Line data Source code
1 : //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file contains the declaration of the Instruction class, which is the
11 : // base class for all of the LLVM instructions.
12 : //
13 : //===----------------------------------------------------------------------===//
14 :
15 : #ifndef LLVM_IR_INSTRUCTION_H
16 : #define LLVM_IR_INSTRUCTION_H
17 :
18 : #include "llvm/ADT/ArrayRef.h"
19 : #include "llvm/ADT/None.h"
20 : #include "llvm/ADT/StringRef.h"
21 : #include "llvm/ADT/ilist_node.h"
22 : #include "llvm/IR/DebugLoc.h"
23 : #include "llvm/IR/SymbolTableListTraits.h"
24 : #include "llvm/IR/User.h"
25 : #include "llvm/IR/Value.h"
26 : #include "llvm/Support/Casting.h"
27 : #include <algorithm>
28 : #include <cassert>
29 : #include <cstdint>
30 : #include <utility>
31 :
32 : namespace llvm {
33 :
34 : class BasicBlock;
35 : class FastMathFlags;
36 : class MDNode;
37 : class Module;
38 : struct AAMDNodes;
39 :
40 : template <> struct ilist_alloc_traits<Instruction> {
41 : static inline void deleteNode(Instruction *V);
42 : };
43 :
44 : class Instruction : public User,
45 : public ilist_node_with_parent<Instruction, BasicBlock> {
46 : BasicBlock *Parent;
47 : DebugLoc DbgLoc; // 'dbg' Metadata cache.
48 :
49 : enum {
50 : /// This is a bit stored in the SubClassData field which indicates whether
51 : /// this instruction has metadata attached to it or not.
52 : HasMetadataBit = 1 << 15
53 : };
54 :
55 : protected:
56 : ~Instruction(); // Use deleteValue() to delete a generic Instruction.
57 :
58 : public:
59 : Instruction(const Instruction &) = delete;
60 : Instruction &operator=(const Instruction &) = delete;
61 :
62 : /// Specialize the methods defined in Value, as we know that an instruction
63 : /// can only be used by other instructions.
64 : Instruction *user_back() { return cast<Instruction>(*user_begin());}
65 : const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
66 :
67 0 : inline const BasicBlock *getParent() const { return Parent; }
68 0 : inline BasicBlock *getParent() { return Parent; }
69 :
70 : /// Return the module owning the function this instruction belongs to
71 : /// or nullptr it the function does not have a module.
72 : ///
73 : /// Note: this is undefined behavior if the instruction does not have a
74 : /// parent, or the parent basic block does not have a parent function.
75 : const Module *getModule() const;
76 : Module *getModule() {
77 : return const_cast<Module *>(
78 14131232 : static_cast<const Instruction *>(this)->getModule());
79 : }
80 :
81 : /// Return the function this instruction belongs to.
82 : ///
83 : /// Note: it is undefined behavior to call this on an instruction not
84 : /// currently inserted into a function.
85 : const Function *getFunction() const;
86 : Function *getFunction() {
87 : return const_cast<Function *>(
88 12590408 : static_cast<const Instruction *>(this)->getFunction());
89 : }
90 :
91 : /// This method unlinks 'this' from the containing basic block, but does not
92 : /// delete it.
93 : void removeFromParent();
94 :
95 : /// This method unlinks 'this' from the containing basic block and deletes it.
96 : ///
97 : /// \returns an iterator pointing to the element after the erased one
98 : SymbolTableList<Instruction>::iterator eraseFromParent();
99 :
100 : /// Insert an unlinked instruction into a basic block immediately before
101 : /// the specified instruction.
102 : void insertBefore(Instruction *InsertPos);
103 :
104 : /// Insert an unlinked instruction into a basic block immediately after the
105 : /// specified instruction.
106 : void insertAfter(Instruction *InsertPos);
107 :
108 : /// Unlink this instruction from its current basic block and insert it into
109 : /// the basic block that MovePos lives in, right before MovePos.
110 : void moveBefore(Instruction *MovePos);
111 :
112 : /// Unlink this instruction and insert into BB before I.
