Line data Source code
1 : //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 : // accesses. Currently, it is an (incomplete) implementation of the approach
12 : // described in
13 : //
14 : // Practical Dependence Testing
15 : // Goff, Kennedy, Tseng
16 : // PLDI 1991
17 : //
18 : // There's a single entry point that analyzes the dependence between a pair
19 : // of memory references in a function, returning either NULL, for no dependence,
20 : // or a more-or-less detailed description of the dependence between them.
21 : //
22 : // Currently, the implementation cannot propagate constraints between
23 : // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 : // Both of these are conservative weaknesses;
25 : // that is, not a source of correctness problems.
26 : //
27 : // Since Clang linearizes some array subscripts, the dependence
28 : // analysis is using SCEV->delinearize to recover the representation of multiple
29 : // subscripts, and thus avoid the more expensive and less precise MIV tests. The
30 : // delinearization is controlled by the flag -da-delinearize.
31 : //
32 : // We should pay some careful attention to the possibility of integer overflow
33 : // in the implementation of the various tests. This could happen with Add,
34 : // Subtract, or Multiply, with both APInt's and SCEV's.
35 : //
36 : // Some non-linear subscript pairs can be handled by the GCD test
37 : // (and perhaps other tests).
38 : // Should explore how often these things occur.
39 : //
40 : // Finally, it seems like certain test cases expose weaknesses in the SCEV
41 : // simplification, especially in the handling of sign and zero extensions.
42 : // It could be useful to spend time exploring these.
43 : //
44 : // Please note that this is work in progress and the interface is subject to
45 : // change.
46 : //
47 : //===----------------------------------------------------------------------===//
48 : // //
49 : // In memory of Ken Kennedy, 1945 - 2007 //
50 : // //
51 : //===----------------------------------------------------------------------===//
52 :
53 : #include "llvm/Analysis/DependenceAnalysis.h"
54 : #include "llvm/ADT/STLExtras.h"
55 : #include "llvm/ADT/Statistic.h"
56 : #include "llvm/Analysis/AliasAnalysis.h"
57 : #include "llvm/Analysis/LoopInfo.h"
58 : #include "llvm/Analysis/ScalarEvolution.h"
59 : #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 : #include "llvm/Analysis/ValueTracking.h"
61 : #include "llvm/Config/llvm-config.h"
62 : #include "llvm/IR/InstIterator.h"
63 : #include "llvm/IR/Module.h"
64 : #include "llvm/IR/Operator.h"
65 : #include "llvm/Support/CommandLine.h"
66 : #include "llvm/Support/Debug.h"
67 : #include "llvm/Support/ErrorHandling.h"
68 : #include "llvm/Support/raw_ostream.h"
69 :
70 : using namespace llvm;
71 :
72 : #define DEBUG_TYPE "da"
73 :
74 : //===----------------------------------------------------------------------===//
75 : // statistics
76 :
77 : STATISTIC(TotalArrayPairs, "Array pairs tested");
78 : STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 : STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 : STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 : STATISTIC(ZIVapplications, "ZIV applications");
82 : STATISTIC(ZIVindependence, "ZIV independence");
83 : STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 : STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 : STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 : STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 : STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 : STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 : STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 : STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 : STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 : STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 : STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 : STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 : STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 : STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 : STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 : STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 : STATISTIC(DeltaApplications, "Delta applications");
100 : STATISTIC(DeltaSuccesses, "Delta successes");
101 : STATISTIC(DeltaIndependence, "Delta independence");
102 : STATISTIC(DeltaPropagations, "Delta propagations");
103 : STATISTIC(GCDapplications, "GCD applications");
104 : STATISTIC(GCDsuccesses, "GCD successes");
105 : STATISTIC(GCDindependence, "GCD independence");
106 : STATISTIC(BanerjeeApplications, "Banerjee applications");
107 : STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 : STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 :
110 : static cl::opt<bool>
111 : Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112 : cl::desc("Try to delinearize array references."));
113 :
114 : //===----------------------------------------------------------------------===//
115 : // basics
116 :
117 : DependenceAnalysis::Result
118 0 : DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
119 : auto &AA = FAM.getResult<AAManager>(F);
120 : auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
121 : auto &LI = FAM.getResult<LoopAnalysis>(F);
122 0 : return DependenceInfo(&F, &AA, &SE, &LI);
123 : }
124 :
125 : AnalysisKey DependenceAnalysis::Key;
126 :
127 32058 : INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
128 : "Dependence Analysis", true, true)
129 32058 : INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
130 32058 : INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
131 32058 : INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
132 106973 : INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
133 : true, true)
134 :
135 : char DependenceAnalysisWrapperPass::ID = 0;
136 :
137 0 : FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
138 0 : return new DependenceAnalysisWrapperPass();
139 : }
140 :
141 273 : bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
142 273 : auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
143 273 : auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
144 273 : auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
145 273 : info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
146 273 : return false;
147 : }
148 :
149 284 : DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
150 :
151 273 : void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
152 :
153 43 : void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
154 : AU.setPreservesAll();
155 : AU.addRequiredTransitive<AAResultsWrapperPass>();
156 : AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
157 : AU.addRequiredTransitive<LoopInfoWrapperPass>();
158 43 : }
159 :
160 :
161 : // Used to test the dependence analyzer.
162 : // Looks through the function, noting loads and stores.
163 : // Calls depends() on every possible pair and prints out the result.
164 : // Ignores all other instructions.
165 192 : static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
166 192 : auto *F = DA->getFunction();
167 4158 : for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
168 4158 : ++SrcI) {
169 4158 : if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
170 7114 : for (inst_iterator DstI = SrcI, DstE = inst_end(F);
171 7114 : DstI != DstE; ++DstI) {
172 7114 : if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
173 1662 : OS << "da analyze - ";
174 1662 : if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
175 913 : D->dump(OS);
176 1608 : for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
177 695 : if (D->isSplitable(Level)) {
178 3 : OS << "da analyze - split level = " << Level;
179 3 : OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
180 3 : OS << "!\n";
181 : }
182 : }
183 : }
184 : else
185 749 : OS << "none!\n";
186 : }
187 : }
188 : }
189 : }
190 192 : }
191 :
192 192 : void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
193 : const Module *) const {
194 192 : dumpExampleDependence(OS, info.get());
195 192 : }
196 :
197 : //===----------------------------------------------------------------------===//
198 : // Dependence methods
199 :
200 : // Returns true if this is an input dependence.
201 104 : bool Dependence::isInput() const {
202 104 : return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
203 : }
204 :
205 :
206 : // Returns true if this is an output dependence.
207 286 : bool Dependence::isOutput() const {
208 286 : return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
209 : }
210 :
211 :
212 : // Returns true if this is an flow (aka true) dependence.
213 384 : bool Dependence::isFlow() const {
214 384 : return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
215 : }
216 :
217 :
218 : // Returns true if this is an anti dependence.
219 133 : bool Dependence::isAnti() const {
220 133 : return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
221 : }
222 :
223 :
224 : // Returns true if a particular level is scalar; that is,
225 : // if no subscript in the source or destination mention the induction
226 : // variable associated with the loop at this level.
227 : // Leave this out of line, so it will serve as a virtual method anchor
228 0 : bool Dependence::isScalar(unsigned level) const {
229 0 : return false;
230 : }
231 :
232 :
233 : //===----------------------------------------------------------------------===//
234 : // FullDependence methods
235 :
236 933 : FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
237 : bool PossiblyLoopIndependent,
238 933 : unsigned CommonLevels)
239 : : Dependence(Source, Destination), Levels(CommonLevels),
240 933 : LoopIndependent(PossiblyLoopIndependent) {
241 933 : Consistent = true;
242 933 : if (CommonLevels)
243 1704 : DV = make_unique<DVEntry[]>(CommonLevels);
244 933 : }
245 :
246 : // The rest are simple getters that hide the implementation.
247 :
248 : // getDirection - Returns the direction associated with a particular level.
249 1641 : unsigned FullDependence::getDirection(unsigned Level) const {
250 : assert(0 < Level && Level <= Levels && "Level out of range");
251 3282 : return DV[Level - 1].Direction;
252 : }
253 :
254 :
255 : // Returns the distance (or NULL) associated with a particular level.
256 735 : const SCEV *FullDependence::getDistance(unsigned Level) const {
257 : assert(0 < Level && Level <= Levels && "Level out of range");
258 1470 : return DV[Level - 1].Distance;
259 : }
260 :
261 :
262 : // Returns true if a particular level is scalar; that is,
263 : // if no subscript in the source or destination mention the induction
264 : // variable associated with the loop at this level.
265 701 : bool FullDependence::isScalar(unsigned Level) const {
266 : assert(0 < Level && Level <= Levels && "Level out of range");
267 1402 : return DV[Level - 1].Scalar;
268 : }
269 :
270 :
271 : // Returns true if peeling the first iteration from this loop
272 : // will break this dependence.
273 695 : bool FullDependence::isPeelFirst(unsigned Level) const {
274 : assert(0 < Level && Level <= Levels && "Level out of range");
275 1390 : return DV[Level - 1].PeelFirst;
276 : }
277 :
278 :
279 : // Returns true if peeling the last iteration from this loop
280 : // will break this dependence.
281 695 : bool FullDependence::isPeelLast(unsigned Level) const {
282 : assert(0 < Level && Level <= Levels && "Level out of range");
283 1390 : return DV[Level - 1].PeelLast;
284 : }
285 :
286 :
287 : // Returns true if splitting this loop will break the dependence.
288 1390 : bool FullDependence::isSplitable(unsigned Level) const {
289 : assert(0 < Level && Level <= Levels && "Level out of range");
290 2780 : return DV[Level - 1].Splitable;
291 : }
292 :
293 :
294 : //===----------------------------------------------------------------------===//
295 : // DependenceInfo::Constraint methods
296 :
297 : // If constraint is a point <X, Y>, returns X.
298 : // Otherwise assert.
299 3 : const SCEV *DependenceInfo::Constraint::getX() const {
300 : assert(Kind == Point && "Kind should be Point");
301 3 : return A;
302 : }
303 :
304 :
305 : // If constraint is a point <X, Y>, returns Y.
306 : // Otherwise assert.
307 3 : const SCEV *DependenceInfo::Constraint::getY() const {
308 : assert(Kind == Point && "Kind should be Point");
309 3 : return B;
310 : }
311 :
312 :
313 : // If constraint is a line AX + BY = C, returns A.
314 : // Otherwise assert.
315 6 : const SCEV *DependenceInfo::Constraint::getA() const {
316 : assert((Kind == Line || Kind == Distance) &&
317 : "Kind should be Line (or Distance)");
318 6 : return A;
319 : }
320 :
321 :
322 : // If constraint is a line AX + BY = C, returns B.
323 : // Otherwise assert.
324 6 : const SCEV *DependenceInfo::Constraint::getB() const {
325 : assert((Kind == Line || Kind == Distance) &&
326 : "Kind should be Line (or Distance)");
327 6 : return B;
328 : }
329 :
330 :
331 : // If constraint is a line AX + BY = C, returns C.
332 : // Otherwise assert.
333 4 : const SCEV *DependenceInfo::Constraint::getC() const {
334 : assert((Kind == Line || Kind == Distance) &&
335 : "Kind should be Line (or Distance)");
336 4 : return C;
337 : }
338 :
339 :
340 : // If constraint is a distance, returns D.
341 : // Otherwise assert.
342 0 : const SCEV *DependenceInfo::Constraint::getD() const {
343 : assert(Kind == Distance && "Kind should be Distance");
344 0 : return SE->getNegativeSCEV(C);
345 : }
346 :
347 :
348 : // Returns the loop associated with this constraint.
349 2 : const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
350 : assert((Kind == Distance || Kind == Line || Kind == Point) &&
351 : "Kind should be Distance, Line, or Point");
352 2 : return AssociatedLoop;
353 : }
354 :
355 1 : void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
356 : const Loop *CurLoop) {
357 1 : Kind = Point;
358 1 : A = X;
359 1 : B = Y;
360 1 : AssociatedLoop = CurLoop;
361 1 : }
362 :
363 71 : void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
364 : const SCEV *CC, const Loop *CurLoop) {
365 71 : Kind = Line;
366 71 : A = AA;
367 71 : B = BB;
368 71 : C = CC;
369 71 : AssociatedLoop = CurLoop;
370 71 : }
371 :
372 366 : void DependenceInfo::Constraint::setDistance(const SCEV *D,
373 : const Loop *CurLoop) {
374 366 : Kind = Distance;
375 366 : A = SE->getOne(D->getType());
376 366 : B = SE->getNegativeSCEV(A);
377 366 : C = SE->getNegativeSCEV(D);
378 366 : AssociatedLoop = CurLoop;
379 366 : }
380 :
381 0 : void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
382 :
383 936 : void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
384 936 : SE = NewSE;
385 936 : Kind = Any;
386 936 : }
387 :
388 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
389 : // For debugging purposes. Dumps the constraint out to OS.
390 : LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
391 : if (isEmpty())
392 : OS << " Empty\n";
393 : else if (isAny())
394 : OS << " Any\n";
395 : else if (isPoint())
396 : OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
397 : else if (isDistance())
398 : OS << " Distance is " << *getD() <<
399 : " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
400 : else if (isLine())
401 : OS << " Line is " << *getA() << "*X + " <<
402 : *getB() << "*Y = " << *getC() << "\n";
403 : else
404 : llvm_unreachable("unknown constraint type in Constraint::dump");
405 : }
406 : #endif
407 :
408 :
409 : // Updates X with the intersection
410 : // of the Constraints X and Y. Returns true if X has changed.
411 : // Corresponds to Figure 4 from the paper
412 : //
413 : // Practical Dependence Testing
414 : // Goff, Kennedy, Tseng
415 : // PLDI 1991
416 2 : bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
417 : ++DeltaApplications;
418 : LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
419 : LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
420 : LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
421 : assert(!Y->isPoint() && "Y must not be a Point");
422 2 : if (X->isAny()) {
423 1 : if (Y->isAny())
424 : return false;
425 1 : *X = *Y;
426 1 : return true;
427 : }
428 1 : if (X->isEmpty())
429 : return false;
430 1 : if (Y->isEmpty()) {
431 0 : X->setEmpty();
432 0 : return true;
433 : }
434 :
435 1 : if (X->isDistance() && Y->isDistance()) {
436 : LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
437 0 : if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
438 : return false;
439 0 : if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
440 0 : X->setEmpty();
441 : ++DeltaSuccesses;
442 0 : return true;
443 : }
444 : // Hmmm, interesting situation.
445 : // I guess if either is constant, keep it and ignore the other.
446 0 : if (isa<SCEVConstant>(Y->getD())) {
447 0 : *X = *Y;
448 0 : return true;
449 : }
450 : return false;
451 : }
452 :
453 : // At this point, the pseudo-code in Figure 4 of the paper
454 : // checks if (X->isPoint() && Y->isPoint()).
455 : // This case can't occur in our implementation,
456 : // since a Point can only arise as the result of intersecting
457 : // two Line constraints, and the right-hand value, Y, is never
458 : // the result of an intersection.
459 : assert(!(X->isPoint() && Y->isPoint()) &&
460 : "We shouldn't ever see X->isPoint() && Y->isPoint()");
461 :
462 1 : if (X->isLine() && Y->isLine()) {
463 : LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
464 1 : const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
465 1 : const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
466 1 : if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
467 : // slopes are equal, so lines are parallel
468 : LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
469 0 : Prod1 = SE->getMulExpr(X->getC(), Y->getB());
470 0 : Prod2 = SE->getMulExpr(X->getB(), Y->getC());
471 0 : if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
472 : return false;
473 0 : if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
474 0 : X->setEmpty();
475 : ++DeltaSuccesses;
476 0 : return true;
477 : }
478 : return false;
479 : }
480 1 : if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
481 : // slopes differ, so lines intersect
482 : LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
483 1 : const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
484 1 : const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
485 1 : const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
486 1 : const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
487 1 : const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
488 1 : const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
489 : const SCEVConstant *C1A2_C2A1 =
490 1 : dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
491 : const SCEVConstant *C1B2_C2B1 =
492 1 : dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
493 : const SCEVConstant *A1B2_A2B1 =
494 1 : dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
495 : const SCEVConstant *A2B1_A1B2 =
496 1 : dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
497 1 : if (!C1B2_C2B1 || !C1A2_C2A1 ||
498 1 : !A1B2_A2B1 || !A2B1_A1B2)
499 : return false;
500 : APInt Xtop = C1B2_C2B1->getAPInt();
501 : APInt Xbot = A1B2_A2B1->getAPInt();
502 : APInt Ytop = C1A2_C2A1->getAPInt();
503 : APInt Ybot = A2B1_A1B2->getAPInt();
504 : LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
505 : LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
506 : LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
507 : LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
508 : APInt Xq = Xtop; // these need to be initialized, even
509 : APInt Xr = Xtop; // though they're just going to be overwritten
510 1 : APInt::sdivrem(Xtop, Xbot, Xq, Xr);
511 : APInt Yq = Ytop;
512 : APInt Yr = Ytop;
513 1 : APInt::sdivrem(Ytop, Ybot, Yq, Yr);
514 1 : if (Xr != 0 || Yr != 0) {
515 0 : X->setEmpty();
516 : ++DeltaSuccesses;
517 0 : return true;
518 : }
519 : LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
520 1 : if (Xq.slt(0) || Yq.slt(0)) {
521 0 : X->setEmpty();
522 : ++DeltaSuccesses;
523 0 : return true;
524 : }
525 1 : if (const SCEVConstant *CUB =
526 1 : collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
527 : const APInt &UpperBound = CUB->getAPInt();
528 : LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
529 0 : if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
530 0 : X->setEmpty();
531 : ++DeltaSuccesses;
532 0 : return true;
533 : }
534 : }
535 2 : X->setPoint(SE->getConstant(Xq),
536 1 : SE->getConstant(Yq),
537 : X->getAssociatedLoop());
538 : ++DeltaSuccesses;
539 1 : return true;
540 : }
541 : return false;
542 : }
543 :
544 : // if (X->isLine() && Y->isPoint()) This case can't occur.
