Line data Source code
1 : //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file contains the declarations of classes that represent "derived
11 : // types". These are things like "arrays of x" or "structure of x, y, z" or
12 : // "function returning x taking (y,z) as parameters", etc...
13 : //
14 : // The implementations of these classes live in the Type.cpp file.
15 : //
16 : //===----------------------------------------------------------------------===//
17 :
18 : #ifndef LLVM_IR_DERIVEDTYPES_H
19 : #define LLVM_IR_DERIVEDTYPES_H
20 :
21 : #include "llvm/ADT/ArrayRef.h"
22 : #include "llvm/ADT/STLExtras.h"
23 : #include "llvm/ADT/StringRef.h"
24 : #include "llvm/IR/Type.h"
25 : #include "llvm/Support/Casting.h"
26 : #include "llvm/Support/Compiler.h"
27 : #include <cassert>
28 : #include <cstdint>
29 :
30 : namespace llvm {
31 :
32 : class Value;
33 : class APInt;
34 : class LLVMContext;
35 :
36 : /// Class to represent integer types. Note that this class is also used to
37 : /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 : /// Int64Ty.
39 : /// Integer representation type
40 : class IntegerType : public Type {
41 : friend class LLVMContextImpl;
42 :
43 : protected:
44 : explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45 : setSubclassData(NumBits);
46 : }
47 :
48 : public:
49 : /// This enum is just used to hold constants we need for IntegerType.
50 : enum {
51 : MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
52 : MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
53 : ///< Note that bit width is stored in the Type classes SubclassData field
54 : ///< which has 24 bits. This yields a maximum bit width of 16,777,215
55 : ///< bits.
56 : };
57 :
58 : /// This static method is the primary way of constructing an IntegerType.
59 : /// If an IntegerType with the same NumBits value was previously instantiated,
60 : /// that instance will be returned. Otherwise a new one will be created. Only
61 : /// one instance with a given NumBits value is ever created.
62 : /// Get or create an IntegerType instance.
63 : static IntegerType *get(LLVMContext &C, unsigned NumBits);
64 :
65 : /// Get the number of bits in this IntegerType
66 : unsigned getBitWidth() const { return getSubclassData(); }
67 :
68 : /// Return a bitmask with ones set for all of the bits that can be set by an
69 : /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
70 : uint64_t getBitMask() const {
71 38 : return ~uint64_t(0UL) >> (64-getBitWidth());
72 : }
73 :
74 : /// Return a uint64_t with just the most significant bit set (the sign bit, if
75 : /// the value is treated as a signed number).
76 : uint64_t getSignBit() const {
77 0 : return 1ULL << (getBitWidth()-1);
78 : }
79 :
80 : /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
81 : /// @returns a bit mask with ones set for all the bits of this type.
82 : /// Get a bit mask for this type.
83 : APInt getMask() const;
84 :
85 : /// This method determines if the width of this IntegerType is a power-of-2
86 : /// in terms of 8 bit bytes.
87 : /// @returns true if this is a power-of-2 byte width.
88 : /// Is this a power-of-2 byte-width IntegerType ?
89 : bool isPowerOf2ByteWidth() const;
90 :
91 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
92 : static bool classof(const Type *T) {
93 0 : return T->getTypeID() == IntegerTyID;
94 : }
95 : };
96 :
97 : unsigned Type::getIntegerBitWidth() const {
98 : return cast<IntegerType>(this)->getBitWidth();
99 : }
100 :
101 : /// Class to represent function types
102 : ///
103 : class FunctionType : public Type {
104 : FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105 :
106 : public:
107 : FunctionType(const FunctionType &) = delete;
108 : FunctionType &operator=(const FunctionType &) = delete;
109 :
110 : /// This static method is the primary way of constructing a FunctionType.
111 : static FunctionType *get(Type *Result,
112 : ArrayRef<Type*> Params, bool isVarArg);
113 :
114 : /// Create a FunctionType taking no parameters.