113 : ///
114 : /// \pre I is a valid iterator into BB.
115 : void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
116 :
117 : /// Unlink this instruction from its current basic block and insert it into
118 : /// the basic block that MovePos lives in, right after MovePos.
119 : void moveAfter(Instruction *MovePos);
120 :
121 : //===--------------------------------------------------------------------===//
122 : // Subclass classification.
123 : //===--------------------------------------------------------------------===//
124 :
125 : /// Returns a member of one of the enums like Instruction::Add.
126 3265006500 : unsigned getOpcode() const { return getValueID() - InstructionVal; }
127 :
128 2315295 : const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
129 : bool isTerminator() const { return isTerminator(getOpcode()); }
130 : bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
131 : bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
132 : bool isShift() { return isShift(getOpcode()); }
133 : bool isCast() const { return isCast(getOpcode()); }
134 : bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
135 : bool isExceptionalTerminator() const {
136 : return isExceptionalTerminator(getOpcode());
137 : }
138 :
139 : static const char* getOpcodeName(unsigned OpCode);
140 :
141 : static inline bool isTerminator(unsigned OpCode) {
142 413346691 : return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
143 : }
144 :
145 : static inline bool isBinaryOp(unsigned Opcode) {
146 79107670 : return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
147 : }
148 :
149 : static inline bool isIntDivRem(unsigned Opcode) {
150 15728 : return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
151 : }
152 :
153 : /// Determine if the Opcode is one of the shift instructions.
154 : static inline bool isShift(unsigned Opcode) {
155 4276 : return Opcode >= Shl && Opcode <= AShr;
156 : }
157 :
158 : /// Return true if this is a logical shift left or a logical shift right.
159 : inline bool isLogicalShift() const {
160 22730 : return getOpcode() == Shl || getOpcode() == LShr;
161 : }
162 :
163 : /// Return true if this is an arithmetic shift right.
164 : inline bool isArithmeticShift() const {
165 : return getOpcode() == AShr;
166 : }
167 :
168 : /// Determine if the Opcode is and/or/xor.
169 : static inline bool isBitwiseLogicOp(unsigned Opcode) {
170 7698 : return Opcode == And || Opcode == Or || Opcode == Xor;
171 : }
172 :
173 : /// Return true if this is and/or/xor.
174 : inline bool isBitwiseLogicOp() const {
175 : return isBitwiseLogicOp(getOpcode());
176 : }
177 :
178 : /// Determine if the OpCode is one of the CastInst instructions.
179 : static inline bool isCast(unsigned OpCode) {
180 77842627 : return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
181 : }
182 :
183 : /// Determine if the OpCode is one of the FuncletPadInst instructions.
184 : static inline bool isFuncletPad(unsigned OpCode) {
185 2227916 : return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
186 : }
187 :
188 : /// Returns true if the OpCode is a terminator related to exception handling.
189 : static inline bool isExceptionalTerminator(unsigned OpCode) {
190 : switch (OpCode) {
191 : case Instruction::CatchSwitch:
192 : case Instruction::CatchRet:
193 : case Instruction::CleanupRet:
194 : case Instruction::Invoke:
195 : case Instruction::Resume:
196 : return true;
197 : default:
198 : return false;
199 : }
200 : }
201 :
202 : //===--------------------------------------------------------------------===//
203 : // Metadata manipulation.
204 : //===--------------------------------------------------------------------===//
205 :
206 : /// Return true if this instruction has any metadata attached to it.
207 516832992 : bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
208 :
209 : /// Return true if this instruction has metadata attached to it other than a
210 : /// debug location.
211 : bool hasMetadataOtherThanDebugLoc() const {
212 : return hasMetadataHashEntry();
213 : }
214 :
215 : /// Get the metadata of given kind attached to this Instruction.
216 : /// If the metadata is not found then return null.
217 : MDNode *getMetadata(unsigned KindID) const {
218 : if (!hasMetadata()) return nullptr;
219 168800664 : return getMetadataImpl(KindID);
220 : }
221 :
222 : /// Get the metadata of given kind attached to this Instruction.
223 : /// If the metadata is not found then return null.
