Line data Source code
1 : //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This simple pass provides alias and mod/ref information for global values
11 : // that do not have their address taken, and keeps track of whether functions
12 : // read or write memory (are "pure"). For this simple (but very common) case,
13 : // we can provide pretty accurate and useful information.
14 : //
15 : //===----------------------------------------------------------------------===//
16 :
17 : #include "llvm/Analysis/GlobalsModRef.h"
18 : #include "llvm/ADT/SCCIterator.h"
19 : #include "llvm/ADT/SmallPtrSet.h"
20 : #include "llvm/ADT/Statistic.h"
21 : #include "llvm/Analysis/MemoryBuiltins.h"
22 : #include "llvm/Analysis/TargetLibraryInfo.h"
23 : #include "llvm/Analysis/ValueTracking.h"
24 : #include "llvm/IR/DerivedTypes.h"
25 : #include "llvm/IR/InstIterator.h"
26 : #include "llvm/IR/Instructions.h"
27 : #include "llvm/IR/IntrinsicInst.h"
28 : #include "llvm/IR/Module.h"
29 : #include "llvm/Pass.h"
30 : #include "llvm/Support/CommandLine.h"
31 : using namespace llvm;
32 :
33 : #define DEBUG_TYPE "globalsmodref-aa"
34 :
35 : STATISTIC(NumNonAddrTakenGlobalVars,
36 : "Number of global vars without address taken");
37 : STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 : STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 : STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 : STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 :
42 : // An option to enable unsafe alias results from the GlobalsModRef analysis.
43 : // When enabled, GlobalsModRef will provide no-alias results which in extremely
44 : // rare cases may not be conservatively correct. In particular, in the face of
45 : // transforms which cause assymetry between how effective GetUnderlyingObject
46 : // is for two pointers, it may produce incorrect results.
47 : //
48 : // These unsafe results have been returned by GMR for many years without
49 : // causing significant issues in the wild and so we provide a mechanism to
50 : // re-enable them for users of LLVM that have a particular performance
51 : // sensitivity and no known issues. The option also makes it easy to evaluate
52 : // the performance impact of these results.
53 : static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
54 : "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55 :
56 : /// The mod/ref information collected for a particular function.
57 : ///
58 : /// We collect information about mod/ref behavior of a function here, both in
59 : /// general and as pertains to specific globals. We only have this detailed
60 : /// information when we know *something* useful about the behavior. If we
61 : /// saturate to fully general mod/ref, we remove the info for the function.
62 : class GlobalsAAResult::FunctionInfo {
63 : typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64 :
65 : /// Build a wrapper struct that has 8-byte alignment. All heap allocations
66 : /// should provide this much alignment at least, but this makes it clear we
67 : /// specifically rely on this amount of alignment.
68 539 : struct alignas(8) AlignedMap {
69 439 : AlignedMap() {}
70 100 : AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
71 : GlobalInfoMapType Map;
72 : };
73 :
74 : /// Pointer traits for our aligned map.
75 : struct AlignedMapPointerTraits {
76 : static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
77 : static inline AlignedMap *getFromVoidPointer(void *P) {
78 : return (AlignedMap *)P;
79 : }
80 : enum { NumLowBitsAvailable = 3 };
81 : static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
82 : "AlignedMap insufficiently aligned to have enough low bits.");
83 : };
84 :
85 : /// The bit that flags that this function may read any global. This is
86 : /// chosen to mix together with ModRefInfo bits.
87 : /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
88 : /// It overlaps with ModRefInfo::Must bit!
89 : /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90 : /// this remains correct, but the Must info is lost.
91 : enum { MayReadAnyGlobal = 4 };
92 :
93 : /// Checks to document the invariants of the bit packing here.
94 : static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
95 : 0,
96 : "ModRef and the MayReadAnyGlobal flag bits overlap.");
97 : static_assert(((MayReadAnyGlobal |
98 : static_cast<int>(ModRefInfo::MustModRef)) >>
99 : AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
100 : "Insufficient low bits to store our flag and ModRef info.");
101 :
102 : public:
103 33254 : FunctionInfo() : Info() {}
104 114344 : ~FunctionInfo() {
105 114883 : delete Info.getPointer();
106 57172 : }
107 : // Spell out the copy ond move constructors and assignment operators to get
108 : // deep copy semantics and correct move semantics in the face of the
109 : // pointer-int pair.
110 13119 : FunctionInfo(const FunctionInfo &Arg)
111 13119 : : Info(nullptr, Arg.Info.getInt()) {
112 26238 : if (const auto *ArgPtr = Arg.Info.getPointer())
113 100 : Info.setPointer(new AlignedMap(*ArgPtr));
114 13119 : }
115 : FunctionInfo(FunctionInfo &&Arg)
116 10799 : : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
117 : Arg.Info.setPointerAndInt(nullptr, 0);
118 : }
119 0 : FunctionInfo &operator=(const FunctionInfo &RHS) {
120 0 : delete Info.getPointer();
121 0 : Info.setPointerAndInt(nullptr, RHS.Info.getInt());
122 0 : if (const auto *RHSPtr = RHS.Info.getPointer())
123 0 : Info.setPointer(new AlignedMap(*RHSPtr));
124 0 : return *this;
125 : }
126 : FunctionInfo &operator=(FunctionInfo &&RHS) {
127 : delete Info.getPointer();
128 : Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
129 : RHS.Info.setPointerAndInt(nullptr, 0);
130 : return *this;
131 : }
132 :
133 : /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
134 : /// the corresponding ModRefInfo. It must align in functionality with
135 : /// clearMust().
