Line data Source code
1 : //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : /// \file
10 : ///
11 : /// This header defines various interfaces for pass management in LLVM. There
12 : /// is no "pass" interface in LLVM per se. Instead, an instance of any class
13 : /// which supports a method to 'run' it over a unit of IR can be used as
14 : /// a pass. A pass manager is generally a tool to collect a sequence of passes
15 : /// which run over a particular IR construct, and run each of them in sequence
16 : /// over each such construct in the containing IR construct. As there is no
17 : /// containing IR construct for a Module, a manager for passes over modules
18 : /// forms the base case which runs its managed passes in sequence over the
19 : /// single module provided.
20 : ///
21 : /// The core IR library provides managers for running passes over
22 : /// modules and functions.
23 : ///
24 : /// * FunctionPassManager can run over a Module, runs each pass over
25 : /// a Function.
26 : /// * ModulePassManager must be directly run, runs each pass over the Module.
27 : ///
28 : /// Note that the implementations of the pass managers use concept-based
29 : /// polymorphism as outlined in the "Value Semantics and Concept-based
30 : /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
31 : /// Class of Evil") by Sean Parent:
32 : /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
33 : /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
34 : /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
35 : ///
36 : //===----------------------------------------------------------------------===//
37 :
38 : #ifndef LLVM_IR_PASSMANAGER_H
39 : #define LLVM_IR_PASSMANAGER_H
40 :
41 : #include "llvm/ADT/DenseMap.h"
42 : #include "llvm/ADT/SmallPtrSet.h"
43 : #include "llvm/ADT/StringRef.h"
44 : #include "llvm/ADT/TinyPtrVector.h"
45 : #include "llvm/IR/Function.h"
46 : #include "llvm/IR/Module.h"
47 : #include "llvm/IR/PassInstrumentation.h"
48 : #include "llvm/IR/PassManagerInternal.h"
49 : #include "llvm/Support/Debug.h"
50 : #include "llvm/Support/TypeName.h"
51 : #include "llvm/Support/raw_ostream.h"
52 : #include <algorithm>
53 : #include <cassert>
54 : #include <cstring>
55 : #include <iterator>
56 : #include <list>
57 : #include <memory>
58 : #include <tuple>
59 : #include <type_traits>
60 : #include <utility>
61 : #include <vector>
62 :
63 : namespace llvm {
64 :
65 : /// A special type used by analysis passes to provide an address that
66 : /// identifies that particular analysis pass type.
67 : ///
68 : /// Analysis passes should have a static data member of this type and derive
69 : /// from the \c AnalysisInfoMixin to get a static ID method used to identify
70 : /// the analysis in the pass management infrastructure.
71 : struct alignas(8) AnalysisKey {};
72 :
73 : /// A special type used to provide an address that identifies a set of related
74 : /// analyses. These sets are primarily used below to mark sets of analyses as
75 : /// preserved.
76 : ///
77 : /// For example, a transformation can indicate that it preserves the CFG of a
78 : /// function by preserving the appropriate AnalysisSetKey. An analysis that
79 : /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
80 : /// if it is, the analysis knows that it itself is preserved.
81 : struct alignas(8) AnalysisSetKey {};
82 :
83 : /// This templated class represents "all analyses that operate over \<a
84 : /// particular IR unit\>" (e.g. a Function or a Module) in instances of
85 : /// PreservedAnalysis.
86 : ///
87 : /// This lets a transformation say e.g. "I preserved all function analyses".
88 : ///
89 : /// Note that you must provide an explicit instantiation declaration and
90 : /// definition for this template in order to get the correct behavior on
91 : /// Windows. Otherwise, the address of SetKey will not be stable.
92 : template <typename IRUnitT> class AllAnalysesOn {
93 : public:
94 0 : static AnalysisSetKey *ID() { return &SetKey; }
95 :
96 : private:
97 : static AnalysisSetKey SetKey;
98 : };
99 :
100 : template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
101 :
102 : extern template class AllAnalysesOn<Module>;
103 : extern template class AllAnalysesOn<Function>;
104 :
105 : /// Represents analyses that only rely on functions' control flow.
106 : ///
107 : /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
108 : /// to query whether it has been preserved.
109 : ///
110 : /// The CFG of a function is defined as the set of basic blocks and the edges
111 : /// between them. Changing the set of basic blocks in a function is enough to
112 : /// mutate the CFG. Mutating the condition of a branch or argument of an
113 : /// invoked function does not mutate the CFG, but changing the successor labels
114 : /// of those instructions does.
115 : class CFGAnalyses {
116 : public:
117 : static AnalysisSetKey *ID() { return &SetKey; }
118 :
119 : private:
120 : static AnalysisSetKey SetKey;
121 : };
122 :
123 : /// A set of analyses that are preserved following a run of a transformation
124 : /// pass.
125 : ///
126 : /// Transformation passes build and return these objects to communicate which
127 : /// analyses are still valid after the transformation. For most passes this is
128 : /// fairly simple: if they don't change anything all analyses are preserved,
129 : /// otherwise only a short list of analyses that have been explicitly updated
130 : /// are preserved.
131 : ///
132 : /// This class also lets transformation passes mark abstract *sets* of analyses
133 : /// as preserved. A transformation that (say) does not alter the CFG can
134 : /// indicate such by marking a particular AnalysisSetKey as preserved, and
135 : /// then analyses can query whether that AnalysisSetKey is preserved.
136 : ///
137 : /// Finally, this class can represent an "abandoned" analysis, which is
138 : /// not preserved even if it would be covered by some abstract set of analyses.
139 : ///
140 : /// Given a `PreservedAnalyses` object, an analysis will typically want to
141 : /// figure out whether it is preserved. In the example below, MyAnalysisType is
142 : /// preserved if it's not abandoned, and (a) it's explicitly marked as
143 : /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
144 : /// AnalysisSetA and AnalysisSetB are preserved.
145 : ///
146 : /// ```
147 : /// auto PAC = PA.getChecker<MyAnalysisType>();
148 : /// if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
149 : /// (PAC.preservedSet<AnalysisSetA>() &&
150 : /// PAC.preservedSet<AnalysisSetB>())) {
151 : /// // The analysis has been successfully preserved ...
152 : /// }
153 : /// ```
154 : class PreservedAnalyses {
155 : public:
156 : /// Convenience factory function for the empty preserved set.
157 889 : static PreservedAnalyses none() { return PreservedAnalyses(); }
158 :
159 : /// Construct a special preserved set that preserves all passes.
160 : static PreservedAnalyses all() {
161 : PreservedAnalyses PA;
162 150037 : PA.PreservedIDs.insert(&AllAnalysesKey);
163 : return PA;
164 : }
165 :
166 : /// Construct a preserved analyses object with a single preserved set.
167 : template <typename AnalysisSetT>
168 : static PreservedAnalyses allInSet() {
169 : PreservedAnalyses PA;
170 : PA.preserveSet<AnalysisSetT>();
171 : return PA;
172 : }
173 :
174 : /// Mark an analysis as preserved.
175 52905 : template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
176 :
177 : /// Given an analysis's ID, mark the analysis as preserved, adding it
178 : /// to the set.
179 63851 : void preserve(AnalysisKey *ID) {
180 : // Clear this ID from the explicit not-preserved set if present.
181 : NotPreservedAnalysisIDs.erase(ID);
182 :
183 : // If we're not already preserving all analyses (other than those in
184 : // NotPreservedAnalysisIDs).
185 : if (!areAllPreserved())
186 59395 : PreservedIDs.insert(ID);
187 63851 : }
188 :
189 : /// Mark an analysis set as preserved.