545 : assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
546 :
547 0 : if (X->isPoint() && Y->isLine()) {
548 : LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
549 0 : const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
550 0 : const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
551 0 : const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
552 0 : if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
553 : return false;
554 0 : if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
555 0 : X->setEmpty();
556 : ++DeltaSuccesses;
557 0 : return true;
558 : }
559 : return false;
560 : }
561 :
562 0 : llvm_unreachable("shouldn't reach the end of Constraint intersection");
563 : return false;
564 : }
565 :
566 :
567 : //===----------------------------------------------------------------------===//
568 : // DependenceInfo methods
569 :
570 : // For debugging purposes. Dumps a dependence to OS.
571 913 : void Dependence::dump(raw_ostream &OS) const {
572 : bool Splitable = false;
573 913 : if (isConfused())
574 529 : OS << "confused";
575 : else {
576 384 : if (isConsistent())
577 153 : OS << "consistent ";
578 384 : if (isFlow())
579 98 : OS << "flow";
580 286 : else if (isOutput())
581 153 : OS << "output";
582 133 : else if (isAnti())
583 29 : OS << "anti";
584 104 : else if (isInput())
585 104 : OS << "input";
586 384 : unsigned Levels = getLevels();
587 384 : OS << " [";
588 1079 : for (unsigned II = 1; II <= Levels; ++II) {
589 695 : if (isSplitable(II))
590 : Splitable = true;
591 695 : if (isPeelFirst(II))
592 : OS << 'p';
593 695 : const SCEV *Distance = getDistance(II);
594 695 : if (Distance)
595 : OS << *Distance;
596 661 : else if (isScalar(II))
597 241 : OS << "S";
598 : else {
599 420 : unsigned Direction = getDirection(II);
600 420 : if (Direction == DVEntry::ALL)
601 319 : OS << "*";
602 : else {
603 101 : if (Direction & DVEntry::LT)
604 60 : OS << "<";
605 101 : if (Direction & DVEntry::EQ)
606 39 : OS << "=";
607 101 : if (Direction & DVEntry::GT)
608 50 : OS << ">";
609 : }
610 : }
611 695 : if (isPeelLast(II))
612 : OS << 'p';
613 695 : if (II < Levels)
614 327 : OS << " ";
615 : }
616 384 : if (isLoopIndependent())
617 182 : OS << "|<";
618 384 : OS << "]";
619 384 : if (Splitable)
620 3 : OS << " splitable";
621 : }
622 913 : OS << "!\n";
623 913 : }
624 :
625 : // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
626 : // underlaying objects. If LocA and LocB are known to not alias (for any reason:
627 : // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
628 : // Otherwise the underlying objects are checked to see if they point to
629 : // different identifiable objects.
630 1798 : static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
631 : const DataLayout &DL,
632 : const MemoryLocation &LocA,
633 : const MemoryLocation &LocB) {
634 : // Check the original locations (minus size) for noalias, which can happen for
635 : // tbaa, incompatible underlying object locations, etc.
636 1798 : MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags);
637 1798 : MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags);
638 1798 : if (AA->alias(LocAS, LocBS) == NoAlias)
639 : return NoAlias;
640 :
641 : // Check the underlying objects are the same
642 1468 : const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL);
643 1468 : const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL);
644 :
645 : // If the underlying objects are the same, they must alias
646 1468 : if (AObj == BObj)
647 : return MustAlias;
648 :
649 : // We may have hit the recursion limit for underlying objects, or have
650 : // underlying objects where we don't know they will alias.
651 538 : if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
652 538 : return MayAlias;
653 :
654 : // Otherwise we know the objects are different and both identified objects so
655 : // must not alias.
656 : return NoAlias;
657 : }
658 :
659 :
660 : // Returns true if the load or store can be analyzed. Atomic and volatile
661 : // operations have properties which this analysis does not understand.
662 : static
663 3596 : bool isLoadOrStore(const Instruction *I) {
664 : if (const LoadInst *LI = dyn_cast<LoadInst>(I))
665 : return LI->isUnordered();
666 : else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
667 : return SI->isUnordered();
668 : return false;
669 : }
670 :
671 :
672 : // Examines the loop nesting of the Src and Dst
673 : // instructions and establishes their shared loops. Sets the variables
674 : // CommonLevels, SrcLevels, and MaxLevels.
675 : // The source and destination instructions needn't be contained in the same
676 : // loop. The routine establishNestingLevels finds the level of most deeply
677 : // nested loop that contains them both, CommonLevels. An instruction that's
678 : // not contained in a loop is at level = 0. MaxLevels is equal to the level
679 : // of the source plus the level of the destination, minus CommonLevels.
680 : // This lets us allocate vectors MaxLevels in length, with room for every
681 : // distinct loop referenced in both the source and destination subscripts.
682 : // The variable SrcLevels is the nesting depth of the source instruction.
683 : // It's used to help calculate distinct loops referenced by the destination.
684 : // Here's the map from loops to levels:
685 : // 0 - unused
686 : // 1 - outermost common loop
687 : // ... - other common loops
688 : // CommonLevels - innermost common loop
689 : // ... - loops containing Src but not Dst
690 : // SrcLevels - innermost loop containing Src but not Dst
691 : // ... - loops containing Dst but not Src
692 : // MaxLevels - innermost loops containing Dst but not Src
693 : // Consider the follow code fragment:
694 : // for (a = ...) {
695 : // for (b = ...) {
696 : // for (c = ...) {
697 : // for (d = ...) {
698 : // A[] = ...;
699 : // }
700 : // }
701 : // for (e = ...) {
702 : // for (f = ...) {
703 : // for (g = ...) {
704 : // ... = A[];
705 : // }
706 : // }
707 : // }
708 : // }
709 : // }
710 : // If we're looking at the possibility of a dependence between the store
711 : // to A (the Src) and the load from A (the Dst), we'll note that they
712 : // have 2 loops in common, so CommonLevels will equal 2 and the direction
713 : // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
714 : // A map from loop names to loop numbers would look like
715 : // a - 1
716 : // b - 2 = CommonLevels
717 : // c - 3
718 : // d - 4 = SrcLevels
719 : // e - 5
720 : // f - 6
721 : // g - 7 = MaxLevels
722 933 : void DependenceInfo::establishNestingLevels(const Instruction *Src,
723 : const Instruction *Dst) {
724 933 : const BasicBlock *SrcBlock = Src->getParent();
725 933 : const BasicBlock *DstBlock = Dst->getParent();
726 933 : unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
727 933 : unsigned DstLevel = LI->getLoopDepth(DstBlock);
728 933 : const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
729 933 : const Loop *DstLoop = LI->getLoopFor(DstBlock);
730 933 : SrcLevels = SrcLevel;
731 933 : MaxLevels = SrcLevel + DstLevel;
732 949 : while (SrcLevel > DstLevel) {
733 16 : SrcLoop = SrcLoop->getParentLoop();
734 16 : SrcLevel--;
735 : }
736 957 : while (DstLevel > SrcLevel) {
737 24 : DstLoop = DstLoop->getParentLoop();
738 24 : DstLevel--;
739 : }
740 973 : while (SrcLoop != DstLoop) {
741 40 : SrcLoop = SrcLoop->getParentLoop();
742 40 : DstLoop = DstLoop->getParentLoop();
743 40 : SrcLevel--;
744 : }
745 933 : CommonLevels = SrcLevel;
746 933 : MaxLevels -= CommonLevels;
747 933 : }
748 :
749 :
750 : // Given one of the loops containing the source, return
751 : // its level index in our numbering scheme.
752 1991 : unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
753 1991 : return SrcLoop->getLoopDepth();
754 : }
755 :
756 :
757 : // Given one of the loops containing the destination,
758 : // return its level index in our numbering scheme.
759 1511 : unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
760 1511 : unsigned D = DstLoop->getLoopDepth();
761 1511 : if (D > CommonLevels)
762 23 : return D - CommonLevels + SrcLevels;
763 : else
764 : return D;
765 : }
766 :
767 :
768 : // Returns true if Expression is loop invariant in LoopNest.
769 10433 : bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
770 : const Loop *LoopNest) const {
771 10433 : if (!LoopNest)
772 : return true;
773 13252 : return SE->isLoopInvariant(Expression, LoopNest) &&
774 6586 : isLoopInvariant(Expression, LoopNest->getParentLoop());
775 : }
776 :
777 :
778 :
779 : // Finds the set of loops from the LoopNest that
780 : // have a level <= CommonLevels and are referred to by the SCEV Expression.
781 160 : void DependenceInfo::collectCommonLoops(const SCEV *Expression,
782 : const Loop *LoopNest,
783 : SmallBitVector &Loops) const {
784 459 : while (LoopNest) {
785 299 : unsigned Level = LoopNest->getLoopDepth();
786 299 : if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
787 280 : Loops.set(Level);
788 299 : LoopNest = LoopNest->getParentLoop();
789 : }
790 160 : }
791 :
792 66 : void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
793 :
794 : unsigned widestWidthSeen = 0;
795 : Type *widestType;
796 :
797 : // Go through each pair and find the widest bit to which we need
798 : // to extend all of them.
799 133 : for (Subscript *Pair : Pairs) {
800 67 : const SCEV *Src = Pair->Src;
801 67 : const SCEV *Dst = Pair->Dst;
802 67 : IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
803 67 : IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
804 67 : if (SrcTy == nullptr || DstTy == nullptr) {
805 : assert(SrcTy == DstTy && "This function only unify integer types and "
806 : "expect Src and Dst share the same type "
807 : "otherwise.");
808 : continue;
809 : }
810 67 : if (SrcTy->getBitWidth() > widestWidthSeen) {
811 : widestWidthSeen = SrcTy->getBitWidth();
812 : widestType = SrcTy;
813 : }
814 67 : if (DstTy->getBitWidth() > widestWidthSeen) {
815 : widestWidthSeen = DstTy->getBitWidth();
816 : widestType = DstTy;
817 : }
818 : }
819 :
820 :
821 : assert(widestWidthSeen > 0);
822 :
823 : // Now extend each pair to the widest seen.
824 133 : for (Subscript *Pair : Pairs) {
825 67 : const SCEV *Src = Pair->Src;
826 67 : const SCEV *Dst = Pair->Dst;
827 67 : IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
828 67 : IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
829 67 : if (SrcTy == nullptr || DstTy == nullptr) {
830 : assert(SrcTy == DstTy && "This function only unify integer types and "
831 : "expect Src and Dst share the same type "
832 : "otherwise.");
833 : continue;
834 : }
835 67 : if (SrcTy->getBitWidth() < widestWidthSeen)
836 : // Sign-extend Src to widestType
837 0 : Pair->Src = SE->getSignExtendExpr(Src, widestType);
838 67 : if (DstTy->getBitWidth() < widestWidthSeen) {
839 : // Sign-extend Dst to widestType
840 0 : Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
841 : }
842 : }
843 66 : }
844 :
845 : // removeMatchingExtensions - Examines a subscript pair.
846 : // If the source and destination are identically sign (or zero)
847 : // extended, it strips off the extension in an effect to simplify
848 : // the actual analysis.
849 974 : void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
850 974 : const SCEV *Src = Pair->Src;
851 974 : const SCEV *Dst = Pair->Dst;
852 974 : if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
853 0 : (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
854 : const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
855 : const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
856 0 : const SCEV *SrcCastOp = SrcCast->getOperand();
857 0 : const SCEV *DstCastOp = DstCast->getOperand();
858 0 : if (SrcCastOp->getType() == DstCastOp->getType()) {
859 0 : Pair->Src = SrcCastOp;
860 0 : Pair->Dst = DstCastOp;
861 : }
862 : }
863 974 : }
864 :
865 :
866 : // Examine the scev and return true iff it's linear.
867 : // Collect any loops mentioned in the set of "Loops".
868 974 : bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
869 : SmallBitVector &Loops) {
870 : const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
871 : if (!AddRec)
872 974 : return isLoopInvariant(Src, LoopNest);
873 1000 : const SCEV *Start = AddRec->getStart();
874 1000 : const SCEV *Step = AddRec->getStepRecurrence(*SE);
875 1000 : const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
876 1000 : if (!isa<SCEVCouldNotCompute>(UB)) {
877 1990 : if (SE->getTypeSizeInBits(Start->getType()) <
878 995 : SE->getTypeSizeInBits(UB->getType())) {
879 0 : if (!AddRec->getNoWrapFlags())
880 : return false;
881 : }
882 : }
883 1000 : if (!isLoopInvariant(Step, LoopNest))
884 : return false;
885 1000 : Loops.set(mapSrcLoop(AddRec->getLoop()));
886 1000 : return checkSrcSubscript(Start, LoopNest, Loops);
887 : }
888 :
889 :
890 :
891 : // Examine the scev and return true iff it's linear.
892 : // Collect any loops mentioned in the set of "Loops".
893 895 : bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
894 : SmallBitVector &Loops) {
895 : const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
896 : if (!AddRec)
897 895 : return isLoopInvariant(Dst, LoopNest);
898 978 : const SCEV *Start = AddRec->getStart();
899 978 : const SCEV *Step = AddRec->getStepRecurrence(*SE);
900 978 : const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
901 978 : if (!isa<SCEVCouldNotCompute>(UB)) {
902 1946 : if (SE->getTypeSizeInBits(Start->getType()) <
903 973 : SE->getTypeSizeInBits(UB->getType())) {
904 0 : if (!AddRec->getNoWrapFlags())
905 : return false;
906 : }
907 : }
908 978 : if (!isLoopInvariant(Step, LoopNest))
909 : return false;
910 978 : Loops.set(mapDstLoop(AddRec->getLoop()));
911 978 : return checkDstSubscript(Start, LoopNest, Loops);
912 : }
913 :
914 :
915 : // Examines the subscript pair (the Src and Dst SCEVs)
916 : // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
917 : // Collects the associated loops in a set.
918 : DependenceInfo::Subscript::ClassificationKind
919 974 : DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
920 : const SCEV *Dst, const Loop *DstLoopNest,
921 : SmallBitVector &Loops) {
922 1948 : SmallBitVector SrcLoops(MaxLevels + 1);
923 1948 : SmallBitVector DstLoops(MaxLevels + 1);
924 974 : if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
925 : return Subscript::NonLinear;
926 895 : if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
927 : return Subscript::NonLinear;
928 894 : Loops = SrcLoops;
929 894 : Loops |= DstLoops;
930 894 : unsigned N = Loops.count();
931 894 : if (N == 0)
932 : return Subscript::ZIV;
933 707 : if (N == 1)
934 : return Subscript::SIV;
935 489 : if (N == 2 && (SrcLoops.count() == 0 ||
936 439 : DstLoops.count() == 0 ||
937 18 : (SrcLoops.count() == 1 && DstLoops.count() == 1)))
938 22 : return Subscript::RDIV;
939 : return Subscript::MIV;
940 : }
941 :
942 :
943 : // A wrapper around SCEV::isKnownPredicate.
944 : // Looks for cases where we're interested in comparing for equality.
945 : // If both X and Y have been identically sign or zero extended,
946 : // it strips off the (confusing) extensions before invoking
947 : // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
948 : // will be similarly updated.
949 : //
950 : // If SCEV::isKnownPredicate can't prove the predicate,
951 : // we try simple subtraction, which seems to help in some cases
952 : // involving symbolics.
953 7333 : bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
954 : const SCEV *Y) const {
955 7333 : if (Pred == CmpInst::ICMP_EQ ||
956 : Pred == CmpInst::ICMP_NE) {
957 0 : if ((isa<SCEVSignExtendExpr>(X) &&
958 283 : isa<SCEVSignExtendExpr>(Y)) ||
959 0 : (isa<SCEVZeroExtendExpr>(X) &&
960 : isa<SCEVZeroExtendExpr>(Y))) {
961 : const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
962 : const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
963 0 : const SCEV *Xop = CX->getOperand();
964 0 : const SCEV *Yop = CY->getOperand();
965 0 : if (Xop->getType() == Yop->getType()) {
966 : X = Xop;
967 : Y = Yop;
968 : }
969 : }
970 : }
971 7333 : if (SE->isKnownPredicate(Pred, X, Y))
972 : return true;
973 : // If SE->isKnownPredicate can't prove the condition,
974 : // we try the brute-force approach of subtracting
975 : // and testing the difference.
976 : // By testing with SE->isKnownPredicate first, we avoid
977 : // the possibility of overflow when the arguments are constants.
978 5964 : const SCEV *Delta = SE->getMinusSCEV(X, Y);
979 5964 : switch (Pred) {
980 33 : case CmpInst::ICMP_EQ:
981 33 : return Delta->isZero();
982 4 : case CmpInst::ICMP_NE:
983 4 : return SE->isKnownNonZero(Delta);
984 1 : case CmpInst::ICMP_SGE:
985 1 : return SE->isKnownNonNegative(Delta);
986 0 : case CmpInst::ICMP_SLE:
987 0 : return SE->isKnownNonPositive(Delta);
988 5546 : case CmpInst::ICMP_SGT:
989 5546 : return SE->isKnownPositive(Delta);
990 380 : case CmpInst::ICMP_SLT:
991 380 : return SE->isKnownNegative(Delta);
992 0 : default:
993 0 : llvm_unreachable("unexpected predicate in isKnownPredicate");
994 : }
995 : }
996 :
997 : /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
998 : /// with some extra checking if S is an AddRec and we can prove less-than using
999 : /// the loop bounds.
1000 116 : bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1001 : // First unify to the same type
1002 116 : auto *SType = dyn_cast<IntegerType>(S->getType());
1003 116 : auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1004 116 : if (!SType || !SizeType)
1005 : return false;
1006 : Type *MaxType =
1007 116 : (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1008 116 : S = SE->getTruncateOrZeroExtend(S, MaxType);
1009 116 : Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1010 :
1011 : // Special check for addrecs using BE taken count
1012 116 : const SCEV *Bound = SE->getMinusSCEV(S, Size);
1013 : if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1014 104 : if (AddRec->isAffine()) {
1015 104 : const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1016 104 : if (!isa<SCEVCouldNotCompute>(BECount)) {
1017 104 : const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1018 104 : if (SE->isKnownNegative(Limit))
1019 : return true;
1020 : }
1021 : }
1022 : }
1023 :
1024 : // Check using normal isKnownNegative
1025 : const SCEV *LimitedBound =
1026 52 : SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1027 26 : return SE->isKnownNegative(LimitedBound);
1028 : }
1029 :
1030 127 : bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1031 : bool Inbounds = false;
1032 : if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1033 127 : Inbounds = SrcGEP->isInBounds();
1034 127 : if (Inbounds) {
1035 : if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1036 109 : if (AddRec->isAffine()) {
1037 : // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1038 : // If both parts are NonNegative, the end result will be NonNegative
1039 322 : if (SE->isKnownNonNegative(AddRec->getStart()) &&
1040 208 : SE->isKnownNonNegative(AddRec->getOperand(1)))
1041 : return true;
1042 : }
1043 : }
1044 : }
1045 :
1046 23 : return SE->isKnownNonNegative(S);
1047 : }
1048 :
1049 : // All subscripts are all the same type.