224 : MDNode *getMetadata(StringRef Kind) const {
225 : if (!hasMetadata()) return nullptr;
226 4861 : return getMetadataImpl(Kind);
227 : }
228 :
229 : /// Get all metadata attached to this Instruction. The first element of each
230 : /// pair returned is the KindID, the second element is the metadata value.
231 : /// This list is returned sorted by the KindID.
232 : void
233 : getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
234 : if (hasMetadata())
235 2671196 : getAllMetadataImpl(MDs);
236 : }
237 :
238 : /// This does the same thing as getAllMetadata, except that it filters out the
239 : /// debug location.
240 : void getAllMetadataOtherThanDebugLoc(
241 : SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
242 5436727 : if (hasMetadataOtherThanDebugLoc())
243 504024 : getAllMetadataOtherThanDebugLocImpl(MDs);
244 : }
245 :
246 : /// Fills the AAMDNodes structure with AA metadata from this instruction.
247 : /// When Merge is true, the existing AA metadata is merged with that from this
248 : /// instruction providing the most-general result.
249 : void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
250 :
251 : /// Set the metadata of the specified kind to the specified node. This updates
252 : /// or replaces metadata if already present, or removes it if Node is null.
253 : void setMetadata(unsigned KindID, MDNode *Node);
254 : void setMetadata(StringRef Kind, MDNode *Node);
255 :
256 : /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
257 : /// specifies the list of meta data that needs to be copied. If \p WL is
258 : /// empty, all meta data will be copied.
259 : void copyMetadata(const Instruction &SrcInst,
260 : ArrayRef<unsigned> WL = ArrayRef<unsigned>());
261 :
262 : /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
263 : /// has three operands (including name string), swap the order of the
264 : /// metadata.
265 : void swapProfMetadata();
266 :
267 : /// Drop all unknown metadata except for debug locations.
268 : /// @{
269 : /// Passes are required to drop metadata they don't understand. This is a
270 : /// convenience method for passes to do so.
271 : void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
272 : void dropUnknownNonDebugMetadata() {
273 8739 : return dropUnknownNonDebugMetadata(None);
274 : }
275 : void dropUnknownNonDebugMetadata(unsigned ID1) {
276 : return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
277 : }
278 : void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
279 : unsigned IDs[] = {ID1, ID2};
280 : return dropUnknownNonDebugMetadata(IDs);
281 : }
282 : /// @}
283 :
284 : /// Sets the metadata on this instruction from the AAMDNodes structure.
285 : void setAAMetadata(const AAMDNodes &N);
286 :
287 : /// Retrieve the raw weight values of a conditional branch or select.
288 : /// Returns true on success with profile weights filled in.
289 : /// Returns false if no metadata or invalid metadata was found.
290 : bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
291 :
292 : /// Retrieve total raw weight values of a branch.
293 : /// Returns true on success with profile total weights filled in.
294 : /// Returns false if no metadata was found.
295 : bool extractProfTotalWeight(uint64_t &TotalVal) const;
296 :
297 : /// Updates branch_weights metadata by scaling it by \p S / \p T.
298 : void updateProfWeight(uint64_t S, uint64_t T);
299 :
300 : /// Sets the branch_weights metadata to \p W for CallInst.
301 : void setProfWeight(uint64_t W);
302 :
303 : /// Set the debug location information for this instruction.
304 : void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
305 :
306 : /// Return the debug location for this node as a DebugLoc.
307 8321136 : const DebugLoc &getDebugLoc() const { return DbgLoc; }
308 :
309 : /// Set or clear the nuw flag on this instruction, which must be an operator
310 : /// which supports this flag. See LangRef.html for the meaning of this flag.
311 : void setHasNoUnsignedWrap(bool b = true);
312 :
313 : /// Set or clear the nsw flag on this instruction, which must be an operator
314 : /// which supports this flag. See LangRef.html for the meaning of this flag.
315 : void setHasNoSignedWrap(bool b = true);
316 :
317 : /// Set or clear the exact flag on this instruction, which must be an operator
318 : /// which supports this flag. See LangRef.html for the meaning of this flag.
