Line data Source code
1 : //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 : // are used to describe target instructions and their operands.
12 : //
13 : //===----------------------------------------------------------------------===//
14 :
15 : #ifndef LLVM_MC_MCINSTRDESC_H
16 : #define LLVM_MC_MCINSTRDESC_H
17 :
18 : #include "llvm/MC/MCRegisterInfo.h"
19 : #include "llvm/Support/DataTypes.h"
20 : #include <string>
21 :
22 : namespace llvm {
23 : class MCInst;
24 : class MCSubtargetInfo;
25 : class FeatureBitset;
26 :
27 : //===----------------------------------------------------------------------===//
28 : // Machine Operand Flags and Description
29 : //===----------------------------------------------------------------------===//
30 :
31 : namespace MCOI {
32 : // Operand constraints
33 : enum OperandConstraint {
34 : TIED_TO = 0, // Must be allocated the same register as.
35 : EARLY_CLOBBER // Operand is an early clobber register operand
36 : };
37 :
38 : /// These are flags set on operands, but should be considered
39 : /// private, all access should go through the MCOperandInfo accessors.
40 : /// See the accessors for a description of what these are.
41 : enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
42 :
43 : /// Operands are tagged with one of the values of this enum.
44 : enum OperandType {
45 : OPERAND_UNKNOWN = 0,
46 : OPERAND_IMMEDIATE = 1,
47 : OPERAND_REGISTER = 2,
48 : OPERAND_MEMORY = 3,
49 : OPERAND_PCREL = 4,
50 :
51 : OPERAND_FIRST_GENERIC = 6,
52 : OPERAND_GENERIC_0 = 6,
53 : OPERAND_GENERIC_1 = 7,
54 : OPERAND_GENERIC_2 = 8,
55 : OPERAND_GENERIC_3 = 9,
56 : OPERAND_GENERIC_4 = 10,
57 : OPERAND_GENERIC_5 = 11,
58 : OPERAND_LAST_GENERIC = 11,
59 :
60 : OPERAND_FIRST_TARGET = 12,
61 : };
62 :
63 : }
64 :
65 : /// This holds information about one operand of a machine instruction,
66 : /// indicating the register class for register operands, etc.
67 : class MCOperandInfo {
68 : public:
69 : /// This specifies the register class enumeration of the operand
70 : /// if the operand is a register. If isLookupPtrRegClass is set, then this is
71 : /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
72 : /// get a dynamic register class.
73 : int16_t RegClass;
74 :
75 : /// These are flags from the MCOI::OperandFlags enum.
76 : uint8_t Flags;
77 :
78 : /// Information about the type of the operand.
79 : uint8_t OperandType;
80 : /// The lower 16 bits are used to specify which constraints are set.
81 : /// The higher 16 bits are used to specify the value of constraints (4 bits
82 : /// each).
83 : uint32_t Constraints;
84 :
85 : /// Set if this operand is a pointer value and it requires a callback
86 : /// to look up its register class.
87 0 : bool isLookupPtrRegClass() const {
88 0 : return Flags & (1 << MCOI::LookupPtrRegClass);
89 : }
90 :
91 : /// Set if this is one of the operands that made up of the predicate
92 : /// operand that controls an isPredicable() instruction.
93 0 : bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
94 :
95 : /// Set if this operand is a optional def.
96 0 : bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
97 :
98 0 : bool isGenericType() const {
99 187997 : return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
100 0 : OperandType <= MCOI::OPERAND_LAST_GENERIC;
101 : }
102 :
103 0 : unsigned getGenericTypeIndex() const {
104 : assert(isGenericType() && "non-generic types don't have an index");
105 64668 : return OperandType - MCOI::OPERAND_FIRST_GENERIC;
106 : }
107 : };
108 :
109 : //===----------------------------------------------------------------------===//
110 : // Machine Instruction Flags and Description
111 : //===----------------------------------------------------------------------===//
112 :
113 : namespace MCID {
114 : /// These should be considered private to the implementation of the
115 : /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc,
116 : /// not use these directly. These all correspond to bitfields in the
117 : /// MCInstrDesc::Flags field.