115 : static FunctionType *get(Type *Result, bool isVarArg);
116 :
117 : /// Return true if the specified type is valid as a return type.
118 : static bool isValidReturnType(Type *RetTy);
119 :
120 : /// Return true if the specified type is valid as an argument type.
121 : static bool isValidArgumentType(Type *ArgTy);
122 :
123 19392797 : bool isVarArg() const { return getSubclassData()!=0; }
124 26777321 : Type *getReturnType() const { return ContainedTys[0]; }
125 :
126 : using param_iterator = Type::subtype_iterator;
127 :
128 16855594 : param_iterator param_begin() const { return ContainedTys + 1; }
129 16677042 : param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
130 : ArrayRef<Type *> params() const {
131 15766458 : return makeArrayRef(param_begin(), param_end());
132 : }
133 :
134 : /// Parameter type accessors.
135 12938053 : Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136 :
137 : /// Return the number of fixed parameters this function type requires.
138 : /// This does not consider varargs.
139 12631589 : unsigned getNumParams() const { return NumContainedTys - 1; }
140 :
141 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
142 : static bool classof(const Type *T) {
143 0 : return T->getTypeID() == FunctionTyID;
144 : }
145 : };
146 : static_assert(alignof(FunctionType) >= alignof(Type *),
147 : "Alignment sufficient for objects appended to FunctionType");
148 :
149 : bool Type::isFunctionVarArg() const {
150 : return cast<FunctionType>(this)->isVarArg();
151 : }
152 :
153 : Type *Type::getFunctionParamType(unsigned i) const {
154 20 : return cast<FunctionType>(this)->getParamType(i);
155 : }
156 :
157 : unsigned Type::getFunctionNumParams() const {
158 : return cast<FunctionType>(this)->getNumParams();
159 : }
160 :
161 : /// Common super class of ArrayType, StructType and VectorType.
162 : class CompositeType : public Type {
163 : protected:
164 : explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
165 :
166 : public:
167 : /// Given an index value into the type, return the type of the element.
168 : Type *getTypeAtIndex(const Value *V) const;
169 : Type *getTypeAtIndex(unsigned Idx) const;
170 : bool indexValid(const Value *V) const;
171 : bool indexValid(unsigned Idx) const;
172 :
173 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
174 : static bool classof(const Type *T) {
175 11321505 : return T->getTypeID() == ArrayTyID ||
176 49317121 : T->getTypeID() == StructTyID ||
177 : T->getTypeID() == VectorTyID;
178 : }
179 : };
180 :
181 : /// Class to represent struct types. There are two different kinds of struct
182 : /// types: Literal structs and Identified structs.
183 : ///
184 : /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
185 : /// always have a body when created. You can get one of these by using one of
186 : /// the StructType::get() forms.
187 : ///
188 : /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
189 : /// uniqued. The names for identified structs are managed at the LLVMContext
190 : /// level, so there can only be a single identified struct with a given name in
191 : /// a particular LLVMContext. Identified structs may also optionally be opaque
192 : /// (have no body specified). You get one of these by using one of the
193 : /// StructType::create() forms.
194 : ///
195 : /// Independent of what kind of struct you have, the body of a struct type are
196 : /// laid out in memory consecutively with the elements directly one after the
197 : /// other (if the struct is packed) or (if not packed) with padding between the
198 : /// elements as defined by DataLayout (which is required to match what the code
199 : /// generator for a target expects).
200 : ///
201 : class StructType : public CompositeType {
202 582584 : StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
203 :
204 : enum {
205 : /// This is the contents of the SubClassData field.
206 : SCDB_HasBody = 1,
207 : SCDB_Packed = 2,
208 : SCDB_IsLiteral = 4,
209 : SCDB_IsSized = 8
210 : };
211 :
212 : /// For a named struct that actually has a name, this is a pointer to the
213 : /// symbol table entry (maintained by LLVMContext) for the struct.
214 : /// This is null if the type is an literal struct or if it is a identified
215 : /// type that has an empty name.