136 0 : ModRefInfo globalClearMayReadAnyGlobal(int I) const {
137 6432369 : return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
138 6432369 : static_cast<int>(ModRefInfo::NoModRef));
139 : }
140 :
141 : /// Returns the \c ModRefInfo info for this function.
142 : ModRefInfo getModRefInfo() const {
143 6415916 : return globalClearMayReadAnyGlobal(Info.getInt());
144 : }
145 :
146 : /// Adds new \c ModRefInfo for this function to its state.
147 : void addModRefInfo(ModRefInfo NewMRI) {
148 50236 : Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
149 : }
150 :
151 : /// Returns whether this function may read any global variable, and we don't
152 : /// know which global.
153 3334 : bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
154 :
155 : /// Sets this function as potentially reading from any global.
156 573 : void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
157 :
158 : /// Returns the \c ModRefInfo info for this function w.r.t. a particular
159 : /// global, which may be more precise than the general information above.
160 540 : ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
161 : ModRefInfo GlobalMRI =
162 540 : mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
163 540 : if (AlignedMap *P = Info.getPointer()) {
164 0 : auto I = P->Map.find(&GV);
165 0 : if (I != P->Map.end())
166 0 : GlobalMRI = unionModRef(GlobalMRI, I->second);
167 : }
168 540 : return GlobalMRI;
169 : }
170 :
171 : /// Add mod/ref info from another function into ours, saturating towards
172 : /// ModRef.
173 3334 : void addFunctionInfo(const FunctionInfo &FI) {
174 : addModRefInfo(FI.getModRefInfo());
175 :
176 3334 : if (FI.mayReadAnyGlobal())
177 : setMayReadAnyGlobal();
178 :
179 6668 : if (AlignedMap *P = FI.Info.getPointer())
180 72 : for (const auto &G : P->Map)
181 24 : addModRefInfoForGlobal(*G.first, G.second);
182 3334 : }
183 :
184 769 : void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
185 769 : AlignedMap *P = Info.getPointer();
186 769 : if (!P) {
187 439 : P = new AlignedMap();
188 : Info.setPointer(P);
189 : }
190 769 : auto &GlobalMRI = P->Map[&GV];
191 1538 : GlobalMRI = unionModRef(GlobalMRI, NewMRI);
192 769 : }
193 :
194 : /// Clear a global's ModRef info. Should be used when a global is being
195 : /// deleted.
196 : void eraseModRefInfoForGlobal(const GlobalValue &GV) {
197 2727616 : if (AlignedMap *P = Info.getPointer())
198 219 : P->Map.erase(&GV);
199 : }
200 :
201 : private:
202 : /// All of the information is encoded into a single pointer, with a three bit
203 : /// integer in the low three bits. The high bit provides a flag for when this
204 : /// function may read any global. The low two bits are the ModRefInfo. And
205 : /// the pointer, when non-null, points to a map from GlobalValue to
206 : /// ModRefInfo specific to that GlobalValue.
207 : PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
208 : };
209 :
210 7958 : void GlobalsAAResult::DeletionCallbackHandle::deleted() {
211 7958 : Value *V = getValPtr();
212 : if (auto *F = dyn_cast<Function>(V))
213 7905 : GAR->FunctionInfos.erase(F);
214 :
215 : if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
216 7958 : if (GAR->NonAddressTakenGlobals.erase(GV)) {
217 : // This global might be an indirect global. If so, remove it and
218 : // remove any AllocRelatedValues for it.
219 3422 : if (GAR->IndirectGlobals.erase(GV)) {
220 : // Remove any entries in AllocsForIndirectGlobals for this global.
221 0 : for (auto I = GAR->AllocsForIndirectGlobals.begin(),
222 0 : E = GAR->AllocsForIndirectGlobals.end();
223 0 : I != E; ++I)
224 0 : if (I->second == GV)
225 : GAR->AllocsForIndirectGlobals.erase(I);
226 : }
227 :
228 : // Scan the function info we have collected and remove this global
229 : // from all of them.
230 1367230 : for (auto &FIPair : GAR->FunctionInfos)
231 : FIPair.second.eraseModRefInfoForGlobal(*GV);
232 : }
233 : }
234 :
235 : // If this is an allocation related to an indirect global, remove it.
236 7958 : GAR->AllocsForIndirectGlobals.erase(V);
237 :
238 : // And clear out the handle.
239 : setValPtr(nullptr);
240 7958 : GAR->Handles.erase(I);
241 : // This object is now destroyed!
