LCOV - code coverage report
Current view: top level - lib/Analysis - InlineCost.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 670 730 91.8 %
Date: 2018-10-20 13:21:21 Functions: 47 60 78.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file implements inline cost analysis.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "llvm/Analysis/InlineCost.h"
      15             : #include "llvm/ADT/STLExtras.h"
      16             : #include "llvm/ADT/SetVector.h"
      17             : #include "llvm/ADT/SmallPtrSet.h"
      18             : #include "llvm/ADT/SmallVector.h"
      19             : #include "llvm/ADT/Statistic.h"
      20             : #include "llvm/Analysis/AssumptionCache.h"
      21             : #include "llvm/Analysis/BlockFrequencyInfo.h"
      22             : #include "llvm/Analysis/CodeMetrics.h"
      23             : #include "llvm/Analysis/ConstantFolding.h"
      24             : #include "llvm/Analysis/CFG.h"
      25             : #include "llvm/Analysis/InstructionSimplify.h"
      26             : #include "llvm/Analysis/ProfileSummaryInfo.h"
      27             : #include "llvm/Analysis/TargetTransformInfo.h"
      28             : #include "llvm/Analysis/ValueTracking.h"
      29             : #include "llvm/Config/llvm-config.h"
      30             : #include "llvm/IR/CallSite.h"
      31             : #include "llvm/IR/CallingConv.h"
      32             : #include "llvm/IR/DataLayout.h"
      33             : #include "llvm/IR/GetElementPtrTypeIterator.h"
      34             : #include "llvm/IR/GlobalAlias.h"
      35             : #include "llvm/IR/InstVisitor.h"
      36             : #include "llvm/IR/IntrinsicInst.h"
      37             : #include "llvm/IR/Operator.h"
      38             : #include "llvm/Support/Debug.h"
      39             : #include "llvm/Support/raw_ostream.h"
      40             : 
      41             : using namespace llvm;
      42             : 
      43             : #define DEBUG_TYPE "inline-cost"
      44             : 
      45             : STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
      46             : 
      47             : static cl::opt<int> InlineThreshold(
      48             :     "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
      49             :     cl::desc("Control the amount of inlining to perform (default = 225)"));
      50             : 
      51             : static cl::opt<int> HintThreshold(
      52             :     "inlinehint-threshold", cl::Hidden, cl::init(325),
      53             :     cl::desc("Threshold for inlining functions with inline hint"));
      54             : 
      55             : static cl::opt<int>
      56             :     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
      57             :                           cl::init(45),
      58             :                           cl::desc("Threshold for inlining cold callsites"));
      59             : 
      60             : // We introduce this threshold to help performance of instrumentation based
      61             : // PGO before we actually hook up inliner with analysis passes such as BPI and
      62             : // BFI.
      63             : static cl::opt<int> ColdThreshold(
      64             :     "inlinecold-threshold", cl::Hidden, cl::init(45),
      65             :     cl::desc("Threshold for inlining functions with cold attribute"));
      66             : 
      67             : static cl::opt<int>
      68             :     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
      69             :                          cl::ZeroOrMore,
      70             :                          cl::desc("Threshold for hot callsites "));
      71             : 
      72             : static cl::opt<int> LocallyHotCallSiteThreshold(
      73             :     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
      74             :     cl::desc("Threshold for locally hot callsites "));
      75             : 
      76             : static cl::opt<int> ColdCallSiteRelFreq(
      77             :     "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
      78             :     cl::desc("Maxmimum block frequency, expressed as a percentage of caller's "
      79             :              "entry frequency, for a callsite to be cold in the absence of "
      80             :              "profile information."));
      81             : 
      82             : static cl::opt<int> HotCallSiteRelFreq(
      83             :     "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
      84             :     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
      85             :              "entry frequency, for a callsite to be hot in the absence of "
      86             :              "profile information."));
      87             : 
      88             : static cl::opt<bool> OptComputeFullInlineCost(
      89             :     "inline-cost-full", cl::Hidden, cl::init(false),
      90             :     cl::desc("Compute the full inline cost of a call site even when the cost "
      91             :              "exceeds the threshold."));
      92             : 
      93             : namespace {
      94             : 
      95             : class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
      96             :   typedef InstVisitor<CallAnalyzer, bool> Base;
      97             :   friend class InstVisitor<CallAnalyzer, bool>;
      98             : 
      99             :   /// The TargetTransformInfo available for this compilation.
     100             :   const TargetTransformInfo &TTI;
     101             : 
     102             :   /// Getter for the cache of @llvm.assume intrinsics.
     103             :   std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
     104             : 
     105             :   /// Getter for BlockFrequencyInfo
     106             :   Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
     107             : 
     108             :   /// Profile summary information.
     109             :   ProfileSummaryInfo *PSI;
     110             : 
     111             :   /// The called function.
     112             :   Function &F;
     113             : 
     114             :   // Cache the DataLayout since we use it a lot.
     115             :   const DataLayout &DL;
     116             : 
     117             :   /// The OptimizationRemarkEmitter available for this compilation.
     118             :   OptimizationRemarkEmitter *ORE;
     119             : 
     120             :   /// The candidate callsite being analyzed. Please do not use this to do
     121             :   /// analysis in the caller function; we want the inline cost query to be
     122             :   /// easily cacheable. Instead, use the cover function paramHasAttr.
     123             :   CallSite CandidateCS;
     124             : 
     125             :   /// Tunable parameters that control the analysis.
     126             :   const InlineParams &Params;
     127             : 
     128             :   int Threshold;
     129             :   int Cost;
     130             :   bool ComputeFullInlineCost;
     131             : 
     132             :   bool IsCallerRecursive;
     133             :   bool IsRecursiveCall;
     134             :   bool ExposesReturnsTwice;
     135             :   bool HasDynamicAlloca;
     136             :   bool ContainsNoDuplicateCall;
     137             :   bool HasReturn;
     138             :   bool HasIndirectBr;
     139             :   bool HasUninlineableIntrinsic;
     140             :   bool InitsVargArgs;
     141             : 
     142             :   /// Number of bytes allocated statically by the callee.
     143             :   uint64_t AllocatedSize;
     144             :   unsigned NumInstructions, NumVectorInstructions;
     145             :   int VectorBonus, TenPercentVectorBonus;
     146             :   // Bonus to be applied when the callee has only one reachable basic block.