118 : enum Flag {
119 : Variadic = 0,
120 : HasOptionalDef,
121 : Pseudo,
122 : Return,
123 : EHScopeReturn,
124 : Call,
125 : Barrier,
126 : Terminator,
127 : Branch,
128 : IndirectBranch,
129 : Compare,
130 : MoveImm,
131 : MoveReg,
132 : Bitcast,
133 : Select,
134 : DelaySlot,
135 : FoldableAsLoad,
136 : MayLoad,
137 : MayStore,
138 : Predicable,
139 : NotDuplicable,
140 : UnmodeledSideEffects,
141 : Commutable,
142 : ConvertibleTo3Addr,
143 : UsesCustomInserter,
144 : HasPostISelHook,
145 : Rematerializable,
146 : CheapAsAMove,
147 : ExtraSrcRegAllocReq,
148 : ExtraDefRegAllocReq,
149 : RegSequence,
150 : ExtractSubreg,
151 : InsertSubreg,
152 : Convergent,
153 : Add,
154 : Trap
155 : };
156 : }
157 :
158 : /// Describe properties that are true of each instruction in the target
159 : /// description file. This captures information about side effects, register
160 : /// use and many other things. There is one instance of this struct for each
161 : /// target instruction class, and the MachineInstr class points to this struct
162 : /// directly to describe itself.
163 : class MCInstrDesc {
164 : public:
165 : unsigned short Opcode; // The opcode number
166 : unsigned short NumOperands; // Num of args (may be more if variable_ops)
167 : unsigned char NumDefs; // Num of args that are definitions
168 : unsigned char Size; // Number of bytes in encoding.
169 : unsigned short SchedClass; // enum identifying instr sched class
170 : uint64_t Flags; // Flags identifying machine instr class
171 : uint64_t TSFlags; // Target Specific Flag values
172 : const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
173 : const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
174 : const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands
175 : // Subtarget feature that this is deprecated on, if any
176 : // -1 implies this is not deprecated by any single feature. It may still be
177 : // deprecated due to a "complex" reason, below.
178 : int64_t DeprecatedFeature;
179 :
180 : // A complex method to determine if a certain instruction is deprecated or
181 : // not, and return the reason for deprecation.
182 : bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
183 : std::string &);
184 :
185 : /// Returns the value of the specific constraint if
186 : /// it is set. Returns -1 if it is not set.
187 0 : int getOperandConstraint(unsigned OpNum,
188 : MCOI::OperandConstraint Constraint) const {
189 331958030 : if (OpNum < NumOperands &&
190 330972148 : (OpInfo[OpNum].Constraints & (1 << Constraint))) {
191 0 : unsigned Pos = 16 + Constraint * 4;
192 6546037 : return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
193 : }
194 : return -1;
195 : }
196 :
197 : /// Returns true if a certain instruction is deprecated and if so
198 : /// returns the reason in \p Info.
199 : bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
200 : std::string &Info) const;
201 :
202 : /// Return the opcode number for this descriptor.
203 36592530 : unsigned getOpcode() const { return Opcode; }
204 :
205 : /// Return the number of declared MachineOperands for this
206 : /// MachineInstruction. Note that variadic (isVariadic() returns true)
207 : /// instructions may have additional operands at the end of the list, and note
208 : /// that the machine instruction may include implicit register def/uses as
209 : /// well.
210 530390844 : unsigned getNumOperands() const { return NumOperands; }
211 :
212 : using const_opInfo_iterator = const MCOperandInfo *;
213 :
214 0 : const_opInfo_iterator opInfo_begin() const { return OpInfo; }
215 0 : const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
216 :
217 : iterator_range<const_opInfo_iterator> operands() const {
218 0 : return make_range(opInfo_begin(), opInfo_end());
219 : }
220 :
221 : /// Return the number of MachineOperands that are register
222 : /// definitions. Register definitions always occur at the start of the
223 : /// machine operand list. This is the number of "outs" in the .td file,
224 : /// and does not include implicit defs.
225 220050831 : unsigned getNumDefs() const { return NumDefs; }
226 :
227 : /// Return flags of this instruction.
228 0 : uint64_t getFlags() const { return Flags; }
229 :
230 : /// Return true if this instruction can have a variable number of
231 : /// operands. In this case, the variable operands will be after the normal
232 : /// operands but before the implicit definitions and uses (if any are
233 : /// present).
234 34931195 : bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
235 :
236 : /// Set if this instruction has an optional definition, e.g.
237 : /// ARM instructions which can set condition code if 's' bit is set.
238 2605688 : bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
239 :
240 : /// Return true if this is a pseudo instruction that doesn't
241 : /// correspond to a real machine instruction.
242 4000 : bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
243 :
244 : /// Return true if the instruction is a return.
245 2227676 : bool isReturn() const { return Flags & (1ULL << MCID::Return); }
246 :
247 : /// Return true if the instruction is an add instruction.
248 1567 : bool isAdd() const { return Flags & (1ULL << MCID::Add); }
249 :
250 : /// Return true if this instruction is a trap.
251 288 : bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
252 :
253 : /// Return true if the instruction is a register to register move.