242 7958 : }
243 :
244 10125529 : FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
245 : FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
246 :
247 10125529 : if (FunctionInfo *FI = getFunctionInfo(F)) {
248 3192377 : if (!isModOrRefSet(FI->getModRefInfo()))
249 : Min = FMRB_DoesNotAccessMemory;
250 3190142 : else if (!isModSet(FI->getModRefInfo()))
251 : Min = FMRB_OnlyReadsMemory;
252 : }
253 :
254 10125530 : return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
255 : }
256 :
257 : FunctionModRefBehavior
258 10218269 : GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
259 : FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
260 :
261 10218269 : if (!CS.hasOperandBundles())
262 : if (const Function *F = CS.getCalledFunction())
263 10075511 : if (FunctionInfo *FI = getFunctionInfo(F)) {
264 3185960 : if (!isModOrRefSet(FI->getModRefInfo()))
265 : Min = FMRB_DoesNotAccessMemory;
266 3185954 : else if (!isModSet(FI->getModRefInfo()))
267 : Min = FMRB_OnlyReadsMemory;
268 : }
269 :
270 10218269 : return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
271 : }
272 :
273 : /// Returns the function info for the function, or null if we don't have
274 : /// anything useful to say about it.
275 : GlobalsAAResult::FunctionInfo *
276 20217077 : GlobalsAAResult::getFunctionInfo(const Function *F) {
277 20217077 : auto I = FunctionInfos.find(F);
278 20217077 : if (I != FunctionInfos.end())
279 6382211 : return &I->second;
280 : return nullptr;
281 : }
282 :
283 : /// AnalyzeGlobals - Scan through the users of all of the internal
284 : /// GlobalValue's in the program. If none of them have their "address taken"
285 : /// (really, their address passed to something nontrivial), record this fact,
286 : /// and record the functions that they are used directly in.
287 3061 : void GlobalsAAResult::AnalyzeGlobals(Module &M) {
288 : SmallPtrSet<Function *, 32> TrackedFunctions;
289 75946 : for (Function &F : M)
290 : if (F.hasLocalLinkage())
291 5101 : if (!AnalyzeUsesOfPointer(&F)) {
292 : // Remember that we are tracking this global.
293 3833 : NonAddressTakenGlobals.insert(&F);
294 3833 : TrackedFunctions.insert(&F);
295 3833 : Handles.emplace_front(*this, &F);
296 3833 : Handles.front().I = Handles.begin();
297 : ++NumNonAddrTakenFunctions;
298 : }
299 :
300 : SmallPtrSet<Function *, 16> Readers, Writers;
301 125360 : for (GlobalVariable &GV : M.globals())
302 : if (GV.hasLocalLinkage()) {
303 162883 : if (!AnalyzeUsesOfPointer(&GV, &Readers,
304 : GV.isConstant() ? nullptr : &Writers)) {
305 : // Remember that we are tracking this global, and the mod/ref fns
306 428 : NonAddressTakenGlobals.insert(&GV);
307 428 : Handles.emplace_front(*this, &GV);
308 428 : Handles.front().I = Handles.begin();
309 :
310 961 : for (Function *Reader : Readers) {
311 533 : if (TrackedFunctions.insert(Reader).second) {
312 363 : Handles.emplace_front(*this, Reader);
313 363 : Handles.front().I = Handles.begin();
314 : }
315 533 : FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
316 : }
317 :
318 428 : if (!GV.isConstant()) // No need to keep track of writers to constants
319 304 : for (Function *Writer : Writers) {
320 212 : if (TrackedFunctions.insert(Writer).second) {
321 25 : Handles.emplace_front(*this, Writer);
322 25 : Handles.front().I = Handles.begin();
323 : }
324 212 : FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
325 : }
326 : ++NumNonAddrTakenGlobalVars;
327 :
328 : // If this global holds a pointer type, see if it is an indirect global.
329 856 : if (GV.getValueType()->isPointerTy() &&
330 41 : AnalyzeIndirectGlobalMemory(&GV))
331 : ++NumIndirectGlobalVars;
332 : }
333 113251 : Readers.clear();
334 113251 : Writers.clear();
335 : }
336 3061 : }
337 :
338 : /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
339 : /// If this is used by anything complex (i.e., the address escapes), return
340 : /// true. Also, while we are at it, keep track of those functions that read and
341 : /// write to the value.
342 : ///
343 : /// If OkayStoreDest is non-null, stores into this global are allowed.
344 252604 : bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
345 : SmallPtrSetImpl<Function *> *Readers,
346 : SmallPtrSetImpl<Function *> *Writers,
347 : GlobalValue *OkayStoreDest) {
348 505208 : if (!V->getType()->isPointerTy())
349 : return true;
350 :
351 376663 : for (Use &U : V->uses()) {
352 350740 : User *I = U.getUser();
353 : if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
354 33063 : if (Readers)
355 33055 : Readers->insert(LI->getParent()->getParent());
356 : } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
357 62285 : if (V == SI->getOperand(1)) {
358 60342 : if (Writers)
359 60342 : Writers->insert(SI->getParent()->getParent());
360 1943 : } else if (SI->getOperand(1) != OkayStoreDest) {
361 : return true; // Storing the pointer
362 : }
363 182046 : } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
364 108528 : if (AnalyzeUsesOfPointer(I, Readers, Writers))
365 : return true;
366 73518 : } else if (Operator::getOpcode(I) == Instruction::BitCast) {
367 25690 : if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
368 : return true;
369 121174 : } else if (auto CS = CallSite(I)) {
370 : // Make sure that this is just the function being called, not that it is
371 : // passing into the function.