     147             :   int SingleBBBonus;
     148             : 
     149             :   /// While we walk the potentially-inlined instructions, we build up and
     150             :   /// maintain a mapping of simplified values specific to this callsite. The
     151             :   /// idea is to propagate any special information we have about arguments to
     152             :   /// this call through the inlinable section of the function, and account for
     153             :   /// likely simplifications post-inlining. The most important aspect we track
     154             :   /// is CFG altering simplifications -- when we prove a basic block dead, that
     155             :   /// can cause dramatic shifts in the cost of inlining a function.
     156             :   DenseMap<Value *, Constant *> SimplifiedValues;
     157             : 
     158             :   /// Keep track of the values which map back (through function arguments) to
     159             :   /// allocas on the caller stack which could be simplified through SROA.
     160             :   DenseMap<Value *, Value *> SROAArgValues;
     161             : 
     162             :   /// The mapping of caller Alloca values to their accumulated cost savings. If
     163             :   /// we have to disable SROA for one of the allocas, this tells us how much
     164             :   /// cost must be added.
     165             :   DenseMap<Value *, int> SROAArgCosts;
     166             : 
     167             :   /// Keep track of values which map to a pointer base and constant offset.
     168             :   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
     169             : 
     170             :   /// Keep track of dead blocks due to the constant arguments.
     171             :   SetVector<BasicBlock *> DeadBlocks;
     172             : 
     173             :   /// The mapping of the blocks to their known unique successors due to the
     174             :   /// constant arguments.
     175             :   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
     176             : 
     177             :   /// Model the elimination of repeated loads that is expected to happen
     178             :   /// whenever we simplify away the stores that would otherwise cause them to be
     179             :   /// loads.
     180             :   bool EnableLoadElimination;
     181             :   SmallPtrSet<Value *, 16> LoadAddrSet;
     182             :   int LoadEliminationCost;
     183             : 
     184             :   // Custom simplification helper routines.
     185             :   bool isAllocaDerivedArg(Value *V);
     186             :   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
     187             :                             DenseMap<Value *, int>::iterator &CostIt);
     188             :   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
     189             :   void disableSROA(Value *V);
     190             :   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
     191             :   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
     192             :                           int InstructionCost);
     193             :   void disableLoadElimination();
     194             :   bool isGEPFree(GetElementPtrInst &GEP);
     195             :   bool canFoldInboundsGEP(GetElementPtrInst &I);
     196             :   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
     197             :   bool simplifyCallSite(Function *F, CallSite CS);
     198             :   template <typename Callable>
     199             :   bool simplifyInstruction(Instruction &I, Callable Evaluate);
     200             :   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
     201             : 
     202             :   /// Return true if the given argument to the function being considered for
     203             :   /// inlining has the given attribute set either at the call site or the
     204             :   /// function declaration.  Primarily used to inspect call site specific
     205             :   /// attributes since these can be more precise than the ones on the callee
     206             :   /// itself.
     207             :   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
     208             : 
     209             :   /// Return true if the given value is known non null within the callee if
     210             :   /// inlined through this particular callsite.
     211             :   bool isKnownNonNullInCallee(Value *V);
     212             : 
     213             :   /// Update Threshold based on callsite properties such as callee
     214             :   /// attributes and callee hotness for PGO builds. The Callee is explicitly
     215             :   /// passed to support analyzing indirect calls whose target is inferred by
     216             :   /// analysis.
     217             :   void updateThreshold(CallSite CS, Function &Callee);
     218             : 
     219             :   /// Return true if size growth is allowed when inlining the callee at CS.
     220             :   bool allowSizeGrowth(CallSite CS);
     221             : 
     222             :   /// Return true if \p CS is a cold callsite.
     223             :   bool isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI);
     224             : 
     225             :   /// Return a higher threshold if \p CS is a hot callsite.
     226             :   Optional<int> getHotCallSiteThreshold(CallSite CS,
     227             :                                         BlockFrequencyInfo *CallerBFI);
     228             : 
     229             :   // Custom analysis routines.
     230             :   InlineResult analyzeBlock(BasicBlock *BB,
     231             :                             SmallPtrSetImpl<const Value *> &EphValues);
     232             : 
     233             :   // Disable several entry points to the visitor so we don't accidentally use
     234             :   // them by declaring but not defining them here.
     235             :   void visit(Module *);
     236             :   void visit(Module &);
     237             :   void visit(Function *);
     238             :   void visit(Function &);
     239             :   void visit(BasicBlock *);
     240             :   void visit(BasicBlock &);
     241             : 
     242             :   // Provide base case for our instruction visit.
     243             :   bool visitInstruction(Instruction &I);
     244             : 
     245             :   // Our visit overrides.
     246             :   bool visitAlloca(AllocaInst &I);
     247             :   bool visitPHI(PHINode &I);
     248             :   bool visitGetElementPtr(GetElementPtrInst &I);
     249             :   bool visitBitCast(BitCastInst &I);
     250             :   bool visitPtrToInt(PtrToIntInst &I);
     251             :   bool visitIntToPtr(IntToPtrInst &I);
     252             :   bool visitCastInst(CastInst &I);
     253             :   bool visitUnaryInstruction(UnaryInstruction &I);
     254             :   bool visitCmpInst(CmpInst &I);
     255             :   bool visitSub(BinaryOperator &I);
     256             :   bool visitBinaryOperator(BinaryOperator &I);
     257             :   bool visitLoad(LoadInst &I);
     258             :   bool visitStore(StoreInst &I);
     259             :   bool visitExtractValue(ExtractValueInst &I);
     260             :   bool visitInsertValue(InsertValueInst &I);
     261             :   bool visitCallSite(CallSite CS);
     262             :   bool visitReturnInst(ReturnInst &RI);
     263             :   bool visitBranchInst(BranchInst &BI);
     264             :   bool visitSelectInst(SelectInst &SI);
     265             :   bool visitSwitchInst(SwitchInst &SI);
     266             :   bool visitIndirectBrInst(IndirectBrInst &IBI);
     267             :   bool visitResumeInst(ResumeInst &RI);
     268             :   bool visitCleanupReturnInst(CleanupReturnInst &RI);
     269             :   bool visitCatchReturnInst(CatchReturnInst &RI);
     270             :   bool visitUnreachableInst(UnreachableInst &I);
     271             : 
     272             : public:
     273      306857 :   CallAnalyzer(const TargetTransformInfo &TTI,
     274             :                std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
     275             :                Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
     276             :                ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
     277             :                Function &Callee, CallSite CSArg, const InlineParams &Params)
     278      306857 :       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
     279      306857 :         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
     280      306857 :         CandidateCS(CSArg), Params(Params), Threshold(Params.DefaultThreshold),
     281      306857 :         Cost(0), ComputeFullInlineCost(OptComputeFullInlineCost ||
     282      306857 :                                        Params.ComputeFullInlineCost || ORE),
     283             :         IsCallerRecursive(false), IsRecursiveCall(false),
     284             :         ExposesReturnsTwice(false), HasDynamicAlloca(false),
     285             :         ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
     286             :         HasUninlineableIntrinsic(false), InitsVargArgs(false), AllocatedSize(0),
     287             :         NumInstructions(0), NumVectorInstructions(0), VectorBonus(0),
     288             :         SingleBBBonus(0), EnableLoadElimination(true), LoadEliminationCost(0),
     289             :         NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
     290             :         NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
     291             :         NumInstructionsSimplified(0), SROACostSavings(0),
     292      920571 :         SROACostSavingsLost(0) {}
     293             : 
     294             :   InlineResult analyzeCall(CallSite CS);
     295             : 
     296           0 :   int getThreshold() { return Threshold; }
     297           0 :   int getCost() { return Cost; }
     298             : 
     299             :   // Keep a bunch of stats about the cost savings found so we can print them
     300             :   // out when debugging.