254 : bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
255 :
256 : /// Return true if the instruction is a call.
257 45973471 : bool isCall() const { return Flags & (1ULL << MCID::Call); }
258 :
259 : /// Returns true if the specified instruction stops control flow
260 : /// from executing the instruction immediately following it. Examples include
261 : /// unconditional branches and return instructions.
262 649491 : bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
263 :
264 : /// Returns true if this instruction part of the terminator for
265 : /// a basic block. Typically this is things like return and branch
266 : /// instructions.
267 : ///
268 : /// Various passes use this to insert code into the bottom of a basic block,
269 : /// but before control flow occurs.
270 133456 : bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
271 :
272 : /// Returns true if this is a conditional, unconditional, or
273 : /// indirect branch. Predicates below can be used to discriminate between
274 : /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
275 : /// get more information.
276 712838 : bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
277 :
278 : /// Return true if this is an indirect branch, such as a
279 : /// branch through a register.
280 651656 : bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
281 :
282 : /// Return true if this is a branch which may fall
283 : /// through to the next instruction or may transfer control flow to some other
284 : /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
285 : /// information about this branch.
286 : bool isConditionalBranch() const {
287 942682 : return isBranch() & !isBarrier() & !isIndirectBranch();
288 : }
289 :
290 : /// Return true if this is a branch which always
291 : /// transfers control flow to some other block. The
292 : /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
293 : /// about this branch.
294 : bool isUnconditionalBranch() const {
295 642543 : return isBranch() & isBarrier() & !isIndirectBranch();
296 : }
297 :
298 : /// Return true if this is a branch or an instruction which directly
299 : /// writes to the program counter. Considered 'may' affect rather than
300 : /// 'does' affect as things like predication are not taken into account.
301 : bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
302 :
303 : /// Return true if this instruction has a predicate operand
304 : /// that controls execution. It may be set to 'always', or may be set to other
305 : /// values. There are various methods in TargetInstrInfo that can be used to
306 : /// control and modify the predicate in this instruction.
307 1240423 : bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
308 :
309 : /// Return true if this instruction is a comparison.
310 : bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
311 :
312 : /// Return true if this instruction is a move immediate
313 : /// (including conditional moves) instruction.
314 : bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
315 :
316 : /// Return true if this instruction is a bitcast instruction.
317 : bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
318 :
319 : /// Return true if this is a select instruction.
320 : bool isSelect() const { return Flags & (1ULL << MCID::Select); }
321 :
322 : /// Return true if this instruction cannot be safely
323 : /// duplicated. For example, if the instruction has a unique labels attached
324 : /// to it, duplicating it would cause multiple definition errors.
325 : bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
326 :
327 : /// Returns true if the specified instruction has a delay slot which
328 : /// must be filled by the code generator.
329 36287 : bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
330 :
331 : /// Return true for instructions that can be folded as memory operands
332 : /// in other instructions. The most common use for this is instructions that
333 : /// are simple loads from memory that don't modify the loaded value in any
334 : /// way, but it can also be used for instructions that can be expressed as
335 : /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
336 : /// folded when it is beneficial. This should only be set on instructions
337 : /// that return a value in their only virtual register definition.
338 : bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
339 :
340 : /// Return true if this instruction behaves
341 : /// the same way as the generic REG_SEQUENCE instructions.
342 : /// E.g., on ARM,
343 : /// dX VMOVDRR rY, rZ
344 : /// is equivalent to
345 : /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
346 : ///
347 : /// Note that for the optimizers to be able to take advantage of
348 : /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
349 : /// override accordingly.
350 : bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
351 :
352 : /// Return true if this instruction behaves
353 : /// the same way as the generic EXTRACT_SUBREG instructions.
354 : /// E.g., on ARM,
355 : /// rX, rY VMOVRRD dZ
356 : /// is equivalent to two EXTRACT_SUBREG:
357 : /// rX = EXTRACT_SUBREG dZ, ssub_0
358 : /// rY = EXTRACT_SUBREG dZ, ssub_1
359 : ///
360 : /// Note that for the optimizers to be able to take advantage of
361 : /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
362 : /// override accordingly.
363 : bool isExtractSubregLike() const {
364 : return Flags & (1ULL << MCID::ExtractSubreg);
365 : }
366 :
367 : /// Return true if this instruction behaves
368 : /// the same way as the generic INSERT_SUBREG instructions.
369 : /// E.g., on ARM,
370 : /// dX = VSETLNi32 dY, rZ, Imm
371 : /// is equivalent to a INSERT_SUBREG:
372 : /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
373 : ///
374 : /// Note that for the optimizers to be able to take advantage of
375 : /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
376 : /// override accordingly.