372 44964 : if (CS.isDataOperand(&U)) {
373 : // Detect calls to free.
374 36086 : if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
375 0 : if (Writers)
376 0 : Writers->insert(CS->getParent()->getParent());
377 : } else {
378 112175 : return true; // Argument of an unknown call.
379 : }
380 : }
381 : } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
382 7 : if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
383 : return true; // Allow comparison against null.
384 : } else if (Constant *C = dyn_cast<Constant>(I)) {
385 : // Ignore constants which don't have any live uses.
386 73352 : if (isa<GlobalValue>(C) || C->isConstantUsed())
387 73336 : return true;
388 : } else {
389 : return true;
390 : }
391 : }
392 :
393 : return false;
394 : }
395 :
396 : /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
397 : /// which holds a pointer type. See if the global always points to non-aliased
398 : /// heap memory: that is, all initializers of the globals are allocations, and
399 : /// those allocations have no use other than initialization of the global.
400 : /// Further, all loads out of GV must directly use the memory, not store the
401 : /// pointer somewhere. If this is true, we consider the memory pointed to by
402 : /// GV to be owned by GV and can disambiguate other pointers from it.
403 41 : bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
404 : // Keep track of values related to the allocation of the memory, f.e. the
405 : // value produced by the malloc call and any casts.
406 : std::vector<Value *> AllocRelatedValues;
407 :
408 : // If the initializer is a valid pointer, bail.
409 82 : if (Constant *C = GV->getInitializer())
410 41 : if (!C->isNullValue())
411 : return false;
412 :
413 : // Walk the user list of the global. If we find anything other than a direct
414 : // load or store, bail out.
415 47 : for (User *U : GV->users()) {
416 : if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
417 : // The pointer loaded from the global can only be used in simple ways:
418 : // we allow addressing of it and loading storing to it. We do *not* allow
419 : // storing the loaded pointer somewhere else or passing to a function.
420 32 : if (AnalyzeUsesOfPointer(LI))
421 : return false; // Loaded pointer escapes.
422 : // TODO: Could try some IP mod/ref of the loaded pointer.
423 : } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
424 : // Storing the global itself.
425 5 : if (SI->getOperand(0) == GV)
426 2 : return false;
427 :
428 : // If storing the null pointer, ignore it.
429 5 : if (isa<ConstantPointerNull>(SI->getOperand(0)))
430 1 : continue;
431 :
432 : // Check the value being stored.
433 8 : Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
434 4 : GV->getParent()->getDataLayout());
435 :
436 4 : if (!isAllocLikeFn(Ptr, &TLI))
437 : return false; // Too hard to analyze.
438 :
439 : // Analyze all uses of the allocation. If any of them are used in a
440 : // non-simple way (e.g. stored to another global) bail out.
441 2 : if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
442 : GV))
443 : return false; // Loaded pointer escapes.
444 :
445 : // Remember that this allocation is related to the indirect global.
446 2 : AllocRelatedValues.push_back(Ptr);
447 : } else {
448 : // Something complex, bail out.
449 : return false;
450 : }
451 : }
452 :
453 : // Okay, this is an indirect global. Remember all of the allocations for
454 : // this global in AllocsForIndirectGlobals.
455 5 : while (!AllocRelatedValues.empty()) {
456 2 : AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
457 4 : Handles.emplace_front(*this, AllocRelatedValues.back());
458 2 : Handles.front().I = Handles.begin();
459 : AllocRelatedValues.pop_back();
460 : }
461 3 : IndirectGlobals.insert(GV);
462 3 : Handles.emplace_front(*this, GV);
463 3 : Handles.front().I = Handles.begin();
464 3 : return true;
465 : }
466 :
467 3061 : void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
468 : // We do a bottom-up SCC traversal of the call graph. In other words, we
469 : // visit all callees before callers (leaf-first).
470 : unsigned SCCID = 0;
471 79946 : for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
472 : const std::vector<CallGraphNode *> &SCC = *I;
473 : assert(!SCC.empty() && "SCC with no functions?");
474 :
475 153912 : for (auto *CGN : SCC)
476 77027 : if (Function *F = CGN->getFunction())
477 72885 : FunctionToSCCMap[F] = SCCID;
478 76885 : ++SCCID;
479 : }
480 3061 : }
481 :
482 : /// AnalyzeCallGraph - At this point, we know the functions where globals are
483 : /// immediately stored to and read from. Propagate this information up the call
484 : /// graph to all callers and compute the mod/ref info for all memory for each
485 : /// function.
486 3061 : void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
487 : // We do a bottom-up SCC traversal of the call graph. In other words, we
488 : // visit all callees before callers (leaf-first).
489 79946 : for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
490 : const std::vector<CallGraphNode *> &SCC = *I;
491 : assert(!SCC.empty() && "SCC with no functions?");
492 :
493 76885 : Function *F = SCC[0]->getFunction();
494 :
495 76885 : if (!F || !F->isDefinitionExact()) {
496 : // Calls externally or not exact - can't say anything useful. Remove any
497 : // existing function records (may have been created when scanning
498 : // globals).