319 : void setIsExact(bool b = true);
320 :
321 : /// Determine whether the no unsigned wrap flag is set.
322 : bool hasNoUnsignedWrap() const;
323 :
324 : /// Determine whether the no signed wrap flag is set.
325 : bool hasNoSignedWrap() const;
326 :
327 : /// Drops flags that may cause this instruction to evaluate to poison despite
328 : /// having non-poison inputs.
329 : void dropPoisonGeneratingFlags();
330 :
331 : /// Determine whether the exact flag is set.
332 : bool isExact() const;
333 :
334 : /// Set or clear all fast-math-flags on this instruction, which must be an
335 : /// operator which supports this flag. See LangRef.html for the meaning of
336 : /// this flag.
337 : void setFast(bool B);
338 :
339 : /// Set or clear the reassociation flag on this instruction, which must be
340 : /// an operator which supports this flag. See LangRef.html for the meaning of
341 : /// this flag.
342 : void setHasAllowReassoc(bool B);
343 :
344 : /// Set or clear the no-nans flag on this instruction, which must be an
345 : /// operator which supports this flag. See LangRef.html for the meaning of
346 : /// this flag.
347 : void setHasNoNaNs(bool B);
348 :
349 : /// Set or clear the no-infs flag on this instruction, which must be an
350 : /// operator which supports this flag. See LangRef.html for the meaning of
351 : /// this flag.
352 : void setHasNoInfs(bool B);
353 :
354 : /// Set or clear the no-signed-zeros flag on this instruction, which must be
355 : /// an operator which supports this flag. See LangRef.html for the meaning of
356 : /// this flag.
357 : void setHasNoSignedZeros(bool B);
358 :
359 : /// Set or clear the allow-reciprocal flag on this instruction, which must be
360 : /// an operator which supports this flag. See LangRef.html for the meaning of
361 : /// this flag.
362 : void setHasAllowReciprocal(bool B);
363 :
364 : /// Set or clear the approximate-math-functions flag on this instruction,
365 : /// which must be an operator which supports this flag. See LangRef.html for
366 : /// the meaning of this flag.
367 : void setHasApproxFunc(bool B);
368 :
369 : /// Convenience function for setting multiple fast-math flags on this
370 : /// instruction, which must be an operator which supports these flags. See
371 : /// LangRef.html for the meaning of these flags.
372 : void setFastMathFlags(FastMathFlags FMF);
373 :
374 : /// Convenience function for transferring all fast-math flag values to this
375 : /// instruction, which must be an operator which supports these flags. See
376 : /// LangRef.html for the meaning of these flags.
377 : void copyFastMathFlags(FastMathFlags FMF);
378 :
379 : /// Determine whether all fast-math-flags are set.
380 : bool isFast() const;
381 :
382 : /// Determine whether the allow-reassociation flag is set.
383 : bool hasAllowReassoc() const;
384 :
385 : /// Determine whether the no-NaNs flag is set.
386 : bool hasNoNaNs() const;
387 :
388 : /// Determine whether the no-infs flag is set.
389 : bool hasNoInfs() const;
390 :
391 : /// Determine whether the no-signed-zeros flag is set.
392 : bool hasNoSignedZeros() const;
393 :
394 : /// Determine whether the allow-reciprocal flag is set.
395 : bool hasAllowReciprocal() const;
396 :
397 : /// Determine whether the allow-contract flag is set.
398 : bool hasAllowContract() const;
399 :
400 : /// Determine whether the approximate-math-functions flag is set.
401 : bool hasApproxFunc() const;
402 :
403 : /// Convenience function for getting all the fast-math flags, which must be an
404 : /// operator which supports these flags. See LangRef.html for the meaning of
405 : /// these flags.
406 : FastMathFlags getFastMathFlags() const;
407 :
408 : /// Copy I's fast-math flags
409 : void copyFastMathFlags(const Instruction *I);
410 :
411 : /// Convenience method to copy supported exact, fast-math, and (optionally)
412 : /// wrapping flags from V to this instruction.
413 : void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
414 :
415 : /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
416 : /// V and this instruction.
