Line data Source code
1 : //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // Loops should be simplified before this analysis.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
15 : #include "llvm/ADT/APInt.h"
16 : #include "llvm/ADT/DenseMap.h"
17 : #include "llvm/ADT/GraphTraits.h"
18 : #include "llvm/ADT/None.h"
19 : #include "llvm/ADT/SCCIterator.h"
20 : #include "llvm/Config/llvm-config.h"
21 : #include "llvm/IR/Function.h"
22 : #include "llvm/Support/BlockFrequency.h"
23 : #include "llvm/Support/BranchProbability.h"
24 : #include "llvm/Support/Compiler.h"
25 : #include "llvm/Support/Debug.h"
26 : #include "llvm/Support/ScaledNumber.h"
27 : #include "llvm/Support/MathExtras.h"
28 : #include "llvm/Support/raw_ostream.h"
29 : #include <algorithm>
30 : #include <cassert>
31 : #include <cstddef>
32 : #include <cstdint>
33 : #include <iterator>
34 : #include <list>
35 : #include <numeric>
36 : #include <utility>
37 : #include <vector>
38 :
39 : using namespace llvm;
40 : using namespace llvm::bfi_detail;
41 :
42 : #define DEBUG_TYPE "block-freq"
43 :
44 3794959 : ScaledNumber<uint64_t> BlockMass::toScaled() const {
45 3794959 : if (isFull())
46 1534340 : return ScaledNumber<uint64_t>(1, 0);
47 2260619 : return ScaledNumber<uint64_t>(getMass() + 1, -64);
48 : }
49 :
50 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
51 : LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
52 : #endif
53 :
54 : static char getHexDigit(int N) {
55 : assert(N < 16);
56 0 : if (N < 10)
57 0 : return '0' + N;
58 0 : return 'a' + N - 10;
59 : }
60 :
61 0 : raw_ostream &BlockMass::print(raw_ostream &OS) const {
62 0 : for (int Digits = 0; Digits < 16; ++Digits)
63 0 : OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
64 0 : return OS;
65 : }
66 :
67 : namespace {
68 :
69 : using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
70 : using Distribution = BlockFrequencyInfoImplBase::Distribution;
71 : using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
72 : using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
73 : using LoopData = BlockFrequencyInfoImplBase::LoopData;
74 : using Weight = BlockFrequencyInfoImplBase::Weight;
75 : using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
76 :
77 : /// Dithering mass distributer.
78 : ///
79 : /// This class splits up a single mass into portions by weight, dithering to
80 : /// spread out error. No mass is lost. The dithering precision depends on the
81 : /// precision of the product of \a BlockMass and \a BranchProbability.
82 : ///
83 : /// The distribution algorithm follows.
84 : ///
85 : /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
86 : /// mass to distribute in \a RemMass.
87 : ///
88 : /// 2. For each portion:
89 : ///
90 : /// 1. Construct a branch probability, P, as the portion's weight divided
91 : /// by the current value of \a RemWeight.
92 : /// 2. Calculate the portion's mass as \a RemMass times P.
93 : /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
94 : /// the current portion's weight and mass.
95 : struct DitheringDistributer {
96 : uint32_t RemWeight;
97 : BlockMass RemMass;
98 :
99 : DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
100 :
101 : BlockMass takeMass(uint32_t Weight);
102 : };
103 :
104 : } // end anonymous namespace
105 :
106 0 : DitheringDistributer::DitheringDistributer(Distribution &Dist,
107 181 : const BlockMass &Mass) {
108 3726761 : Dist.normalize();
109 3726762 : RemWeight = Dist.Total;
110 3726762 : RemMass = Mass;
111 0 : }
112 :
113 3376597 : BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
114 : assert(Weight && "invalid weight");
115 : assert(Weight <= RemWeight);
116 3376597 : BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
117 :
118 : // Decrement totals (dither).
119 3376597 : RemWeight -= Weight;
120 : RemMass -= Mass;
121 3376597 : return Mass;
122 : }
123 :
124 3404924 : void Distribution::add(const BlockNode &Node, uint64_t Amount,
125 : Weight::DistType Type) {
126 : assert(Amount && "invalid weight of 0");
127 3404924 : uint64_t NewTotal = Total + Amount;
128 :
129 : // Check for overflow. It should be impossible to overflow twice.