     301             :   unsigned NumConstantArgs;
     302             :   unsigned NumConstantOffsetPtrArgs;
     303             :   unsigned NumAllocaArgs;
     304             :   unsigned NumConstantPtrCmps;
     305             :   unsigned NumConstantPtrDiffs;
     306             :   unsigned NumInstructionsSimplified;
     307             :   unsigned SROACostSavings;
     308             :   unsigned SROACostSavingsLost;
     309             : 
     310             :   void dump();
     311             : };
     312             : 
     313             : } // namespace
     314             : 
     315             : /// Test whether the given value is an Alloca-derived function argument.
     316             : bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
     317      141711 :   return SROAArgValues.count(V);
     318             : }
     319             : 
     320             : /// Lookup the SROA-candidate argument and cost iterator which V maps to.
     321             : /// Returns false if V does not map to a SROA-candidate.
     322    21291992 : bool CallAnalyzer::lookupSROAArgAndCost(
     323             :     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
     324    21291992 :   if (SROAArgValues.empty() || SROAArgCosts.empty())
     325             :     return false;
     326             : 
     327     8472557 :   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
     328     8472557 :   if (ArgIt == SROAArgValues.end())
     329             :     return false;
     330             : 
     331      523755 :   Arg = ArgIt->second;
     332      523755 :   CostIt = SROAArgCosts.find(Arg);
     333      523755 :   return CostIt != SROAArgCosts.end();
     334             : }
     335             : 
     336             : /// Disable SROA for the candidate marked by this cost iterator.
     337             : ///
     338             : /// This marks the candidate as no longer viable for SROA, and adds the cost
     339             : /// savings associated with it back into the inline cost measurement.
     340           0 : void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
     341             :   // If we're no longer able to perform SROA we need to undo its cost savings
     342             :   // and prevent subsequent analysis.
     343      109934 :   Cost += CostIt->second;
     344      109934 :   SROACostSavings -= CostIt->second;
     345           0 :   SROACostSavingsLost += CostIt->second;
     346             :   SROAArgCosts.erase(CostIt);
     347             :   disableLoadElimination();
     348           0 : }
     349             : 
     350             : /// If 'V' maps to a SROA candidate, disable SROA for it.
     351    12184919 : void CallAnalyzer::disableSROA(Value *V) {
     352             :   Value *SROAArg;
     353    12184919 :   DenseMap<Value *, int>::iterator CostIt;
     354    12184919 :   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
     355      105214 :     disableSROA(CostIt);
     356    12184919 : }
     357             : 
     358             : /// Accumulate the given cost for a particular SROA candidate.
     359           0 : void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
     360             :                                       int InstructionCost) {
     361      184551 :   CostIt->second += InstructionCost;
     362      184551 :   SROACostSavings += InstructionCost;
     363           0 : }
     364             : 
     365             : void CallAnalyzer::disableLoadElimination() {
     366     4478158 :   if (EnableLoadElimination) {
     367      287144 :     Cost += LoadEliminationCost;
     368      287144 :     LoadEliminationCost = 0;
     369      287144 :     EnableLoadElimination = false;
     370             :   }
     371             : }
     372             : 
     373             : /// Accumulate a constant GEP offset into an APInt if possible.
     374             : ///
     375             : /// Returns false if unable to compute the offset for any reason. Respects any
     376             : /// simplified values known during the analysis of this callsite.
     377      549392 : bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
     378      549392 :   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
     379             :   assert(IntPtrWidth == Offset.getBitWidth());
     380             : 
     381     1840712 :   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
     382     3132032 :        GTI != GTE; ++GTI) {
     383             :     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
     384             :     if (!OpC)
     385       72362 :       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
     386             :         OpC = dyn_cast<ConstantInt>(SimpleOp);
     387     1324697 :     if (!OpC)
     388       33377 :       return false;
     389     1291320 :     if (OpC->isZero())
     390     1259562 :       continue;
     391             : 
     392             :     // Handle a struct index, which adds its field offset to the pointer.
     393      243387 :     if (StructType *STy = GTI.getStructTypeOrNull()) {
     394      243387 :       unsigned ElementIdx = OpC->getZExtValue();
     395      243387 :       const StructLayout *SL = DL.getStructLayout(STy);
     396      243387 :       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
     397      243387 :       continue;
     398             :     }
     399             : 
     400       31758 :     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
     401       63516 :     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
     402             :   }
     403      516015 :   return true;
     404             : }
     405             : 
     406             : /// Use TTI to check whether a GEP is free.
     407             : ///
     408             : /// Respects any simplified values known during the analysis of this callsite.
     409       65189 : bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
     410             :   SmallVector<Value *, 4> Operands;
     411       65189 :   Operands.push_back(GEP.getOperand(0));
     412      182329 :   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
     413      234280 :     if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
     414         141 :        Operands.push_back(SimpleOp);
     415             :      else
     416      116999 :        Operands.push_back(*I);
     417      130378 :   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
     418             : }
     419             : 
     420     2598081 : bool CallAnalyzer::visitAlloca(AllocaInst &I) {
     421             :   // Check whether inlining will turn a dynamic alloca into a static
     422             :   // alloca and handle that case.
     423     2598081 :   if (I.isArrayAllocation()) {
     424         100 :     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
     425          46 :     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
     426          41 :       Type *Ty = I.getAllocatedType();
     427          41 :       AllocatedSize = SaturatingMultiplyAdd(
     428          41 :           AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize);
     429          41 :       return Base::visitAlloca(I);
     430             :     }
     431             :   }
     432             : 
     433             :   // Accumulate the allocated size.