499 87508 : for (auto *Node : SCC)
500 43797 : FunctionInfos.erase(Node->getFunction());
501 63766 : continue;
502 : }
503 :
504 33174 : FunctionInfo &FI = FunctionInfos[F];
505 33174 : Handles.emplace_front(*this, F);
506 33174 : Handles.front().I = Handles.begin();
507 : bool KnowNothing = false;
508 :
509 : // Collect the mod/ref properties due to called functions. We only compute
510 : // one mod-ref set.
511 99522 : for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
512 33174 : if (!F) {
513 : KnowNothing = true;
514 : break;
515 : }
516 :
517 33174 : if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) {
518 : // Try to get mod/ref behaviour from function attributes.
519 15378 : if (F->doesNotAccessMemory()) {
520 : // Can't do better than that!
521 13589 : } else if (F->onlyReadsMemory()) {
522 : FI.addModRefInfo(ModRefInfo::Ref);
523 1166 : if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
524 : // This function might call back into the module and read a global -
525 : // consider every global as possibly being read by this function.
526 : FI.setMayReadAnyGlobal();
527 : } else {
528 : FI.addModRefInfo(ModRefInfo::ModRef);
529 : // Can't say anything useful unless it's an intrinsic - they don't
530 : // read or write global variables of the kind considered here.
531 26336 : KnowNothing = !F->isIntrinsic();
532 : }
533 15378 : continue;
534 : }
535 :
536 35592 : for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
537 29710 : CI != E && !KnowNothing; ++CI)
538 11914 : if (Function *Callee = CI->second->getFunction()) {
539 11458 : if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
540 : // Propagate function effect up.
541 3334 : FI.addFunctionInfo(*CalleeFI);
542 : } else {
543 : // Can't say anything about it. However, if it is inside our SCC,
544 : // then nothing needs to be done.
545 8124 : CallGraphNode *CalleeNode = CG[Callee];
546 8124 : if (!is_contained(SCC, CalleeNode))
547 : KnowNothing = true;
548 : }
549 : } else {
550 : KnowNothing = true;
551 : }
552 : }
553 :
554 : // If we can't say anything useful about this SCC, remove all SCC functions
555 : // from the FunctionInfos map.
556 33174 : if (KnowNothing) {
557 40166 : for (auto *Node : SCC)
558 20111 : FunctionInfos.erase(Node->getFunction());
559 : continue;
560 : }
561 :
562 : // Scan the function bodies for explicit loads or stores.
563 24178 : for (auto *Node : SCC) {
564 13119 : if (isModAndRefSet(FI.getModRefInfo()))
565 : break; // The mod/ref lattice saturates here.
566 :
567 : // Don't prove any properties based on the implementation of an optnone
568 : // function. Function attributes were already used as a best approximation
569 : // above.
570 11059 : if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone))
571 : continue;
572 :
573 44791 : for (Instruction &I : instructions(Node->getFunction())) {
574 37579 : if (isModAndRefSet(FI.getModRefInfo()))
575 : break; // The mod/ref lattice saturates here.
576 :
577 : // We handle calls specially because the graph-relevant aspects are
578 : // handled above.
579 33734 : if (auto CS = CallSite(&I)) {
580 6522 : if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
581 : // FIXME: It is completely unclear why this is necessary and not
582 : // handled by the above graph code.
583 : FI.addModRefInfo(ModRefInfo::ModRef);
584 : } else if (Function *Callee = CS.getCalledFunction()) {
585 : // The callgraph doesn't include intrinsic calls.
586 6522 : if (Callee->isIntrinsic()) {
587 : if (isa<DbgInfoIntrinsic>(I))
588 : // Don't let dbg intrinsics affect alias info.
589 : continue;
590 :
591 : FunctionModRefBehavior Behaviour =
592 : AAResultBase::getModRefBehavior(Callee);
593 : FI.addModRefInfo(createModRefInfo(Behaviour));
594 : }
595 : }
596 2754 : continue;
597 : }
598 :
599 : // All non-call instructions we use the primary predicates for whether
600 : // thay read or write memory.
601 27212 : if (I.mayReadFromMemory())
602 : FI.addModRefInfo(ModRefInfo::Ref);
603 27212 : if (I.mayWriteToMemory())
604 : FI.addModRefInfo(ModRefInfo::Mod);
605 : }
606 : }
607 :
608 : if (!isModSet(FI.getModRefInfo()))
609 : ++NumReadMemFunctions;
610 : if (!isModOrRefSet(FI.getModRefInfo()))
611 : ++NumNoMemFunctions;
612 :
613 : // Finally, now that we know the full effect on this SCC, clone the
614 : // information to each function in the SCC.
615 : // FI is a reference into FunctionInfos, so copy it now so that it doesn't
616 : // get invalidated if DenseMap decides to re-hash.
617 26238 : FunctionInfo CachedFI = FI;
618 26238 : for (unsigned i = 1, e = SCC.size(); i != e; ++i)
619 0 : FunctionInfos[SCC[i]->getFunction()] = CachedFI;
620 : }
621 3061 : }
622 :
623 : // GV is a non-escaping global. V is a pointer address that has been loaded from.
624 : // If we can prove that V must escape, we can conclude that a load from V cannot
625 : // alias GV.