130 3404924 : bool IsOverflow = NewTotal < Total;
131 : assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
132 3404924 : DidOverflow |= IsOverflow;
133 :
134 : // Update the total.
135 3404924 : Total = NewTotal;
136 :
137 : // Save the weight.
138 6809848 : Weights.push_back(Weight(Type, Node, Amount));
139 3404924 : }
140 :
141 : static void combineWeight(Weight &W, const Weight &OtherW) {
142 : assert(OtherW.TargetNode.isValid());
143 29115 : if (!W.Amount) {
144 817 : W = OtherW;
145 : return;
146 : }
147 : assert(W.Type == OtherW.Type);
148 : assert(W.TargetNode == OtherW.TargetNode);
149 : assert(OtherW.Amount && "Expected non-zero weight");
150 28298 : if (W.Amount > W.Amount + OtherW.Amount)
151 : // Saturate on overflow.
152 2 : W.Amount = UINT64_MAX;
153 : else
154 28296 : W.Amount += OtherW.Amount;
155 : }
156 :
157 1142884 : static void combineWeightsBySorting(WeightList &Weights) {
158 : // Sort so edges to the same node are adjacent.
159 : llvm::sort(Weights, [](const Weight &L, const Weight &R) {
160 0 : return L.TargetNode < R.TargetNode;
161 : });
162 :
163 : // Combine adjacent edges.
164 : WeightList::iterator O = Weights.begin();
165 3523762 : for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
166 : ++O, (I = L)) {
167 2380878 : *O = *I;
168 :
169 : // Find the adjacent weights to the same node.
170 2408810 : for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
171 : combineWeight(*O, *L);
172 : }
173 :
174 : // Erase extra entries.
175 : Weights.erase(O, Weights.end());
176 1142884 : }
177 :
178 7 : static void combineWeightsByHashing(WeightList &Weights) {
179 : // Collect weights into a DenseMap.
180 : using HashTable = DenseMap<BlockNode::IndexType, Weight>;
181 :
182 21 : HashTable Combined(NextPowerOf2(2 * Weights.size()));
183 1190 : for (const Weight &W : Weights)
184 1183 : combineWeight(Combined[W.TargetNode.Index], W);
185 :
186 : // Check whether anything changed.
187 14 : if (Weights.size() == Combined.size())
188 : return;
189 :
190 : // Fill in the new weights.
191 : Weights.clear();
192 : Weights.reserve(Combined.size());
193 338 : for (const auto &I : Combined)
194 334 : Weights.push_back(I.second);
195 : }
196 :
197 1142891 : static void combineWeights(WeightList &Weights) {
198 : // Use a hash table for many successors to keep this linear.
199 1142891 : if (Weights.size() > 128) {
200 7 : combineWeightsByHashing(Weights);
201 7 : return;
202 : }
203 :
204 1142884 : combineWeightsBySorting(Weights);
205 : }
206 :
207 : static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
208 : assert(Shift >= 0);
209 : assert(Shift < 64);
210 : if (!Shift)
211 : return N;
212 116133 : return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
213 : }
214 :
215 3726764 : void Distribution::normalize() {
216 : // Early exit for termination nodes.
217 3726764 : if (Weights.empty())
218 : return;
219 :
220 : // Only bother if there are multiple successors.
221 2137799 : if (Weights.size() > 1)
222 1142891 : combineWeights(Weights);
223 :
224 : // Early exit when combined into a single successor.
225 4275598 : if (Weights.size() == 1) {
226 998093 : Total = 1;
227 998093 : Weights.front().Amount = 1;
228 998093 : return;
229 : }
230 :
231 : // Determine how much to shift right so that the total fits into 32-bits.
232 : //
233 : // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
234 : // for each weight can cause a 32-bit overflow.
235 : int Shift = 0;
236 1139706 : if (DidOverflow)
237 : Shift = 33;
238 1139706 : else if (Total > UINT32_MAX)
239 21209 : Shift = 33 - countLeadingZeros(Total);
240 :
241 : // Early exit if nothing needs to be scaled.
242 : if (!Shift) {
243 : // If we didn't overflow then combineWeights() shouldn't have changed the
244 : // sum of the weights, but let's double-check.
245 : assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
246 : [](uint64_t Sum, const Weight &W) {
247 : return Sum + W.Amount;
248 : }) &&
249 : "Expected total to be correct");
250 : return;
251 : }
252 :
253 : // Recompute the total through accumulation (rather than shifting it) so that
254 : // it's accurate after shifting and any changes combineWeights() made above.