1050 : // Loop bound may be smaller (e.g., a char).
1051 : // Should zero extend loop bound, since it's always >= 0.
1052 : // This routine collects upper bound and extends or truncates if needed.
1053 : // Truncating is safe when subscripts are known not to wrap. Cases without
1054 : // nowrap flags should have been rejected earlier.
1055 : // Return null if no bound available.
1056 2317 : const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1057 2317 : if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1058 2303 : const SCEV *UB = SE->getBackedgeTakenCount(L);
1059 2303 : return SE->getTruncateOrZeroExtend(UB, T);
1060 : }
1061 : return nullptr;
1062 : }
1063 :
1064 :
1065 : // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1066 : // If the cast fails, returns NULL.
1067 49 : const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1068 : Type *T) const {
1069 49 : if (const SCEV *UB = collectUpperBound(L, T))
1070 : return dyn_cast<SCEVConstant>(UB);
1071 : return nullptr;
1072 : }
1073 :
1074 :
1075 : // testZIV -
1076 : // When we have a pair of subscripts of the form [c1] and [c2],
1077 : // where c1 and c2 are both loop invariant, we attack it using
1078 : // the ZIV test. Basically, we test by comparing the two values,
1079 : // but there are actually three possible results:
1080 : // 1) the values are equal, so there's a dependence
1081 : // 2) the values are different, so there's no dependence
1082 : // 3) the values might be equal, so we have to assume a dependence.
1083 : //
1084 : // Return true if dependence disproved.
1085 187 : bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1086 : FullDependence &Result) const {
1087 : LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1088 : LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1089 : ++ZIVapplications;
1090 187 : if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1091 : LLVM_DEBUG(dbgs() << " provably dependent\n");
1092 : return false; // provably dependent
1093 : }
1094 7 : if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1095 : LLVM_DEBUG(dbgs() << " provably independent\n");
1096 : ++ZIVindependence;
1097 : return true; // provably independent
1098 : }
1099 : LLVM_DEBUG(dbgs() << " possibly dependent\n");
1100 4 : Result.Consistent = false;
1101 4 : return false; // possibly dependent
1102 : }
1103 :
1104 :
1105 : // strongSIVtest -
1106 : // From the paper, Practical Dependence Testing, Section 4.2.1
1107 : //
1108 : // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1109 : // where i is an induction variable, c1 and c2 are loop invariant,
1110 : // and a is a constant, we can solve it exactly using the Strong SIV test.
1111 : //
1112 : // Can prove independence. Failing that, can compute distance (and direction).
1113 : // In the presence of symbolic terms, we can sometimes make progress.
1114 : //
1115 : // If there's a dependence,
1116 : //
1117 : // c1 + a*i = c2 + a*i'
1118 : //
1119 : // The dependence distance is
1120 : //
1121 : // d = i' - i = (c1 - c2)/a
1122 : //
1123 : // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1124 : // loop's upper bound. If a dependence exists, the dependence direction is
1125 : // defined as
1126 : //
1127 : // { < if d > 0
1128 : // direction = { = if d = 0
1129 : // { > if d < 0
1130 : //
1131 : // Return true if dependence disproved.
1132 374 : bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1133 : const SCEV *DstConst, const Loop *CurLoop,
1134 : unsigned Level, FullDependence &Result,
1135 : Constraint &NewConstraint) const {
1136 : LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1137 : LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1138 : LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1139 : LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1140 : LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1141 : LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1142 : LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1143 : ++StrongSIVapplications;
1144 : assert(0 < Level && Level <= CommonLevels && "level out of range");
1145 374 : Level--;
1146 :
1147 374 : const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1148 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1149 : LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1150 :
1151 : // check that |Delta| < iteration count
1152 374 : if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1153 : LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1154 : LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1155 : const SCEV *AbsDelta =
1156 370 : SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1157 : const SCEV *AbsCoeff =
1158 370 : SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1159 370 : const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1160 370 : if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1161 : // Distance greater than trip count - no dependence
1162 : ++StrongSIVindependence;
1163 : ++StrongSIVsuccesses;
1164 : return true;
1165 : }
1166 : }
1167 :
1168 : // Can we compute distance?
1169 372 : if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1170 : APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1171 : APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1172 : APInt Distance = ConstDelta; // these need to be initialized
1173 : APInt Remainder = ConstDelta;
1174 355 : APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1175 : LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1176 : LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1177 : // Make sure Coeff divides Delta exactly
1178 355 : if (Remainder != 0) {
1179 : // Coeff doesn't divide Distance, no dependence
1180 : ++StrongSIVindependence;
1181 : ++StrongSIVsuccesses;
1182 : return true;
1183 : }
1184 706 : Result.DV[Level].Distance = SE->getConstant(Distance);
1185 353 : NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1186 353 : if (Distance.sgt(0))
1187 18 : Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1188 335 : else if (Distance.slt(0))
1189 10 : Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1190 : else
1191 325 : Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1192 : ++StrongSIVsuccesses;
1193 : }
1194 17 : else if (Delta->isZero()) {
1195 : // since 0/X == 0
1196 13 : Result.DV[Level].Distance = Delta;
1197 13 : NewConstraint.setDistance(Delta, CurLoop);
1198 13 : Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1199 : ++StrongSIVsuccesses;
1200 : }
1201 : else {
1202 4 : if (Coeff->isOne()) {
1203 : LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1204 0 : Result.DV[Level].Distance = Delta; // since X/1 == X
1205 0 : NewConstraint.setDistance(Delta, CurLoop);
1206 : }
1207 : else {
1208 4 : Result.Consistent = false;
1209 4 : NewConstraint.setLine(Coeff,
1210 4 : SE->getNegativeSCEV(Coeff),
1211 4 : SE->getNegativeSCEV(Delta), CurLoop);
1212 : }
1213 :
1214 : // maybe we can get a useful direction
1215 4 : bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1216 4 : bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1217 4 : bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1218 4 : bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1219 4 : bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1220 : // The double negatives above are confusing.
1221 : // It helps to read !SE->isKnownNonZero(Delta)
1222 : // as "Delta might be Zero"
1223 : unsigned NewDirection = Dependence::DVEntry::NONE;
1224 4 : if ((DeltaMaybePositive && CoeffMaybePositive) ||
1225 : (DeltaMaybeNegative && CoeffMaybeNegative))
1226 : NewDirection = Dependence::DVEntry::LT;
1227 4 : if (DeltaMaybeZero)
1228 4 : NewDirection |= Dependence::DVEntry::EQ;
1229 4 : if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1230 : (DeltaMaybePositive && CoeffMaybeNegative))
1231 4 : NewDirection |= Dependence::DVEntry::GT;
1232 4 : if (NewDirection < Result.DV[Level].Direction)
1233 : ++StrongSIVsuccesses;
1234 4 : Result.DV[Level].Direction &= NewDirection;
1235 : }
1236 : return false;
1237 : }
1238 :
1239 :
1240 : // weakCrossingSIVtest -
1241 : // From the paper, Practical Dependence Testing, Section 4.2.2
1242 : //
1243 : // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1244 : // where i is an induction variable, c1 and c2 are loop invariant,
1245 : // and a is a constant, we can solve it exactly using the
1246 : // Weak-Crossing SIV test.
1247 : //
1248 : // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1249 : // the two lines, where i = i', yielding
1250 : //
1251 : // c1 + a*i = c2 - a*i
1252 : // 2a*i = c2 - c1
1253 : // i = (c2 - c1)/2a
1254 : //
1255 : // If i < 0, there is no dependence.
1256 : // If i > upperbound, there is no dependence.
1257 : // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1258 : // If i = upperbound, there's a dependence with distance = 0.
1259 : // If i is integral, there's a dependence (all directions).
1260 : // If the non-integer part = 1/2, there's a dependence (<> directions).
1261 : // Otherwise, there's no dependence.
1262 : //
1263 : // Can prove independence. Failing that,
1264 : // can sometimes refine the directions.
1265 : // Can determine iteration for splitting.
1266 : //
1267 : // Return true if dependence disproved.
1268 11 : bool DependenceInfo::weakCrossingSIVtest(
1269 : const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1270 : const Loop *CurLoop, unsigned Level, FullDependence &Result,
1271 : Constraint &NewConstraint, const SCEV *&SplitIter) const {
1272 : LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1273 : LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1274 : LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1275 : LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1276 : ++WeakCrossingSIVapplications;
1277 : assert(0 < Level && Level <= CommonLevels && "Level out of range");
1278 11 : Level--;
1279 11 : Result.Consistent = false;
1280 11 : const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1281 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1282 11 : NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1283 11 : if (Delta->isZero()) {
1284 1 : Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1285 1 : Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1286 : ++WeakCrossingSIVsuccesses;
1287 1 : if (!Result.DV[Level].Direction) {
1288 : ++WeakCrossingSIVindependence;
1289 : return true;
1290 : }
1291 1 : Result.DV[Level].Distance = Delta; // = 0
1292 1 : return false;
1293 : }
1294 : const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1295 : if (!ConstCoeff)
1296 : return false;
1297 :
1298 10 : Result.DV[Level].Splitable = true;
1299 10 : if (SE->isKnownNegative(ConstCoeff)) {
1300 0 : ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1301 : assert(ConstCoeff &&
1302 : "dynamic cast of negative of ConstCoeff should yield constant");
1303 0 : Delta = SE->getNegativeSCEV(Delta);
1304 : }
1305 : assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1306 :
1307 : // compute SplitIter for use by DependenceInfo::getSplitIteration()
1308 20 : SplitIter = SE->getUDivExpr(
1309 10 : SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1310 : SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1311 : LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1312 :
1313 : const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1314 : if (!ConstDelta)
1315 : return false;
1316 :
1317 : // We're certain that ConstCoeff > 0; therefore,
1318 : // if Delta < 0, then no dependence.
1319 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1320 : LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1321 8 : if (SE->isKnownNegative(Delta)) {
1322 : // No dependence, Delta < 0
1323 : ++WeakCrossingSIVindependence;
1324 : ++WeakCrossingSIVsuccesses;
1325 : return true;
1326 : }
1327 :
1328 : // We're certain that Delta > 0 and ConstCoeff > 0.
1329 : // Check Delta/(2*ConstCoeff) against upper loop bound
1330 7 : if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1331 : LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1332 7 : const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1333 7 : const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1334 : ConstantTwo);
1335 : LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1336 7 : if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1337 : // Delta too big, no dependence
1338 : ++WeakCrossingSIVindependence;
1339 : ++WeakCrossingSIVsuccesses;
1340 : return true;
1341 : }
1342 6 : if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1343 : // i = i' = UB
1344 1 : Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1345 1 : Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1346 : ++WeakCrossingSIVsuccesses;
1347 1 : if (!Result.DV[Level].Direction) {
1348 : ++WeakCrossingSIVindependence;
1349 : return true;
1350 : }
1351 1 : Result.DV[Level].Splitable = false;
1352 1 : Result.DV[Level].Distance = SE->getZero(Delta->getType());
1353 1 : return false;
1354 : }
1355 : }
1356 :
1357 : // check that Coeff divides Delta
1358 : APInt APDelta = ConstDelta->getAPInt();
1359 : APInt APCoeff = ConstCoeff->getAPInt();
1360 : APInt Distance = APDelta; // these need to be initialzed
1361 : APInt Remainder = APDelta;
1362 5 : APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1363 : LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1364 5 : if (Remainder != 0) {
1365 : // Coeff doesn't divide Delta, no dependence
1366 : ++WeakCrossingSIVindependence;
1367 : ++WeakCrossingSIVsuccesses;
1368 : return true;
1369 : }
1370 : LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1371 :
1372 : // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1373 4 : APInt Two = APInt(Distance.getBitWidth(), 2, true);
1374 8 : Remainder = Distance.srem(Two);
1375 : LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1376 4 : if (Remainder != 0) {
1377 : // Equal direction isn't possible
1378 4 : Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1379 : ++WeakCrossingSIVsuccesses;
1380 : }
1381 : return false;
1382 : }
1383 :
1384 :
1385 : // Kirch's algorithm, from
1386 : //
1387 : // Optimizing Supercompilers for Supercomputers
1388 : // Michael Wolfe
1389 : // MIT Press, 1989
1390 : //
1391 : // Program 2.1, page 29.
1392 : // Computes the GCD of AM and BM.
1393 : // Also finds a solution to the equation ax - by = gcd(a, b).
1394 : // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1395 40 : static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1396 : const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1397 : APInt A0(Bits, 1, true), A1(Bits, 0, true);
1398 : APInt B0(Bits, 0, true), B1(Bits, 1, true);
1399 40 : APInt G0 = AM.abs();
1400 40 : APInt G1 = BM.abs();
1401 : APInt Q = G0; // these need to be initialized
1402 : APInt R = G0;
1403 40 : APInt::sdivrem(G0, G1, Q, R);
1404 76 : while (R != 0) {
1405 72 : APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1406 72 : APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1407 36 : G0 = G1; G1 = R;
1408 36 : APInt::sdivrem(G0, G1, Q, R);
1409 : }
1410 40 : G = G1;
1411 : LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1412 80 : X = AM.slt(0) ? -A1 : A1;
1413 80 : Y = BM.slt(0) ? B1 : -B1;
1414 :
1415 : // make sure gcd divides Delta
1416 80 : R = Delta.srem(G);
1417 40 : if (R != 0)
1418 : return true; // gcd doesn't divide Delta, no dependence
1419 36 : Q = Delta.sdiv(G);
1420 36 : X *= Q;
1421 36 : Y *= Q;
1422 36 : return false;
1423 : }
1424 :
1425 108 : static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1426 : APInt Q = A; // these need to be initialized
1427 : APInt R = A;
1428 108 : APInt::sdivrem(A, B, Q, R);
1429 108 : if (R == 0)
1430 : return Q;
1431 56 : if ((A.sgt(0) && B.sgt(0)) ||
1432 39 : (A.slt(0) && B.slt(0)))
1433 : return Q;
1434 : else
1435 27 : return Q - 1;
1436 : }
1437 :
1438 108 : static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1439 : APInt Q = A; // these need to be initialized
1440 : APInt R = A;
1441 108 : APInt::sdivrem(A, B, Q, R);
1442 108 : if (R == 0)
1443 : return Q;
1444 59 : if ((A.sgt(0) && B.sgt(0)) ||
1445 30 : (A.slt(0) && B.slt(0)))
1446 29 : return Q + 1;
1447 : else
1448 : return Q;
1449 : }
1450 :
1451 :
1452 : static
1453 108 : APInt maxAPInt(APInt A, APInt B) {
1454 108 : return A.sgt(B) ? A : B;
1455 : }
1456 :
1457 :
1458 : static
1459 108 : APInt minAPInt(APInt A, APInt B) {
1460 108 : return A.slt(B) ? A : B;
1461 : }
1462 :
1463 :
1464 : // exactSIVtest -
1465 : // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1466 : // where i is an induction variable, c1 and c2 are loop invariant, and a1
1467 : // and a2 are constant, we can solve it exactly using an algorithm developed
1468 : // by Banerjee and Wolfe. See Section 2.5.3 in
1469 : //
1470 : // Optimizing Supercompilers for Supercomputers
1471 : // Michael Wolfe
1472 : // MIT Press, 1989
1473 : //
1474 : // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1475 : // so use them if possible. They're also a bit better with symbolics and,
1476 : // in the case of the strong SIV test, can compute Distances.
1477 : //
1478 : // Return true if dependence disproved.