377 : bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
378 :
379 :
380 : /// Return true if this instruction is convergent.
381 : ///
382 : /// Convergent instructions may not be made control-dependent on any
383 : /// additional values.
384 : bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
385 :
386 : //===--------------------------------------------------------------------===//
387 : // Side Effect Analysis
388 : //===--------------------------------------------------------------------===//
389 :
390 : /// Return true if this instruction could possibly read memory.
391 : /// Instructions with this flag set are not necessarily simple load
392 : /// instructions, they may load a value and modify it, for example.
393 20543225 : bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
394 :
395 : /// Return true if this instruction could possibly modify memory.
396 : /// Instructions with this flag set are not necessarily simple store
397 : /// instructions, they may store a modified value based on their operands, or
398 : /// may not actually modify anything, for example.
399 8055305 : bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
400 :
401 : /// Return true if this instruction has side
402 : /// effects that are not modeled by other flags. This does not return true
403 : /// for instructions whose effects are captured by:
404 : ///
405 : /// 1. Their operand list and implicit definition/use list. Register use/def
406 : /// info is explicit for instructions.
407 : /// 2. Memory accesses. Use mayLoad/mayStore.
408 : /// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
409 : ///
410 : /// Examples of side effects would be modifying 'invisible' machine state like
411 : /// a control register, flushing a cache, modifying a register invisible to
412 : /// LLVM, etc.
413 0 : bool hasUnmodeledSideEffects() const {
414 55701 : return Flags & (1ULL << MCID::UnmodeledSideEffects);
415 : }
416 :
417 : //===--------------------------------------------------------------------===//
418 : // Flags that indicate whether an instruction can be modified by a method.
419 : //===--------------------------------------------------------------------===//
420 :
421 : /// Return true if this may be a 2- or 3-address instruction (of the
422 : /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
423 : /// exchanged. If this flag is set, then the
424 : /// TargetInstrInfo::commuteInstruction method may be used to hack on the
425 : /// instruction.
426 : ///
427 : /// Note that this flag may be set on instructions that are only commutable
428 : /// sometimes. In these cases, the call to commuteInstruction will fail.
429 : /// Also note that some instructions require non-trivial modification to
430 : /// commute them.
431 14283042 : bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
432 :
433 : /// Return true if this is a 2-address instruction which can be changed
434 : /// into a 3-address instruction if needed. Doing this transformation can be
435 : /// profitable in the register allocator, because it means that the
436 : /// instruction can use a 2-address form if possible, but degrade into a less
437 : /// efficient form if the source and dest register cannot be assigned to the
438 : /// same register. For example, this allows the x86 backend to turn a "shl
439 : /// reg, 3" instruction into an LEA instruction, which is the same speed as
440 : /// the shift but has bigger code size.
441 : ///
442 : /// If this returns true, then the target must implement the
443 : /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
444 : /// is allowed to fail if the transformation isn't valid for this specific
445 : /// instruction (e.g. shl reg, 4 on x86).
446 : ///
447 : bool isConvertibleTo3Addr() const {
448 : return Flags & (1ULL << MCID::ConvertibleTo3Addr);
449 : }
450 :
451 : /// Return true if this instruction requires custom insertion support
452 : /// when the DAG scheduler is inserting it into a machine basic block. If
453 : /// this is true for the instruction, it basically means that it is a pseudo
454 : /// instruction used at SelectionDAG time that is expanded out into magic code
455 : /// by the target when MachineInstrs are formed.
456 : ///
457 : /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
458 : /// is used to insert this into the MachineBasicBlock.
459 : bool usesCustomInsertionHook() const {
460 : return Flags & (1ULL << MCID::UsesCustomInserter);
461 : }
462 :
463 : /// Return true if this instruction requires *adjustment* after
464 : /// instruction selection by calling a target hook. For example, this can be
465 : /// used to fill in ARM 's' optional operand depending on whether the
466 : /// conditional flag register is used.
467 11388661 : bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
468 :
469 : /// Returns true if this instruction is a candidate for remat. This
470 : /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
471 : ///
472 : /// If this flag is set, the isReallyTriviallyReMaterializable()
473 : /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
474 : /// the instruction is really rematable.
475 0 : bool isRematerializable() const {
476 849462 : return Flags & (1ULL << MCID::Rematerializable);
477 : }
478 :
479 : /// Returns true if this instruction has the same cost (or less) than a
480 : /// move instruction. This is useful during certain types of optimizations
481 : /// (e.g., remat during two-address conversion or machine licm) where we would
482 : /// like to remat or hoist the instruction, but not if it costs more than
483 : /// moving the instruction into the appropriate register. Note, we are not
484 : /// marking copies from and to the same register class with this flag.