190 : template <typename AnalysisSetT> void preserveSet() {
191 57793 : preserveSet(AnalysisSetT::ID());
192 : }
193 :
194 : /// Mark an analysis set as preserved using its ID.
195 57867 : void preserveSet(AnalysisSetKey *ID) {
196 : // If we're not already in the saturated 'all' state, add this set.
197 : if (!areAllPreserved())
198 52619 : PreservedIDs.insert(ID);
199 57867 : }
200 :
201 : /// Mark an analysis as abandoned.
202 : ///
203 : /// An abandoned analysis is not preserved, even if it is nominally covered
204 : /// by some other set or was previously explicitly marked as preserved.
205 : ///
206 : /// Note that you can only abandon a specific analysis, not a *set* of
207 : /// analyses.
208 3 : template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
209 :
210 : /// Mark an analysis as abandoned using its ID.
211 : ///
212 : /// An abandoned analysis is not preserved, even if it is nominally covered
213 : /// by some other set or was previously explicitly marked as preserved.
214 : ///
215 : /// Note that you can only abandon a specific analysis, not a *set* of
216 : /// analyses.
217 148 : void abandon(AnalysisKey *ID) {
218 : PreservedIDs.erase(ID);
219 148 : NotPreservedAnalysisIDs.insert(ID);
220 148 : }
221 :
222 : /// Intersect this set with another in place.
223 : ///
224 : /// This is a mutating operation on this preserved set, removing all
225 : /// preserved passes which are not also preserved in the argument.
226 4 : void intersect(const PreservedAnalyses &Arg) {
227 : if (Arg.areAllPreserved())
228 : return;
229 : if (areAllPreserved()) {
230 0 : *this = Arg;
231 0 : return;
232 : }
233 : // The intersection requires the *union* of the explicitly not-preserved
234 : // IDs and the *intersection* of the preserved IDs.
235 4 : for (auto ID : Arg.NotPreservedAnalysisIDs) {
236 : PreservedIDs.erase(ID);
237 0 : NotPreservedAnalysisIDs.insert(ID);
238 : }
239 14 : for (auto ID : PreservedIDs)
240 10 : if (!Arg.PreservedIDs.count(ID))
241 : PreservedIDs.erase(ID);
242 : }
243 :
244 : /// Intersect this set with a temporary other set in place.
245 : ///
246 : /// This is a mutating operation on this preserved set, removing all
247 : /// preserved passes which are not also preserved in the argument.
248 27134 : void intersect(PreservedAnalyses &&Arg) {
249 : if (Arg.areAllPreserved())
250 : return;
251 : if (areAllPreserved()) {
252 4416 : *this = std::move(Arg);
253 4416 : return;
254 : }
255 : // The intersection requires the *union* of the explicitly not-preserved
256 : // IDs and the *intersection* of the preserved IDs.
257 2010 : for (auto ID : Arg.NotPreservedAnalysisIDs) {
258 : PreservedIDs.erase(ID);
259 12 : NotPreservedAnalysisIDs.insert(ID);
260 : }
261 9823 : for (auto ID : PreservedIDs)
262 7825 : if (!Arg.PreservedIDs.count(ID))
263 : PreservedIDs.erase(ID);
264 : }
265 :
266 : /// A checker object that makes it easy to query for whether an analysis or
267 : /// some set covering it is preserved.
268 : class PreservedAnalysisChecker {
269 : friend class PreservedAnalyses;
270 :
271 : const PreservedAnalyses &PA;
272 : AnalysisKey *const ID;
273 : const bool IsAbandoned;
274 :
275 : /// A PreservedAnalysisChecker is tied to a particular Analysis because
276 : /// `preserved()` and `preservedSet()` both return false if the Analysis
277 : /// was abandoned.
278 : PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
279 11664 : : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
280 :
281 : public:
282 : /// Returns true if the checker's analysis was not abandoned and either
283 : /// - the analysis is explicitly preserved or
284 : /// - all analyses are preserved.
285 11778 : bool preserved() {
286 22862 : return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
287 11084 : PA.PreservedIDs.count(ID));
288 : }
289 :
290 : /// Returns true if the checker's analysis was not abandoned and either
291 : /// - \p AnalysisSetT is explicitly preserved or
292 : /// - all analyses are preserved.
293 0 : template <typename AnalysisSetT> bool preservedSet() {
294 : AnalysisSetKey *SetID = AnalysisSetT::ID();
295 0 : return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
296 0 : PA.PreservedIDs.count(SetID));
297 : }
298 0 : };
299 :
300 0 : /// Build a checker for this `PreservedAnalyses` and the specified analysis
301 0 : /// type.
302 : ///
303 0 : /// You can use the returned object to query whether an analysis was
304 : /// preserved. See the example in the comment on `PreservedAnalysis`.
305 0 : template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
306 0 : return PreservedAnalysisChecker(*this, AnalysisT::ID());
307 : }
308 0 :
309 : /// Build a checker for this `PreservedAnalyses` and the specified analysis
310 0 : /// ID.
311 0 : ///
312 : /// You can use the returned object to query whether an analysis was
313 0 : /// preserved. See the example in the comment on `PreservedAnalysis`.
314 : PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
315 0 : return PreservedAnalysisChecker(*this, ID);
316 0 : }
317 :
318 : /// Test whether all analyses are preserved (and none are abandoned).
319 : ///
320 : /// This is used primarily to optimize for the common case of a transformation
321 : /// which makes no changes to the IR.
322 : bool areAllPreserved() const {
323 1404251 : return NotPreservedAnalysisIDs.empty() &&
324 704653 : PreservedIDs.count(&AllAnalysesKey);
325 : }
326 :
327 : /// Directly test whether a set of analyses is preserved.
328 : ///
329 : /// This is only true when no analyses have been explicitly abandoned.
330 : template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
331 917 : return allAnalysesInSetPreserved(AnalysisSetT::ID());
332 : }
333 11098 :
334 6082 : /// Directly test whether a set of analyses is preserved.
335 : ///
336 : /// This is only true when no analyses have been explicitly abandoned.
337 24004 : bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
338 49130 : return NotPreservedAnalysisIDs.empty() &&
339 29998 : (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
340 : }
341 730 :
342 : private:
343 0 : /// A special key used to indicate all analyses.
344 0 : static AnalysisSetKey AllAnalysesKey;
345 :
346 : /// The IDs of analyses and analysis sets that are preserved.
347 6164 : SmallPtrSet<void *, 2> PreservedIDs;
348 12256 :
349 9754 : /// The IDs of explicitly not-preserved analyses.
350 : ///
351 : /// If an analysis in this set is covered by a set in `PreservedIDs`, we
352 0 : /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
353 0 : /// "wins" over analysis sets in `PreservedIDs`.
354 0 : ///
355 : /// Also, a given ID should never occur both here and in `PreservedIDs`.
356 : SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
357 0 : };
358 0 :
359 0 : // Forward declare the analysis manager template.
360 : template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
361 :
362 : /// A CRTP mix-in to automatically provide informational APIs needed for
363 : /// passes.
364 : ///
365 : /// This provides some boilerplate for types that are passes.
366 : template <typename DerivedT> struct PassInfoMixin {
367 : /// Gets the name of the pass we are mixed into.
368 1043 : static StringRef name() {
369 : static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
370 : "Must pass the derived type as the template argument!");
371 1043 : StringRef Name = getTypeName<DerivedT>();
372 : if (Name.startswith("llvm::"))
373 1043 : Name = Name.drop_front(strlen("llvm::"));
374 1043 : return Name;
375 : }
376 77 : };
377 :
378 1030 : /// A CRTP mix-in that provides informational APIs needed for analysis passes.