417 : void andIRFlags(const Value *V);
418 :
419 : /// Merge 2 debug locations and apply it to the Instruction. If the
420 : /// instruction is a CallIns, we need to traverse the inline chain to find
421 : /// the common scope. This is not efficient for N-way merging as each time
422 : /// you merge 2 iterations, you need to rebuild the hashmap to find the
423 : /// common scope. However, we still choose this API because:
424 : /// 1) Simplicity: it takes 2 locations instead of a list of locations.
425 : /// 2) In worst case, it increases the complexity from O(N*I) to
426 : /// O(2*N*I), where N is # of Instructions to merge, and I is the
427 : /// maximum level of inline stack. So it is still linear.
428 : /// 3) Merging of call instructions should be extremely rare in real
429 : /// applications, thus the N-way merging should be in code path.
430 : /// The DebugLoc attached to this instruction will be overwritten by the
431 : /// merged DebugLoc.
432 : void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
433 :
434 : private:
435 : /// Return true if we have an entry in the on-the-side metadata hash.
436 : bool hasMetadataHashEntry() const {
437 551891273 : return (getSubclassDataFromValue() & HasMetadataBit) != 0;
438 : }
439 :
440 : // These are all implemented in Metadata.cpp.
441 : MDNode *getMetadataImpl(unsigned KindID) const;
442 : MDNode *getMetadataImpl(StringRef Kind) const;
443 : void
444 : getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
445 : void getAllMetadataOtherThanDebugLocImpl(
446 : SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
447 : /// Clear all hashtable-based metadata from this instruction.
448 : void clearMetadataHashEntries();
449 :
450 : public:
451 : //===--------------------------------------------------------------------===//
452 : // Predicates and helper methods.
453 : //===--------------------------------------------------------------------===//
454 :
455 : /// Return true if the instruction is associative:
456 : ///
457 : /// Associative operators satisfy: x op (y op z) === (x op y) op z
458 : ///
459 : /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
460 : ///
461 : bool isAssociative() const LLVM_READONLY;
462 : static bool isAssociative(unsigned Opcode) {
463 29095502 : return Opcode == And || Opcode == Or || Opcode == Xor ||
464 14547751 : Opcode == Add || Opcode == Mul;
465 : }
466 :
467 : /// Return true if the instruction is commutative:
468 : ///
469 : /// Commutative operators satisfy: (x op y) === (y op x)
470 : ///
471 : /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
472 : /// applied to any type.
473 : ///
474 : bool isCommutative() const { return isCommutative(getOpcode()); }
475 : static bool isCommutative(unsigned Opcode) {
476 : switch (Opcode) {
477 : case Add: case FAdd:
478 : case Mul: case FMul:
479 : case And: case Or: case Xor:
480 : return true;
481 : default:
482 : return false;
483 : }
484 : }
485 :
486 : /// Return true if the instruction is idempotent:
487 : ///
488 : /// Idempotent operators satisfy: x op x === x
489 : ///
490 : /// In LLVM, the And and Or operators are idempotent.
491 : ///
492 : bool isIdempotent() const { return isIdempotent(getOpcode()); }
493 : static bool isIdempotent(unsigned Opcode) {
494 424 : return Opcode == And || Opcode == Or;
495 : }
496 :
497 : /// Return true if the instruction is nilpotent:
498 : ///
499 : /// Nilpotent operators satisfy: x op x === Id,
500 : ///
501 : /// where Id is the identity for the operator, i.e. a constant such that
502 : /// x op Id === x and Id op x === x for all x.
503 : ///
504 : /// In LLVM, the Xor operator is nilpotent.
505 : ///
506 : bool isNilpotent() const { return isNilpotent(getOpcode()); }
507 : static bool isNilpotent(unsigned Opcode) {
508 : return Opcode == Xor;
509 : }
510 :
511 : /// Return true if this instruction may modify memory.
512 : bool mayWriteToMemory() const;
513 :
514 : /// Return true if this instruction may read memory.
515 : bool mayReadFromMemory() const;
516 :
517 : /// Return true if this instruction may read or write memory.