216 : void *SymbolTableEntry = nullptr;
217 :
218 : public:
219 : StructType(const StructType &) = delete;
220 : StructType &operator=(const StructType &) = delete;
221 :
222 : /// This creates an identified struct.
223 : static StructType *create(LLVMContext &Context, StringRef Name);
224 : static StructType *create(LLVMContext &Context);
225 :
226 : static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
227 : bool isPacked = false);
228 : static StructType *create(ArrayRef<Type *> Elements);
229 : static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
230 : StringRef Name, bool isPacked = false);
231 : static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
232 : template <class... Tys>
233 : static typename std::enable_if<are_base_of<Type, Tys...>::value,
234 : StructType *>::type
235 8345 : create(StringRef Name, Type *elt1, Tys *... elts) {
236 : assert(elt1 && "Cannot create a struct type with no elements with this");
237 8345 : SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
238 8345 : return create(StructFields, Name);
239 : }
240 671 :
241 : /// This static method is the primary way to create a literal StructType.
242 671 : static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
243 671 : bool isPacked = false);
244 :
245 819 : /// Create an empty structure type.
246 : static StructType *get(LLVMContext &Context, bool isPacked = false);
247 819 :
248 819 : /// This static method is a convenience method for creating structure types by
249 : /// specifying the elements as arguments. Note that this method always returns
250 543 : /// a non-packed struct, and requires at least one element type.
251 : template <class... Tys>
252 543 : static typename std::enable_if<are_base_of<Type, Tys...>::value,
253 543 : StructType *>::type
254 387940 : get(Type *elt1, Tys *... elts) {
255 543 : assert(elt1 && "Cannot create a struct type with no elements with this");
256 387940 : LLVMContext &Ctx = elt1->getContext();
257 388483 : SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
258 388483 : return llvm::StructType::get(Ctx, StructFields);
259 : }
260 391 :
261 524148 : bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
262 391 :
263 391 : /// Return true if this type is uniqued by structural equivalence, false if it
264 227 : /// is a struct definition.
265 288 : bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
266 45704 :
267 164 : /// Return true if this is a type with an identity that has no body specified
268 45868 : /// yet. These prints as 'opaque' in .ll files.
269 45715 : bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
270 45868 :
271 : /// isSized - Return true if this is a sized type.
272 311773 : bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
273 208 :
274 311609 : /// Return true if this is a named struct that has a non-empty name.
275 311773 : bool hasName() const { return SymbolTableEntry != nullptr; }
276 311609 :
277 164 : /// Return the name for this struct type if it has an identity.
278 252 : /// This may return an empty string for an unnamed struct type. Do not call
279 : /// this on an literal type.
280 252 : StringRef getName() const;
281 88 :
282 252 : /// Change the name of this type to the specified name, or to a name with a
283 164 : /// suffix if there is a collision. Do not call this on an literal type.
284 2 : void setName(StringRef Name);
285 164 :
286 2 : /// Specify a body for an opaque identified type.
287 166 : void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
288 166 :
289 : template <typename... Tys>
290 195 : typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
291 : setBody(Type *elt1, Tys *... elts) {
292 195 : assert(elt1 && "Cannot create a struct type with no elements with this");
293 195 : SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
294 31 : setBody(StructFields);
295 1414 : }
296 :
297 1553 : /// Return true if the specified type is valid as a element type.
298 1414 : static bool isValidElementType(Type *ElemTy);
299 :
300 1793 : // Iterator access to the elements.
301 : using element_iterator = Type::subtype_iterator;
302 1793 :
303 1793 : element_iterator element_begin() const { return ContainedTys; }
304 2599912 : element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
305 1414 : ArrayRef<Type *> const elements() const {
306 509889 : return makeArrayRef(element_begin(), element_end());
307 1414 : }
308 1414 :
309 : /// Return true if this is layout identical to the specified struct.