379 77 : ///
380 : /// This provides some boilerplate for types that are analysis passes. It
381 1107 : /// automatically mixes in \c PassInfoMixin.
382 77 : template <typename DerivedT>
383 1670 : struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
384 1271 : /// Returns an opaque, unique ID for this analysis type.
385 : ///
386 964 : /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
387 241 : /// suitable for use in sets, maps, and other data structures that use the low
388 9216 : /// bits of pointers.
389 1205 : ///
390 241 : /// Note that this requires the derived type provide a static \c AnalysisKey
391 8726 : /// member called \c Key.
392 359 : ///
393 8659 : /// FIXME: The only reason the mixin type itself can't declare the Key value
394 8727 : /// is that some compilers cannot correctly unique a templated static variable
395 347 : /// so it has the same addresses in each instantiation. The only currently
396 7 : /// known platform with this limitation is Windows DLL builds, specifically
397 373 : /// building each part of LLVM as a DLL. If we ever remove that build
398 347 : /// configuration, this mixin can provide the static key as well.
399 37 : static AnalysisKey *ID() {
400 142 : static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
401 0 : "Must pass the derived type as the template argument!");
402 52 : return &DerivedT::Key;
403 130 : }
404 40 : };
405 175 :
406 130 : namespace detail {
407 52 :
408 22 : /// Actual unpacker of extra arguments in getAnalysisResult,
409 2 : /// passes only those tuple arguments that are mentioned in index_sequence.
410 72 : template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
411 7 : typename... ArgTs, size_t... Ns>
412 48 : typename PassT::Result
413 69 : getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
414 7 : std::tuple<ArgTs...> Args,
415 81 : llvm::index_sequence<Ns...>) {
416 34 : (void)Args;
417 5075 : return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
418 81 : }
419 14 :
420 4 : /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
421 89 : ///
422 14 : /// Arguments passed in tuple come from PassManager, so they might have extra
423 61 : /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
424 5 : /// pass to getResult.
425 1 : template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
426 94 : typename... MainArgTs>
427 0 : typename PassT::Result
428 17 : getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
429 90 : std::tuple<MainArgTs...> Args) {
430 0 : return (getAnalysisResultUnpackTuple<
431 105 : PassT, IRUnitT>)(AM, IR, Args,
432 38 : llvm::index_sequence_for<AnalysisArgTs...>{});
433 11 : }
434 71 :
435 0 : } // namespace detail
436 3 :
437 54 : // Forward declare the pass instrumentation analysis explicitly queried in
438 0 : // generic PassManager code.
439 45 : // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
440 2 : // header.
441 0 : class PassInstrumentationAnalysis;
442 52 :
443 0 : /// Manages a sequence of passes over a particular unit of IR.
444 46 : ///
445 49 : /// A pass manager contains a sequence of passes to run over a particular unit
446 0 : /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
447 15 : /// IR, and when run over some given IR will run each of its contained passes in
448 15 : /// sequence. Pass managers are the primary and most basic building block of a
449 0 : /// pass pipeline.
450 24 : ///
451 6 : /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
452 4 : /// argument. The pass manager will propagate that analysis manager to each
453 24 : /// pass it runs, and will call the analysis manager's invalidation routine with
454 6 : /// the PreservedAnalyses of each pass it runs.
455 28 : template <typename IRUnitT,
456 20 : typename AnalysisManagerT = AnalysisManager<IRUnitT>,
457 1 : typename... ExtraArgTs>
458 45 : class PassManager : public PassInfoMixin<
459 8 : PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
460 27 : public:
461 43 : /// Construct a pass manager.
462 8 : ///
463 12 : /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
464 25 : explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
465 3 :
466 13 : // FIXME: These are equivalent to the default move constructor/move
467 : // assignment. However, using = default triggers linker errors due to the
468 10 : // explicit instantiations below. Find away to use the default and remove the
469 10 : // duplicated code here.
470 0 : PassManager(PassManager &&Arg)
471 44 : : Passes(std::move(Arg.Passes)),
472 9 : DebugLogging(std::move(Arg.DebugLogging)) {}
473 9 :
474 113 : PassManager &operator=(PassManager &&RHS) {
475 0 : Passes = std::move(RHS.Passes);
476 27 : DebugLogging = std::move(RHS.DebugLogging);
477 72 : return *this;
478 : }
479 72 :
480 113 : /// Run all of the passes in this manager over the given unit of IR.
481 0 : /// ExtraArgs are passed to each pass.
482 299 : PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
483 : ExtraArgTs... ExtraArgs) {
484 0 : PreservedAnalyses PA = PreservedAnalyses::all();
485 298 :
486 0 : // Request PassInstrumentation from analysis manager, will use it to run
487 287 : // instrumenting callbacks for the passes later.
488 253 : // Here we use std::tuple wrapper over getResult which helps to extract
489 0 : // AnalysisManager's arguments out of the whole ExtraArgs set.
490 66 : PassInstrumentation PI =
491 : detail::getAnalysisResult<PassInstrumentationAnalysis>(
492 76 : AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
493 66 :
494 0 : if (DebugLogging)
495 59 : dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
496 18 :
497 5 : for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
498 80 : auto *P = Passes[Idx].get();
499 0 : if (DebugLogging)
500 0 : dbgs() << "Running pass: " << P->name() << " on " << IR.getName()
501 75 : << "\n";
502 0 :
503 48 : // Check the PassInstrumentation's BeforePass callbacks before running the
504 39 : // pass, skip its execution completely if asked to (callback returns
505 0 : // false).
506 1061 : if (!PI.runBeforePass<IRUnitT>(*P, IR))
507 0 : continue;
508 9 :
509 117 : PreservedAnalyses PassPA = P->run(IR, AM, ExtraArgs...);
510 0 :
511 0 : // Call onto PassInstrumentation's AfterPass callbacks immediately after
512 2014 : // running the pass.
513 0 : PI.runAfterPass<IRUnitT>(*P, IR);
514 22 :
515 0 : // Update the analysis manager as each pass runs and potentially
516 1 : // invalidates analyses.
517 16 : AM.invalidate(IR, PassPA);
518 :
519 55 : // Finally, intersect the preserved analyses to compute the aggregate
520 28 : // preserved set for this pass manager.
521 1 : PA.intersect(std::move(PassPA));
522 5130 :
523 : // FIXME: Historically, the pass managers all called the LLVM context's
524 4 : // yield function here. We don't have a generic way to acquire the
525 54 : // context and it isn't yet clear what the right pattern is for yielding
526 6 : // in the new pass manager so it is currently omitted.
527 10 : //IR.getContext().yield();
528 6 : }
529 4 :
530 43 : // Invalidation was handled after each pass in the above loop for the
531 5075 : // current unit of IR. Therefore, the remaining analysis results in the
532 6 : // AnalysisManager are preserved. We mark this with a set so that we don't
533 39 : // need to inspect each one individually.
534 5075 : PA.preserveSet<AllAnalysesOn<IRUnitT>>();
535 1121 :
536 33 : if (DebugLogging)
537 28660 : dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
538 18622 :
539 18512 : return PA;
540 5256 : }
541 5359 :
542 0 : template <typename PassT> void addPass(PassT Pass) {
543 23 : using PassModelT =
544 4 : detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
545 1 : ExtraArgTs...>;
546 18663 :
547 2 : Passes.emplace_back(new PassModelT(std::move(Pass)));
548 18 : }
549 37125 :
550 : private:
551 107 : using PassConceptT =
552 169 : detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
553 18502 :
554 29 : std::vector<std::unique_ptr<PassConceptT>> Passes;
555 :
556 12 : /// Flag indicating whether we should do debug logging.