518 7264124 : bool mayReadOrWriteMemory() const {
519 7264124 : return mayReadFromMemory() || mayWriteToMemory();
520 : }
521 :
522 : /// Return true if this instruction has an AtomicOrdering of unordered or
523 : /// higher.
524 : bool isAtomic() const;
525 :
526 : /// Return true if this atomic instruction loads from memory.
527 : bool hasAtomicLoad() const;
528 :
529 : /// Return true if this atomic instruction stores to memory.
530 : bool hasAtomicStore() const;
531 :
532 : /// Return true if this instruction may throw an exception.
533 : bool mayThrow() const;
534 :
535 : /// Return true if this instruction behaves like a memory fence: it can load
536 : /// or store to memory location without being given a memory location.
537 : bool isFenceLike() const {
538 : switch (getOpcode()) {
539 : default:
540 : return false;
541 : // This list should be kept in sync with the list in mayWriteToMemory for
542 : // all opcodes which don't have a memory location.
543 : case Instruction::Fence:
544 : case Instruction::CatchPad:
545 : case Instruction::CatchRet:
546 : case Instruction::Call:
547 : case Instruction::Invoke:
548 : return true;
549 : }
550 : }
551 :
552 : /// Return true if the instruction may have side effects.
553 : ///
554 : /// Note that this does not consider malloc and alloca to have side
555 : /// effects because the newly allocated memory is completely invisible to
556 : /// instructions which don't use the returned value. For cases where this
557 : /// matters, isSafeToSpeculativelyExecute may be more appropriate.
558 31491413 : bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
559 :
560 : /// Return true if the instruction can be removed if the result is unused.
561 : ///
562 : /// When constant folding some instructions cannot be removed even if their
563 : /// results are unused. Specifically terminator instructions and calls that
564 : /// may have side effects cannot be removed without semantically changing the
565 : /// generated program.
566 : bool isSafeToRemove() const;
567 :
568 : /// Return true if the instruction is a variety of EH-block.
569 : bool isEHPad() const {
570 : switch (getOpcode()) {
571 : case Instruction::CatchSwitch:
572 : case Instruction::CatchPad:
573 : case Instruction::CleanupPad:
574 : case Instruction::LandingPad:
575 : return true;
576 : default:
577 : return false;
578 : }
579 : }
580 :
581 : /// Return a pointer to the next non-debug instruction in the same basic
582 : /// block as 'this', or nullptr if no such instruction exists.
583 : const Instruction *getNextNonDebugInstruction() const;
584 : Instruction *getNextNonDebugInstruction() {
585 : return const_cast<Instruction *>(
586 1612 : static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
587 : }
588 :
589 : /// Create a copy of 'this' instruction that is identical in all ways except
590 : /// the following:
591 : /// * The instruction has no parent
592 : /// * The instruction has no name
593 : ///
594 : Instruction *clone() const;
595 :
596 : /// Return true if the specified instruction is exactly identical to the
597 : /// current one. This means that all operands match and any extra information
598 : /// (e.g. load is volatile) agree.
599 : bool isIdenticalTo(const Instruction *I) const;
600 :
601 : /// This is like isIdenticalTo, except that it ignores the
602 : /// SubclassOptionalData flags, which may specify conditions under which the
603 : /// instruction's result is undefined.
604 : bool isIdenticalToWhenDefined(const Instruction *I) const;
605 :
606 : /// When checking for operation equivalence (using isSameOperationAs) it is
607 : /// sometimes useful to ignore certain attributes.
608 : enum OperationEquivalenceFlags {
609 : /// Check for equivalence ignoring load/store alignment.
610 : CompareIgnoringAlignment = 1<<0,
611 : /// Check for equivalence treating a type and a vector of that type
612 : /// as equivalent.
613 : CompareUsingScalarTypes = 1<<1
614 : };
615 :
616 : /// This function determines if the specified instruction executes the same
617 : /// operation as the current one. This means that the opcodes, type, operand
618 : /// types and any other factors affecting the operation must be the same. This
619 : /// is similar to isIdenticalTo except the operands themselves don't have to
620 : /// be identical.