     434     2598040 :   if (I.isStaticAlloca()) {
     435     2598033 :     Type *Ty = I.getAllocatedType();
     436     5196066 :     AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize);
     437             :   }
     438             : 
     439             :   // We will happily inline static alloca instructions.
     440     2598040 :   if (I.isStaticAlloca())
     441     2598033 :     return Base::visitAlloca(I);
     442             : 
     443             :   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
     444             :   // a variety of reasons, and so we would like to not inline them into
     445             :   // functions which don't currently have a dynamic alloca. This simply
     446             :   // disables inlining altogether in the presence of a dynamic alloca.
     447           7 :   HasDynamicAlloca = true;
     448           7 :   return false;
     449             : }
     450             : 
     451      419260 : bool CallAnalyzer::visitPHI(PHINode &I) {
     452             :   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
     453             :   // though we don't want to propagate it's bonuses. The idea is to disable
     454             :   // SROA if it *might* be used in an inappropriate manner.
     455             : 
     456             :   // Phi nodes are always zero-cost.
     457             :   // FIXME: Pointer sizes may differ between different address spaces, so do we
     458             :   // need to use correct address space in the call to getPointerSizeInBits here?
     459             :   // Or could we skip the getPointerSizeInBits call completely? As far as I can
     460             :   // see the ZeroOffset is used as a dummy value, so we can probably use any
     461             :   // bit width for the ZeroOffset?
     462      419260 :   APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
     463      419260 :   bool CheckSROA = I.getType()->isPointerTy();
     464             : 
     465             :   // Track the constant or pointer with constant offset we've seen so far.
     466             :   Constant *FirstC = nullptr;
     467             :   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
     468             :   Value *FirstV = nullptr;
     469             : 
     470      664358 :   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
     471      658124 :     BasicBlock *Pred = I.getIncomingBlock(i);
     472             :     // If the incoming block is dead, skip the incoming block.
     473      658124 :     if (DeadBlocks.count(Pred))
     474      239325 :       continue;
     475             :     // If the parent block of phi is not the known successor of the incoming
     476             :     // block, skip the incoming block.
     477      651659 :     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
     478      651659 :     if (KnownSuccessor && KnownSuccessor != I.getParent())
     479             :       continue;
     480             : 
     481             :     Value *V = I.getIncomingValue(i);
     482             :     // If the incoming value is this phi itself, skip the incoming value.
     483      650269 :     if (&I == V)
     484             :       continue;
     485             : 
     486             :     Constant *C = dyn_cast<Constant>(V);
     487             :     if (!C)
     488      435648 :       C = SimplifiedValues.lookup(V);
     489             : 
     490             :     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
     491      650266 :     if (!C && CheckSROA)
     492      197608 :       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
     493             : 
     494      650266 :     if (!C && !BaseAndOffset.first)
     495             :       // The incoming value is neither a constant nor a pointer with constant
     496             :       // offset, exit early.
     497             :       return true;
     498             : 
     499      440912 :     if (FirstC) {
     500      206949 :       if (FirstC == C)
     501             :         // If we've seen a constant incoming value before and it is the same
     502             :         // constant we see this time, continue checking the next incoming value.
     503             :         continue;
     504             :       // Otherwise early exit because we either see a different constant or saw
     505             :       // a constant before but we have a pointer with constant offset this time.
     506             :       return true;
     507             :     }
     508             : 
     509      233963 :     if (FirstV) {
     510             :       // The same logic as above, but check pointer with constant offset here.
     511        1961 :       if (FirstBaseAndOffset == BaseAndOffset)
     512             :         continue;
     513             :       return true;
     514             :     }
     515             : 
     516      232002 :     if (C) {
     517             :       // This is the 1st time we've seen a constant, record it.
     518             :       FirstC = C;
     519             :       continue;
     520             :     }
     521             : 
     522             :     // The remaining case is that this is the 1st time we've seen a pointer with
     523             :     // constant offset, record it.
     524             :     FirstV = V;
     525             :     FirstBaseAndOffset = BaseAndOffset;
     526             :   }
     527             : 
     528             :   // Check if we can map phi to a constant.
     529        6234 :   if (FirstC) {
     530        4683 :     SimplifiedValues[&I] = FirstC;
     531        4683 :     return true;
     532             :   }
     533             : 
     534             :   // Check if we can map phi to a pointer with constant offset.
     535        1551 :   if (FirstBaseAndOffset.first) {
     536        1551 :     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
     537             : 
     538             :     Value *SROAArg;
     539        1551 :     DenseMap<Value *, int>::iterator CostIt;
     540        1551 :     if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt))
     541         196 :       SROAArgValues[&I] = SROAArg;
     542             :   }
     543             : 
     544             :   return true;
     545             : }
     546             : 
     547             : /// Check we can fold GEPs of constant-offset call site argument pointers.
     548             : /// This requires target data and inbounds GEPs.
     549             : ///
     550             : /// \return true if the specified GEP can be folded.
     551      836528 : bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
     552             :   // Check if we have a base + offset for the pointer.
     553             :   std::pair<Value *, APInt> BaseAndOffset =
     554      836528 :       ConstantOffsetPtrs.lookup(I.getPointerOperand());
     555      836528 :   if (!BaseAndOffset.first)
     556             :     return false;
     557             : 
     558             :   // Check if the offset of this GEP is constant, and if so accumulate it
     559             :   // into Offset.
     560      446965 :   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
     561             :     return false;
     562             : 
     563             :   // Add the result as a new mapping to Base + Offset.
     564      418786 :   ConstantOffsetPtrs[&I] = BaseAndOffset;
     565             : 
     566      418786 :   return true;
     567             : }
     568             : 
     569      845959 : bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
     570             :   Value *SROAArg;
     571      845959 :   DenseMap<Value *, int>::iterator CostIt;
     572             :   bool SROACandidate =
     573      845959 :       lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt);
     574             : 
     575             :   // Lambda to check whether a GEP's indices are all constant.
     576             :   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
     577             :     for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
     578             :       if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
     579             :         return false;
     580             :     return true;
     581      845959 :   };
     582             : 
     583      845959 :   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
     584      780770 :     if (SROACandidate)
     585      166014 :       SROAArgValues[&I] = SROAArg;
     586             : 
     587             :     // Constant GEPs are modeled as free.
     588      780770 :     return true;
     589             :   }
     590             : 
     591             :   // Variable GEPs will require math and will disable SROA.