557 18531 : bool DebugLogging;
558 16 : };
559 57 :
560 17 : extern template class PassManager<Module>;
561 18502 :
562 57 : /// Convenience typedef for a pass manager over modules.
563 19 : using ModulePassManager = PassManager<Module>;
564 79 :
565 57 : extern template class PassManager<Function>;
566 0 :
567 55 : /// Convenience typedef for a pass manager over functions.
568 17 : using FunctionPassManager = PassManager<Function>;
569 0 :
570 67 : /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
571 0 : /// managers. Goes before AnalysisManager definition to provide its
572 38 : /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
573 67 : /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
574 : /// header.
575 47 : class PassInstrumentationAnalysis
576 5096 : : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
577 982 : friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
578 35 : static AnalysisKey Key;
579 5067 :
580 18 : PassInstrumentationCallbacks *Callbacks;
581 3902 :
582 : public:
583 137 : /// PassInstrumentationCallbacks object is shared, owned by something else,
584 17 : /// not this analysis.
585 0 : PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
586 177 : : Callbacks(Callbacks) {}
587 :
588 120 : using Result = PassInstrumentation;
589 177 :
590 6215 : template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
591 74 : Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
592 57 : return PassInstrumentation(Callbacks);
593 3867 : }
594 712 : };
595 3612 :
596 22953 : /// A container for analyses that lazily runs them and caches their
597 12898 : /// results.
598 12860 : ///
599 3486 : /// This class can manage analyses for any IR unit where the address of the IR
600 3468 : /// unit sufficies as its identity.
601 0 : template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
602 45 : public:
603 10 : class Invalidator;
604 24 :
605 12899 : private:
606 1 : // Now that we've defined our invalidator, we can define the concept types.
607 38 : using ResultConceptT =
608 25731 : detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
609 0 : using PassConceptT =
610 106 : detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
611 634 : ExtraArgTs...>;
612 12903 :
613 102 : /// List of analysis pass IDs and associated concept pointers.
614 : ///
615 1 : /// Requires iterators to be valid across appending new entries and arbitrary
616 14838 : /// erases. Provides the analysis ID to enable finding iterators to a given
617 635 : /// entry in maps below, and provides the storage for the actual result
618 1717 : /// concept.
619 2 : using AnalysisResultListT =
620 12853 : std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
621 0 :
622 : /// Map type from IRUnitT pointer to our custom list type.
623 1714 : using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
624 1716 :
625 2 : /// Map type from a pair of analysis ID and IRUnitT pointer to an
626 0 : /// iterator into a particular result list (which is where the actual analysis
627 : /// result is stored).
628 0 : using AnalysisResultMapT =
629 0 : DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
630 35 : typename AnalysisResultListT::iterator>;
631 0 :
632 0 : public:
633 0 : /// API to communicate dependencies between analyses during invalidation.
634 11 : ///
635 3932 : /// When an analysis result embeds handles to other analysis results, it
636 705 : /// needs to be invalidated both when its own information isn't preserved and
637 15 : /// when any of its embedded analysis results end up invalidated. We pass an
638 3867 : /// \c Invalidator object as an argument to \c invalidate() in order to let
639 0 : /// the analysis results themselves define the dependency graph on the fly.
640 1229 : /// This lets us avoid building building an explicit representation of the
641 0 : /// dependencies between analysis results.
642 45 : class Invalidator {
643 15 : public:
644 0 : /// Trigger the invalidation of some other analysis pass if not already
645 : /// handled and return whether it was in fact invalidated.
646 7 : ///
647 0 : /// This is expected to be called from within a given analysis result's \c
648 38 : /// invalidate method to trigger a depth-first walk of all inter-analysis
649 1208 : /// dependencies. The same \p IR unit and \p PA passed to that result's \c
650 0 : /// invalidate method should in turn be provided to this routine.
651 8 : ///
652 1212 : /// The first time this is called for a given analysis pass, it will call
653 312 : /// the corresponding result's \c invalidate method. Subsequent calls will
654 : /// use a cache of the results of that initial call. It is an error to form
655 8068 : /// cyclic dependencies between analysis results.
656 5666 : ///
657 5668 : /// This returns true if the given analysis's result is invalid. Any
658 1818 : /// dependecies on it will become invalid as a result.
659 1812 : template <typename PassT>
660 0 : bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
661 : using ResultModelT =
662 0 : detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
663 1 : PreservedAnalyses, Invalidator>;
664 5659 :
665 5035 : return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
666 0 : }
667 11309 :
668 0 : /// A type-erased variant of the above invalidate method with the same core
669 : /// API other than passing an analysis ID rather than an analysis type
670 4 : /// parameter.
671 5650 : ///
672 0 : /// This is sadly less efficient than the above routine, which leverages
673 9 : /// the type parameter to avoid the type erasure overhead.
674 3 : bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
675 6429 : return invalidateImpl<>(ID, IR, PA);
676 12 : }
677 0 :
678 0 : private:
679 5661 : friend class AnalysisManager;
680 0 :
681 12 : template <typename ResultT = ResultConceptT>
682 5054 : bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
683 0 : const PreservedAnalyses &PA) {
684 46 : // If we've already visited this pass, return true if it was invalidated
685 52 : // and false otherwise.
686 5039 : auto IMapI = IsResultInvalidated.find(ID);
687 10124 : if (IMapI != IsResultInvalidated.end())
688 5014 : return IMapI->second;
689 49 :
690 71 : // Otherwise look up the result object.
691 50 : auto RI = Results.find({ID, &IR});
692 446 : assert(RI != Results.end() &&
693 11 : "Trying to invalidate a dependent result that isn't in the "
694 1200 : "manager's cache is always an error, likely due to a stale result "
695 337 : "handle!");
696 469 :
697 2116 : auto &Result = static_cast<ResultT &>(*RI->second->second);
698 431 :
699 8 : // Insert into the map whether the result should be invalidated and return
700 2 : // that. Note that we cannot reuse IMapI and must do a fresh insert here,
701 50 : // as calling invalidate could (recursively) insert things into the map,
702 0 : // making any iterator or reference invalid.
703 0 : bool Inserted;
704 56 : std::tie(IMapI, Inserted) =
705 27 : IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
706 8 : (void)Inserted;
707 25 : assert(Inserted && "Should not have already inserted this ID, likely "
708 0 : "indicates a dependency cycle!");
709 25 : return IMapI->second;
710 0 : }
711 553 :
712 3 : Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
713 0 : const AnalysisResultMapT &Results)
714 50 : : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
715 581 :
716 1107 : SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
717 553 : const AnalysisResultMapT &Results;
718 15 : };
719 26 :
720 0 : /// Construct an empty analysis manager.
721 1 : ///
722 1 : /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
723 20 : AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
724 24 : AnalysisManager(AnalysisManager &&) = default;
725 4 : AnalysisManager &operator=(AnalysisManager &&) = default;
726 0 :
727 9 : /// Returns true if the analysis manager has an empty results cache.
728 : bool empty() const {
729 9 : assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
730 17 : "The storage and index of analysis results disagree on how many "
731 4 : "there are!");
732 5 : return AnalysisResults.empty();
733 0 : }
734 0 :
735 4 : /// Clear any cached analysis results for a single unit of IR.
736 0 : ///
737 62 : /// This doesn't invalidate, but instead simply deletes, the relevant results.
738 5 : /// It is useful when the IR is being removed and we want to clear out all the
739 0 : /// memory pinned for it.