621 : /// @returns true if the specified instruction is the same operation as
622 : /// the current one.
623 : /// Determine if one instruction is the same operation as another.
624 : bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
625 :
626 : /// Return true if there are any uses of this instruction in blocks other than
627 : /// the specified block. Note that PHI nodes are considered to evaluate their
628 : /// operands in the corresponding predecessor block.
629 : bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
630 :
631 : /// Return the number of successors that this instruction has. The instruction
632 : /// must be a terminator.
633 : unsigned getNumSuccessors() const;
634 :
635 : /// Return the specified successor. This instruction must be a terminator.
636 : BasicBlock *getSuccessor(unsigned Idx) const;
637 :
638 : /// Update the specified successor to point at the provided block. This
639 : /// instruction must be a terminator.
640 : void setSuccessor(unsigned Idx, BasicBlock *BB);
641 :
642 : /// Methods for support type inquiry through isa, cast, and dyn_cast:
643 : static bool classof(const Value *V) {
644 367745359 : return V->getValueID() >= Value::InstructionVal;
645 : }
646 :
647 : //----------------------------------------------------------------------
648 : // Exported enumerations.
649 : //
650 : enum TermOps { // These terminate basic blocks
651 : #define FIRST_TERM_INST(N) TermOpsBegin = N,
652 : #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
653 : #define LAST_TERM_INST(N) TermOpsEnd = N+1
654 : #include "llvm/IR/Instruction.def"
655 : };
656 :
657 : enum BinaryOps {
658 : #define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
659 : #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
660 : #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
661 : #include "llvm/IR/Instruction.def"
662 : };
663 :
664 : enum MemoryOps {
665 : #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
666 : #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
667 : #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
668 : #include "llvm/IR/Instruction.def"
669 : };
670 :
671 : enum CastOps {
672 : #define FIRST_CAST_INST(N) CastOpsBegin = N,
673 : #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
674 : #define LAST_CAST_INST(N) CastOpsEnd = N+1
675 : #include "llvm/IR/Instruction.def"
676 : };
677 :
678 : enum FuncletPadOps {
679 : #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
680 : #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
681 : #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
682 : #include "llvm/IR/Instruction.def"
683 : };
684 :
685 : enum OtherOps {
686 : #define FIRST_OTHER_INST(N) OtherOpsBegin = N,
687 : #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
688 : #define LAST_OTHER_INST(N) OtherOpsEnd = N+1
689 : #include "llvm/IR/Instruction.def"
690 : };
691 :
692 : private:
693 : friend class SymbolTableListTraits<Instruction>;
694 :
695 : // Shadow Value::setValueSubclassData with a private forwarding method so that
696 : // subclasses cannot accidentally use it.
697 : void setValueSubclassData(unsigned short D) {
698 : Value::setValueSubclassData(D);
699 : }
700 :
701 : unsigned short getSubclassDataFromValue() const {
702 730538656 : return Value::getSubclassDataFromValue();
703 : }
704 :
705 : void setHasMetadataHashEntry(bool V) {
706 1118274 : setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
707 : (V ? HasMetadataBit : 0));
708 : }
709 :
710 : void setParent(BasicBlock *P);
711 :
712 : protected:
713 : // Instruction subclasses can stick up to 15 bits of stuff into the
714 : // SubclassData field of instruction with these members.
715 :
716 : // Verify that only the low 15 bits are used.
717 : void setInstructionSubclassData(unsigned short D) {
718 : assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
719 43027720 : setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
720 : }
721 :
722 : unsigned getSubclassDataFromInstruction() const {
723 369087013 : return getSubclassDataFromValue() & ~HasMetadataBit;
724 : }
725 :
726 : Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
727 : Instruction *InsertBefore = nullptr);
728 : Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
729 : BasicBlock *InsertAtEnd);
730 :
731 : private:
732 : /// Create a copy of this instruction.
733 : Instruction *cloneImpl() const;
734 : };
735 :
736 : inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
737 30557305 : V->deleteValue();
738 : }
739 :
740 : } // end namespace llvm
741 :
742 : #endif // LLVM_IR_INSTRUCTION_H
|