255 21209 : Total = 0;
256 :
257 : // Sum the weights to each node and shift right if necessary.
258 137342 : for (Weight &W : Weights) {
259 : // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
260 : // can round here without concern about overflow.
261 : assert(W.TargetNode.isValid());
262 116133 : W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
263 : assert(W.Amount <= UINT32_MAX);
264 :
265 : // Update the total.
266 116133 : Total += W.Amount;
267 : }
268 : assert(Total <= UINT32_MAX);
269 : }
270 :
271 2628379 : void BlockFrequencyInfoImplBase::clear() {
272 : // Swap with a default-constructed std::vector, since std::vector<>::clear()
273 : // does not actually clear heap storage.
274 : std::vector<FrequencyData>().swap(Freqs);
275 : IsIrrLoopHeader.clear();
276 : std::vector<WorkingData>().swap(Working);
277 : Loops.clear();
278 2628379 : }
279 :
280 : /// Clear all memory not needed downstream.
281 : ///
282 : /// Releases all memory not used downstream. In particular, saves Freqs.
283 1314190 : static void cleanup(BlockFrequencyInfoImplBase &BFI) {
284 1314190 : std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
285 1314190 : SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
286 1314190 : BFI.clear();
287 : BFI.Freqs = std::move(SavedFreqs);
288 1314190 : BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
289 1314190 : }
290 :
291 3403748 : bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
292 : const LoopData *OuterLoop,
293 : const BlockNode &Pred,
294 : const BlockNode &Succ,
295 : uint64_t Weight) {
296 3403748 : if (!Weight)
297 : Weight = 1;
298 :
299 : auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
300 664680 : return OuterLoop && OuterLoop->isHeader(Node);
301 : };
302 :
303 6807496 : BlockNode Resolved = Working[Succ.Index].getResolvedNode();
304 :
305 : #ifndef NDEBUG
306 : auto debugSuccessor = [&](const char *Type) {
307 : dbgs() << " =>"
308 : << " [" << Type << "] weight = " << Weight;
309 : if (!isLoopHeader(Resolved))
310 : dbgs() << ", succ = " << getBlockName(Succ);
311 : if (Resolved != Succ)
312 : dbgs() << ", resolved = " << getBlockName(Resolved);
313 : dbgs() << "\n";
314 : };
315 : (void)debugSuccessor;
316 : #endif
317 :
318 : if (isLoopHeader(Resolved)) {
319 : LLVM_DEBUG(debugSuccessor("backedge"));
320 : Dist.addBackedge(Resolved, Weight);
321 76810 : return true;
322 : }
323 :
324 6653876 : if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
325 : LLVM_DEBUG(debugSuccessor(" exit "));
326 : Dist.addExit(Resolved, Weight);
327 190628 : return true;
328 : }
329 :
330 3136310 : if (Resolved < Pred) {
331 : if (!isLoopHeader(Pred)) {
332 : // If OuterLoop is an irreducible loop, we can't actually handle this.
333 : assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
334 : "unhandled irreducible control flow");
335 :
336 : // Irreducible backedge. Abort.
337 : LLVM_DEBUG(debugSuccessor("abort!!!"));
338 : return false;
339 : }
340 :
341 : // If "Pred" is a loop header, then this isn't really a backedge; rather,
342 : // OuterLoop must be irreducible. These false backedges can come only from
343 : // secondary loop headers.
344 : assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
345 : "unhandled irreducible control flow");
346 : }
347 :
348 : LLVM_DEBUG(debugSuccessor(" local "));
349 : Dist.addLocal(Resolved, Weight);
350 3136126 : return true;
351 : }
352 :
353 72271 : bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
354 : const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
355 : // Copy the exit map into Dist.
356 259922 : for (const auto &I : Loop.Exits)
357 375364 : if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
358 : I.second.getMass()))
359 : // Irreducible backedge.
360 : return false;
361 :
362 : return true;
363 : }
364 :
365 : /// Compute the loop scale for a loop.
366 72153 : void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
367 : // Compute loop scale.
368 : LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
369 :
370 : // Infinite loops need special handling. If we give the back edge an infinite
371 : // mass, they may saturate all the other scales in the function down to 1,
372 : // making all the other region temperatures look exactly the same. Choose an
373 : // arbitrary scale to avoid these issues.