     592       65189 :   if (SROACandidate)
     593        4193 :     disableSROA(CostIt);
     594       65189 :   return isGEPFree(I);
     595             : }
     596             : 
     597             : /// Simplify \p I if its operands are constants and update SimplifiedValues.
     598             : /// \p Evaluate is a callable specific to instruction type that evaluates the
     599             : /// instruction when all the operands are constants.
     600             : template <typename Callable>
     601     3702575 : bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
     602             :   SmallVector<Constant *, 2> COps;
     603    10033167 :   for (Value *Op : I.operands()) {
     604     3720956 :     Constant *COp = dyn_cast<Constant>(Op);
     605     3720956 :     if (!COp)
     606     2210666 :       COp = SimplifiedValues.lookup(Op);
     607     3720956 :     if (!COp)
     608     1092939 :       return false;
     609     2628017 :     COps.push_back(COp);
     610             :   }
     611     2609636 :   auto *C = Evaluate(COps);
     612     2609636 :   if (!C)
     613             :     return false;
     614       11562 :   SimplifiedValues[&I] = C;
     615       11562 :   return true;
     616             : }
     617       19732 : 
     618             : bool CallAnalyzer::visitBitCast(BitCastInst &I) {
     619       49360 :   // Propagate constants through bitcasts.
     620       29628 :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
     621       29628 :         return ConstantExpr::getBitCast(COps[0], I.getType());
     622       39464 :       }))
     623       29628 :     return true;
     624       19732 : 
     625        9896 :   // Track base/offsets through casts
     626             :   std::pair<Value *, APInt> BaseAndOffset =
     627           0 :       ConstantOffsetPtrs.lookup(I.getOperand(0));
     628           0 :   // Casts don't change the offset, just wrap it up.
     629             :   if (BaseAndOffset.first)
     630           0 :     ConstantOffsetPtrs[&I] = BaseAndOffset;
     631           0 : 
     632             :   // Also look for SROA candidates here.
     633      153410 :   Value *SROAArg;
     634             :   DenseMap<Value *, int>::iterator CostIt;
     635      306822 :   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
     636      153410 :     SROAArgValues[&I] = SROAArg;
     637      153410 : 
     638      306820 :   // Bitcasts are always zero cost.
     639      153410 :   return true;
     640      153408 : }
     641           2 : 
     642             : bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
     643           2 :   // Propagate constants through ptrtoint.
     644           2 :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
     645             :         return ConstantExpr::getPtrToInt(COps[0], I.getType());
     646           2 :       }))
     647           2 :     return true;
     648             : 
     649      339205 :   // Track base/offset pairs when converted to a plain integer provided the
     650             :   // integer is large enough to represent the pointer.
     651      694490 :   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
     652      347690 :   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
     653      347690 :   if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
     654      680040 :     std::pair<Value *, APInt> BaseAndOffset =
     655      347690 :         ConstantOffsetPtrs.lookup(I.getOperand(0));
     656      331610 :     if (BaseAndOffset.first)
     657       16080 :       ConstantOffsetPtrs[&I] = BaseAndOffset;
     658             :   }
     659        7595 : 
     660        7595 :   // This is really weird. Technically, ptrtoint will disable SROA. However,
     661             :   // unless that ptrtoint is *used* somewhere in the live basic blocks after
     662        7595 :   // inlining, it will be nuked, and SROA should proceed. All of the uses which
     663        7595 :   // would block SROA would also block SROA if applied directly to a pointer,
     664             :   // and so we can just add the integer in here. The only places where SROA is
     665     2598074 :   // preserved either cannot fire on an integer, or won't in-and-of themselves
     666             :   // disable SROA (ext) w/o some later use that we would see and disable.
     667     7794222 :   Value *SROAArg;
     668     2598074 :   DenseMap<Value *, int>::iterator CostIt;
     669     2598074 :   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
     670          82 :     SROAArgValues[&I] = SROAArg;
     671     2598074 : 
     672           0 :   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
     673     2598074 : }
     674             : 
     675     2598074 : bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
     676     2598074 :   // Propagate constants through ptrtoint.
     677             :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
     678           0 :         return ConstantExpr::getIntToPtr(COps[0], I.getType());
     679           0 :       }))
     680             :     return true;
     681       42558 : 
     682             :   // Track base/offset pairs when round-tripped through a pointer without
     683       87471 :   // modifications provided the integer is not too large.
     684       42558 :   Value *Op = I.getOperand(0);
     685       42558 :   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
     686       85074 :   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
     687       42558 :     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
     688       40203 :     if (BaseAndOffset.first)
     689        2355 :       ConstantOffsetPtrs[&I] = BaseAndOffset;
     690             :   }
     691        2355 : 
     692        2355 :   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
     693             :   Value *SROAArg;
     694        2355 :   DenseMap<Value *, int>::iterator CostIt;
     695        2355 :   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
     696             :     SROAArgValues[&I] = SROAArg;
     697       11111 : 
     698             :   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
     699       22311 : }
     700       11111 : 
     701       11111 : bool CallAnalyzer::visitCastInst(CastInst &I) {
     702       22222 :   // Propagate constants through ptrtoint.
     703       11111 :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
     704       11022 :         return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
     705          89 :       }))
     706             :     return true;
     707          89 : 
     708          89 :   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
     709             :   disableSROA(I.getOperand(0));
     710          89 : 
     711          89 :   // If this is a floating-point cast, and the target says this operation
     712             :   // is expensive, this may eventually become a library call. Treat the cost
     713       45266 :   // as such.
     714             :   switch (I.getOpcode()) {
     715       90605 :   case Instruction::FPTrunc:
     716       45266 :   case Instruction::FPExt:
     717       45266 :   case Instruction::UIToFP:
     718       90532 :   case Instruction::SIToFP:
     719       45266 :   case Instruction::FPToUI:
     720       45193 :   case Instruction::FPToSI:
     721          73 :     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
     722             :       Cost += InlineConstants::CallPenalty;
     723          73 :   default:
     724          73 :     break;
     725             :   }
     726          73 : 
     727          73 :   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
     728             : }
     729      493219 : 
     730             : bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
     731      987886 :   Value *Operand = I.getOperand(0);
     732      493219 :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
     733      493219 :         return ConstantFoldInstOperands(&I, COps[0], DL);
     734      986432 :       }))
     735      493219 :     return true;
     736      491771 : 
     737        1448 :   // Disable any SROA on the argument to arbitrary unary operators.