1479 36 : bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1480 : const SCEV *SrcConst, const SCEV *DstConst,
1481 : const Loop *CurLoop, unsigned Level,
1482 : FullDependence &Result,
1483 : Constraint &NewConstraint) const {
1484 : LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1485 : LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1486 : LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1487 : LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1488 : LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1489 : ++ExactSIVapplications;
1490 : assert(0 < Level && Level <= CommonLevels && "Level out of range");
1491 36 : Level--;
1492 36 : Result.Consistent = false;
1493 36 : const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1494 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1495 36 : NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1496 : Delta, CurLoop);
1497 : const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1498 : const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1499 : const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1500 36 : if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1501 : return false;
1502 :
1503 : // find gcd
1504 : APInt G, X, Y;
1505 : APInt AM = ConstSrcCoeff->getAPInt();
1506 : APInt BM = ConstDstCoeff->getAPInt();
1507 27 : unsigned Bits = AM.getBitWidth();
1508 27 : if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1509 : // gcd doesn't divide Delta, no dependence
1510 : ++ExactSIVindependence;
1511 : ++ExactSIVsuccesses;
1512 : return true;
1513 : }
1514 :
1515 : LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1516 :
1517 : // since SCEV construction normalizes, LM = 0
1518 : APInt UM(Bits, 1, true);
1519 : bool UMvalid = false;
1520 : // UM is perhaps unavailable, let's check
1521 24 : if (const SCEVConstant *CUB =
1522 24 : collectConstantUpperBound(CurLoop, Delta->getType())) {
1523 24 : UM = CUB->getAPInt();
1524 : LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1525 : UMvalid = true;
1526 : }
1527 :
1528 24 : APInt TU(APInt::getSignedMaxValue(Bits));
1529 24 : APInt TL(APInt::getSignedMinValue(Bits));
1530 :
1531 : // test(BM/G, LM-X) and test(-BM/G, X-UM)
1532 24 : APInt TMUL = BM.sdiv(G);
1533 24 : if (TMUL.sgt(0)) {
1534 54 : TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1535 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1536 18 : if (UMvalid) {
1537 54 : TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1538 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1539 : }
1540 : }
1541 : else {
1542 18 : TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1543 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1544 6 : if (UMvalid) {
1545 18 : TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1546 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1547 : }
1548 : }
1549 :
1550 : // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1551 24 : TMUL = AM.sdiv(G);
1552 24 : if (TMUL.sgt(0)) {
1553 54 : TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1554 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1555 18 : if (UMvalid) {
1556 54 : TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1557 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1558 : }
1559 : }
1560 : else {
1561 18 : TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1562 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1563 6 : if (UMvalid) {
1564 18 : TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1565 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1566 : }
1567 : }
1568 24 : if (TL.sgt(TU)) {
1569 : ++ExactSIVindependence;
1570 : ++ExactSIVsuccesses;
1571 : return true;
1572 : }
1573 :
1574 : // explore directions
1575 : unsigned NewDirection = Dependence::DVEntry::NONE;
1576 :
1577 : // less than
1578 : APInt SaveTU(TU); // save these
1579 : APInt SaveTL(TL);
1580 : LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1581 18 : TMUL = AM - BM;
1582 18 : if (TMUL.sgt(0)) {
1583 36 : TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1584 : LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1585 : }
1586 : else {
1587 18 : TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1588 : LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1589 : }
1590 18 : if (TL.sle(TU)) {
1591 : NewDirection |= Dependence::DVEntry::LT;
1592 : ++ExactSIVsuccesses;
1593 : }
1594 :
1595 : // equal
1596 18 : TU = SaveTU; // restore
1597 18 : TL = SaveTL;
1598 : LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1599 18 : if (TMUL.sgt(0)) {
1600 36 : TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1601 : LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1602 : }
1603 : else {
1604 18 : TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1605 : LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1606 : }
1607 18 : TMUL = BM - AM;
1608 18 : if (TMUL.sgt(0)) {
1609 18 : TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1610 : LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1611 : }
1612 : else {
1613 36 : TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1614 : LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1615 : }
1616 18 : if (TL.sle(TU)) {
1617 1 : NewDirection |= Dependence::DVEntry::EQ;
1618 : ++ExactSIVsuccesses;
1619 : }
1620 :
1621 : // greater than
1622 18 : TU = SaveTU; // restore
1623 18 : TL = SaveTL;
1624 : LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1625 18 : if (TMUL.sgt(0)) {
1626 18 : TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1627 : LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1628 : }
1629 : else {
1630 36 : TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1631 : LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1632 : }
1633 18 : if (TL.sle(TU)) {
1634 4 : NewDirection |= Dependence::DVEntry::GT;
1635 : ++ExactSIVsuccesses;
1636 : }
1637 :
1638 : // finished
1639 18 : Result.DV[Level].Direction &= NewDirection;
1640 18 : if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1641 : ++ExactSIVindependence;
1642 : return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1643 : }
1644 :
1645 :
1646 :
1647 : // Return true if the divisor evenly divides the dividend.
1648 : static
1649 6 : bool isRemainderZero(const SCEVConstant *Dividend,
1650 : const SCEVConstant *Divisor) {
1651 : const APInt &ConstDividend = Dividend->getAPInt();
1652 : const APInt &ConstDivisor = Divisor->getAPInt();
1653 6 : return ConstDividend.srem(ConstDivisor) == 0;
1654 : }
1655 :
1656 :
1657 : // weakZeroSrcSIVtest -
1658 : // From the paper, Practical Dependence Testing, Section 4.2.2
1659 : //
1660 : // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1661 : // where i is an induction variable, c1 and c2 are loop invariant,
1662 : // and a is a constant, we can solve it exactly using the
1663 : // Weak-Zero SIV test.
1664 : //
1665 : // Given
1666 : //
1667 : // c1 = c2 + a*i
1668 : //
1669 : // we get
1670 : //
1671 : // (c1 - c2)/a = i
1672 : //
1673 : // If i is not an integer, there's no dependence.
1674 : // If i < 0 or > UB, there's no dependence.
1675 : // If i = 0, the direction is >= and peeling the
1676 : // 1st iteration will break the dependence.
1677 : // If i = UB, the direction is <= and peeling the
1678 : // last iteration will break the dependence.
1679 : // Otherwise, the direction is *.
1680 : //
1681 : // Can prove independence. Failing that, we can sometimes refine
1682 : // the directions. Can sometimes show that first or last
1683 : // iteration carries all the dependences (so worth peeling).
1684 : //
1685 : // (see also weakZeroDstSIVtest)
1686 : //
1687 : // Return true if dependence disproved.
1688 10 : bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1689 : const SCEV *SrcConst,
1690 : const SCEV *DstConst,
1691 : const Loop *CurLoop, unsigned Level,
1692 : FullDependence &Result,
1693 : Constraint &NewConstraint) const {
1694 : // For the WeakSIV test, it's possible the loop isn't common to
1695 : // the Src and Dst loops. If it isn't, then there's no need to
1696 : // record a direction.
1697 : LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1698 : LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1699 : LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1700 : LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1701 : ++WeakZeroSIVapplications;
1702 : assert(0 < Level && Level <= MaxLevels && "Level out of range");
1703 10 : Level--;
1704 10 : Result.Consistent = false;
1705 10 : const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1706 20 : NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1707 : CurLoop);
1708 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1709 10 : if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1710 5 : if (Level < CommonLevels) {
1711 4 : Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1712 4 : Result.DV[Level].PeelFirst = true;
1713 : ++WeakZeroSIVsuccesses;
1714 : }
1715 5 : return false; // dependences caused by first iteration
1716 : }
1717 : const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1718 : if (!ConstCoeff)
1719 : return false;
1720 : const SCEV *AbsCoeff =
1721 5 : SE->isKnownNegative(ConstCoeff) ?
1722 0 : SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1723 : const SCEV *NewDelta =
1724 5 : SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1725 :
1726 : // check that Delta/SrcCoeff < iteration count
1727 : // really check NewDelta < count*AbsCoeff
1728 5 : if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1729 : LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1730 5 : const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1731 5 : if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1732 : ++WeakZeroSIVindependence;
1733 : ++WeakZeroSIVsuccesses;
1734 : return true;
1735 : }
1736 4 : if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1737 : // dependences caused by last iteration
1738 1 : if (Level < CommonLevels) {
1739 1 : Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1740 1 : Result.DV[Level].PeelLast = true;
1741 : ++WeakZeroSIVsuccesses;
1742 : }
1743 1 : return false;
1744 : }
1745 : }
1746 :
1747 : // check that Delta/SrcCoeff >= 0
1748 : // really check that NewDelta >= 0
1749 3 : if (SE->isKnownNegative(NewDelta)) {
1750 : // No dependence, newDelta < 0
1751 : ++WeakZeroSIVindependence;
1752 : ++WeakZeroSIVsuccesses;
1753 : return true;
1754 : }
1755 :
1756 : // if SrcCoeff doesn't divide Delta, then no dependence
1757 4 : if (isa<SCEVConstant>(Delta) &&
1758 2 : !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1759 : ++WeakZeroSIVindependence;
1760 : ++WeakZeroSIVsuccesses;
1761 1 : return true;
1762 : }
1763 : return false;
1764 : }
1765 :
1766 :
1767 : // weakZeroDstSIVtest -
1768 : // From the paper, Practical Dependence Testing, Section 4.2.2
1769 : //
1770 : // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1771 : // where i is an induction variable, c1 and c2 are loop invariant,
1772 : // and a is a constant, we can solve it exactly using the
1773 : // Weak-Zero SIV test.
1774 : //
1775 : // Given
1776 : //
1777 : // c1 + a*i = c2
1778 : //
1779 : // we get
1780 : //
1781 : // i = (c2 - c1)/a
1782 : //
1783 : // If i is not an integer, there's no dependence.
1784 : // If i < 0 or > UB, there's no dependence.
1785 : // If i = 0, the direction is <= and peeling the
1786 : // 1st iteration will break the dependence.
1787 : // If i = UB, the direction is >= and peeling the
1788 : // last iteration will break the dependence.
1789 : // Otherwise, the direction is *.
1790 : //
1791 : // Can prove independence. Failing that, we can sometimes refine
1792 : // the directions. Can sometimes show that first or last
1793 : // iteration carries all the dependences (so worth peeling).
1794 : //
1795 : // (see also weakZeroSrcSIVtest)
1796 : //
1797 : // Return true if dependence disproved.
1798 10 : bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1799 : const SCEV *SrcConst,
1800 : const SCEV *DstConst,
1801 : const Loop *CurLoop, unsigned Level,
1802 : FullDependence &Result,
1803 : Constraint &NewConstraint) const {
1804 : // For the WeakSIV test, it's possible the loop isn't common to the
1805 : // Src and Dst loops. If it isn't, then there's no need to record a direction.
1806 : LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1807 : LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1808 : LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1809 : LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1810 : ++WeakZeroSIVapplications;
1811 : assert(0 < Level && Level <= SrcLevels && "Level out of range");
1812 10 : Level--;
1813 10 : Result.Consistent = false;
1814 10 : const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1815 20 : NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1816 : CurLoop);
1817 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1818 10 : if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1819 3 : if (Level < CommonLevels) {
1820 3 : Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1821 3 : Result.DV[Level].PeelFirst = true;
1822 : ++WeakZeroSIVsuccesses;
1823 : }
1824 3 : return false; // dependences caused by first iteration
1825 : }
1826 : const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1827 : if (!ConstCoeff)
1828 : return false;
1829 : const SCEV *AbsCoeff =
1830 7 : SE->isKnownNegative(ConstCoeff) ?
1831 0 : SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1832 : const SCEV *NewDelta =
1833 7 : SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1834 :
1835 : // check that Delta/SrcCoeff < iteration count
1836 : // really check NewDelta < count*AbsCoeff
1837 7 : if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1838 : LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1839 7 : const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1840 7 : if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1841 : ++WeakZeroSIVindependence;
1842 : ++WeakZeroSIVsuccesses;
1843 : return true;
1844 : }
1845 6 : if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1846 : // dependences caused by last iteration
1847 1 : if (Level < CommonLevels) {
1848 1 : Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1849 1 : Result.DV[Level].PeelLast = true;
1850 : ++WeakZeroSIVsuccesses;
1851 : }
1852 1 : return false;
1853 : }
1854 : }
1855 :
1856 : // check that Delta/SrcCoeff >= 0
1857 : // really check that NewDelta >= 0
1858 5 : if (SE->isKnownNegative(NewDelta)) {
1859 : // No dependence, newDelta < 0
1860 : ++WeakZeroSIVindependence;
1861 : ++WeakZeroSIVsuccesses;
1862 : return true;
1863 : }
1864 :
1865 : // if SrcCoeff doesn't divide Delta, then no dependence
1866 8 : if (isa<SCEVConstant>(Delta) &&
1867 4 : !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1868 : ++WeakZeroSIVindependence;
1869 : ++WeakZeroSIVsuccesses;
1870 1 : return true;
1871 : }
1872 : return false;
1873 : }
1874 :
1875 :
1876 : // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1877 : // Things of the form [c1 + a*i] and [c2 + b*j],
1878 : // where i and j are induction variable, c1 and c2 are loop invariant,
1879 : // and a and b are constants.
1880 : // Returns true if any possible dependence is disproved.
1881 : // Marks the result as inconsistent.
1882 : // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1883 22 : bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1884 : const SCEV *SrcConst, const SCEV *DstConst,
1885 : const Loop *SrcLoop, const Loop *DstLoop,
1886 : FullDependence &Result) const {
1887 : LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1888 : LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1889 : LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1890 : LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1891 : LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1892 : ++ExactRDIVapplications;
1893 22 : Result.Consistent = false;
1894 22 : const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1895 : LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1896 : const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1897 : const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898 : const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1899 22 : if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1900 : return false;
1901 :
1902 : // find gcd
1903 : APInt G, X, Y;
1904 : APInt AM = ConstSrcCoeff->getAPInt();
1905 : APInt BM = ConstDstCoeff->getAPInt();
1906 13 : unsigned Bits = AM.getBitWidth();
1907 13 : if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1908 : // gcd doesn't divide Delta, no dependence
1909 : ++ExactRDIVindependence;
1910 : return true;
1911 : }
1912 :
1913 : LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1914 :
1915 : // since SCEV construction seems to normalize, LM = 0
1916 : APInt SrcUM(Bits, 1, true);
1917 : bool SrcUMvalid = false;
1918 : // SrcUM is perhaps unavailable, let's check
1919 12 : if (const SCEVConstant *UpperBound =
1920 12 : collectConstantUpperBound(SrcLoop, Delta->getType())) {
1921 12 : SrcUM = UpperBound->getAPInt();
1922 : LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1923 : SrcUMvalid = true;
1924 : }
1925 :
1926 : APInt DstUM(Bits, 1, true);
1927 : bool DstUMvalid = false;
1928 : // UM is perhaps unavailable, let's check
1929 12 : if (const SCEVConstant *UpperBound =
1930 12 : collectConstantUpperBound(DstLoop, Delta->getType())) {
1931 12 : DstUM = UpperBound->getAPInt();
1932 : LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1933 : DstUMvalid = true;
1934 : }
1935 :
1936 12 : APInt TU(APInt::getSignedMaxValue(Bits));
1937 12 : APInt TL(APInt::getSignedMinValue(Bits));
1938 :
1939 : // test(BM/G, LM-X) and test(-BM/G, X-UM)
1940 12 : APInt TMUL = BM.sdiv(G);
1941 12 : if (TMUL.sgt(0)) {
1942 24 : TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1943 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1944 8 : if (SrcUMvalid) {
1945 24 : TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1946 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1947 : }
1948 : }
1949 : else {
1950 12 : TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1951 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1952 4 : if (SrcUMvalid) {
1953 12 : TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1954 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1955 : }
1956 : }
1957 :
1958 : // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1959 12 : TMUL = AM.sdiv(G);
1960 12 : if (TMUL.sgt(0)) {
1961 24 : TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1962 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1963 8 : if (DstUMvalid) {
1964 24 : TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1965 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1966 : }
1967 : }
1968 : else {
1969 12 : TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1970 : LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1971 4 : if (DstUMvalid) {
1972 12 : TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1973 : LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1974 : }
1975 : }
1976 : if (TL.sgt(TU))
1977 : ++ExactRDIVindependence;
1978 : return TL.sgt(TU);
1979 : }
1980 :
1981 :
1982 : // symbolicRDIVtest -
1983 : // In Section 4.5 of the Practical Dependence Testing paper,the authors
1984 : // introduce a special case of Banerjee's Inequalities (also called the
1985 : // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1986 : // particularly cases with symbolics. Since it's only able to disprove
1987 : // dependence (not compute distances or directions), we'll use it as a
1988 : // fall back for the other tests.
1989 : //
1990 : // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1991 : // where i and j are induction variables and c1 and c2 are loop invariants,
1992 : // we can use the symbolic tests to disprove some dependences, serving as a
1993 : // backup for the RDIV test. Note that i and j can be the same variable,
1994 : // letting this test serve as a backup for the various SIV tests.
1995 : //
1996 : // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1997 : // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1998 : // loop bounds for the i and j loops, respectively. So, ...
1999 : //
2000 : // c1 + a1*i = c2 + a2*j
2001 : // a1*i - a2*j = c2 - c1
2002 : //
2003 : // To test for a dependence, we compute c2 - c1 and make sure it's in the
2004 : // range of the maximum and minimum possible values of a1*i - a2*j.
2005 : // Considering the signs of a1 and a2, we have 4 possible cases:
2006 : //
2007 : // 1) If a1 >= 0 and a2 >= 0, then
2008 : // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2009 : // -a2*N2 <= c2 - c1 <= a1*N1
2010 : //
2011 : // 2) If a1 >= 0 and a2 <= 0, then
2012 : // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2013 : // 0 <= c2 - c1 <= a1*N1 - a2*N2
2014 : //
2015 : // 3) If a1 <= 0 and a2 >= 0, then
2016 : // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2017 : // a1*N1 - a2*N2 <= c2 - c1 <= 0
2018 : //
2019 : // 4) If a1 <= 0 and a2 <= 0, then
2020 : // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2021 : // a1*N1 <= c2 - c1 <= -a2*N2
2022 : //
2023 : // return true if dependence disproved
2024 415 : bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2025 : const SCEV *C1, const SCEV *C2,
2026 : const Loop *Loop1,
2027 : const Loop *Loop2) const {
2028 : ++SymbolicRDIVapplications;
2029 : LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2030 : LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2031 : LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2032 : LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2033 : LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2034 : LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2035 415 : const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2036 415 : const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2037 : LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2038 : LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2039 415 : const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2040 415 : const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2041 : LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2042 : LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2043 415 : if (SE->isKnownNonNegative(A1)) {
2044 347 : if (SE->isKnownNonNegative(A2)) {
2045 : // A1 >= 0 && A2 >= 0
2046 336 : if (N1) {
2047 : // make sure that c2 - c1 <= a1*N1
2048 334 : const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2049 : LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2050 334 : if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2051 : ++SymbolicRDIVindependence;
2052 : return true;
2053 : }
2054 : }
2055 334 : if (N2) {
2056 : // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2057 332 : const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2058 : LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2059 332 : if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2060 : ++SymbolicRDIVindependence;
2061 2 : return true;
2062 : }
2063 : }
2064 : }
2065 11 : else if (SE->isKnownNonPositive(A2)) {
2066 : // a1 >= 0 && a2 <= 0
2067 11 : if (N1 && N2) {
2068 : // make sure that c2 - c1 <= a1*N1 - a2*N2
2069 11 : const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2070 11 : const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2071 11 : const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2072 : LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2073 11 : if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2074 : ++SymbolicRDIVindependence;
2075 : return true;
2076 : }
2077 : }
2078 : // make sure that 0 <= c2 - c1
2079 9 : if (SE->isKnownNegative(C2_C1)) {
2080 : ++SymbolicRDIVindependence;
2081 0 : return true;
2082 : }
2083 : }
2084 : }
2085 68 : else if (SE->isKnownNonPositive(A1)) {
2086 52 : if (SE->isKnownNonNegative(A2)) {
2087 : // a1 <= 0 && a2 >= 0
2088 2 : if (N1 && N2) {
2089 : // make sure that a1*N1 - a2*N2 <= c2 - c1
2090 2 : const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2091 2 : const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2092 2 : const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2093 : LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2094 2 : if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2095 : ++SymbolicRDIVindependence;
2096 : return true;
2097 : }
2098 : }
2099 : // make sure that c2 - c1 <= 0
2100 0 : if (SE->isKnownPositive(C2_C1)) {
2101 : ++SymbolicRDIVindependence;
2102 0 : return true;
2103 : }
2104 : }
2105 50 : else if (SE->isKnownNonPositive(A2)) {
2106 : // a1 <= 0 && a2 <= 0
2107 50 : if (N1) {
2108 : // make sure that a1*N1 <= c2 - c1
2109 50 : const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2110 : LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2111 50 : if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2112 : ++SymbolicRDIVindependence;
2113 : return true;
2114 : }
2115 : }
2116 48 : if (N2) {
2117 : // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2118 48 : const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2119 : LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2120 48 : if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2121 : ++SymbolicRDIVindependence;
2122 3 : return true;
2123 : }
2124 : }
2125 : }
2126 : }
2127 : return false;
2128 : }
2129 :
2130 :
2131 : // testSIV -
2132 : // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2133 : // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2134 : // a2 are constant, we attack it with an SIV test. While they can all be
2135 : // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2136 : // they apply; they're cheaper and sometimes more precise.