485 : ///
486 : /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
487 : /// for different subtargets.
488 : bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
489 :
490 : /// Returns true if this instruction source operands have special
491 : /// register allocation requirements that are not captured by the operand
492 : /// register classes. e.g. ARM::STRD's two source registers must be an even /
493 : /// odd pair, ARM::STM registers have to be in ascending order. Post-register
494 : /// allocation passes should not attempt to change allocations for sources of
495 : /// instructions with this flag.
496 : bool hasExtraSrcRegAllocReq() const {
497 : return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
498 : }
499 :
500 : /// Returns true if this instruction def operands have special register
501 : /// allocation requirements that are not captured by the operand register
502 : /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
503 : /// ARM::LDM registers have to be in ascending order. Post-register
504 : /// allocation passes should not attempt to change allocations for definitions
505 : /// of instructions with this flag.
506 : bool hasExtraDefRegAllocReq() const {
507 : return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
508 : }
509 :
510 : /// Return a list of registers that are potentially read by any
511 : /// instance of this machine instruction. For example, on X86, the "adc"
512 : /// instruction adds two register operands and adds the carry bit in from the
513 : /// flags register. In this case, the instruction is marked as implicitly
514 : /// reading the flags. Likewise, the variable shift instruction on X86 is
515 : /// marked as implicitly reading the 'CL' register, which it always does.
516 : ///
517 : /// This method returns null if the instruction has no implicit uses.
518 0 : const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
519 :
520 : /// Return the number of implicit uses this instruction has.
521 0 : unsigned getNumImplicitUses() const {
522 53697962 : if (!ImplicitUses)
523 0 : return 0;
524 : unsigned i = 0;
525 26565289 : for (; ImplicitUses[i]; ++i) /*empty*/
526 : ;
527 : return i;
528 : }
529 :
530 : /// Return a list of registers that are potentially written by any
531 : /// instance of this machine instruction. For example, on X86, many
532 : /// instructions implicitly set the flags register. In this case, they are
533 : /// marked as setting the FLAGS. Likewise, many instructions always deposit
534 : /// their result in a physical register. For example, the X86 divide
535 : /// instruction always deposits the quotient and remainder in the EAX/EDX
536 : /// registers. For that instruction, this will return a list containing the
537 : /// EAX/EDX/EFLAGS registers.
538 : ///
539 : /// This method returns null if the instruction has no implicit defs.
540 0 : const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
541 :
542 : /// Return the number of implicit defs this instruct has.
543 0 : unsigned getNumImplicitDefs() const {
544 52750115 : if (!ImplicitDefs)
545 0 : return 0;
546 : unsigned i = 0;
547 25350284 : for (; ImplicitDefs[i]; ++i) /*empty*/
548 : ;
549 : return i;
550 : }
551 :
552 : /// Return true if this instruction implicitly
553 : /// uses the specified physical register.
554 0 : bool hasImplicitUseOfPhysReg(unsigned Reg) const {
555 281 : if (const MCPhysReg *ImpUses = ImplicitUses)
556 0 : for (; *ImpUses; ++ImpUses)
557 0 : if (*ImpUses == Reg)
558 0 : return true;
559 : return false;
560 : }
561 :
562 : /// Return true if this instruction implicitly
563 : /// defines the specified physical register.
564 : bool hasImplicitDefOfPhysReg(unsigned Reg,
565 : const MCRegisterInfo *MRI = nullptr) const;
566 :
567 : /// Return the scheduling class for this instruction. The
568 : /// scheduling class is an index into the InstrItineraryData table. This
569 : /// returns zero if there is no known scheduling information for the
570 : /// instruction.
571 16626144 : unsigned getSchedClass() const { return SchedClass; }
572 :
573 : /// Return the number of bytes in the encoding of this instruction,
574 : /// or zero if the encoding size cannot be known from the opcode.
575 2362351 : unsigned getSize() const { return Size; }
576 :
577 : /// Find the index of the first operand in the
578 : /// operand list that is used to represent the predicate. It returns -1 if
579 : /// none is found.
580 : int findFirstPredOperandIdx() const {
581 : if (isPredicable()) {
582 38454 : for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
583 38454 : if (OpInfo[i].isPredicate())
584 9936 : return i;
585 : }
586 : return -1;
587 : }
588 :
589 : /// Return true if this instruction defines the specified physical
590 : /// register, either explicitly or implicitly.
591 : bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
592 : const MCRegisterInfo &RI) const;
593 : };
594 :
595 : } // end namespace llvm
596 :
597 : #endif
|