740 1001 : void clear(IRUnitT &IR, llvm::StringRef Name) {
741 0 : if (DebugLogging)
742 0 : dbgs() << "Clearing all analysis results for: " << Name << "\n";
743 79 :
744 1000 : auto ResultsListI = AnalysisResultLists.find(&IR);
745 2001 : if (ResultsListI == AnalysisResultLists.end())
746 1000 : return;
747 : // Delete the map entries that point into the results list.
748 63 : for (auto &IDAndResult : ResultsListI->second)
749 133 : AnalysisResults.erase({IDAndResult.first, &IR});
750 14 :
751 133 : // And actually destroy and erase the results associated with this IR.
752 2 : AnalysisResultLists.erase(ResultsListI);
753 7 : }
754 87 :
755 31 : /// Clear all analysis results cached by this AnalysisManager.
756 14 : ///
757 : /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
758 6 : /// deletes them. This lets you clean up the AnalysisManager when the set of
759 6 : /// IR units itself has potentially changed, and thus we can't even look up a
760 76 : /// a result and invalidate/clear it directly.
761 0 : void clear() {
762 78 : AnalysisResults.clear();
763 3 : AnalysisResultLists.clear();
764 0 : }
765 7 :
766 7 : /// Get the result of an analysis pass for a given IR unit.
767 16 : ///
768 0 : /// Runs the analysis if a cached result is not available.
769 1569 : template <typename PassT>
770 2269 : typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
771 : assert(AnalysisPasses.count(PassT::ID()) &&
772 13 : "This analysis pass was not registered prior to being queried");
773 29175 : ResultConceptT &ResultConcept =
774 3145 : getResultImpl(PassT::ID(), IR, ExtraArgs...);
775 1550 :
776 4 : using ResultModelT =
777 0 : detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
778 38 : PreservedAnalyses, Invalidator>;
779 206 :
780 17840 : return static_cast<ResultModelT &>(ResultConcept).Result;
781 6 : }
782 4 :
783 3206 : /// Get the cached result of an analysis pass for a given IR unit.
784 417 : ///
785 199 : /// This method never runs the analysis.
786 0 : ///
787 : /// \returns null if there is no cached result.
788 0 : template <typename PassT>
789 29 : typename PassT::Result *getCachedResult(IRUnitT &IR) const {
790 978 : assert(AnalysisPasses.count(PassT::ID()) &&
791 38 : "This analysis pass was not registered prior to being queried");
792 19 :
793 6399 : ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
794 6399 : if (!ResultConcept)
795 0 : return nullptr;
796 44 :
797 0 : using ResultModelT =
798 1059 : detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
799 0 : PreservedAnalyses, Invalidator>;
800 6 :
801 3829 : return &static_cast<ResultModelT *>(ResultConcept)->Result;
802 1059 : }
803 2118 :
804 1059 : /// Register an analysis pass with the manager.
805 : ///
806 0 : /// The parameter is a callable whose result is an analysis pass. This allows
807 0 : /// passing in a lambda to construct the analysis.
808 199 : ///
809 0 : /// The analysis type to register is the type returned by calling the \c
810 0 : /// PassBuilder argument. If that type has already been registered, then the
811 2 : /// argument will not be called and this function will return false.
812 199 : /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
813 398 : /// and this function returns true.
814 199 : ///
815 0 : /// (Note: Although the return value of this function indicates whether or not
816 4 : /// an analysis was previously registered, there intentionally isn't a way to
817 1102 : /// query this directly. Instead, you should just register all the analyses
818 1100 : /// you might want and let this class run them lazily. This idiom lets us
819 : /// minimize the number of times we have to look up analyses in our
820 0 : /// hashtable.)
821 67 : template <typename PassBuilderT>
822 3719 : bool registerPass(PassBuilderT &&PassBuilder) {
823 0 : using PassT = decltype(PassBuilder());
824 0 : using PassModelT =
825 471 : detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
826 133 : Invalidator, ExtraArgTs...>;
827 468 :
828 3719 : auto &PassPtr = AnalysisPasses[PassT::ID()];
829 3719 : if (PassPtr)
830 0 : // Already registered this pass type!
831 401 : return false;
832 875 :
833 676 : // Construct a new model around the instance returned by the builder.
834 3719 : PassPtr.reset(new PassModelT(PassBuilder()));
835 0 : return true;
836 0 : }
837 136 :
838 73 : /// Invalidate a specific analysis pass for an IR module.
839 0 : ///
840 0 : /// Note that the analysis result can disregard invalidation, if it determines
841 32 : /// it is in fact still valid.
842 64 : template <typename PassT> void invalidate(IRUnitT &IR) {
843 7 : assert(AnalysisPasses.count(PassT::ID()) &&
844 0 : "This analysis pass was not registered prior to being invalidated");
845 0 : invalidateImpl(PassT::ID(), IR);
846 700 : }
847 0 :
848 0 : /// Invalidate cached analyses for an IR unit.
849 6 : ///
850 648 : /// Walk through all of the analyses pertaining to this unit of IR and
851 1296 : /// invalidate them, unless they are preserved by the PreservedAnalyses set.
852 446 : void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
853 4 : // We're done if all analyses on this IR unit are preserved.
854 12 : if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
855 464 : return;
856 402 :
857 0 : if (DebugLogging)
858 4 : dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
859 54 : << "\n";
860 1353 :
861 1033 : // Track whether each analysis's result is invalidated in
862 432 : // IsResultInvalidated.
863 1509 : SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
864 25 : Invalidator Inv(IsResultInvalidated, AnalysisResults);
865 0 : AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
866 0 : for (auto &AnalysisResultPair : ResultsList) {
867 1733 : // This is basically the same thing as Invalidator::invalidate, but we
868 489 : // can't call it here because we're operating on the type-erased result.
869 1066 : // Moreover if we instead called invalidate() directly, it would do an
870 1535 : // unnecessary look up in ResultsList.
871 0 : AnalysisKey *ID = AnalysisResultPair.first;
872 2 : auto &Result = *AnalysisResultPair.second;
873 230 :
874 58 : auto IMapI = IsResultInvalidated.find(ID);
875 638 : if (IMapI != IsResultInvalidated.end())
876 33 : // This result was already handled via the Invalidator.
877 12 : continue;
878 0 :
879 563 : // Try to invalidate the result, giving it the Invalidator so it can
880 1111 : // recursively query for any dependencies it has and record the result.
881 368 : // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
882 30 : // Result.invalidate may insert things into the map, invalidating our
883 12 : // iterator.
884 419 : bool Inserted =
885 4 : IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
886 16 : .second;
887 12 : (void)Inserted;
888 10 : assert(Inserted && "Should never have already inserted this ID, likely "
889 1158 : "indicates a cycle!");
890 227 : }
891 10 :
892 0 : // Now erase the results that were marked above as invalidated.
893 10 : if (!IsResultInvalidated.empty()) {
894 10 : for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
895 101 : AnalysisKey *ID = I->first;
896 1219 : if (!IsResultInvalidated.lookup(ID)) {
897 410 : ++I;
898 200 : continue;
899 99 : }
900 115 :
901 14 : if (DebugLogging)
902 209 : dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
903 348 : << " on " << IR.getName() << "\n";
904 616 :
905 12 : I = ResultsList.erase(I);
906 12 : AnalysisResults.erase({ID, &IR});
907 9 : }
908 105 : }
909 1800 :
910 1669 : if (ResultsList.empty())
911 26 : AnalysisResultLists.erase(&IR);
912 0 : }
913 60 :
914 27 : private:
915 8 : /// Look up a registered analysis pass.