374 : //
375 : // FIXME: An alternate way would be to select a symbolic scale which is later
376 : // replaced to be the maximum of all computed scales plus 1. This would
377 : // appropriately describe the loop as having a large scale, without skewing
378 : // the final frequency computation.
379 : const Scaled64 InfiniteLoopScale(1, 12);
380 :
381 : // LoopScale == 1 / ExitMass
382 : // ExitMass == HeadMass - BackedgeMass
383 : BlockMass TotalBackedgeMass;
384 144805 : for (auto &Mass : Loop.BackedgeMass)
385 : TotalBackedgeMass += Mass;
386 72153 : BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
387 :
388 : // Block scale stores the inverse of the scale. If this is an infinite loop,
389 : // its exit mass will be zero. In this case, use an arbitrary scale for the
390 : // loop scale.
391 72153 : Loop.Scale =
392 141921 : ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
393 :
394 : LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
395 : << BlockMass::getFull() << " - " << TotalBackedgeMass
396 : << ")\n"
397 : << " - scale = " << Loop.Scale << "\n");
398 72153 : }
399 :
400 : /// Package up a loop.
401 72153 : void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
402 : LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
403 :
404 : // Clear the subloop exits to prevent quadratic memory usage.
405 449689 : for (const BlockNode &M : Loop.Nodes) {
406 755072 : if (auto *Loop = Working[M.Index].getPackagedLoop())
407 : Loop->Exits.clear();
408 : LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
409 : }
410 72153 : Loop.IsPackaged = true;
411 72153 : }
412 :
413 : #ifndef NDEBUG
414 : static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
415 : const DitheringDistributer &D, const BlockNode &T,
416 : const BlockMass &M, const char *Desc) {
417 : dbgs() << " => assign " << M << " (" << D.RemMass << ")";
418 : if (Desc)
419 : dbgs() << " [" << Desc << "]";
420 : if (T.isValid())
421 : dbgs() << " to " << BFI.getBlockName(T);
422 : dbgs() << "\n";
423 : }
424 : #endif
425 :
426 3726392 : void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
427 : LoopData *OuterLoop,
428 : Distribution &Dist) {
429 7452784 : BlockMass Mass = Working[Source.Index].getMass();
430 : LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
431 :
432 : // Distribute mass to successors as laid out in Dist.
433 : DitheringDistributer D(Dist, Mass);
434 :
435 7101637 : for (const Weight &W : Dist.Weights) {
436 : // Check for a local edge (non-backedge and non-exit).
437 3375243 : BlockMass Taken = D.takeMass(W.Amount);
438 3375243 : if (W.Type == Weight::Local) {
439 6222076 : Working[W.TargetNode.Index].getMass() += Taken;
440 : LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
441 3187800 : continue;
442 : }
443 :
444 : // Backedges and exits only make sense if we're processing a loop.
445 : assert(OuterLoop && "backedge or exit outside of loop");
446 :
447 : // Check for a backedge.
448 264205 : if (W.Type == Weight::Backedge) {
449 76762 : OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
450 : LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
451 76762 : continue;
452 : }
453 :
454 : // This must be an exit.
455 : assert(W.Type == Weight::Exit);
456 374886 : OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
457 : LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
458 : }
459 3726394 : }
460 :
461 1314190 : static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
462 : const Scaled64 &Min, const Scaled64 &Max) {
463 : // Scale the Factor to a size that creates integers. Ideally, integers would
464 : // be scaled so that Max == UINT64_MAX so that they can be best
465 : // differentiated. However, in the presence of large frequency values, small
466 : // frequencies are scaled down to 1, making it impossible to differentiate
467 : // small, unequal numbers. When the spread between Min and Max frequencies
468 : // fits well within MaxBits, we make the scale be at least 8.
469 : const unsigned MaxBits = 64;
470 1314189 : const unsigned SpreadBits = (Max / Min).lg();
471 1314189 : Scaled64 ScalingFactor;
472 1314189 : if (SpreadBits <= MaxBits - 3) {
473 : // If the values are small enough, make the scaling factor at least 8 to
474 : // allow distinguishing small values.
475 1312317 : ScalingFactor = Min.inverse();
476 : ScalingFactor <<= 3;
477 : } else {
478 : // If the values need more than MaxBits to be represented, saturate small
479 : // frequency values down to 1 by using a scaling factor that benefits large
480 : // frequency values.