     738             :   disableSROA(Operand);
     739        1448 : 
     740        1448 :   return false;
     741             : }
     742        1448 : 
     743        1448 : bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
     744             :   return CandidateCS.paramHasAttr(A->getArgNo(), Attr);
     745             : }
     746      493219 : 
     747             : bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
     748      493219 :   // Does the *call site* have the NonNull attribute set on an argument?  We
     749        2896 :   // use the attribute on the call site to memoize any analysis done in the
     750             :   // caller. This will also trip if the callee function has a non-null
     751             :   // parameter attribute, but that's a less interesting case because hopefully
     752             :   // the callee would already have been simplified based on that.
     753             :   if (Argument *A = dyn_cast<Argument>(V))
     754             :     if (paramHasAttr(A, Attribute::NonNull))
     755      491771 :       return true;
     756             : 
     757      491771 :   // Is this an alloca in the caller?  This is distinct from the attribute case
     758      293920 :   // above because attributes aren't updated within the inliner itself and we
     759             :   // always want to catch the alloca derived case.
     760             :   if (isAllocaDerivedArg(V))
     761             :     // We can actually predict the result of comparisons between an
     762      491771 :     // alloca-derived value and null. Note that this fires regardless of
     763      491771 :     // SROA firing.
     764       43234 :     return true;
     765             : 
     766             :   return false;
     767             : }
     768             : 
     769             : bool CallAnalyzer::allowSizeGrowth(CallSite CS) {
     770       45266 :   // If the normal destination of the invoke or the parent block of the call
     771             :   // site is unreachable-terminated, there is little point in inlining this
     772       45266 :   // unless there is literally zero cost.
     773         146 :   // FIXME: Note that it is possible that an unreachable-terminated block has a
     774             :   // hot entry. For example, in below scenario inlining hot_call_X() may be
     775             :   // beneficial :
     776             :   // main() {
     777             :   //   hot_call_1();
     778             :   //   ...
     779       45193 :   //   hot_call_N()
     780       45193 :   //   exit(0);
     781       45193 :   // }
     782             :   // For now, we are not handling this corner case here as it is rare in real
     783       45191 :   // code. In future, we should elaborate this based on BPI and BFI in more
     784       45191 :   // general threshold adjusting heuristics in updateThreshold().
     785       25654 :   Instruction *Instr = CS.getInstruction();
     786             :   if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
     787             :     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
     788             :       return false;
     789             :   } else if (isa<UnreachableInst>(Instr->getParent()->getTerminator()))
     790             :     return false;
     791             : 
     792             :   return true;
     793             : }
     794             : 
     795             : bool CallAnalyzer::isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI) {
     796       45193 :   // If global profile summary is available, then callsite's coldness is
     797       45193 :   // determined based on that.
     798         463 :   if (PSI && PSI->hasProfileSummary())
     799             :     return PSI->isColdCallSite(CS, CallerBFI);
     800       45193 : 
     801             :   // Otherwise we need BFI to be available.
     802             :   if (!CallerBFI)
     803       11111 :     return false;
     804             : 
     805       11111 :   // Determine if the callsite is cold relative to caller's entry. We could
     806         178 :   // potentially cache the computation of scaled entry frequency, but the added
     807             :   // complexity is not worth it unless this scaling shows up high in the
     808             :   // profiles.
     809             :   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
     810             :   auto CallSiteBB = CS.getInstruction()->getParent();
     811             :   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
     812             :   auto CallerEntryFreq =
     813       11022 :       CallerBFI->getBlockFreq(&(CS.getCaller()->getEntryBlock()));
     814       11022 :   return CallSiteFreq < CallerEntryFreq * ColdProb;
     815       11020 : }
     816       11020 : 
     817           0 : Optional<int>
     818             : CallAnalyzer::getHotCallSiteThreshold(CallSite CS,
     819             :                                       BlockFrequencyInfo *CallerBFI) {
     820             : 
     821             :   // If global profile summary is available, then callsite's hotness is
     822       11022 :   // determined based on that.
     823       11022 :   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(CS, CallerBFI))
     824           0 :     return Params.HotCallSiteThreshold;
     825             : 
     826       11022 :   // Otherwise we need BFI to be available and to have a locally hot callsite
     827             :   // threshold.
     828             :   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
     829       42558 :     return None;
     830             : 
     831       42558 :   // Determine if the callsite is hot relative to caller's entry. We could
     832        7065 :   // potentially cache the computation of scaled entry frequency, but the added
     833             :   // complexity is not worth it unless this scaling shows up high in the
     834             :   // profiles.
     835             :   auto CallSiteBB = CS.getInstruction()->getParent();
     836             :   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
     837       40203 :   auto CallerEntryFreq = CallerBFI->getEntryFreq();
     838             :   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
     839             :     return Params.LocallyHotCallSiteThreshold;
     840             : 
     841             :   // Otherwise treat it normally.
     842       40203 :   return None;
     843         181 : }
     844             : 
     845             : void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) {
     846             :   // If no size growth is allowed for this inlining, set Threshold to 0.
     847             :   if (!allowSizeGrowth(CS)) {
     848             :     Threshold = 0;
     849         181 :     return;
     850          24 :   }
     851             : 
     852             :   Function *Caller = CS.getCaller();
     853             : 
     854             :   // return min(A, B) if B is valid.
     855       40203 :   auto MinIfValid = [](int A, Optional<int> B) {
     856             :     return B ? std::min(A, B.getValue()) : A;
     857             :   };
     858     2598074 : 
     859             :   // return max(A, B) if B is valid.
     860     2598074 :   auto MaxIfValid = [](int A, Optional<int> B) {
     861     5196148 :     return B ? std::max(A, B.getValue()) : A;
     862             :   };
     863             : 
     864             :   // Various bonus percentages. These are multiplied by Threshold to get the
     865             :   // bonus values.
     866     2598074 :   // SingleBBBonus: This bonus is applied if the callee has a single reachable
     867             :   // basic block at the given callsite context. This is speculatively applied
     868     2598074 :   // and withdrawn if more than one basic block is seen.
     869             :   //
     870             :   // Vector bonuses: We want to more aggressively inline vector-dense kernels
     871             :   // and apply this bonus based on the percentage of vector instructions. A
     872        5545 :   // bonus is applied if the vector instructions exceed 50% and half that amount
     873             :   // is applied if it exceeds 10%. Note that these bonuses are some what
     874             :   // arbitrary and evolved over time by accident as much as because they are
     875       71536 :   // principled bonuses.
     876             :   // FIXME: It would be nice to base the bonus values on something more
     877             :   // scientific.