916 26 : PassConceptT &lookUpPass(AnalysisKey *ID) {
917 173 : typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
918 40 : assert(PI != AnalysisPasses.end() &&
919 35 : "Analysis passes must be registered prior to being queried!");
920 6 : return *PI->second;
921 26 : }
922 20 :
923 16 : /// Look up a registered analysis pass.
924 0 : const PassConceptT &lookUpPass(AnalysisKey *ID) const {
925 2185 : typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
926 70 : assert(PI != AnalysisPasses.end() &&
927 39 : "Analysis passes must be registered prior to being queried!");
928 4811 : return *PI->second;
929 13 : }
930 0 :
931 317 : /// Get an analysis result, running the pass if necessary.
932 12 : ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
933 : ExtraArgTs... ExtraArgs) {
934 4309 : typename AnalysisResultMapT::iterator RI;
935 2487 : bool Inserted;
936 5256 : std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
937 3 : std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
938 294 :
939 0 : // If we don't have a cached result for this function, look up the pass and
940 2 : // run it to produce a result, which we then add to the cache.
941 15 : if (Inserted) {
942 935 : auto &P = this->lookUpPass(ID);
943 937 : if (DebugLogging)
944 23 : dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
945 14 : << "\n";
946 31 :
947 4 : PassInstrumentation PI;
948 1087 : if (ID != PassInstrumentationAnalysis::ID()) {
949 3120 : PI = getResult<PassInstrumentationAnalysis>(IR, ExtraArgs...);
950 6 : PI.runBeforeAnalysis(P, IR);
951 9 : }
952 2191 :
953 9 : AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
954 13 : ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
955 0 :
956 6 : PI.runAfterAnalysis(P, IR);
957 12 :
958 0 : // P.run may have inserted elements into AnalysisResults and invalidated
959 2185 : // RI.
960 0 : RI = AnalysisResults.find({ID, &IR});
961 12 : assert(RI != AnalysisResults.end() && "we just inserted it!");
962 0 :
963 0 : RI->second = std::prev(ResultList.end());
964 0 : }
965 0 :
966 0 : return *RI->second->second;
967 6 : }
968 0 :
969 0 : /// Get a cached analysis result or return null.
970 0 : ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
971 0 : typename AnalysisResultMapT::const_iterator RI =
972 2892 : AnalysisResults.find({ID, &IR});
973 2892 : return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
974 63 : }
975 6 :
976 130 : /// Invalidate a function pass result.
977 130 : void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
978 9 : typename AnalysisResultMapT::iterator RI =
979 6 : AnalysisResults.find({ID, &IR});
980 1841 : if (RI == AnalysisResults.end())
981 804 : return;
982 25 :
983 0 : if (DebugLogging)
984 365 : dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
985 368 : << " on " << IR.getName() << "\n";
986 17 : AnalysisResultLists[&IR].erase(RI->second);
987 3 : AnalysisResults.erase(RI);
988 2990 : }
989 5266 :
990 0 : /// Map type from module analysis pass ID to pass concept pointer.
991 3 : using AnalysisPassMapT =
992 0 : DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
993 3 :
994 368 : /// Collection of module analysis passes, indexed by ID.
995 365 : AnalysisPassMapT AnalysisPasses;
996 25 :
997 : /// Map from function to a list of function analysis results.
998 365 : ///
999 365 : /// Provides linear time removal of all analysis results for a function and
1000 11 : /// the ultimate storage for a particular cached analysis result.
1001 0 : AnalysisResultListMapT AnalysisResultLists;
1002 3676 :
1003 5266 : /// Map from an analysis ID and function to a particular cached
1004 111 : /// analysis result.
1005 1475 : AnalysisResultMapT AnalysisResults;
1006 :
1007 0 : /// Indicates whether we log to \c llvm::dbgs().
1008 0 : bool DebugLogging;
1009 0 : };
1010 112 :
1011 111 : extern template class AnalysisManager<Module>;
1012 1467 :
1013 0 : /// Convenience typedef for the Module analysis manager.
1014 1 : using ModuleAnalysisManager = AnalysisManager<Module>;
1015 3 :
1016 186 : extern template class AnalysisManager<Function>;
1017 112 :
1018 1 : /// Convenience typedef for the Function analysis manager.
1019 37 : using FunctionAnalysisManager = AnalysisManager<Function>;
1020 32 :
1021 : /// An analysis over an "outer" IR unit that provides access to an
1022 : /// analysis manager over an "inner" IR unit. The inner unit must be contained
1023 32 : /// in the outer unit.
1024 0 : ///
1025 69 : /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
1026 758 : /// an analysis over Modules (the "outer" unit) that provides access to a
1027 : /// Function analysis manager. The FunctionAnalysisManager is the "inner"
1028 0 : /// manager being proxied, and Functions are the "inner" unit. The inner/outer
1029 689 : /// relationship is valid because each Function is contained in one Module.
1030 262 : ///
1031 3307 : /// If you're (transitively) within a pass manager for an IR unit U that
1032 37 : /// contains IR unit V, you should never use an analysis manager over V, except
1033 2971 : /// via one of these proxies.
1034 2202 : ///
1035 0 : /// Note that the proxy's result is a move-only RAII object. The validity of
1036 1495 : /// the analyses in the inner analysis manager is tied to its lifetime.
1037 204 : template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1038 102 : class InnerAnalysisManagerProxy
1039 0 : : public AnalysisInfoMixin<
1040 98 : InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
1041 37 : public:
1042 3 : class Result {
1043 806 : public:
1044 1804 : explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
1045 3273 :
1046 25813 : Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
1047 110 : // We have to null out the analysis manager in the moved-from state
1048 0 : // because we are taking ownership of the responsibilty to clear the
1049 29481 : // analysis state.
1050 4091 : Arg.InnerAM = nullptr;
1051 74 : }
1052 146 :
1053 2511 : ~Result() {
1054 2467 : // InnerAM is cleared in a moved from state where there is nothing to do.
1055 37 : if (!InnerAM)
1056 23863 : return;
1057 372 :
1058 19984 : // Clear out the analysis manager if we're being destroyed -- it means we
1059 : // didn't even see an invalidate call when we got invalidated.
1060 0 : InnerAM->clear();
1061 20021 : }
1062 66 :
1063 0 : Result &operator=(Result &&RHS) {
1064 : InnerAM = RHS.InnerAM;
1065 4885 : // We have to null out the analysis manager in the moved-from state
1066 0 : // because we are taking ownership of the responsibilty to clear the
1067 0 : // analysis state.
1068 19995 : RHS.InnerAM = nullptr;
1069 59 : return *this;
1070 3790 : }
1071 12 :
1072 806 : /// Accessor for the analysis manager.
1073 7043 : AnalysisManagerT &getManager() { return *InnerAM; }
1074 2507 :
1075 2467 : /// Handler for invalidation of the outer IR unit, \c IRUnitT.
1076 8 : ///
1077 0 : /// If the proxy analysis itself is not preserved, we assume that the set of
1078 : /// inner IR objects contained in IRUnit may have changed. In this case,
1079 8 : /// we have to call \c clear() on the inner analysis manager, as it may now
1080 4081 : /// have stale pointers to its inner IR objects.
1081 176 : ///
1082 260 : /// Regardless of whether the proxy analysis is marked as preserved, all of
1083 : /// the analyses in the inner analysis manager are potentially invalidated
1084 0 : /// based on the set of preserved analyses.
1085 322 : bool invalidate(
1086 : IRUnitT &IR, const PreservedAnalyses &PA,
1087 0 : typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
1088 0 :
1089 806 : private:
1090 0 : AnalysisManagerT *InnerAM;
1091 0 : };
1092 0 :
1093 3625 : explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
1094 3625 : : InnerAM(&InnerAM) {}
1095 0 :
1096 84 : /// Run the analysis pass and create our proxy result object.