2137 : //
2138 : // Return true if dependence disproved.
2139 441 : bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2140 : FullDependence &Result, Constraint &NewConstraint,
2141 : const SCEV *&SplitIter) const {
2142 : LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2143 : LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2144 : const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2145 : const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2146 441 : if (SrcAddRec && DstAddRec) {
2147 421 : const SCEV *SrcConst = SrcAddRec->getStart();
2148 421 : const SCEV *DstConst = DstAddRec->getStart();
2149 421 : const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2150 421 : const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2151 421 : const Loop *CurLoop = SrcAddRec->getLoop();
2152 : assert(CurLoop == DstAddRec->getLoop() &&
2153 : "both loops in SIV should be same");
2154 421 : Level = mapSrcLoop(CurLoop);
2155 : bool disproven;
2156 421 : if (SrcCoeff == DstCoeff)
2157 374 : disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2158 : Level, Result, NewConstraint);
2159 47 : else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2160 11 : disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2161 : Level, Result, NewConstraint, SplitIter);
2162 : else
2163 36 : disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2164 : Level, Result, NewConstraint);
2165 405 : return disproven ||
2166 824 : gcdMIVtest(Src, Dst, Result) ||
2167 403 : symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2168 : }
2169 20 : if (SrcAddRec) {
2170 10 : const SCEV *SrcConst = SrcAddRec->getStart();
2171 10 : const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2172 : const SCEV *DstConst = Dst;
2173 10 : const Loop *CurLoop = SrcAddRec->getLoop();
2174 10 : Level = mapSrcLoop(CurLoop);
2175 10 : return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2176 17 : Level, Result, NewConstraint) ||
2177 7 : gcdMIVtest(Src, Dst, Result);
2178 : }
2179 10 : if (DstAddRec) {
2180 10 : const SCEV *DstConst = DstAddRec->getStart();
2181 10 : const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2182 : const SCEV *SrcConst = Src;
2183 10 : const Loop *CurLoop = DstAddRec->getLoop();
2184 10 : Level = mapDstLoop(CurLoop);
2185 10 : return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2186 17 : CurLoop, Level, Result, NewConstraint) ||
2187 7 : gcdMIVtest(Src, Dst, Result);
2188 : }
2189 0 : llvm_unreachable("SIV test expected at least one AddRec");
2190 : return false;
2191 : }
2192 :
2193 :
2194 : // testRDIV -
2195 : // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2196 : // where i and j are induction variables, c1 and c2 are loop invariant,
2197 : // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2198 : // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2199 : // It doesn't make sense to talk about distance or direction in this case,
2200 : // so there's no point in making special versions of the Strong SIV test or
2201 : // the Weak-crossing SIV test.
2202 : //
2203 : // With minor algebra, this test can also be used for things like
2204 : // [c1 + a1*i + a2*j][c2].
2205 : //
2206 : // Return true if dependence disproved.
2207 22 : bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2208 : FullDependence &Result) const {
2209 : // we have 3 possible situations here:
2210 : // 1) [a*i + b] and [c*j + d]
2211 : // 2) [a*i + c*j + b] and [d]
2212 : // 3) [b] and [a*i + c*j + d]
2213 : // We need to find what we've got and get organized
2214 :
2215 : const SCEV *SrcConst, *DstConst;
2216 : const SCEV *SrcCoeff, *DstCoeff;
2217 : const Loop *SrcLoop, *DstLoop;
2218 :
2219 : LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2220 : LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2221 : const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2222 : const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2223 22 : if (SrcAddRec && DstAddRec) {
2224 15 : SrcConst = SrcAddRec->getStart();
2225 15 : SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2226 15 : SrcLoop = SrcAddRec->getLoop();
2227 15 : DstConst = DstAddRec->getStart();
2228 15 : DstCoeff = DstAddRec->getStepRecurrence(*SE);
2229 15 : DstLoop = DstAddRec->getLoop();
2230 : }
2231 7 : else if (SrcAddRec) {
2232 : if (const SCEVAddRecExpr *tmpAddRec =
2233 7 : dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2234 7 : SrcConst = tmpAddRec->getStart();
2235 7 : SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2236 7 : SrcLoop = tmpAddRec->getLoop();
2237 : DstConst = Dst;
2238 7 : DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2239 7 : DstLoop = SrcAddRec->getLoop();
2240 : }
2241 : else
2242 0 : llvm_unreachable("RDIV reached by surprising SCEVs");
2243 : }
2244 0 : else if (DstAddRec) {
2245 : if (const SCEVAddRecExpr *tmpAddRec =
2246 0 : dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2247 0 : DstConst = tmpAddRec->getStart();
2248 0 : DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2249 0 : DstLoop = tmpAddRec->getLoop();
2250 : SrcConst = Src;
2251 0 : SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2252 0 : SrcLoop = DstAddRec->getLoop();
2253 : }
2254 : else
2255 0 : llvm_unreachable("RDIV reached by surprising SCEVs");
2256 : }
2257 : else
2258 0 : llvm_unreachable("RDIV expected at least one AddRec");
2259 22 : return exactRDIVtest(SrcCoeff, DstCoeff,
2260 : SrcConst, DstConst,
2261 : SrcLoop, DstLoop,
2262 12 : Result) ||
2263 34 : gcdMIVtest(Src, Dst, Result) ||
2264 12 : symbolicRDIVtest(SrcCoeff, DstCoeff,
2265 : SrcConst, DstConst,
2266 22 : SrcLoop, DstLoop);
2267 : }
2268 :
2269 :
2270 : // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2271 : // Return true if dependence disproved.
2272 : // Can sometimes refine direction vectors.
2273 244 : bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2274 : const SmallBitVector &Loops,
2275 : FullDependence &Result) const {
2276 : LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2277 : LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2278 244 : Result.Consistent = false;
2279 484 : return gcdMIVtest(Src, Dst, Result) ||
2280 240 : banerjeeMIVtest(Src, Dst, Loops, Result);
2281 : }
2282 :
2283 :
2284 : // Given a product, e.g., 10*X*Y, returns the first constant operand,
2285 : // in this case 10. If there is no constant part, returns NULL.
2286 : static
2287 : const SCEVConstant *getConstantPart(const SCEV *Expr) {
2288 : if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2289 : return Constant;
2290 : else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2291 125 : if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2292 : return Constant;
2293 : return nullptr;
2294 : }
2295 :
2296 :
2297 : //===----------------------------------------------------------------------===//
2298 : // gcdMIVtest -
2299 : // Tests an MIV subscript pair for dependence.
2300 : // Returns true if any possible dependence is disproved.
2301 : // Marks the result as inconsistent.
2302 : // Can sometimes disprove the equal direction for 1 or more loops,
2303 : // as discussed in Michael Wolfe's book,
2304 : // High Performance Compilers for Parallel Computing, page 235.
2305 : //
2306 : // We spend some effort (code!) to handle cases like
2307 : // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2308 : // but M and N are just loop-invariant variables.
2309 : // This should help us handle linearized subscripts;
2310 : // also makes this test a useful backup to the various SIV tests.
2311 : //
2312 : // It occurs to me that the presence of loop-invariant variables
2313 : // changes the nature of the test from "greatest common divisor"
2314 : // to "a common divisor".
2315 675 : bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2316 : FullDependence &Result) const {
2317 : LLVM_DEBUG(dbgs() << "starting gcd\n");
2318 : ++GCDapplications;
2319 675 : unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2320 675 : APInt RunningGCD = APInt::getNullValue(BitWidth);
2321 :
2322 : // Examine Src coefficients.
2323 : // Compute running GCD and record source constant.
2324 : // Because we're looking for the constant at the end of the chain,
2325 : // we can't quit the loop just because the GCD == 1.
2326 : const SCEV *Coefficients = Src;
2327 : while (const SCEVAddRecExpr *AddRec =
2328 : dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2329 958 : const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2330 : // If the coefficient is the product of a constant and other stuff,
2331 : // we can use the constant in the GCD computation.
2332 : const auto *Constant = getConstantPart(Coeff);
2333 958 : if (!Constant)
2334 0 : return false;
2335 : APInt ConstCoeff = Constant->getAPInt();
2336 2874 : RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2337 958 : Coefficients = AddRec->getStart();
2338 958 : }
2339 : const SCEV *SrcConst = Coefficients;
2340 :
2341 : // Examine Dst coefficients.
2342 : // Compute running GCD and record destination constant.
2343 : // Because we're looking for the constant at the end of the chain,
2344 : // we can't quit the loop just because the GCD == 1.
2345 : Coefficients = Dst;
2346 : while (const SCEVAddRecExpr *AddRec =
2347 : dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2348 951 : const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349 : // If the coefficient is the product of a constant and other stuff,
2350 : // we can use the constant in the GCD computation.
2351 : const auto *Constant = getConstantPart(Coeff);
2352 951 : if (!Constant)
2353 0 : return false;
2354 : APInt ConstCoeff = Constant->getAPInt();
2355 2853 : RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2356 951 : Coefficients = AddRec->getStart();
2357 951 : }
2358 : const SCEV *DstConst = Coefficients;
2359 :
2360 675 : APInt ExtraGCD = APInt::getNullValue(BitWidth);
2361 675 : const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2362 : LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2363 : const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2364 : if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2365 : // If Delta is a sum of products, we may be able to make further progress.
2366 46 : for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2367 31 : const SCEV *Operand = Sum->getOperand(Op);
2368 31 : if (isa<SCEVConstant>(Operand)) {
2369 : assert(!Constant && "Surprised to find multiple constants");
2370 : Constant = cast<SCEVConstant>(Operand);
2371 : }
2372 : else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2373 : // Search for constant operand to participate in GCD;
2374 : // If none found; return false.
2375 : const SCEVConstant *ConstOp = getConstantPart(Product);
2376 : if (!ConstOp)
2377 0 : return false;
2378 : APInt ConstOpValue = ConstOp->getAPInt();
2379 34 : ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2380 34 : ConstOpValue.abs());
2381 : }
2382 : else
2383 : return false;
2384 : }
2385 : }
2386 675 : if (!Constant)
2387 : return false;
2388 : APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2389 : LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2390 659 : if (ConstDelta == 0)
2391 : return false;
2392 256 : RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2393 : LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2394 128 : APInt Remainder = ConstDelta.srem(RunningGCD);
2395 128 : if (Remainder != 0) {
2396 : ++GCDindependence;
2397 : return true;
2398 : }
2399 :
2400 : // Try to disprove equal directions.
2401 : // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2402 : // the code above can't disprove the dependence because the GCD = 1.
2403 : // So we consider what happen if i = i' and what happens if j = j'.
2404 : // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2405 : // which is infeasible, so we can disallow the = direction for the i level.
2406 : // Setting j = j' doesn't help matters, so we end up with a direction vector
2407 : // of [<>, *]
2408 : //
2409 : // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2410 : // we need to remember that the constant part is 5 and the RunningGCD should
2411 : // be initialized to ExtraGCD = 30.
2412 : LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2413 :
2414 : bool Improved = false;
2415 : Coefficients = Src;
2416 : while (const SCEVAddRecExpr *AddRec =
2417 : dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2418 187 : Coefficients = AddRec->getStart();
2419 187 : const Loop *CurLoop = AddRec->getLoop();
2420 187 : RunningGCD = ExtraGCD;
2421 187 : const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2422 187 : const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2423 : const SCEV *Inner = Src;
2424 532 : while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2425 : AddRec = cast<SCEVAddRecExpr>(Inner);
2426 345 : const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2427 345 : if (CurLoop == AddRec->getLoop())
2428 : ; // SrcCoeff == Coeff
2429 : else {
2430 : // If the coefficient is the product of a constant and other stuff,
2431 : // we can use the constant in the GCD computation.
2432 : Constant = getConstantPart(Coeff);
2433 158 : if (!Constant)
2434 0 : return false;
2435 : APInt ConstCoeff = Constant->getAPInt();
2436 474 : RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2437 : }
2438 345 : Inner = AddRec->getStart();
2439 : }
2440 : Inner = Dst;
2441 511 : while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2442 : AddRec = cast<SCEVAddRecExpr>(Inner);
2443 324 : const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2444 324 : if (CurLoop == AddRec->getLoop())
2445 : DstCoeff = Coeff;
2446 : else {
2447 : // If the coefficient is the product of a constant and other stuff,
2448 : // we can use the constant in the GCD computation.
2449 : Constant = getConstantPart(Coeff);
2450 158 : if (!Constant)
2451 0 : return false;
2452 : APInt ConstCoeff = Constant->getAPInt();
2453 474 : RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2454 : }
2455 324 : Inner = AddRec->getStart();
2456 : }
2457 187 : Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2458 : // If the coefficient is the product of a constant and other stuff,
2459 : // we can use the constant in the GCD computation.
2460 : Constant = getConstantPart(Delta);
2461 186 : if (!Constant)
2462 : // The difference of the two coefficients might not be a product
2463 : // or constant, in which case we give up on this direction.
2464 1 : continue;
2465 : APInt ConstCoeff = Constant->getAPInt();
2466 558 : RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2467 : LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2468 186 : if (RunningGCD != 0) {
2469 316 : Remainder = ConstDelta.srem(RunningGCD);
2470 : LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2471 158 : if (Remainder != 0) {
2472 38 : unsigned Level = mapSrcLoop(CurLoop);
2473 76 : Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2474 : Improved = true;
2475 : }
2476 : }
2477 : }
2478 : if (Improved)
2479 : ++GCDsuccesses;
2480 : LLVM_DEBUG(dbgs() << "all done\n");
2481 122 : return false;
2482 : }
2483 :
2484 :
2485 : //===----------------------------------------------------------------------===//
2486 : // banerjeeMIVtest -
2487 : // Use Banerjee's Inequalities to test an MIV subscript pair.
2488 : // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2489 : // Generally follows the discussion in Section 2.5.2 of
2490 : //
2491 : // Optimizing Supercompilers for Supercomputers
2492 : // Michael Wolfe
2493 : //
2494 : // The inequalities given on page 25 are simplified in that loops are
2495 : // normalized so that the lower bound is always 0 and the stride is always 1.
2496 : // For example, Wolfe gives
2497 : //
2498 : // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2499 : //
2500 : // where A_k is the coefficient of the kth index in the source subscript,
2501 : // B_k is the coefficient of the kth index in the destination subscript,
2502 : // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2503 : // index, and N_k is the stride of the kth index. Since all loops are normalized
2504 : // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2505 : // equation to
2506 : //
2507 : // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2508 : // = (A^-_k - B_k)^- (U_k - 1) - B_k
2509 : //
2510 : // Similar simplifications are possible for the other equations.
2511 : //
2512 : // When we can't determine the number of iterations for a loop,
2513 : // we use NULL as an indicator for the worst case, infinity.
2514 : // When computing the upper bound, NULL denotes +inf;
2515 : // for the lower bound, NULL denotes -inf.
2516 : //
2517 : // Return true if dependence disproved.
2518 240 : bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2519 : const SmallBitVector &Loops,
2520 : FullDependence &Result) const {
2521 : LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2522 : ++BanerjeeApplications;
2523 : LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2524 : const SCEV *A0;
2525 240 : CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2526 : LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2527 : const SCEV *B0;
2528 240 : CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2529 240 : BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2530 240 : const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2531 : LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2532 :
2533 : // Compute bounds for all the * directions.
2534 : LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2535 799 : for (unsigned K = 1; K <= MaxLevels; ++K) {
2536 559 : Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2537 559 : Bound[K].Direction = Dependence::DVEntry::ALL;
2538 559 : Bound[K].DirSet = Dependence::DVEntry::NONE;
2539 559 : findBoundsALL(A, B, Bound, K);
2540 : #ifndef NDEBUG
2541 : LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2542 : if (Bound[K].Lower[Dependence::DVEntry::ALL])
2543 : LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2544 : else
2545 : LLVM_DEBUG(dbgs() << "-inf\t");
2546 : if (Bound[K].Upper[Dependence::DVEntry::ALL])
2547 : LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2548 : else
2549 : LLVM_DEBUG(dbgs() << "+inf\n");
2550 : #endif
2551 : }
2552 :
2553 : // Test the *, *, *, ... case.
2554 : bool Disproved = false;
2555 240 : if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2556 : // Explore the direction vector hierarchy.