626 0 : static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
627 : const Value *V,
628 : int &Depth,
629 : const DataLayout &DL) {
630 : SmallPtrSet<const Value *, 8> Visited;
631 : SmallVector<const Value *, 8> Inputs;
632 0 : Visited.insert(V);
633 0 : Inputs.push_back(V);
634 : do {
635 : const Value *Input = Inputs.pop_back_val();
636 :
637 0 : if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
638 : isa<InvokeInst>(Input))
639 : // Arguments to functions or returns from functions are inherently
640 : // escaping, so we can immediately classify those as not aliasing any
641 : // non-addr-taken globals.
642 : //
643 : // (Transitive) loads from a global are also safe - if this aliased
644 : // another global, its address would escape, so no alias.
645 0 : continue;
646 :
647 : // Recurse through a limited number of selects, loads and PHIs. This is an
648 : // arbitrary depth of 4, lower numbers could be used to fix compile time
649 : // issues if needed, but this is generally expected to be only be important
650 : // for small depths.
651 0 : if (++Depth > 4)
652 0 : return false;
653 :
654 0 : if (auto *LI = dyn_cast<LoadInst>(Input)) {
655 0 : Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
656 0 : continue;
657 : }
658 : if (auto *SI = dyn_cast<SelectInst>(Input)) {
659 0 : const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
660 0 : const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
661 0 : if (Visited.insert(LHS).second)
662 0 : Inputs.push_back(LHS);
663 0 : if (Visited.insert(RHS).second)
664 0 : Inputs.push_back(RHS);
665 0 : continue;
666 : }
667 : if (auto *PN = dyn_cast<PHINode>(Input)) {
668 0 : for (const Value *Op : PN->incoming_values()) {
669 0 : Op = GetUnderlyingObject(Op, DL);
670 0 : if (Visited.insert(Op).second)
671 0 : Inputs.push_back(Op);
672 : }
673 0 : continue;
674 : }
675 :
676 : return false;
677 0 : } while (!Inputs.empty());
678 :
679 : // All inputs were known to be no-alias.
680 : return true;
681 : }
682 :
683 : // There are particular cases where we can conclude no-alias between
684 : // a non-addr-taken global and some other underlying object. Specifically,
685 : // a non-addr-taken global is known to not be escaped from any function. It is
686 : // also incorrect for a transformation to introduce an escape of a global in
687 : // a way that is observable when it was not there previously. One function
688 : // being transformed to introduce an escape which could possibly be observed
689 : // (via loading from a global or the return value for example) within another
690 : // function is never safe. If the observation is made through non-atomic
691 : // operations on different threads, it is a data-race and UB. If the
692 : // observation is well defined, by being observed the transformation would have
693 : // changed program behavior by introducing the observed escape, making it an
694 : // invalid transform.
695 : //
696 : // This property does require that transformations which *temporarily* escape
697 : // a global that was not previously escaped, prior to restoring it, cannot rely
698 : // on the results of GMR::alias. This seems a reasonable restriction, although
699 : // currently there is no way to enforce it. There is also no realistic
700 : // optimization pass that would make this mistake. The closest example is
701 : // a transformation pass which does reg2mem of SSA values but stores them into
702 : // global variables temporarily before restoring the global variable's value.
703 : // This could be useful to expose "benign" races for example. However, it seems
704 : // reasonable to require that a pass which introduces escapes of global
705 : // variables in this way to either not trust AA results while the escape is
706 : // active, or to be forced to operate as a module pass that cannot co-exist
707 : // with an alias analysis such as GMR.
708 3899 : bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
709 : const Value *V) {
710 : // In order to know that the underlying object cannot alias the
711 : // non-addr-taken global, we must know that it would have to be an escape.
712 : // Thus if the underlying object is a function argument, a load from
713 : // a global, or the return of a function, it cannot alias. We can also
714 : // recurse through PHI nodes and select nodes provided all of their inputs
715 : // resolve to one of these known-escaping roots.
716 : SmallPtrSet<const Value *, 8> Visited;
717 : SmallVector<const Value *, 8> Inputs;
718 3899 : Visited.insert(V);
719 3899 : Inputs.push_back(V);
720 3899 : int Depth = 0;
721 : do {
722 : const Value *Input = Inputs.pop_back_val();
723 :
724 : if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
725 : // If one input is the very global we're querying against, then we can't
726 : // conclude no-alias.
727 0 : if (InputGV == GV)
728 : return false;
729 :
730 : // Distinct GlobalVariables never alias, unless overriden or zero-sized.
731 : // FIXME: The condition can be refined, but be conservative for now.
732 : auto *GVar = dyn_cast<GlobalVariable>(GV);
733 : auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
734 0 : if (GVar && InputGVar &&
735 0 : !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
736 0 : !GVar->isInterposable() && !InputGVar->isInterposable()) {
737 0 : Type *GVType = GVar->getInitializer()->getType();
738 0 : Type *InputGVType = InputGVar->getInitializer()->getType();
739 0 : if (GVType->isSized() && InputGVType->isSized() &&
740 0 : (DL.getTypeAllocSize(GVType) > 0) &&
741 0 : (DL.getTypeAllocSize(InputGVType) > 0))
742 : continue;
743 : }
744 :
745 : // Conservatively return false, even though we could be smarter
746 : // (e.g. look through GlobalAliases).