1097 0 : ///
1098 3 : /// This doesn't do any interesting work; it is primarily used to insert our
1099 3292 : /// proxy result object into the outer analysis cache so that we can proxy
1100 0 : /// invalidation to the inner analysis manager.
1101 292 : Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1102 17 : ExtraArgTs...) {
1103 0 : return Result(*InnerAM);
1104 0 : }
1105 58 :
1106 0 : private:
1107 0 : friend AnalysisInfoMixin<
1108 1282 : InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1109 75 :
1110 1294 : static AnalysisKey Key;
1111 8914 :
1112 : AnalysisManagerT *InnerAM;
1113 95 : };
1114 187 :
1115 15339 : template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1116 7778 : AnalysisKey
1117 4 : InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1118 :
1119 120 : /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1120 7710 : using FunctionAnalysisManagerModuleProxy =
1121 3351 : InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1122 3397 :
1123 982 : /// Specialization of the invalidate method for the \c
1124 563 : /// FunctionAnalysisManagerModuleProxy's result.
1125 938 : template <>
1126 1870 : bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1127 3379 : Module &M, const PreservedAnalyses &PA,
1128 2214 : ModuleAnalysisManager::Invalidator &Inv);
1129 2263 :
1130 113 : // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1131 43 : // template.
1132 3244 : extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1133 3211 : Module>;
1134 0 :
1135 3208 : /// An analysis over an "inner" IR unit that provides access to an
1136 : /// analysis manager over a "outer" IR unit. The inner unit must be contained
1137 0 : /// in the outer unit.
1138 4 : ///
1139 3212 : /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1140 78 : /// analysis over Functions (the "inner" unit) which provides access to a Module
1141 : /// analysis manager. The ModuleAnalysisManager is the "outer" manager being
1142 6496 : /// proxied, and Modules are the "outer" IR unit. The inner/outer relationship
1143 78 : /// is valid because each Function is contained in one Module.
1144 8 : ///
1145 15394 : /// This proxy only exposes the const interface of the outer analysis manager,
1146 78 : /// to indicate that you cannot cause an outer analysis to run from within an
1147 4 : /// inner pass. Instead, you must rely on the \c getCachedResult API.
1148 101 : ///
1149 895 : /// This proxy doesn't manage invalidation in any way -- that is handled by the
1150 937 : /// recursive return path of each layer of the pass manager. A consequence of
1151 1016 : /// this is the outer analyses may be stale. We invalidate the outer analyses
1152 21849 : /// only when we're done running passes over the inner IR units.
1153 105 : template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1154 21038 : class OuterAnalysisManagerProxy
1155 16624 : : public AnalysisInfoMixin<
1156 1 : OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1157 4341 : public:
1158 502 : /// Result proxy object for \c OuterAnalysisManagerProxy.
1159 479 : class Result {
1160 0 : public:
1161 0 : explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
1162 17 :
1163 14 : const AnalysisManagerT &getManager() const { return *AM; }
1164 4309 :
1165 4317 : /// When invalidation occurs, remove any registered invalidation events.
1166 28272 : bool invalidate(
1167 15 : IRUnitT &IRUnit, const PreservedAnalyses &PA,
1168 33 : typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1169 19 : // Loop over the set of registered outer invalidation mappings and if any
1170 0 : // of them map to an analysis that is now invalid, clear it out.
1171 23940 : SmallVector<AnalysisKey *, 4> DeadKeys;
1172 2 : for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1173 12 : AnalysisKey *OuterID = KeyValuePair.first;
1174 23950 : auto &InnerIDs = KeyValuePair.second;
1175 23944 : InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) {
1176 792 : return Inv.invalidate(InnerID, IRUnit, PA); }),
1177 286 : InnerIDs.end());
1178 2 : if (InnerIDs.empty())
1179 0 : DeadKeys.push_back(OuterID);
1180 2 : }
1181 0 :
1182 2 : for (auto OuterID : DeadKeys)
1183 2 : OuterAnalysisInvalidationMap.erase(OuterID);
1184 0 :
1185 2 : // The proxy itself remains valid regardless of anything else.
1186 47327 : return false;
1187 0 : }
1188 1569 :
1189 : /// Register a deferred invalidation event for when the outer analysis
1190 0 : /// manager processes its invalidations.
1191 0 : template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
1192 3152 : void registerOuterAnalysisInvalidation() {
1193 5891 : AnalysisKey *OuterID = OuterAnalysisT::ID();
1194 27721 : AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1195 23940 :
1196 23941 : auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1197 1571 : // Note, this is a linear scan. If we end up with large numbers of
1198 794 : // analyses that all trigger invalidation on the same outer analysis,
1199 780 : // this entire system should be changed to some other deterministic
1200 217 : // data structure such as a `SetVector` of a pair of pointers.
1201 5881 : auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
1202 1236 : InvalidatedIDList.end(), InvalidatedID);
1203 618 : if (InvalidatedIt == InvalidatedIDList.end())
1204 780 : InvalidatedIDList.push_back(InvalidatedID);
1205 689 : }
1206 6352 :
1207 1 : /// Access the map from outer analyses to deferred invalidation requiring
1208 1 : /// analyses.
1209 780 : const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
1210 5089 : getOuterInvalidations() const {
1211 528 : return OuterAnalysisInvalidationMap;
1212 780 : }
1213 15285 :
1214 0 : private:
1215 15284 : const AnalysisManagerT *AM;
1216 12616 :
1217 0 : /// A map from an outer analysis ID to the set of this IR-unit's analyses
1218 3449 : /// which need to be invalidated.
1219 1889 : SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1220 333 : OuterAnalysisInvalidationMap;
1221 : };
1222 3139 :
1223 5 : OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
1224 :
1225 3453 : /// Run the analysis pass and create our proxy result object.
1226 4079 : /// Nothing to see here, it just forwards the \c AM reference into the
1227 24600 : /// result.
1228 627 : Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1229 626 : ExtraArgTs...) {
1230 : return Result(*AM);
1231 1 : }
1232 20542 :
1233 17 : private:
1234 0 : friend AnalysisInfoMixin<
1235 20525 : OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1236 20525 :
1237 1 : static AnalysisKey Key;
1238 256 :
1239 0 : const AnalysisManagerT *AM;
1240 0 : };
1241 0 :
1242 0 : template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1243 279 : AnalysisKey
1244 312 : OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1245 :
1246 1 : extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1247 40852 : Function>;
1248 : /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1249 312 : using ModuleAnalysisManagerFunctionProxy =
1250 390 : OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1251 :
1252 1 : /// Trivial adaptor that maps from a module to its functions.
1253 1 : ///
1254 3449 : /// Designed to allow composition of a FunctionPass(Manager) and
1255 23446 : /// a ModulePassManager, by running the FunctionPass(Manager) over every
1256 20525 : /// function in the module.
1257 20525 : ///
1258 1 : /// Function passes run within this adaptor can rely on having exclusive access
1259 : /// to the function they are run over. They should not read or modify any other
1260 1870 : /// functions! Other threads or systems may be manipulating other functions in
1261 1 : /// the module, and so their state should never be relied on.
1262 4627 : /// FIXME: Make the above true for all of LLVM's actual passes, some still
1263 948 : /// violate this principle.
1264 474 : ///
1265 0 : /// Function passes can also read the module containing the function, but they
1266 1870 : /// should not modify that module outside of the use lists of various globals.
1267 6498 : /// For example, a function pass is not permitted to add functions to the
1268 1 : /// module.
1269 0 : /// FIXME: Make the above true for all of LLVM's actual passes, some still
1270 : /// violate this principle.
