd number of elements.");
     437           0 :     return VectorType::get(VTy->getElementType(), NumElts/2);
     438             :   }
     439             : 
     440             :   /// This static method returns a VectorType with twice as many elements as the
     441          48 :   /// input type and the same element type.
     442          48 :   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
     443             :     unsigned NumElts = VTy->getNumElements();
     444             :     return VectorType::get(VTy->getElementType(), NumElts*2);
     445          48 :   }
     446          48 : 
     447             :   /// Return true if the specified type is valid as a element type.
     448             :   static bool isValidElementType(Type *ElemTy);
     449           0 : 
     450           0 :   /// Return the number of bits in the Vector type.
     451             :   /// Returns zero when the vector is a vector of pointers.
     452      471387 :   unsigned getBitWidth() const {
     453      134179 :     return getNumElements() * getElementType()->getPrimitiveSizeInBits();
     454             :   }
     455             : 
     456             :   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     457             :   static bool classof(const Type *T) {
     458     2857551 :     return T->getTypeID() == VectorTyID;
     459             :   }
     460             : };
     461             : 
     462             : unsigned Type::getVectorNumElements() const {
     463     6530235 :   return cast<VectorType>(this)->getNumElements();
     464             : }
     465           0 : 
     466             : /// Class to represent pointers.
     467             : class PointerType : public Type {
     468             :   explicit PointerType(Type *ElType, unsigned AddrSpace);
     469             : 
     470           0 :   Type *PointeeTy;
     471             : 
     472             : public:
     473           0 :   PointerType(const PointerType &) = delete;
     474             :   PointerType &operator=(const PointerType &) = delete;
     475          39 : 
     476           0 :   /// This constructs a pointer to an object of the specified type in a numbered
     477             :   /// address space.
     478             :   static PointerType *get(Type *ElementType, unsigned AddressSpace);
     479             : 
     480             :   /// This constructs a pointer to an object of the specified type in the
     481        4249 :   /// generic address space (address space zero).
     482             :   static PointerType *getUnqual(Type *ElementType) {
     483      781339 :     return PointerType::get(ElementType, 0);
     484             :   }
     485             : 
     486           0 :   Type *getElementType() const { return PointeeTy; }
     487             : 
     488             :   /// Return true if the specified type is valid as a element type.
     489             :   static bool isValidElementType(Type *ElemTy);
     490             : 
     491             :   /// Return true if we can load or store from a pointer to this type.
     492             :   static bool isLoadableOrStorableType(Type *ElemTy);
     493         775 : 
     494           0 :   /// Return the address space of the Pointer type.
     495           7 :   inline unsigned getAddressSpace() const { return getSubclassData(); }
     496           0 : 
     497             :   /// Implement support type inquiry through isa, cast, and dyn_cast.
     498           0 :   static bool classof(const Type *T) {
     499           0 :     return T->getTypeID() == PointerTyID;
     500             :   }
     501        1465 : };
     502             : 
     503             : unsigned Type::getPointerAddressSpace() const {
     504           0 :   return cast<PointerType>(getScalarType())->getAddressSpace();
     505             : }
     506             : 
     507             : } // end namespace llvm
     508             : 
     509             : #endif // LLVM_IR_DERIVEDTYPES_H

Generated by: LCOV version 1.13