747 0 : return false;
748 : }
749 :
750 4194 : if (isa<Argument>(Input) || isa<CallInst>(Input) ||
751 : isa<InvokeInst>(Input)) {
752 : // Arguments to functions or returns from functions are inherently
753 : // escaping, so we can immediately classify those as not aliasing any
754 : // non-addr-taken globals.
755 : continue;
756 : }
757 :
758 : // Recurse through a limited number of selects, loads and PHIs. This is an
759 : // arbitrary depth of 4, lower numbers could be used to fix compile time
760 : // issues if needed, but this is generally expected to be only be important
761 : // for small depths.
762 2862 : if (++Depth > 4)
763 : return false;
764 :
765 : if (auto *LI = dyn_cast<LoadInst>(Input)) {
766 : // A pointer loaded from a global would have been captured, and we know
767 : // that the global is non-escaping, so no alias.
768 2056 : const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
769 2056 : if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
770 : // The load does not alias with GV.
771 : continue;
772 : // Otherwise, a load could come from anywhere, so bail.
773 : return false;
774 : }
775 : if (auto *SI = dyn_cast<SelectInst>(Input)) {
776 102 : const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
777 102 : const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
778 102 : if (Visited.insert(LHS).second)
779 102 : Inputs.push_back(LHS);
780 102 : if (Visited.insert(RHS).second)
781 0 : Inputs.push_back(RHS);
782 : continue;
783 : }
784 : if (auto *PN = dyn_cast<PHINode>(Input)) {
785 591 : for (const Value *Op : PN->incoming_values()) {
786 398 : Op = GetUnderlyingObject(Op, DL);
787 398 : if (Visited.insert(Op).second)
788 280 : Inputs.push_back(Op);
789 : }
790 193 : continue;
791 : }
792 :
793 : // FIXME: It would be good to handle other obvious no-alias cases here, but
794 : // it isn't clear how to do so reasonbly without building a small version
795 : // of BasicAA into this code. We could recurse into AAResultBase::alias
796 : // here but that seems likely to go poorly as we're inside the
797 : // implementation of such a query. Until then, just conservatievly retun
798 : // false.
799 : return false;
800 2467 : } while (!Inputs.empty());
801 :
802 : // If all the inputs to V were definitively no-alias, then V is no-alias.
803 : return true;
804 : }
805 :
806 : /// alias - If one of the pointers is to a global that we are tracking, and the
807 : /// other is some random pointer, we know there cannot be an alias, because the
808 : /// address of the global isn't taken.
809 6273319 : AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
810 : const MemoryLocation &LocB) {
811 : // Get the base object these pointers point to.
812 6273319 : const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
813 6273319 : const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
814 :
815 : // If either of the underlying values is a global, they may be non-addr-taken
816 : // globals, which we can answer queries about.
817 : const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
818 : const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
819 6273319 : if (GV1 || GV2) {
820 : // If the global's address is taken, pretend we don't know it's a pointer to
821 : // the global.
822 5355884 : if (GV1 && !NonAddressTakenGlobals.count(GV1))
823 : GV1 = nullptr;
824 5355884 : if (GV2 && !NonAddressTakenGlobals.count(GV2))
825 : GV2 = nullptr;
826 :
827 : // If the two pointers are derived from two different non-addr-taken
828 : // globals we know these can't alias.
829 5355884 : if (GV1 && GV2 && GV1 != GV2)
830 : return NoAlias;
831 :
832 : // If one is and the other isn't, it isn't strictly safe but we can fake
833 : // this result if necessary for performance. This does not appear to be
834 : // a common problem in practice.
835 5355884 : if (EnableUnsafeGlobalsModRefAliasResults)
836 4 : if ((GV1 || GV2) && GV1 != GV2)
837 : return NoAlias;
838 :
839 : // Check for a special case where a non-escaping global can be used to
840 : // conclude no-alias.
841 5355880 : if ((GV1 || GV2) && GV1 != GV2) {
842 3899 : const GlobalValue *GV = GV1 ? GV1 : GV2;
843 3899 : const Value *UV = GV1 ? UV2 : UV1;
844 3899 : if (isNonEscapingGlobalNoAlias(GV, UV))
845 : return NoAlias;
846 : }
847 :
848 : // Otherwise if they are both derived from the same addr-taken global, we
849 : // can't know the two accesses don't overlap.
850 : }
851 :
852 : // These pointers may be based on the memory owned by an indirect global. If
853 : // so, we may be able to handle this. First check to see if the base pointer
854 : // is a direct load from an indirect global.
855 : GV1 = GV2 = nullptr;
856 : if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
857 : if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
858 925 : if (IndirectGlobals.count(GV))
859 : GV1 = GV;
860 : if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
861 : if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
862 2256 : if (IndirectGlobals.count(GV))
863 : GV2 = GV;
864 :
865 : // These pointers may also be from an allocation for the indirect global. If
866 : // so, also handle them.
867 6271143 : if (!GV1)
868 12542286 : GV1 = AllocsForIndirectGlobals.lookup(UV1);
869 6271143 : if (!GV2)
870 12542282 : GV2 = AllocsForIndirectGlobals.lookup(UV2);
871 :
872 : // Now that we know whether the two pointers are related to indirect globals,
873 : // use this to disambiguate the pointers. If the pointers are based on
874 : // different indirect globals they cannot alias.