481 1873 : ScalingFactor = Scaled64(1, MaxBits) / Max;
482 : }
483 :
484 : // Translate the floats to integers.
485 : LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
486 : << ", factor = " << ScalingFactor << "\n");
487 9934456 : for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
488 3653038 : Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
489 10950508 : BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
490 : LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
491 : << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
492 : << ", int = " << BFI.Freqs[Index].Integer << "\n");
493 : }
494 1314190 : }
495 :
496 : /// Unwrap a loop package.
497 : ///
498 : /// Visits all the members of a loop, adjusting their BlockData according to
499 : /// the loop's pseudo-node.
500 72153 : static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
501 : LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
502 : << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
503 : << "\n");
504 72153 : Loop.Scale *= Loop.Mass.toScaled();
505 72153 : Loop.IsPackaged = false;
506 : LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
507 :
508 : // Propagate the head scale through the loop. Since members are visited in
509 : // RPO, the head scale will be updated by the loop scale first, and then the
510 : // final head scale will be used for updated the rest of the members.
511 449689 : for (const BlockNode &N : Loop.Nodes) {
512 377536 : const auto &Working = BFI.Working[N.Index];
513 389179 : Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
514 389179 : : BFI.Freqs[N.Index].Scaled;
515 377536 : Scaled64 New = Loop.Scale * F;
516 : LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
517 : << New << "\n");
518 377536 : F = New;
519 : }
520 72153 : }
521 :
522 1314190 : void BlockFrequencyInfoImplBase::unwrapLoops() {
523 : // Set initial frequencies from loop-local masses.
524 9934454 : for (size_t Index = 0; Index < Working.size(); ++Index)
525 3653038 : Freqs[Index].Scaled = Working[Index].Mass.toScaled();
526 :
527 1386342 : for (LoopData &Loop : Loops)
528 72153 : unwrapLoop(*this, Loop);
529 1314189 : }
530 :
531 1314189 : void BlockFrequencyInfoImplBase::finalizeMetrics() {
532 : // Unwrap loop packages in reverse post-order, tracking min and max
533 : // frequencies.
534 1314189 : auto Min = Scaled64::getLargest();
535 1314189 : auto Max = Scaled64::getZero();
536 9934454 : for (size_t Index = 0; Index < Working.size(); ++Index) {
537 : // Update min/max scale.
538 7306074 : Min = std::min(Min, Freqs[Index].Scaled);
539 10959114 : Max = std::max(Max, Freqs[Index].Scaled);
540 : }
541 :
542 : // Convert to integers.
543 1314190 : convertFloatingToInteger(*this, Min, Max);
544 :
545 : // Clean up data structures.
546 1314190 : cleanup(*this);
547 :
548 : // Print out the final stats.
549 : LLVM_DEBUG(dump());
550 1314190 : }
551 :
552 : BlockFrequency
553 8757329 : BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
554 8757329 : if (!Node.isValid())
555 99463 : return 0;
556 17315732 : return Freqs[Node.Index].Integer;
557 : }
558 :
559 : Optional<uint64_t>
560 1581 : BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
561 : const BlockNode &Node) const {
562 1581 : return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency());
563 : }
564 :
565 : Optional<uint64_t>
566 1673 : BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
567 : uint64_t Freq) const {
568 1673 : auto EntryCount = F.getEntryCount();
569 1673 : if (!EntryCount)
570 : return None;
571 : // Use 128 bit APInt to do the arithmetic to avoid overflow.
572 556 : APInt BlockCount(128, EntryCount.getCount());
573 : APInt BlockFreq(128, Freq);
574 : APInt EntryFreq(128, getEntryFreq());
575 556 : BlockCount *= BlockFreq;
576 : // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
577 : // lshr by 1 gives EntryFreq/2.