310 : bool isLayoutIdentical(StructType *Other) const;
311 :
312 : /// Random access to the elements
313 0 : unsigned getNumElements() const { return NumContainedTys; }
314 0 : Type *getElementType(unsigned N) const {
315 : assert(N < NumContainedTys && "Element number out of range!");
316 25166748 : return ContainedTys[N];
317 : }
318 :
319 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
320 : static bool classof(const Type *T) {
321 0 : return T->getTypeID() == StructTyID;
322 : }
323 : };
324 1 :
325 0 : StringRef Type::getStructName() const {
326 1 : return cast<StructType>(this)->getName();
327 1 : }
328 116 :
329 : unsigned Type::getStructNumElements() const {
330 4304 : return cast<StructType>(this)->getNumElements();
331 4409 : }
332 :
333 0 : Type *Type::getStructElementType(unsigned N) const {
334 4004 : return cast<StructType>(this)->getElementType(N);
335 : }
336 :
337 : /// This is the superclass of the array and vector type classes. Both of these
338 : /// represent "arrays" in memory. The array type represents a specifically sized
339 : /// array, and the vector type represents a specifically sized array that allows
340 : /// for use of SIMD instructions. SequentialType holds the common features of
341 : /// both, which stem from the fact that both lay their components out in memory
342 : /// identically.
343 : class SequentialType : public CompositeType {
344 : Type *ContainedType; ///< Storage for the single contained type.
345 : uint64_t NumElements;
346 :
347 : protected:
348 : SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
349 202890 : : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
350 405780 : NumElements(NumElements) {
351 202890 : ContainedTys = &ContainedType;
352 202890 : NumContainedTys = 1;
353 : }
354 :
355 : public:
356 : SequentialType(const SequentialType &) = delete;
357 0 : SequentialType &operator=(const SequentialType &) = delete;
358 :
359 0 : uint64_t getNumElements() const { return NumElements; }
360 0 : Type *getElementType() const { return ContainedType; }
361 1578 :
362 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
363 1578 : static bool classof(const Type *T) {
364 165280984 : return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
365 1578 : }
366 543 : };
367 :
368 543 : /// Class to represent array types.
369 543 : class ArrayType : public SequentialType {
370 543 : ArrayType(Type *ElType, uint64_t NumEl);
371 164 :
372 0 : public:
373 164 : ArrayType(const ArrayType &) = delete;
374 164 : ArrayType &operator=(const ArrayType &) = delete;
375 164 :
376 707 : /// This static method is the primary way to construct an ArrayType
377 0 : static ArrayType *get(Type *ElementType, uint64_t NumElements);
378 707 :
379 707 : /// Return true if the specified type is valid as a element type.
380 707 : static bool isValidElementType(Type *ElemTy);
381 164 :
382 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
383 164 : static bool classof(const Type *T) {
384 164 : return T->getTypeID() == ArrayTyID;
385 164 : }
386 : };
387 :
388 : uint64_t Type::getArrayNumElements() const {
389 6574 : return cast<ArrayType>(this)->getNumElements();
390 : }
391 :
392 : /// Class to represent vector types.
393 : class VectorType : public SequentialType {
394 : VectorType(Type *ElType, unsigned NumEl);
395 0 :
396 0 : public:
397 : VectorType(const VectorType &) = delete;
398 : VectorType &operator=(const VectorType &) = delete;
399 :
400 : /// This static method is the primary way to construct an VectorType.
401 : static VectorType *get(Type *ElementType, unsigned NumElements);
402 0 :
403 : /// This static method gets a VectorType with the same number of elements as
404 : /// the input type, and the element type is an integer type of the same width
405 : /// as the input element type.
406 224 : static VectorType *getInteger(VectorType *VTy) {
407 224 : unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
408 : assert(EltBits && "Element size must be of a non-zero size");
409 224 : Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
410 224 : return VectorType::get(EltTy, VTy->getNumElements());
411 : }
412 :
413 : /// This static method is like getInteger except that the element types are
414 : /// twice as wide as the elements in the input type.