1271 3449 : ///
1272 2398 : /// Note that although function passes can access module analyses, module
1273 936 : /// analyses are not invalidated while the function passes are running, so they
1274 5649 : /// may be stale. Function analyses will not be stale.
1275 935 : template <typename FunctionPassT>
1276 5650 : class ModuleToFunctionPassAdaptor
1277 4789 : : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
1278 : public:
1279 860 : explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
1280 130 : : Pass(std::move(Pass)) {}
1281 1065 :
1282 936 : /// Runs the function pass across every function in the module.
1283 218 : PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
1284 0 : FunctionAnalysisManager &FAM =
1285 : AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1286 860 :
1287 1795 : // Request PassInstrumentation from analysis manager, will use it to run
1288 5211 : // instrumenting callbacks for the passes later.
1289 0 : PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
1290 72 :
1291 1 : PreservedAnalyses PA = PreservedAnalyses::all();
1292 0 : for (Function &F : M) {
1293 3415 : if (F.isDeclaration())
1294 : continue;
1295 0 :
1296 3415 : // Check the PassInstrumentation's BeforePass callbacks before running the
1297 3416 : // pass, skip its execution completely if asked to (callback returns
1298 1 : // false).
1299 29 : if (!PI.runBeforePass<Function>(Pass, F))
1300 0 : continue;
1301 : PreservedAnalyses PassPA = Pass.run(F, FAM);
1302 0 :
1303 1 : PI.runAfterPass(Pass, F);
1304 0 :
1305 0 : // We know that the function pass couldn't have invalidated any other
1306 1 : // function's analyses (that's the contract of a function pass), so
1307 0 : // directly handle the function analysis manager's invalidation here.
1308 6772 : FAM.invalidate(F, PassPA);
1309 :
1310 : // Then intersect the preserved set so that invalidation of module
1311 0 : // analyses will eventually occur when the module pass completes.
1312 1 : PA.intersect(std::move(PassPA));
1313 1 : }
1314 0 :
1315 860 : // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
1316 4275 : // the function passes we ran didn't add or remove any functions.
1317 3415 : //
1318 3416 : // We also preserve all analyses on Functions, because we did all the
1319 0 : // invalidation we needed to do above.
1320 935 : PA.preserveSet<AllAnalysesOn<Function>>();
1321 1 : PA.preserve<FunctionAnalysisManagerModuleProxy>();
1322 0 : return PA;
1323 1036 : }
1324 288 :
1325 144 : private:
1326 935 : FunctionPassT Pass;
1327 936 : };
1328 1085 :
1329 0 : /// A function to deduce a function pass type and wrap it in the
1330 0 : /// templated adaptor.
1331 : template <typename FunctionPassT>
1332 1795 : ModuleToFunctionPassAdaptor<FunctionPassT>
1333 1 : createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
1334 48 : return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
1335 48 : }
1336 0 :
1337 0 : /// A utility pass template to force an analysis result to be available.
1338 0 : ///
1339 618 : /// If there are extra arguments at the pass's run level there may also be
1340 93 : /// extra arguments to the analysis manager's \c getResult routine. We can't
1341 0 : /// guess how to effectively map the arguments from one to the other, and so
1342 29500 : /// this specialization just ignores them.
1343 0 : ///
1344 0 : /// Specific patterns of run-method extra arguments and analysis manager extra
1345 53 : /// arguments will have to be defined as appropriate specializations.
1346 0 : template <typename AnalysisT, typename IRUnitT,
1347 0 : typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1348 5 : typename... ExtraArgTs>
1349 0 : struct RequireAnalysisPass
1350 0 : : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1351 133 : ExtraArgTs...>> {
1352 22 : /// Run this pass over some unit of IR.
1353 27 : ///
1354 27 : /// This pass can be run over any unit of IR and use any analysis manager
1355 0 : /// provided they satisfy the basic API requirements. When this pass is
1356 0 : /// created, these methods can be instantiated to satisfy whatever the
1357 0 : /// context requires.
1358 31 : PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1359 0 : ExtraArgTs &&... Args) {
1360 0 : (void)AM.template getResult<AnalysisT>(Arg,
1361 75 : std::forward<ExtraArgTs>(Args)...);
1362 22 :
1363 0 : return PreservedAnalyses::all();
1364 9 : }
1365 62 : };
1366 0 :
1367 0 : /// A no-op pass template which simply forces a specific analysis result
1368 91 : /// to be invalidated.
1369 0 : template <typename AnalysisT>
1370 18 : struct InvalidateAnalysisPass
1371 0 : : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1372 0 : /// Run this pass over some unit of IR.
1373 0 : ///
1374 91 : /// This pass can be run over any unit of IR and use any analysis manager,
1375 91 : /// provided they satisfy the basic API requirements. When this pass is
1376 0 : /// created, these methods can be instantiated to satisfy whatever the
1377 0 : /// context requires.
1378 95612 : template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1379 0 : PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1380 156 : auto PA = PreservedAnalyses::all();
1381 1 : PA.abandon<AnalysisT>();
1382 191224 : return PA;
1383 95625 : }
1384 0 : };
1385 0 :
1386 0 : /// A utility pass that does nothing, but preserves no analyses.
1387 95613 : ///
1388 27748 : /// Because this preserves no analyses, any analysis passes queried after this
1389 27813 : /// pass runs will recompute fresh results.
1390 3278 : struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1391 3265 : /// Run this pass over some unit of IR.
1392 0 : template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1393 1 : PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1394 27747 : return PreservedAnalyses::none();
1395 23897 : }
1396 23766 : };
1397 22 :
1398 23 : /// A utility pass template that simply runs another pass multiple times.
1399 27747 : ///
1400 27747 : /// This can be useful when debugging or testing passes. It also serves as an
1401 0 : /// example of how to extend the pass manager in ways beyond composition.
1402 27770 : template <typename PassT>
1403 1 : class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1404 1 : public:
1405 76 : RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
1406 27769 :
1407 0 : template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
1408 1 : PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1409 55547 :
1410 1 : // Request PassInstrumentation from analysis manager, will use it to run
1411 1 : // instrumenting callbacks for the passes later.
1412 191224 : // Here we use std::tuple wrapper over getResult which helps to extract
1413 1 : // AnalysisManager's arguments out of the whole Args set.
1414 83754 : PassInstrumentation PI =
1415 0 : detail::getAnalysisResult<PassInstrumentationAnalysis>(
1416 0 : AM, IR, std::tuple<Ts...>(Args...));
1417 1 :
1418 167509 : auto PA = PreservedAnalyses::all();
1419 83755 : for (int i = 0; i < Count; ++i) {
1420 1 : // Check the PassInstrumentation's BeforePass callbacks before running the
1421 0 : // pass, skip its execution completely if asked to (callback returns
1422 3 : // false).
1423 83755 : if (!PI.runBeforePass<IRUnitT>(P, IR))
1424 22967 : continue;
1425 22968 : PA.intersect(P.run(IR, AM, std::forward<Ts>(Args)...));
1426 2327 : PI.runAfterPass(P, IR);
1427 2326 : }
1428 10 : return PA;
1429 3 : }
1430 22970 :
1431 19987 : private:
1432 19985 : int Count;
1433 1 : PassT P;
1434 845 : };
1435 22971 :
1436 22967 : template <typename PassT>
1437 0 : RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
1438 22974 : return RepeatedPass<PassT>(Count, std::move(P));
1439 3 : }
1440 1 :
1441 0 : } // end namespace llvm
1442 22970 :
1443 1 : #endif // LLVM_IR_PASSMANAGER_H
|