2557 236 : unsigned DepthExpanded = 0;
2558 236 : unsigned NewDeps = exploreDirections(1, A, B, Bound,
2559 : Loops, DepthExpanded, Delta);
2560 236 : if (NewDeps > 0) {
2561 : bool Improved = false;
2562 776 : for (unsigned K = 1; K <= CommonLevels; ++K) {
2563 540 : if (Loops[K]) {
2564 515 : unsigned Old = Result.DV[K - 1].Direction;
2565 515 : Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2566 : Improved |= Old != Result.DV[K - 1].Direction;
2567 515 : if (!Result.DV[K - 1].Direction) {
2568 : Improved = false;
2569 : Disproved = true;
2570 : break;
2571 : }
2572 : }
2573 : }
2574 : if (Improved)
2575 : ++BanerjeeSuccesses;
2576 : }
2577 : else {
2578 : ++BanerjeeIndependence;
2579 : Disproved = true;
2580 : }
2581 : }
2582 : else {
2583 : ++BanerjeeIndependence;
2584 : Disproved = true;
2585 : }
2586 240 : delete [] Bound;
2587 240 : delete [] A;
2588 240 : delete [] B;
2589 240 : return Disproved;
2590 : }
2591 :
2592 :
2593 : // Hierarchically expands the direction vector
2594 : // search space, combining the directions of discovered dependences
2595 : // in the DirSet field of Bound. Returns the number of distinct
2596 : // dependences discovered. If the dependence is disproved,
2597 : // it will return 0.
2598 2102 : unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2599 : CoefficientInfo *B, BoundInfo *Bound,
2600 : const SmallBitVector &Loops,
2601 : unsigned &DepthExpanded,
2602 : const SCEV *Delta) const {
2603 2141 : if (Level > CommonLevels) {
2604 : // record result
2605 : LLVM_DEBUG(dbgs() << "\t[");
2606 4489 : for (unsigned K = 1; K <= CommonLevels; ++K) {
2607 3381 : if (Loops[K]) {
2608 3228 : Bound[K].DirSet |= Bound[K].Direction;
2609 : #ifndef NDEBUG
2610 : switch (Bound[K].Direction) {
2611 : case Dependence::DVEntry::LT:
2612 : LLVM_DEBUG(dbgs() << " <");
2613 : break;
2614 : case Dependence::DVEntry::EQ:
2615 : LLVM_DEBUG(dbgs() << " =");
2616 : break;
2617 : case Dependence::DVEntry::GT:
2618 : LLVM_DEBUG(dbgs() << " >");
2619 : break;
2620 : case Dependence::DVEntry::ALL:
2621 : LLVM_DEBUG(dbgs() << " *");
2622 : break;
2623 : default:
2624 : llvm_unreachable("unexpected Bound[K].Direction");
2625 : }
2626 : #endif
2627 : }
2628 : }
2629 : LLVM_DEBUG(dbgs() << " ]\n");
2630 : return 1;
2631 : }
2632 1033 : if (Loops[Level]) {
2633 994 : if (Level > DepthExpanded) {
2634 515 : DepthExpanded = Level;
2635 : // compute bounds for <, =, > at current level
2636 515 : findBoundsLT(A, B, Bound, Level);
2637 515 : findBoundsGT(A, B, Bound, Level);
2638 515 : findBoundsEQ(A, B, Bound, Level);
2639 : #ifndef NDEBUG
2640 : LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2641 : LLVM_DEBUG(dbgs() << "\t <\t");
2642 : if (Bound[Level].Lower[Dependence::DVEntry::LT])
2643 : LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2644 : << '\t');
2645 : else
2646 : LLVM_DEBUG(dbgs() << "-inf\t");
2647 : if (Bound[Level].Upper[Dependence::DVEntry::LT])
2648 : LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2649 : << '\n');
2650 : else
2651 : LLVM_DEBUG(dbgs() << "+inf\n");
2652 : LLVM_DEBUG(dbgs() << "\t =\t");
2653 : if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2654 : LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2655 : << '\t');
2656 : else
2657 : LLVM_DEBUG(dbgs() << "-inf\t");
2658 : if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2659 : LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2660 : << '\n');
2661 : else
2662 : LLVM_DEBUG(dbgs() << "+inf\n");
2663 : LLVM_DEBUG(dbgs() << "\t >\t");
2664 : if (Bound[Level].Lower[Dependence::DVEntry::GT])
2665 : LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2666 : << '\t');
2667 : else
2668 : LLVM_DEBUG(dbgs() << "-inf\t");
2669 : if (Bound[Level].Upper[Dependence::DVEntry::GT])
2670 : LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2671 : << '\n');
2672 : else
2673 : LLVM_DEBUG(dbgs() << "+inf\n");
2674 : #endif
2675 : }
2676 :
2677 : unsigned NewDeps = 0;
2678 :
2679 : // test bounds for <, *, *, ...
2680 994 : if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2681 541 : NewDeps += exploreDirections(Level + 1, A, B, Bound,
2682 : Loops, DepthExpanded, Delta);
2683 :
2684 : // Test bounds for =, *, *, ...
2685 994 : if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2686 778 : NewDeps += exploreDirections(Level + 1, A, B, Bound,
2687 : Loops, DepthExpanded, Delta);
2688 :
2689 : // test bounds for >, *, *, ...
2690 994 : if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2691 547 : NewDeps += exploreDirections(Level + 1, A, B, Bound,
2692 : Loops, DepthExpanded, Delta);
2693 :
2694 994 : Bound[Level].Direction = Dependence::DVEntry::ALL;
2695 994 : return NewDeps;
2696 : }
2697 : else
2698 39 : return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2699 : }
2700 :
2701 :
2702 : // Returns true iff the current bounds are plausible.
2703 3222 : bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2704 : BoundInfo *Bound, const SCEV *Delta) const {
2705 3222 : Bound[Level].Direction = DirKind;
2706 3222 : if (const SCEV *LowerBound = getLowerBound(Bound))
2707 3222 : if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2708 : return false;
2709 2660 : if (const SCEV *UpperBound = getUpperBound(Bound))
2710 2660 : if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2711 558 : return false;
2712 : return true;
2713 : }
2714 :
2715 :
2716 : // Computes the upper and lower bounds for level K
2717 : // using the * direction. Records them in Bound.
2718 : // Wolfe gives the equations
2719 : //
2720 : // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2721 : // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2722 : //
2723 : // Since we normalize loops, we can simplify these equations to
2724 : //
2725 : // LB^*_k = (A^-_k - B^+_k)U_k
2726 : // UB^*_k = (A^+_k - B^-_k)U_k
2727 : //
2728 : // We must be careful to handle the case where the upper bound is unknown.
2729 : // Note that the lower bound is always <= 0
2730 : // and the upper bound is always >= 0.
2731 559 : void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2732 : BoundInfo *Bound, unsigned K) const {
2733 559 : Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2734 559 : Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2735 559 : if (Bound[K].Iterations) {
2736 534 : Bound[K].Lower[Dependence::DVEntry::ALL] =
2737 534 : SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2738 : Bound[K].Iterations);
2739 534 : Bound[K].Upper[Dependence::DVEntry::ALL] =
2740 534 : SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2741 : Bound[K].Iterations);
2742 : }
2743 : else {
2744 : // If the difference is 0, we won't need to know the number of iterations.
2745 25 : if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2746 25 : Bound[K].Lower[Dependence::DVEntry::ALL] =
2747 25 : SE->getZero(A[K].Coeff->getType());
2748 25 : if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2749 25 : Bound[K].Upper[Dependence::DVEntry::ALL] =
2750 25 : SE->getZero(A[K].Coeff->getType());
2751 : }
2752 559 : }
2753 :
2754 :
2755 : // Computes the upper and lower bounds for level K
2756 : // using the = direction. Records them in Bound.
2757 : // Wolfe gives the equations
2758 : //
2759 : // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2760 : // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2761 : //
2762 : // Since we normalize loops, we can simplify these equations to
2763 : //
2764 : // LB^=_k = (A_k - B_k)^- U_k
2765 : // UB^=_k = (A_k - B_k)^+ U_k
2766 : //
2767 : // We must be careful to handle the case where the upper bound is unknown.
2768 : // Note that the lower bound is always <= 0
2769 : // and the upper bound is always >= 0.
2770 515 : void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2771 : BoundInfo *Bound, unsigned K) const {
2772 515 : Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2773 515 : Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2774 515 : if (Bound[K].Iterations) {
2775 515 : const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2776 515 : const SCEV *NegativePart = getNegativePart(Delta);
2777 515 : Bound[K].Lower[Dependence::DVEntry::EQ] =
2778 515 : SE->getMulExpr(NegativePart, Bound[K].Iterations);
2779 515 : const SCEV *PositivePart = getPositivePart(Delta);
2780 515 : Bound[K].Upper[Dependence::DVEntry::EQ] =
2781 515 : SE->getMulExpr(PositivePart, Bound[K].Iterations);
2782 : }
2783 : else {
2784 : // If the positive/negative part of the difference is 0,
2785 : // we won't need to know the number of iterations.
2786 0 : const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2787 0 : const SCEV *NegativePart = getNegativePart(Delta);
2788 0 : if (NegativePart->isZero())
2789 0 : Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2790 0 : const SCEV *PositivePart = getPositivePart(Delta);
2791 0 : if (PositivePart->isZero())
2792 0 : Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2793 : }
2794 515 : }
2795 :
2796 :
2797 : // Computes the upper and lower bounds for level K
2798 : // using the < direction. Records them in Bound.
2799 : // Wolfe gives the equations
2800 : //
2801 : // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2802 : // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2803 : //
2804 : // Since we normalize loops, we can simplify these equations to
2805 : //
2806 : // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2807 : // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2808 : //
2809 : // We must be careful to handle the case where the upper bound is unknown.
2810 515 : void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2811 : BoundInfo *Bound, unsigned K) const {
2812 515 : Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2813 515 : Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2814 515 : if (Bound[K].Iterations) {
2815 1030 : const SCEV *Iter_1 = SE->getMinusSCEV(
2816 : Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2817 : const SCEV *NegPart =
2818 515 : getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2819 515 : Bound[K].Lower[Dependence::DVEntry::LT] =
2820 515 : SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2821 : const SCEV *PosPart =
2822 515 : getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2823 515 : Bound[K].Upper[Dependence::DVEntry::LT] =
2824 515 : SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2825 : }
2826 : else {
2827 : // If the positive/negative part of the difference is 0,
2828 : // we won't need to know the number of iterations.
2829 : const SCEV *NegPart =
2830 0 : getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2831 0 : if (NegPart->isZero())
2832 0 : Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2833 : const SCEV *PosPart =
2834 0 : getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2835 0 : if (PosPart->isZero())
2836 0 : Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2837 : }
2838 515 : }
2839 :
2840 :
2841 : // Computes the upper and lower bounds for level K
2842 : // using the > direction. Records them in Bound.
2843 : // Wolfe gives the equations
2844 : //
2845 : // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2846 : // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2847 : //
2848 : // Since we normalize loops, we can simplify these equations to
2849 : //
2850 : // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2851 : // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2852 : //
2853 : // We must be careful to handle the case where the upper bound is unknown.
2854 515 : void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2855 : BoundInfo *Bound, unsigned K) const {
2856 515 : Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2857 515 : Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2858 515 : if (Bound[K].Iterations) {
2859 1030 : const SCEV *Iter_1 = SE->getMinusSCEV(
2860 : Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2861 : const SCEV *NegPart =
2862 515 : getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2863 515 : Bound[K].Lower[Dependence::DVEntry::GT] =
2864 515 : SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2865 : const SCEV *PosPart =
2866 515 : getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2867 515 : Bound[K].Upper[Dependence::DVEntry::GT] =
2868 515 : SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2869 : }
2870 : else {
2871 : // If the positive/negative part of the difference is 0,
2872 : // we won't need to know the number of iterations.
2873 0 : const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2874 0 : if (NegPart->isZero())
2875 0 : Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2876 0 : const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2877 0 : if (PosPart->isZero())
2878 0 : Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2879 : }
2880 515 : }
2881 :
2882 :
2883 : // X^+ = max(X, 0)
2884 2590 : const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2885 5180 : return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2886 : }
2887 :
2888 :
2889 : // X^- = min(X, 0)
2890 2590 : const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2891 5180 : return SE->getSMinExpr(X, SE->getZero(X->getType()));
2892 : }
2893 :
2894 :
2895 : // Walks through the subscript,
2896 : // collecting each coefficient, the associated loop bounds,
2897 : // and recording its positive and negative parts for later use.
2898 : DependenceInfo::CoefficientInfo *
2899 480 : DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2900 : const SCEV *&Constant) const {
2901 480 : const SCEV *Zero = SE->getZero(Subscript->getType());
2902 480 : CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2903 1598 : for (unsigned K = 1; K <= MaxLevels; ++K) {
2904 1118 : CI[K].Coeff = Zero;
2905 1118 : CI[K].PosPart = Zero;
2906 1118 : CI[K].NegPart = Zero;
2907 1118 : CI[K].Iterations = nullptr;
2908 : }
2909 : while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2910 1045 : const Loop *L = AddRec->getLoop();
2911 1045 : unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2912 1045 : CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2913 1045 : CI[K].PosPart = getPositivePart(CI[K].Coeff);
2914 1045 : CI[K].NegPart = getNegativePart(CI[K].Coeff);
2915 1045 : CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2916 1045 : Subscript = AddRec->getStart();
2917 1045 : }
2918 480 : Constant = Subscript;
2919 : #ifndef NDEBUG
2920 : LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2921 : for (unsigned K = 1; K <= MaxLevels; ++K) {
2922 : LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2923 : LLVM_DEBUG(dbgs() << "\tPos Part = ");
2924 : LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2925 : LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2926 : LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2927 : LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2928 : if (CI[K].Iterations)
2929 : LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2930 : else
2931 : LLVM_DEBUG(dbgs() << "+inf");
2932 : LLVM_DEBUG(dbgs() << '\n');
2933 : }
2934 : LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2935 : #endif
2936 480 : return CI;
2937 : }
2938 :
2939 :
2940 : // Looks through all the bounds info and
2941 : // computes the lower bound given the current direction settings
2942 : // at each level. If the lower bound for any level is -inf,
2943 : // the result is -inf.
2944 3222 : const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2945 3222 : const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2946 8974 : for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2947 5752 : if (Bound[K].Lower[Bound[K].Direction])
2948 5752 : Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2949 : else
2950 : Sum = nullptr;
2951 : }
2952 3222 : return Sum;
2953 : }
2954 :
2955 :
2956 : // Looks through all the bounds info and
2957 : // computes the upper bound given the current direction settings
2958 : // at each level. If the upper bound at any level is +inf,
2959 : // the result is +inf.
2960 2660 : const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2961 2660 : const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2962 7626 : for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2963 4966 : if (Bound[K].Upper[Bound[K].Direction])
2964 4966 : Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2965 : else
2966 : Sum = nullptr;
2967 : }
2968 2660 : return Sum;
2969 : }
2970 :
2971 :
2972 : //===----------------------------------------------------------------------===//
2973 : // Constraint manipulation for Delta test.
2974 :
2975 : // Given a linear SCEV,
2976 : // return the coefficient (the step)
2977 : // corresponding to the specified loop.
2978 : // If there isn't one, return 0.
2979 : // For example, given a*i + b*j + c*k, finding the coefficient
2980 : // corresponding to the j loop would yield b.
2981 0 : const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2982 : const Loop *TargetLoop) const {
2983 : const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2984 : if (!AddRec)
2985 0 : return SE->getZero(Expr->getType());
2986 0 : if (AddRec->getLoop() == TargetLoop)
2987 0 : return AddRec->getStepRecurrence(*SE);
2988 0 : return findCoefficient(AddRec->getStart(), TargetLoop);
2989 : }
2990 :
2991 :
2992 : // Given a linear SCEV,
2993 : // return the SCEV given by zeroing out the coefficient
2994 : // corresponding to the specified loop.
2995 : // For example, given a*i + b*j + c*k, zeroing the coefficient
2996 : // corresponding to the j loop would yield a*i + c*k.
2997 0 : const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2998 : const Loop *TargetLoop) const {
2999 : const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3000 : if (!AddRec)
3001 : return Expr; // ignore
3002 0 : if (AddRec->getLoop() == TargetLoop)
3003 0 : return AddRec->getStart();
3004 0 : return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3005 : AddRec->getStepRecurrence(*SE),
3006 : AddRec->getLoop(),
3007 0 : AddRec->getNoWrapFlags());
3008 : }
3009 :
3010 :
3011 : // Given a linear SCEV Expr,
3012 : // return the SCEV given by adding some Value to the
3013 : // coefficient corresponding to the specified TargetLoop.
3014 : // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3015 : // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3016 0 : const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3017 : const Loop *TargetLoop,
3018 : const SCEV *Value) const {
3019 : const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3020 : if (!AddRec) // create a new addRec
3021 0 : return SE->getAddRecExpr(Expr,
3022 : Value,
3023 : TargetLoop,
3024 0 : SCEV::FlagAnyWrap); // Worst case, with no info.
3025 0 : if (AddRec->getLoop() == TargetLoop) {
3026 0 : const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3027 0 : if (Sum->isZero())
3028 0 : return AddRec->getStart();
3029 0 : return SE->getAddRecExpr(AddRec->getStart(),
3030 : Sum,
3031 : AddRec->getLoop(),
3032 0 : AddRec->getNoWrapFlags());
3033 : }
3034 0 : if (SE->isLoopInvariant(AddRec, TargetLoop))
3035 0 : return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3036 0 : return SE->getAddRecExpr(
3037 : addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3038 : AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3039 0 : AddRec->getNoWrapFlags());
3040 : }
3041 :
3042 :
3043 : // Review the constraints, looking for opportunities
3044 : // to simplify a subscript pair (Src and Dst).
3045 : // Return true if some simplification occurs.
3046 : // If the simplification isn't exact (that is, if it is conservative
3047 : // in terms of dependence), set consistent to false.
3048 : // Corresponds to Figure 5 from the paper
3049 : //
3050 : // Practical Dependence Testing
3051 : // Goff, Kennedy, Tseng
3052 : // PLDI 1991
3053 0 : bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3054 : SmallBitVector &Loops,
3055 : SmallVectorImpl<Constraint> &Constraints,
3056 : bool &Consistent) {
3057 : bool Result = false;
3058 0 : for (unsigned LI : Loops.set_bits()) {
3059 : LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3060 : LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3061 0 : if (Constraints[LI].isDistance())
3062 0 : Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3063 0 : else if (Constraints[LI].isLine())
3064 0 : Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3065 0 : else if (Constraints[LI].isPoint())
3066 0 : Result |= propagatePoint(Src, Dst, Constraints[LI]);
3067 : }
3068 0 : return Result;
3069 : }
3070 :
3071 :
3072 : // Attempt to propagate a distance
3073 : // constraint into a subscript pair (Src and Dst).