415 2275 : static VectorType *getExtendedElementVectorType(VectorType *VTy) {
416 2275 : unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
417 2275 : Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
418 2275 : return VectorType::get(EltTy, VTy->getNumElements());
419 : }
420 :
421 : /// This static method is like getInteger except that the element types are
422 : /// half as wide as the elements in the input type.
423 5356 : static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
424 5704 : unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
425 348 : assert((EltBits & 1) == 0 &&
426 : "Cannot truncate vector element with odd bit-width");
427 5704 : Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
428 5704 : return VectorType::get(EltTy, VTy->getNumElements());
429 : }
430 :
431 : /// This static method returns a VectorType with half as many elements as the
432 : /// input type and the same element type.
433 54 : static VectorType *getHalfElementsVectorType(VectorType *VTy) {
434 54 : unsigned NumElts = VTy->getNumElements();
435 54 : assert ((NumElts & 1) == 0 &&
436 54 : "Cannot halve vector with odd number of elements.");
437 0 : return VectorType::get(VTy->getElementType(), NumElts/2);
438 : }
439 :
440 : /// This static method returns a VectorType with twice as many elements as the
441 48 : /// input type and the same element type.
442 48 : static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
443 : unsigned NumElts = VTy->getNumElements();
444 : return VectorType::get(VTy->getElementType(), NumElts*2);
445 48 : }
446 48 :
447 : /// Return true if the specified type is valid as a element type.
448 : static bool isValidElementType(Type *ElemTy);
449 0 :
450 0 : /// Return the number of bits in the Vector type.
451 : /// Returns zero when the vector is a vector of pointers.
452 471387 : unsigned getBitWidth() const {
453 134179 : return getNumElements() * getElementType()->getPrimitiveSizeInBits();
454 : }
455 :
456 : /// Methods for support type inquiry through isa, cast, and dyn_cast.
457 : static bool classof(const Type *T) {
458 2857551 : return T->getTypeID() == VectorTyID;
459 : }
460 : };
461 :
462 : unsigned Type::getVectorNumElements() const {
463 6530235 : return cast<VectorType>(this)->getNumElements();
464 : }
465 0 :
466 : /// Class to represent pointers.
467 : class PointerType : public Type {
468 : explicit PointerType(Type *ElType, unsigned AddrSpace);
469 :
470 0 : Type *PointeeTy;
471 :
472 : public:
473 0 : PointerType(const PointerType &) = delete;
474 : PointerType &operator=(const PointerType &) = delete;
475 39 :
476 0 : /// This constructs a pointer to an object of the specified type in a numbered
477 : /// address space.
478 : static PointerType *get(Type *ElementType, unsigned AddressSpace);
479 :
480 : /// This constructs a pointer to an object of the specified type in the
481 4249 : /// generic address space (address space zero).
482 : static PointerType *getUnqual(Type *ElementType) {
483 781339 : return PointerType::get(ElementType, 0);
484 : }
485 :
486 0 : Type *getElementType() const { return PointeeTy; }
487 :
488 : /// Return true if the specified type is valid as a element type.
489 : static bool isValidElementType(Type *ElemTy);
490 :
491 : /// Return true if we can load or store from a pointer to this type.
492 : static bool isLoadableOrStorableType(Type *ElemTy);
493 775 :
494 0 : /// Return the address space of the Pointer type.
495 7 : inline unsigned getAddressSpace() const { return getSubclassData(); }
496 0 :
497 : /// Implement support type inquiry through isa, cast, and dyn_cast.
498 0 : static bool classof(const Type *T) {
499 0 : return T->getTypeID() == PointerTyID;
500 : }
501 1465 : };
502 :
503 : unsigned Type::getPointerAddressSpace() const {
504 0 : return cast<PointerType>(getScalarType())->getAddressSpace();
505 : }
506 :
507 : } // end namespace llvm
508 :
509 : #endif // LLVM_IR_DERIVEDTYPES_H
|