578 2224 : BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
579 : return BlockCount.getLimitedValue();
580 : }
581 :
582 : bool
583 272 : BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
584 272 : if (!Node.isValid())
585 : return false;
586 266 : return IsIrrLoopHeader.test(Node.Index);
587 : }
588 :
589 : Scaled64
590 532 : BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
591 532 : if (!Node.isValid())
592 : return Scaled64::getZero();
593 1064 : return Freqs[Node.Index].Scaled;
594 : }
595 :
596 2136 : void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
597 : uint64_t Freq) {
598 : assert(Node.isValid() && "Expected valid node");
599 : assert(Node.Index < Freqs.size() && "Expected legal index");
600 4272 : Freqs[Node.Index].Integer = Freq;
601 2136 : }
602 :
603 : std::string
604 0 : BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
605 0 : return {};
606 : }
607 :
608 : std::string
609 0 : BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
610 0 : return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
611 : }
612 :
613 : raw_ostream &
614 0 : BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
615 : const BlockNode &Node) const {
616 0 : return OS << getFloatingBlockFreq(Node);
617 : }
618 :
619 : raw_ostream &
620 0 : BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
621 : const BlockFrequency &Freq) const {
622 0 : Scaled64 Block(Freq.getFrequency(), 0);
623 : Scaled64 Entry(getEntryFreq(), 0);
624 :
625 0 : return OS << Block / Entry;
626 : }
627 :
628 51 : void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
629 51 : Start = OuterLoop.getHeader();
630 102 : Nodes.reserve(OuterLoop.Nodes.size());
631 800 : for (auto N : OuterLoop.Nodes)
632 749 : addNode(N);
633 51 : indexNodes();
634 51 : }
635 :
636 133 : void IrreducibleGraph::addNodesInFunction() {
637 133 : Start = 0;
638 3015 : for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
639 2749 : if (!BFI.Working[Index].isPackaged())
640 2546 : addNode(Index);
641 133 : indexNodes();
642 133 : }
643 :
644 184 : void IrreducibleGraph::indexNodes() {
645 3479 : for (auto &I : Nodes)
646 3295 : Lookup[I.Node.Index] = &I;
647 184 : }
648 :
649 6736 : void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
650 : const BFIBase::LoopData *OuterLoop) {
651 6736 : if (OuterLoop && OuterLoop->isHeader(Succ))
652 212 : return;
653 6655 : auto L = Lookup.find(Succ.Index);
654 6655 : if (L == Lookup.end())
655 : return;
656 6524 : IrrNode &SuccIrr = *L->second;
657 6524 : Irr.Edges.push_back(&SuccIrr);
658 6524 : SuccIrr.Edges.push_front(&Irr);
659 6524 : ++SuccIrr.NumIn;
660 : }
661 :
662 : namespace llvm {
663 :
664 : template <> struct GraphTraits<IrreducibleGraph> {
665 : using GraphT = bfi_detail::IrreducibleGraph;
666 : using NodeRef = const GraphT::IrrNode *;
667 : using ChildIteratorType = GraphT::IrrNode::iterator;
668 :
669 0 : static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
670 3295 : static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
671 : static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
672 : };
673 :
674 : } // end namespace llvm
675 :
676 : /// Find extra irreducible headers.
677 : ///
678 : /// Find entry blocks and other blocks with backedges, which exist when \c G
679 : /// contains irreducible sub-SCCs.
680 0 : static void findIrreducibleHeaders(
681 : const BlockFrequencyInfoImplBase &BFI,
682 : const IrreducibleGraph &G,
683 : const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
684 : LoopData::NodeList &Headers, LoopData::NodeList &Others) {
685 : // Map from nodes in the SCC to whether it's an entry block.
686 : SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
687 :
688 : // InSCC also acts the set of nodes in the graph. Seed it.
689 0 : for (const auto *I : SCC)
690 0 : InSCC[I] = false;
691 :
692 0 : for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
693 0 : auto &Irr = *I->first;
694 0 : for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
695 0 : if (InSCC.count(P))
696 : continue;
697 :
698 : // This is an entry block.
699 0 : I->second = true;
700 0 : Headers.push_back(Irr.Node);
701 : LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
702 : << "\n");
703 0 : break;
704 : }
705 : }
706 : assert(Headers.size() >= 2 &&
707 : "Expected irreducible CFG; -loop-info is likely invalid");
708 0 : if (Headers.size() == InSCC.size()) {
709 : // Every block is a header.
710 : llvm::sort(Headers);
711 0 : return;
712 : }
713 :
714 : // Look for extra headers from irreducible sub-SCCs.
715 0 : for (const auto &I : InSCC) {
716 : // Entry blocks are already headers.
717 0 : if (I.second)
718 0 : continue;
719 :
720 0 : auto &Irr = *I.first;
721 0 : for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
722 : // Skip forward edges.