3074 : // Return true if some simplification occurs.
3075 : // If the simplification isn't exact (that is, if it is conservative
3076 : // in terms of dependence), set consistent to false.
3077 0 : bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3078 : Constraint &CurConstraint,
3079 : bool &Consistent) {
3080 0 : const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3081 : LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3082 0 : const SCEV *A_K = findCoefficient(Src, CurLoop);
3083 0 : if (A_K->isZero())
3084 : return false;
3085 0 : const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3086 0 : Src = SE->getMinusSCEV(Src, DA_K);
3087 0 : Src = zeroCoefficient(Src, CurLoop);
3088 : LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3089 : LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3090 0 : Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3091 : LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3092 0 : if (!findCoefficient(Dst, CurLoop)->isZero())
3093 0 : Consistent = false;
3094 : return true;
3095 : }
3096 :
3097 :
3098 : // Attempt to propagate a line
3099 : // constraint into a subscript pair (Src and Dst).
3100 : // Return true if some simplification occurs.
3101 : // If the simplification isn't exact (that is, if it is conservative
3102 : // in terms of dependence), set consistent to false.
3103 0 : bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3104 : Constraint &CurConstraint,
3105 : bool &Consistent) {
3106 0 : const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3107 0 : const SCEV *A = CurConstraint.getA();
3108 0 : const SCEV *B = CurConstraint.getB();
3109 0 : const SCEV *C = CurConstraint.getC();
3110 : LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3111 : << "\n");
3112 : LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3113 : LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3114 0 : if (A->isZero()) {
3115 : const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3116 : const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3117 0 : if (!Bconst || !Cconst) return false;
3118 : APInt Beta = Bconst->getAPInt();
3119 : APInt Charlie = Cconst->getAPInt();
3120 0 : APInt CdivB = Charlie.sdiv(Beta);
3121 : assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3122 0 : const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3123 : // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3124 0 : Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3125 0 : Dst = zeroCoefficient(Dst, CurLoop);
3126 0 : if (!findCoefficient(Src, CurLoop)->isZero())
3127 0 : Consistent = false;
3128 : }
3129 0 : else if (B->isZero()) {
3130 : const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3131 : const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3132 0 : if (!Aconst || !Cconst) return false;
3133 : APInt Alpha = Aconst->getAPInt();
3134 : APInt Charlie = Cconst->getAPInt();
3135 0 : APInt CdivA = Charlie.sdiv(Alpha);
3136 : assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3137 0 : const SCEV *A_K = findCoefficient(Src, CurLoop);
3138 0 : Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3139 0 : Src = zeroCoefficient(Src, CurLoop);
3140 0 : if (!findCoefficient(Dst, CurLoop)->isZero())
3141 0 : Consistent = false;
3142 : }
3143 0 : else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3144 : const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3145 : const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3146 0 : if (!Aconst || !Cconst) return false;
3147 : APInt Alpha = Aconst->getAPInt();
3148 : APInt Charlie = Cconst->getAPInt();
3149 0 : APInt CdivA = Charlie.sdiv(Alpha);
3150 : assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3151 0 : const SCEV *A_K = findCoefficient(Src, CurLoop);
3152 0 : Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3153 0 : Src = zeroCoefficient(Src, CurLoop);
3154 0 : Dst = addToCoefficient(Dst, CurLoop, A_K);
3155 0 : if (!findCoefficient(Dst, CurLoop)->isZero())
3156 0 : Consistent = false;
3157 : }
3158 : else {
3159 : // paper is incorrect here, or perhaps just misleading
3160 0 : const SCEV *A_K = findCoefficient(Src, CurLoop);
3161 0 : Src = SE->getMulExpr(Src, A);
3162 0 : Dst = SE->getMulExpr(Dst, A);
3163 0 : Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3164 0 : Src = zeroCoefficient(Src, CurLoop);
3165 0 : Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3166 0 : if (!findCoefficient(Dst, CurLoop)->isZero())
3167 0 : Consistent = false;
3168 : }
3169 : LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3170 : LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3171 : return true;
3172 : }
3173 :
3174 :
3175 : // Attempt to propagate a point
3176 : // constraint into a subscript pair (Src and Dst).
3177 : // Return true if some simplification occurs.
3178 0 : bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3179 : Constraint &CurConstraint) {
3180 0 : const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181 0 : const SCEV *A_K = findCoefficient(Src, CurLoop);
3182 0 : const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3183 0 : const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3184 0 : const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3185 : LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3186 0 : Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3187 0 : Src = zeroCoefficient(Src, CurLoop);
3188 : LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189 : LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190 0 : Dst = zeroCoefficient(Dst, CurLoop);
3191 : LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192 0 : return true;
3193 : }
3194 :
3195 :
3196 : // Update direction vector entry based on the current constraint.
3197 1 : void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3198 : const Constraint &CurConstraint) const {
3199 : LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3200 : LLVM_DEBUG(CurConstraint.dump(dbgs()));
3201 1 : if (CurConstraint.isAny())
3202 : ; // use defaults
3203 1 : else if (CurConstraint.isDistance()) {
3204 : // this one is consistent, the others aren't
3205 0 : Level.Scalar = false;
3206 0 : Level.Distance = CurConstraint.getD();
3207 : unsigned NewDirection = Dependence::DVEntry::NONE;
3208 0 : if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3209 : NewDirection = Dependence::DVEntry::EQ;
3210 0 : if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3211 0 : NewDirection |= Dependence::DVEntry::LT;
3212 0 : if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3213 0 : NewDirection |= Dependence::DVEntry::GT;
3214 0 : Level.Direction &= NewDirection;
3215 : }
3216 1 : else if (CurConstraint.isLine()) {
3217 0 : Level.Scalar = false;
3218 0 : Level.Distance = nullptr;
3219 : // direction should be accurate
3220 : }
3221 1 : else if (CurConstraint.isPoint()) {
3222 1 : Level.Scalar = false;
3223 1 : Level.Distance = nullptr;
3224 : unsigned NewDirection = Dependence::DVEntry::NONE;
3225 1 : if (!isKnownPredicate(CmpInst::ICMP_NE,
3226 : CurConstraint.getY(),
3227 : CurConstraint.getX()))
3228 : // if X may be = Y
3229 : NewDirection |= Dependence::DVEntry::EQ;
3230 1 : if (!isKnownPredicate(CmpInst::ICMP_SLE,
3231 : CurConstraint.getY(),
3232 : CurConstraint.getX()))
3233 : // if Y may be > X
3234 0 : NewDirection |= Dependence::DVEntry::LT;
3235 1 : if (!isKnownPredicate(CmpInst::ICMP_SGE,
3236 : CurConstraint.getY(),
3237 : CurConstraint.getX()))
3238 : // if Y may be < X
3239 1 : NewDirection |= Dependence::DVEntry::GT;
3240 1 : Level.Direction &= NewDirection;
3241 : }
3242 : else
3243 0 : llvm_unreachable("constraint has unexpected kind");
3244 1 : }
3245 :
3246 : /// Check if we can delinearize the subscripts. If the SCEVs representing the
3247 : /// source and destination array references are recurrences on a nested loop,
3248 : /// this function flattens the nested recurrences into separate recurrences
3249 : /// for each loop level.
3250 881 : bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3251 : SmallVectorImpl<Subscript> &Pair) {
3252 : assert(isLoadOrStore(Src) && "instruction is not load or store");
3253 : assert(isLoadOrStore(Dst) && "instruction is not load or store");
3254 : Value *SrcPtr = getLoadStorePointerOperand(Src);
3255 : Value *DstPtr = getLoadStorePointerOperand(Dst);
3256 :
3257 881 : Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3258 881 : Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3259 :
3260 : // Below code mimics the code in Delinearization.cpp
3261 : const SCEV *SrcAccessFn =
3262 881 : SE->getSCEVAtScope(SrcPtr, SrcLoop);
3263 : const SCEV *DstAccessFn =
3264 881 : SE->getSCEVAtScope(DstPtr, DstLoop);
3265 :
3266 : const SCEVUnknown *SrcBase =
3267 881 : dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3268 : const SCEVUnknown *DstBase =
3269 881 : dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3270 :
3271 881 : if (!SrcBase || !DstBase || SrcBase != DstBase)
3272 : return false;
3273 :
3274 881 : const SCEV *ElementSize = SE->getElementSize(Src);
3275 881 : if (ElementSize != SE->getElementSize(Dst))
3276 : return false;
3277 :
3278 881 : const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3279 881 : const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3280 :
3281 : const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3282 : const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3283 881 : if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3284 : return false;
3285 :
3286 : // First step: collect parametric terms in both array references.
3287 : SmallVector<const SCEV *, 4> Terms;
3288 601 : SE->collectParametricTerms(SrcAR, Terms);
3289 601 : SE->collectParametricTerms(DstAR, Terms);
3290 :
3291 : // Second step: find subscript sizes.
3292 : SmallVector<const SCEV *, 4> Sizes;
3293 601 : SE->findArrayDimensions(Terms, Sizes, ElementSize);
3294 :
3295 : // Third step: compute the access functions for each subscript.
3296 : SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3297 601 : SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3298 601 : SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3299 :
3300 : // Fail when there is only a subscript: that's a linearized access function.
3301 1202 : if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3302 : SrcSubscripts.size() != DstSubscripts.size())
3303 : return false;
3304 :
3305 57 : int size = SrcSubscripts.size();
3306 :
3307 : // Statically check that the array bounds are in-range. The first subscript we
3308 : // don't have a size for and it cannot overflow into another subscript, so is
3309 : // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3310 : // and dst.
3311 : // FIXME: It may be better to record these sizes and add them as constraints
3312 : // to the dependency checks.
3313 102 : for (int i = 1; i < size; ++i) {
3314 156 : if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr))
3315 : return false;
3316 :
3317 207 : if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1]))
3318 : return false;
3319 :
3320 49 : if (!isKnownNonNegative(DstSubscripts[i], DstPtr))
3321 : return false;
3322 :
3323 94 : if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1]))
3324 : return false;
3325 : }
3326 :
3327 : LLVM_DEBUG({
3328 : dbgs() << "\nSrcSubscripts: ";
3329 : for (int i = 0; i < size; i++)
3330 : dbgs() << *SrcSubscripts[i];
3331 : dbgs() << "\nDstSubscripts: ";
3332 : for (int i = 0; i < size; i++)
3333 : dbgs() << *DstSubscripts[i];
3334 : });
3335 :
3336 : // The delinearization transforms a single-subscript MIV dependence test into
3337 : // a multi-subscript SIV dependence test that is easier to compute. So we
3338 : // resize Pair to contain as many pairs of subscripts as the delinearization
3339 : // has found, and then initialize the pairs following the delinearization.
3340 24 : Pair.resize(size);
3341 89 : for (int i = 0; i < size; ++i) {
3342 130 : Pair[i].Src = SrcSubscripts[i];
3343 65 : Pair[i].Dst = DstSubscripts[i];
3344 130 : unifySubscriptType(&Pair[i]);
3345 : }
3346 :
3347 : return true;
3348 : }
3349 :
3350 : //===----------------------------------------------------------------------===//
3351 :
3352 : #ifndef NDEBUG
3353 : // For debugging purposes, dump a small bit vector to dbgs().
3354 : static void dumpSmallBitVector(SmallBitVector &BV) {
3355 : dbgs() << "{";
3356 : for (unsigned VI : BV.set_bits()) {
3357 : dbgs() << VI;
3358 : if (BV.find_next(VI) >= 0)
3359 : dbgs() << ' ';
3360 : }
3361 : dbgs() << "}\n";
3362 : }
3363 : #endif
3364 :
3365 : // depends -
3366 : // Returns NULL if there is no dependence.
3367 : // Otherwise, return a Dependence with as many details as possible.
3368 : // Corresponds to Section 3.1 in the paper
3369 : //
3370 : // Practical Dependence Testing
3371 : // Goff, Kennedy, Tseng
3372 : // PLDI 1991
3373 : //
3374 : // Care is required to keep the routine below, getSplitIteration(),
3375 : // up to date with respect to this routine.
3376 : std::unique_ptr<Dependence>
3377 1798 : DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3378 : bool PossiblyLoopIndependent) {
3379 1798 : if (Src == Dst)
3380 : PossiblyLoopIndependent = false;
3381 :
3382 3596 : if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3383 2998 : (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3384 : // if both instructions don't reference memory, there's no dependence
3385 : return nullptr;
3386 :
3387 1798 : if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3388 : // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3389 : LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3390 : return make_unique<Dependence>(Src, Dst);
3391 : }
3392 :
3393 : assert(isLoadOrStore(Src) && "instruction is not load or store");
3394 : assert(isLoadOrStore(Dst) && "instruction is not load or store");
3395 : Value *SrcPtr = getLoadStorePointerOperand(Src);
3396 : Value *DstPtr = getLoadStorePointerOperand(Dst);
3397 :
3398 1798 : switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3399 1798 : MemoryLocation::get(Dst),
3400 1798 : MemoryLocation::get(Src))) {
3401 538 : case MayAlias:
3402 : case PartialAlias:
3403 : // cannot analyse objects if we don't understand their aliasing.
3404 : LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3405 : return make_unique<Dependence>(Src, Dst);
3406 : case NoAlias:
3407 : // If the objects noalias, they are distinct, accesses are independent.
3408 : LLVM_DEBUG(dbgs() << "no alias\n");
3409 : return nullptr;
3410 : case MustAlias:
3411 : break; // The underlying objects alias; test accesses for dependence.
3412 : }
3413 :
3414 : // establish loop nesting levels
3415 930 : establishNestingLevels(Src, Dst);
3416 : LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3417 : LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3418 :
3419 930 : FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3420 : ++TotalArrayPairs;
3421 :
3422 : unsigned Pairs = 1;
3423 1860 : SmallVector<Subscript, 2> Pair(Pairs);
3424 930 : const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3425 930 : const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3426 : LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3427 : LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3428 930 : Pair[0].Src = SrcSCEV;
3429 930 : Pair[0].Dst = DstSCEV;
3430 :
3431 930 : if (Delinearize) {
3432 878 : if (tryDelinearize(Src, Dst, Pair)) {
3433 : LLVM_DEBUG(dbgs() << " delinearized\n");
3434 24 : Pairs = Pair.size();
3435 : }
3436 : }
3437 :
3438 1901 : for (unsigned P = 0; P < Pairs; ++P) {
3439 1942 : Pair[P].Loops.resize(MaxLevels + 1);
3440 971 : Pair[P].GroupLoops.resize(MaxLevels + 1);
3441 971 : Pair[P].Group.resize(Pairs);
3442 971 : removeMatchingExtensions(&Pair[P]);
3443 971 : Pair[P].Classification =
3444 1942 : classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3445 971 : Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3446 971 : Pair[P].Loops);
3447 971 : Pair[P].GroupLoops = Pair[P].Loops;
3448 971 : Pair[P].Group.set(P);
3449 : LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3450 : LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3451 : LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3452 : LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3453 : LLVM_DEBUG(dbgs() << "\tloops = ");
3454 : LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3455 : }
3456 :
3457 1860 : SmallBitVector Separable(Pairs);
3458 1860 : SmallBitVector Coupled(Pairs);
3459 :
3460 : // Partition subscripts into separable and minimally-coupled groups
3461 : // Algorithm in paper is algorithmically better;
3462 : // this may be faster in practice. Check someday.
3463 : //
3464 : // Here's an example of how it works. Consider this code:
3465 : //
3466 : // for (i = ...) {
3467 : // for (j = ...) {
3468 : // for (k = ...) {
3469 : // for (l = ...) {
3470 : // for (m = ...) {
3471 : // A[i][j][k][m] = ...;
3472 : // ... = A[0][j][l][i + j];
3473 : // }
3474 : // }
3475 : // }
3476 : // }
3477 : // }
3478 : //
3479 : // There are 4 subscripts here:
3480 : // 0 [i] and [0]
3481 : // 1 [j] and [j]
3482 : // 2 [k] and [l]
3483 : // 3 [m] and [i + j]
3484 : //
3485 : // We've already classified each subscript pair as ZIV, SIV, etc.,
3486 : // and collected all the loops mentioned by pair P in Pair[P].Loops.
3487 : // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3488 : // and set Pair[P].Group = {P}.
3489 : //
3490 : // Src Dst Classification Loops GroupLoops Group
3491 : // 0 [i] [0] SIV {1} {1} {0}
3492 : // 1 [j] [j] SIV {2} {2} {1}
3493 : // 2 [k] [l] RDIV {3,4} {3,4} {2}
3494 : // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3495 : //
3496 : // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3497 : // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3498 : //
3499 : // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3500 : // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3501 : // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3502 : // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3503 : // to either Separable or Coupled).
3504 : //
3505 : // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3506 : // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3507 : // so Pair[3].Group = {0, 1, 3} and Done = false.
3508 : //
3509 : // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3510 : // Since Done remains true, we add 2 to the set of Separable pairs.
3511 : //
3512 : // Finally, we consider 3. There's nothing to compare it with,
3513 : // so Done remains true and we add it to the Coupled set.
3514 : // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3515 : //
3516 : // In the end, we've got 1 separable subscript and 1 coupled group.