875 6271143 : if (GV1 && GV2 && GV1 != GV2)
876 : return NoAlias;
877 :
878 : // If one is based on an indirect global and the other isn't, it isn't
879 : // strictly safe but we can fake this result if necessary for performance.
880 : // This does not appear to be a common problem in practice.
881 6271143 : if (EnableUnsafeGlobalsModRefAliasResults)
882 2 : if ((GV1 || GV2) && GV1 != GV2)
883 2 : return NoAlias;
884 :
885 : return AAResultBase::alias(LocA, LocB);
886 : }
887 :
888 540 : ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
889 : const GlobalValue *GV) {
890 540 : if (CS.doesNotAccessMemory())
891 : return ModRefInfo::NoModRef;
892 : ModRefInfo ConservativeResult =
893 530 : CS.onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
894 :
895 : // Iterate through all the arguments to the called function. If any argument
896 : // is based on GV, return the conservative result.
897 742 : for (auto &A : CS.args()) {
898 : SmallVector<Value*, 4> Objects;
899 624 : GetUnderlyingObjects(A, Objects, DL);
900 :
901 : // All objects must be identified.
902 1187 : if (!all_of(Objects, isIdentifiedObject) &&
903 : // Try ::alias to see if all objects are known not to alias GV.
904 : !all_of(Objects, [&](Value *V) {
905 : return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias;
906 : }))
907 : return ConservativeResult;
908 :
909 212 : if (is_contained(Objects, GV))
910 : return ConservativeResult;
911 : }
912 :
913 : // We identified all objects in the argument list, and none of them were GV.
914 : return ModRefInfo::NoModRef;
915 : }
916 :
917 5366504 : ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
918 : const MemoryLocation &Loc) {
919 : ModRefInfo Known = ModRefInfo::ModRef;
920 :
921 : // If we are asking for mod/ref info of a direct call with a pointer to a
922 : // global we are tracking, return information if we have it.
923 : if (const GlobalValue *GV =
924 5366504 : dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
925 : if (GV->hasLocalLinkage())
926 : if (const Function *F = CS.getCalledFunction())
927 3887407 : if (NonAddressTakenGlobals.count(GV))
928 4578 : if (const FunctionInfo *FI = getFunctionInfo(F))
929 540 : Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
930 : getModRefInfoForArgument(CS, GV));
931 :
932 5366504 : if (!isModOrRefSet(Known))
933 : return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
934 5366393 : return intersectModRef(Known, AAResultBase::getModRefInfo(CS, Loc));
935 : }
936 :
937 3061 : GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
938 3061 : const TargetLibraryInfo &TLI)
939 6122 : : AAResultBase(), DL(DL), TLI(TLI) {}
940 :
941 210 : GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
942 420 : : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
943 : NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
944 : IndirectGlobals(std::move(Arg.IndirectGlobals)),
945 : AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
946 : FunctionInfos(std::move(Arg.FunctionInfos)),
947 420 : Handles(std::move(Arg.Handles)) {
948 : // Update the parent for each DeletionCallbackHandle.
949 924 : for (auto &H : Handles) {
950 : assert(H.GAR == &Arg);
951 714 : H.GAR = this;
952 : }
953 210 : }
954 :
955 6542 : GlobalsAAResult::~GlobalsAAResult() {}
956 :
957 : /*static*/ GlobalsAAResult
958 3061 : GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
959 : CallGraph &CG) {
960 3061 : GlobalsAAResult Result(M.getDataLayout(), TLI);
961 :
962 : // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
963 3061 : Result.CollectSCCMembership(CG);
964 :
965 : // Find non-addr taken globals.
966 3061 : Result.AnalyzeGlobals(M);
967 :
968 : // Propagate on CG.
969 3061 : Result.AnalyzeCallGraph(CG, M);
970 :
971 3061 : return Result;
972 : }
973 :
974 : AnalysisKey GlobalsAA::Key;
975 :
976 105 : GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
977 : return GlobalsAAResult::analyzeModule(M,
978 : AM.getResult<TargetLibraryAnalysis>(M),
979 105 : AM.getResult<CallGraphAnalysis>(M));
980 : }
981 :
982 : char GlobalsAAWrapperPass::ID = 0;
983 85402 : INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
984 : "Globals Alias Analysis", false, true)
985 85402 : INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
986 85402 : INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
987 947679 : INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
988 : "Globals Alias Analysis", false, true)
989 :
990 2938 : ModulePass *llvm::createGlobalsAAWrapperPass() {
991 2938 : return new GlobalsAAWrapperPass();
992 : }
993 :
994 5944 : GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
995 2972 : initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
996 2972 : }
997 :
998 2955 : bool GlobalsAAWrapperPass::runOnModule(Module &M) {
999 2955 : Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1000 2955 : M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1001 2955 : getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1002 2955 : return false;
1003 : }
1004 :
1005 2955 : bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1006 : Result.reset();
1007 2955 : return false;
1008 : }
1009 :
1010 2971 : void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1011 : AU.setPreservesAll();
1012 : AU.addRequired<CallGraphWrapperPass>();
1013 : AU.addRequired<TargetLibraryInfoWrapperPass>();
1014 2971 : }
|