     878             :   //
     879             :   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
     880             :   // of the last call to a static function as inlining such functions is
     881             :   // guaranteed to reduce code size.
     882        5545 :   //
     883             :   // These bonus percentages may be set to 0 based on properties of the caller
     884             :   // and the callsite.
     885             :   int SingleBBBonusPercent = 50;
     886             :   int VectorBonusPercent = 150;
     887             :   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
     888             : 
     889             :   // Lambda to set all the above bonus and bonus percentages to 0.
     890             :   auto DisallowAllBonuses = [&]() {
     891             :     SingleBBBonusPercent = 0;
     892          23 :     VectorBonusPercent = 0;
     893             :     LastCallToStaticBonus = 0;
     894             :   };
     895             : 
     896             :   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
     897           0 :   // and reduce the threshold if the caller has the necessary attribute.
     898             :   if (Caller->optForMinSize()) {
     899             :     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
     900             :     // For minsize, we want to disable the single BB bonus and the vector
     901             :     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
     902             :     // a static function will, at the minimum, eliminate the parameter setup and
     903             :     // call/return instructions.
     904             :     SingleBBBonusPercent = 0;
     905             :     VectorBonusPercent = 0;
     906             :   } else if (Caller->optForSize())
     907             :     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
     908             : 
     909             :   // Adjust the threshold based on inlinehint attribute and profile based
     910             :   // hotness information if the caller does not have MinSize attribute.
     911             :   if (!Caller->optForMinSize()) {
     912             :     if (Callee.hasFnAttribute(Attribute::InlineHint))
     913             :       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
     914             : 
     915           0 :     // FIXME: After switching to the new passmanager, simplify the logic below
     916           0 :     // by checking only the callsite hotness/coldness as we will reliably
     917           0 :     // have local profile information.
     918           0 :     //
     919             :     // Callsite hotness and coldness can be determined if sample profile is
     920             :     // used (which adds hotness metadata to calls) or if caller's
     921             :     // BlockFrequencyInfo is available.
     922             :     BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
     923           0 :     auto HotCallSiteThreshold = getHotCallSiteThreshold(CS, CallerBFI);
     924             :     if (!Caller->optForSize() && HotCallSiteThreshold) {
     925             :       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
     926           0 :       // FIXME: This should update the threshold only if it exceeds the
     927           0 :       // current threshold, but AutoFDO + ThinLTO currently relies on this
     928             :       // behavior to prevent inlining of hot callsites during ThinLTO
     929             :       // compile phase.
     930           0 :       Threshold = HotCallSiteThreshold.getValue();
     931           0 :     } else if (isColdCallSite(CS, CallerBFI)) {
     932             :       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
     933             :       // Do not apply bonuses for a cold callsite including the
     934             :       // LastCallToStatic bonus. While this bonus might result in code size
     935             :       // reduction, it can cause the size of a non-cold caller to increase
     936             :       // preventing it from being inlined.
     937           0 :       DisallowAllBonuses();
     938           0 :       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
     939           0 :     } else if (PSI) {
     940             :       // Use callee's global profile information only if we have no way of
     941           0 :       // determining this via callsite information.
     942           0 :       if (PSI->isFunctionEntryHot(&Callee)) {
     943             :         LLVM_DEBUG(dbgs() << "Hot callee.\n");
     944             :         // If callsite hotness can not be determined, we may still know
     945             :         // that the callee is hot and treat it as a weaker hint for threshold
     946           0 :         // increase.
     947             :         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
     948             :       } else if (PSI->isFunctionEntryCold(&Callee)) {
     949             :         LLVM_DEBUG(dbgs() << "Cold callee.\n");
     950             :         // Do not apply bonuses for a cold callee including the
     951           0 :         // LastCallToStatic bonus. While this bonus might result in code size
     952           0 :         // reduction, it can cause the size of a non-cold caller to increase
     953             :         // preventing it from being inlined.
     954             :         DisallowAllBonuses();
     955             :         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
     956           0 :       }
     957             :     }
     958             :   }
     959             : 
     960             :   // Finally, take the target-specific inlining threshold multiplier into
     961             :   // account.
     962             :   Threshold *= TTI.getInliningThresholdMultiplier();
     963           0 : 
     964           0 :   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
     965           0 :   VectorBonus = Threshold * VectorBonusPercent / 100;
     966           0 : 
     967           0 :   bool OnlyOneCallAndLocalLinkage =
     968             :       F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction();
     969             :   // If there is only one call of the function, and it has internal linkage,
     970             :   // the cost of inlining it drops dramatically. It may seem odd to update
     971             :   // Cost in updateThreshold, but the bonus depends on the logic in this method.
     972             :   if (OnlyOneCallAndLocalLinkage)
     973      306857 :     Cost -= LastCallToStaticBonus;
     974             : }
     975      306857 : 
     976       18511 : bool CallAnalyzer::visitCmpInst(CmpInst &I) {
     977       18511 :   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
     978             :   // First try to handle simplified comparisons.
     979             :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
     980             :         return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
     981             :       }))
     982             :     return true;
     983             : 
     984          61 :   if (I.getOpcode() == Instruction::FCmp)
     985             :     return false;
     986             : 
     987             :   // Otherwise look for a comparison between constant offset pointers with
     988             :   // a common base.
     989       52152 :   Value *LHSBase, *RHSBase;
     990             :   APInt LHSOffset, RHSOffset;
     991             :   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
     992             :   if (LHSBase) {
     993             :     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
     994             :     if (RHSBase && LHSBase == RHSBase) {
     995             :       // We have common bases, fold the icmp to a constant based on the
     996             :       // offsets.
     997             :       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
     998             :       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
     999             :       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
    1000             :         SimplifiedValues[&I] = C;
    1001             :         ++NumConstantPtrCmps;
    1002             :         return true;
    1003             :       }
    1004             :     }
    1005             :   }
    1006             : 
    1007             :   // If the comparison is an equality comparison with null, we can simplify it
    1008             :   // if we know the value (argument) can't be null
    1009             :   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
    1010             :       isKnownNonNullInCallee(I.getOperand(0))) {
    1011             :     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    1012             :     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
    1013      288346 :                                       : ConstantInt::getFalse(I.getType());
    1014      288346 :     return true;
    1015      288346 :   }
    1016             :   // Finally check for SROA candidates in comparisons.