3517 1901 : for (unsigned SI = 0; SI < Pairs; ++SI) {
3518 1942 : if (Pair[SI].Classification == Subscript::NonLinear) {
3519 : // ignore these, but collect loops for later
3520 : ++NonlinearSubscriptPairs;
3521 80 : collectCommonLoops(Pair[SI].Src,
3522 80 : LI->getLoopFor(Src->getParent()),
3523 80 : Pair[SI].Loops);
3524 80 : collectCommonLoops(Pair[SI].Dst,
3525 80 : LI->getLoopFor(Dst->getParent()),
3526 80 : Pair[SI].Loops);
3527 80 : Result.Consistent = false;
3528 891 : } else if (Pair[SI].Classification == Subscript::ZIV) {
3529 : // always separable
3530 187 : Separable.set(SI);
3531 : }
3532 : else {
3533 : // SIV, RDIV, or MIV, so check for coupled group
3534 : bool Done = true;
3535 762 : for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3536 116 : SmallBitVector Intersection = Pair[SI].GroupLoops;
3537 116 : Intersection &= Pair[SJ].GroupLoops;
3538 58 : if (Intersection.any()) {
3539 : // accumulate set of all the loops in group
3540 2 : Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3541 : // accumulate set of all subscripts in group
3542 2 : Pair[SJ].Group |= Pair[SI].Group;
3543 : Done = false;
3544 : }
3545 : }
3546 704 : if (Done) {
3547 703 : if (Pair[SI].Group.count() == 1) {
3548 702 : Separable.set(SI);
3549 : ++SeparableSubscriptPairs;
3550 : }
3551 : else {
3552 1 : Coupled.set(SI);
3553 : ++CoupledSubscriptPairs;
3554 : }
3555 : }
3556 : }
3557 : }
3558 :
3559 : LLVM_DEBUG(dbgs() << " Separable = ");
3560 : LLVM_DEBUG(dumpSmallBitVector(Separable));
3561 : LLVM_DEBUG(dbgs() << " Coupled = ");
3562 : LLVM_DEBUG(dumpSmallBitVector(Coupled));
3563 :
3564 : Constraint NewConstraint;
3565 930 : NewConstraint.setAny(SE);
3566 :
3567 : // test separable subscripts
3568 1761 : for (unsigned SI : Separable.set_bits()) {
3569 : LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3570 1778 : switch (Pair[SI].Classification) {
3571 187 : case Subscript::ZIV:
3572 : LLVM_DEBUG(dbgs() << ", ZIV\n");
3573 187 : if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3574 : return nullptr;
3575 : break;
3576 436 : case Subscript::SIV: {
3577 : LLVM_DEBUG(dbgs() << ", SIV\n");
3578 : unsigned Level;
3579 436 : const SCEV *SplitIter = nullptr;
3580 436 : if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3581 : SplitIter))
3582 30 : return nullptr;
3583 406 : break;
3584 : }
3585 22 : case Subscript::RDIV:
3586 : LLVM_DEBUG(dbgs() << ", RDIV\n");
3587 22 : if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3588 : return nullptr;
3589 : break;
3590 244 : case Subscript::MIV:
3591 : LLVM_DEBUG(dbgs() << ", MIV\n");
3592 244 : if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3593 : return nullptr;
3594 : break;
3595 0 : default:
3596 0 : llvm_unreachable("subscript has unexpected classification");
3597 : }
3598 : }
3599 :
3600 872 : if (Coupled.count()) {
3601 : // test coupled subscript groups
3602 : LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3603 : LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3604 1 : SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3605 4 : for (unsigned II = 0; II <= MaxLevels; ++II)
3606 6 : Constraints[II].setAny(SE);
3607 2 : for (unsigned SI : Coupled.set_bits()) {
3608 : LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3609 3 : SmallBitVector Group(Pair[SI].Group);
3610 2 : SmallBitVector Sivs(Pairs);
3611 2 : SmallBitVector Mivs(Pairs);
3612 2 : SmallBitVector ConstrainedLevels(MaxLevels + 1);
3613 : SmallVector<Subscript *, 4> PairsInGroup;
3614 3 : for (unsigned SJ : Group.set_bits()) {
3615 : LLVM_DEBUG(dbgs() << SJ << " ");
3616 4 : if (Pair[SJ].Classification == Subscript::SIV)
3617 2 : Sivs.set(SJ);
3618 : else
3619 0 : Mivs.set(SJ);
3620 2 : PairsInGroup.push_back(&Pair[SJ]);
3621 : }
3622 1 : unifySubscriptType(PairsInGroup);
3623 : LLVM_DEBUG(dbgs() << "}\n");
3624 2 : while (Sivs.any()) {
3625 : bool Changed = false;
3626 3 : for (unsigned SJ : Sivs.set_bits()) {
3627 : LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3628 : // SJ is an SIV subscript that's part of the current coupled group
3629 : unsigned Level;
3630 2 : const SCEV *SplitIter = nullptr;
3631 : LLVM_DEBUG(dbgs() << "SIV\n");
3632 4 : if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3633 : SplitIter))
3634 0 : return nullptr;
3635 2 : ConstrainedLevels.set(Level);
3636 4 : if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3637 4 : if (Constraints[Level].isEmpty()) {
3638 : ++DeltaIndependence;
3639 : return nullptr;
3640 : }
3641 : Changed = true;
3642 : }
3643 2 : Sivs.reset(SJ);
3644 : }
3645 1 : if (Changed) {
3646 : // propagate, possibly creating new SIVs and ZIVs
3647 : LLVM_DEBUG(dbgs() << " propagating\n");
3648 : LLVM_DEBUG(dbgs() << "\tMivs = ");
3649 : LLVM_DEBUG(dumpSmallBitVector(Mivs));
3650 1 : for (unsigned SJ : Mivs.set_bits()) {
3651 : // SJ is an MIV subscript that's part of the current coupled group
3652 : LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3653 0 : if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3654 : Constraints, Result.Consistent)) {
3655 : LLVM_DEBUG(dbgs() << "\t Changed\n");
3656 : ++DeltaPropagations;
3657 0 : Pair[SJ].Classification =
3658 0 : classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3659 0 : Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3660 0 : Pair[SJ].Loops);
3661 0 : switch (Pair[SJ].Classification) {
3662 0 : case Subscript::ZIV:
3663 : LLVM_DEBUG(dbgs() << "ZIV\n");
3664 0 : if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3665 : return nullptr;
3666 0 : Mivs.reset(SJ);
3667 0 : break;
3668 0 : case Subscript::SIV:
3669 0 : Sivs.set(SJ);
3670 0 : Mivs.reset(SJ);
3671 0 : break;
3672 : case Subscript::RDIV:
3673 : case Subscript::MIV:
3674 : break;
3675 0 : default:
3676 0 : llvm_unreachable("bad subscript classification");
3677 : }
3678 : }
3679 : }
3680 : }
3681 : }
3682 :
3683 : // test & propagate remaining RDIVs
3684 1 : for (unsigned SJ : Mivs.set_bits()) {
3685 0 : if (Pair[SJ].Classification == Subscript::RDIV) {
3686 : LLVM_DEBUG(dbgs() << "RDIV test\n");
3687 0 : if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3688 : return nullptr;
3689 : // I don't yet understand how to propagate RDIV results
3690 0 : Mivs.reset(SJ);
3691 : }
3692 : }
3693 :
3694 : // test remaining MIVs
3695 : // This code is temporary.
3696 : // Better to somehow test all remaining subscripts simultaneously.
3697 1 : for (unsigned SJ : Mivs.set_bits()) {
3698 0 : if (Pair[SJ].Classification == Subscript::MIV) {
3699 : LLVM_DEBUG(dbgs() << "MIV test\n");
3700 0 : if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3701 : return nullptr;
3702 : }
3703 : else
3704 0 : llvm_unreachable("expected only MIV subscripts at this point");
3705 : }
3706 :
3707 : // update Result.DV from constraint vector
3708 : LLVM_DEBUG(dbgs() << " updating\n");
3709 2 : for (unsigned SJ : ConstrainedLevels.set_bits()) {
3710 1 : if (SJ > CommonLevels)
3711 : break;
3712 3 : updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3713 1 : if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3714 : return nullptr;
3715 : }
3716 : }
3717 : }
3718 :
3719 : // Make sure the Scalar flags are set correctly.
3720 1744 : SmallBitVector CompleteLoops(MaxLevels + 1);
3721 1785 : for (unsigned SI = 0; SI < Pairs; ++SI)
3722 1826 : CompleteLoops |= Pair[SI].Loops;
3723 2187 : for (unsigned II = 1; II <= CommonLevels; ++II)
3724 1315 : if (CompleteLoops[II])
3725 2128 : Result.DV[II - 1].Scalar = false;
3726 :
3727 872 : if (PossiblyLoopIndependent) {
3728 : // Make sure the LoopIndependent flag is set correctly.
3729 : // All directions must include equal, otherwise no
3730 : // loop-independent dependence is possible.
3731 672 : for (unsigned II = 1; II <= CommonLevels; ++II) {
3732 462 : if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3733 84 : Result.LoopIndependent = false;
3734 84 : break;
3735 : }
3736 : }
3737 : }
3738 : else {
3739 : // On the other hand, if all directions are equal and there's no
3740 : // loop-independent dependence possible, then no dependence exists.
3741 : bool AllEqual = true;
3742 1132 : for (unsigned II = 1; II <= CommonLevels; ++II) {
3743 690 : if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3744 : AllEqual = false;
3745 : break;
3746 : }
3747 : }
3748 578 : if (AllEqual)
3749 : return nullptr;
3750 : }
3751 :
3752 430 : return make_unique<FullDependence>(std::move(Result));
3753 : }
3754 :
3755 :
3756 :
3757 : //===----------------------------------------------------------------------===//
3758 : // getSplitIteration -
3759 : // Rather than spend rarely-used space recording the splitting iteration
3760 : // during the Weak-Crossing SIV test, we re-compute it on demand.
3761 : // The re-computation is basically a repeat of the entire dependence test,
3762 : // though simplified since we know that the dependence exists.
3763 : // It's tedious, since we must go through all propagations, etc.
3764 : //
3765 : // Care is required to keep this code up to date with respect to the routine
3766 : // above, depends().
3767 : //
3768 : // Generally, the dependence analyzer will be used to build
3769 : // a dependence graph for a function (basically a map from instructions
3770 : // to dependences). Looking for cycles in the graph shows us loops
3771 : // that cannot be trivially vectorized/parallelized.
3772 : //
3773 : // We can try to improve the situation by examining all the dependences
3774 : // that make up the cycle, looking for ones we can break.
3775 : // Sometimes, peeling the first or last iteration of a loop will break
3776 : // dependences, and we've got flags for those possibilities.
3777 : // Sometimes, splitting a loop at some other iteration will do the trick,
3778 : // and we've got a flag for that case. Rather than waste the space to
3779 : // record the exact iteration (since we rarely know), we provide
3780 : // a method that calculates the iteration. It's a drag that it must work
3781 : // from scratch, but wonderful in that it's possible.
3782 : //
3783 : // Here's an example:
3784 : //
3785 : // for (i = 0; i < 10; i++)
3786 : // A[i] = ...
3787 : // ... = A[11 - i]
3788 : //
3789 : // There's a loop-carried flow dependence from the store to the load,
3790 : // found by the weak-crossing SIV test. The dependence will have a flag,
3791 : // indicating that the dependence can be broken by splitting the loop.
3792 : // Calling getSplitIteration will return 5.
3793 : // Splitting the loop breaks the dependence, like so:
3794 : //
3795 : // for (i = 0; i <= 5; i++)
3796 : // A[i] = ...
3797 : // ... = A[11 - i]
3798 : // for (i = 6; i < 10; i++)
3799 : // A[i] = ...
3800 : // ... = A[11 - i]
3801 : //
3802 : // breaks the dependence and allows us to vectorize/parallelize
3803 : // both loops.
3804 3 : const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3805 : unsigned SplitLevel) {
3806 : assert(Dep.isSplitable(SplitLevel) &&
3807 : "Dep should be splitable at SplitLevel");
3808 3 : Instruction *Src = Dep.getSrc();
3809 3 : Instruction *Dst = Dep.getDst();
3810 : assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3811 : assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3812 : assert(isLoadOrStore(Src));
3813 : assert(isLoadOrStore(Dst));
3814 : Value *SrcPtr = getLoadStorePointerOperand(Src);
3815 : Value *DstPtr = getLoadStorePointerOperand(Dst);
3816 : assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3817 : MemoryLocation::get(Dst),
3818 : MemoryLocation::get(Src)) == MustAlias);
3819 :
3820 : // establish loop nesting levels
3821 3 : establishNestingLevels(Src, Dst);
3822 :
3823 3 : FullDependence Result(Src, Dst, false, CommonLevels);
3824 :
3825 : unsigned Pairs = 1;
3826 6 : SmallVector<Subscript, 2> Pair(Pairs);
3827 3 : const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3828 3 : const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3829 3 : Pair[0].Src = SrcSCEV;
3830 3 : Pair[0].Dst = DstSCEV;
3831 :
3832 3 : if (Delinearize) {
3833 3 : if (tryDelinearize(Src, Dst, Pair)) {
3834 : LLVM_DEBUG(dbgs() << " delinearized\n");
3835 0 : Pairs = Pair.size();
3836 : }
3837 : }
3838 :
3839 6 : for (unsigned P = 0; P < Pairs; ++P) {
3840 6 : Pair[P].Loops.resize(MaxLevels + 1);
3841 3 : Pair[P].GroupLoops.resize(MaxLevels + 1);
3842 3 : Pair[P].Group.resize(Pairs);
3843 3 : removeMatchingExtensions(&Pair[P]);
3844 3 : Pair[P].Classification =
3845 6 : classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3846 3 : Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3847 3 : Pair[P].Loops);
3848 3 : Pair[P].GroupLoops = Pair[P].Loops;
3849 3 : Pair[P].Group.set(P);
3850 : }
3851 :
3852 6 : SmallBitVector Separable(Pairs);
3853 6 : SmallBitVector Coupled(Pairs);
3854 :
3855 : // partition subscripts into separable and minimally-coupled groups
3856 6 : for (unsigned SI = 0; SI < Pairs; ++SI) {
3857 6 : if (Pair[SI].Classification == Subscript::NonLinear) {
3858 : // ignore these, but collect loops for later
3859 0 : collectCommonLoops(Pair[SI].Src,
3860 0 : LI->getLoopFor(Src->getParent()),
3861 0 : Pair[SI].Loops);
3862 0 : collectCommonLoops(Pair[SI].Dst,
3863 0 : LI->getLoopFor(Dst->getParent()),
3864 0 : Pair[SI].Loops);
3865 0 : Result.Consistent = false;
3866 : }
3867 3 : else if (Pair[SI].Classification == Subscript::ZIV)
3868 0 : Separable.set(SI);
3869 : else {
3870 : // SIV, RDIV, or MIV, so check for coupled group
3871 : bool Done = true;
3872 3 : for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3873 0 : SmallBitVector Intersection = Pair[SI].GroupLoops;
3874 0 : Intersection &= Pair[SJ].GroupLoops;
3875 0 : if (Intersection.any()) {
3876 : // accumulate set of all the loops in group
3877 0 : Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3878 : // accumulate set of all subscripts in group
3879 0 : Pair[SJ].Group |= Pair[SI].Group;
3880 : Done = false;
3881 : }
3882 : }
3883 3 : if (Done) {
3884 3 : if (Pair[SI].Group.count() == 1)
3885 3 : Separable.set(SI);
3886 : else
3887 0 : Coupled.set(SI);
3888 : }
3889 : }
3890 : }
3891 :
3892 : Constraint NewConstraint;
3893 3 : NewConstraint.setAny(SE);
3894 :
3895 : // test separable subscripts
3896 3 : for (unsigned SI : Separable.set_bits()) {
3897 6 : switch (Pair[SI].Classification) {
3898 3 : case Subscript::SIV: {
3899 : unsigned Level;
3900 3 : const SCEV *SplitIter = nullptr;
3901 3 : (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3902 : Result, NewConstraint, SplitIter);
3903 3 : if (Level == SplitLevel) {
3904 : assert(SplitIter != nullptr);
3905 3 : return SplitIter;
3906 : }
3907 0 : break;
3908 : }
3909 : case Subscript::ZIV:
3910 : case Subscript::RDIV:
3911 : case Subscript::MIV:
3912 : break;
3913 0 : default:
3914 0 : llvm_unreachable("subscript has unexpected classification");
3915 : }
3916 : }
3917 :
3918 0 : if (Coupled.count()) {
3919 : // test coupled subscript groups
3920 0 : SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3921 0 : for (unsigned II = 0; II <= MaxLevels; ++II)
3922 0 : Constraints[II].setAny(SE);
3923 0 : for (unsigned SI : Coupled.set_bits()) {
3924 0 : SmallBitVector Group(Pair[SI].Group);
3925 0 : SmallBitVector Sivs(Pairs);
3926 0 : SmallBitVector Mivs(Pairs);
3927 0 : SmallBitVector ConstrainedLevels(MaxLevels + 1);
3928 0 : for (unsigned SJ : Group.set_bits()) {
3929 0 : if (Pair[SJ].Classification == Subscript::SIV)
3930 0 : Sivs.set(SJ);
3931 : else
3932 0 : Mivs.set(SJ);
3933 : }
3934 0 : while (Sivs.any()) {
3935 : bool Changed = false;
3936 0 : for (unsigned SJ : Sivs.set_bits()) {
3937 : // SJ is an SIV subscript that's part of the current coupled group
3938 : unsigned Level;
3939 0 : const SCEV *SplitIter = nullptr;
3940 0 : (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3941 : Result, NewConstraint, SplitIter);
3942 0 : if (Level == SplitLevel && SplitIter)
3943 0 : return SplitIter;
3944 0 : ConstrainedLevels.set(Level);
3945 0 : if (intersectConstraints(&Constraints[Level], &NewConstraint))
3946 : Changed = true;
3947 0 : Sivs.reset(SJ);
3948 : }
3949 0 : if (Changed) {
3950 : // propagate, possibly creating new SIVs and ZIVs
3951 0 : for (unsigned SJ : Mivs.set_bits()) {
3952 : // SJ is an MIV subscript that's part of the current coupled group
3953 0 : if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3954 0 : Pair[SJ].Loops, Constraints, Result.Consistent)) {
3955 0 : Pair[SJ].Classification =
3956 0 : classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3957 0 : Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3958 0 : Pair[SJ].Loops);
3959 0 : switch (Pair[SJ].Classification) {
3960 0 : case Subscript::ZIV:
3961 0 : Mivs.reset(SJ);
3962 0 : break;
3963 0 : case Subscript::SIV:
3964 0 : Sivs.set(SJ);
3965 0 : Mivs.reset(SJ);
3966 0 : break;
3967 : case Subscript::RDIV:
3968 : case Subscript::MIV:
3969 : break;
3970 0 : default:
3971 0 : llvm_unreachable("bad subscript classification");
3972 : }
3973 : }
3974 : }
3975 : }
3976 : }
3977 : }
3978 : }
3979 0 : llvm_unreachable("somehow reached end of routine");
3980 : return nullptr;
3981 : }
|