723 0 : if (P->Node < Irr.Node)
724 0 : continue;
725 :
726 : // Skip predecessors from entry blocks. These can have inverted
727 : // ordering.
728 0 : if (InSCC.lookup(P))
729 0 : continue;
730 :
731 : // Store the extra header.
732 0 : Headers.push_back(Irr.Node);
733 : LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
734 : << "\n");
735 0 : break;
736 : }
737 0 : if (Headers.back() == Irr.Node)
738 : // Added this as a header.
739 0 : continue;
740 :
741 : // This is not a header.
742 0 : Others.push_back(Irr.Node);
743 : LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
744 : }
745 : llvm::sort(Headers);
746 : llvm::sort(Others);
747 : }
748 :
749 0 : static void createIrreducibleLoop(
750 : BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
751 : LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
752 : const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
753 : // Translate the SCC into RPO.
754 : LLVM_DEBUG(dbgs() << " - found-scc\n");
755 :
756 : LoopData::NodeList Headers;
757 : LoopData::NodeList Others;
758 0 : findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
759 :
760 0 : auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
761 0 : Headers.end(), Others.begin(), Others.end());
762 :
763 : // Update loop hierarchy.
764 0 : for (const auto &N : Loop->Nodes)
765 0 : if (BFI.Working[N.Index].isLoopHeader())
766 0 : BFI.Working[N.Index].Loop->Parent = &*Loop;
767 : else
768 0 : BFI.Working[N.Index].Loop = &*Loop;
769 0 : }
770 :
771 : iterator_range<std::list<LoopData>::iterator>
772 184 : BlockFrequencyInfoImplBase::analyzeIrreducible(
773 : const IrreducibleGraph &G, LoopData *OuterLoop,
774 : std::list<LoopData>::iterator Insert) {
775 : assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
776 184 : auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
777 :
778 1583 : for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
779 1399 : if (I->size() < 2)
780 : continue;
781 :
782 : // Translate the SCC into RPO.
783 187 : createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
784 : }
785 :
786 184 : if (OuterLoop)
787 51 : return make_range(std::next(Prev), Insert);
788 133 : return make_range(Loops.begin(), Insert);
789 : }
790 :
791 : void
792 51 : BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
793 : OuterLoop.Exits.clear();
794 102 : for (auto &Mass : OuterLoop.BackedgeMass)
795 51 : Mass = BlockMass::getEmpty();
796 51 : auto O = OuterLoop.Nodes.begin() + 1;
797 749 : for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
798 1396 : if (!Working[I->Index].isPackaged())
799 316 : *O++ = *I;
800 : OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
801 51 : }
802 :
803 181 : void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
804 : assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
805 :
806 : // Since the loop has more than one header block, the mass flowing back into
807 : // each header will be different. Adjust the mass in each header loop to
808 : // reflect the masses flowing through back edges.
809 : //
810 : // To do this, we distribute the initial mass using the backedge masses
811 : // as weights for the distribution.
812 : BlockMass LoopMass = BlockMass::getFull();
813 : Distribution Dist;
814 :
815 : LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
816 849 : for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
817 668 : auto &HeaderNode = Loop.Nodes[H];
818 668 : auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
819 : LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
820 : << getBlockName(HeaderNode) << ": " << BackedgeMass
821 : << "\n");
822 668 : if (BackedgeMass.getMass() > 0)
823 : Dist.addLocal(HeaderNode, BackedgeMass.getMass());
824 : else
825 : LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
826 : }
827 :
828 : DitheringDistributer D(Dist, LoopMass);
829 :
830 : LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
831 : << " to headers using above weights\n");
832 849 : for (const Weight &W : Dist.Weights) {
833 668 : BlockMass Taken = D.takeMass(W.Amount);
834 : assert(W.Type == Weight::Local && "all weights should be local");
835 1336 : Working[W.TargetNode.Index].getMass() = Taken;
836 : LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
837 : }
838 181 : }
839 :
840 187 : void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
841 : BlockMass LoopMass = BlockMass::getFull();
842 : DitheringDistributer D(Dist, LoopMass);
843 873 : for (const Weight &W : Dist.Weights) {
844 686 : BlockMass Taken = D.takeMass(W.Amount);
845 : assert(W.Type == Weight::Local && "all weights should be local");
846 1372 : Working[W.TargetNode.Index].getMass() = Taken;
847 : LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
848 : }
849 187 : }
|