    1017             :   Value *SROAArg;
    1018             :   DenseMap<Value *, int>::iterator CostIt;
    1019          31 :   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    1020          31 :     if (isa<ConstantPointerNull>(I.getOperand(1))) {
    1021          31 :       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    1022             :       return true;
    1023             :     }
    1024             : 
    1025             :     disableSROA(CostIt);
    1026      288346 :   }
    1027          10 : 
    1028             :   return false;
    1029             : }
    1030             : 
    1031             : bool CallAnalyzer::visitSub(BinaryOperator &I) {
    1032           5 :   // Try to handle a special case: we can fold computing the difference of two
    1033           5 :   // constant-related pointers.
    1034      288341 :   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    1035          87 :   Value *LHSBase, *RHSBase;
    1036             :   APInt LHSOffset, RHSOffset;
    1037             :   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    1038             :   if (LHSBase) {
    1039      288346 :     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    1040      288341 :     if (RHSBase && LHSBase == RHSBase) {
    1041      156450 :       // We have common bases, fold the subtract to a constant based on the
    1042             :       // offsets.
    1043             :       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    1044             :       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    1045             :       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
    1046             :         SimplifiedValues[&I] = C;
    1047             :         ++NumConstantPtrDiffs;
    1048             :         return true;
    1049             :       }
    1050      288341 :     }
    1051      288341 :   }
    1052      288341 : 
    1053             :   // Otherwise, fall back to the generic logic for simplifying and handling
    1054             :   // instructions.
    1055             :   return Base::visitSub(I);
    1056             : }
    1057             : 
    1058          12 : bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
    1059      288329 :   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    1060             :   Constant *CLHS = dyn_cast<Constant>(LHS);
    1061             :   if (!CLHS)
    1062             :     CLHS = SimplifiedValues.lookup(LHS);
    1063             :   Constant *CRHS = dyn_cast<Constant>(RHS);
    1064             :   if (!CRHS)
    1065             :     CRHS = SimplifiedValues.lookup(RHS);
    1066          54 : 
    1067      288311 :   Value *SimpleV = nullptr;
    1068             :   if (auto FI = dyn_cast<FPMathOperator>(&I))
    1069             :     SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS,
    1070      287877 :                               CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL);
    1071             :   else
    1072             :     SimpleV =
    1073             :         SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
    1074             : 
    1075           6 :   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    1076      287875 :     SimplifiedValues[&I] = C;
    1077             : 
    1078             :   if (SimpleV)
    1079             :     return true;
    1080             : 
    1081             :   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
    1082             :   disableSROA(LHS);
    1083          31 :   disableSROA(RHS);
    1084             : 
    1085             :   // If the instruction is floating point, and the target says this operation
    1086             :   // is expensive, this may eventually become a library call. Treat the cost
    1087             :   // as such.
    1088             :   if (I.getType()->isFloatingPointTy() &&
    1089             :       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
    1090      288346 :     Cost += InlineConstants::CallPenalty;
    1091             : 
    1092      288346 :   return false;
    1093      288346 : }
    1094             : 
    1095             : bool CallAnalyzer::visitLoad(LoadInst &I) {
    1096      333509 :   Value *SROAArg;
    1097             :   DenseMap<Value *, int>::iterator CostIt;
    1098             :   if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
    1099             :     if (I.isSimple()) {
    1100             :       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    1101        6837 :       return true;
    1102             :     }
    1103             : 
    1104      339205 :     disableSROA(CostIt);
    1105             :   }
    1106             : 
    1107      339205 :   // If the data is already loaded from this address and hasn't been clobbered
    1108       15190 :   // by any stores or calls, this load is likely to be redundant and can be
    1109             :   // eliminated.
    1110             :   if (EnableLoadElimination &&
    1111             :       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
    1112      331610 :     LoadEliminationCost += InlineConstants::InstrCost;
    1113             :     return true;
    1114             :   }
    1115             : 
    1116             :   return false;
    1117             : }
    1118             : 
    1119      330783 : bool CallAnalyzer::visitStore(StoreInst &I) {
    1120      330783 :   Value *SROAArg;
    1121        9799 :   DenseMap<Value *, int>::iterator CostIt;
    1122        9799 :   if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) {
    1123             :     if (I.isSimple()) {
    1124             :       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    1125         129 :       return true;
    1126         129 :     }
    1127         129 : 
    1128         129 :     disableSROA(CostIt);
    1129         129 :   }
    1130         129 : 
    1131             :   // The store can potentially clobber loads and prevent repeated loads from
    1132             :   // being eliminated.
    1133             :   // FIXME:
    1134             :   // 1. We can probably keep an initial set of eliminatable loads substracted
    1135             :   // from the cost even when we finally see a store. We just need to disable
    1136             :   // *further* accumulation of elimination savings.
    1137      655072 :   // 2. We should probably at some point thread MemorySSA for the callee into
    1138       71536 :   // this and then use that to actually compute *really* precise savings.
    1139             :   disableLoadElimination();
    1140        1365 :   return false;
    1141         673 : }
    1142         692 : 
    1143             : bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
    1144             :   // Constant folding for extract value is trivial.
    1145             :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
    1146      329962 :         return ConstantExpr::getExtractValue(COps[0], I.getIndices());
    1147      329962 :       }))
    1148         252 :     return true;
    1149           0 : 
    1150           0 :   // SROA can look through these but give them a cost.
    1151             :   return false;
    1152             : }
    1153         252 : 
    1154             : bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
    1155             :   // Constant folding for insert value is trivial.
    1156             :   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
    1157             :         return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
    1158             :                                             /*InsertedValueOperand*/ COps[1],
    1159       50485 :                                             I.getIndices());
    1160             :       }))
    1161             :     return true;
    1162             : 
    1163             :   // SROA can look through these but give them a cost.
    1164             :   return false;
    1165       50485 : }
    1166       50485 : 
    1167        5834 : /// Try to simplify a call site.
    1168        5834 : ///
    1169             : /// Takes a concrete function and callsite and tries to actually simplify it by
    1170             : /// analyzing the arguments and call itself with instsimplify. Returns true if
    1171          62 : /// it has simplified the callsite to some other entity (a constant), making it
    1172          62 : /// free.
    1173          62 : bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
    1174          62 :   // FIXME: Using the instsimplify logic directly for this is inefficient
    1175          62 :   // because we have to continually rebuild the argument list even when no
    1176          62 :   // simplifications can be performed. Until that is fixed with remapping
    1177             :   // inside of instsimplify, directly constant fold calls here.
    1178             :   if (!canConstantFoldCallTo(CS, F))
    1179             :     return false;
    1180             : 
    1181             :   // Try to re-map the arguments to constants.
    1182             :   SmallVector<Constant *, 4> ConstantArgs;
    1183       50423 :   ConstantArgs.reserve(CS.arg_size());
    1184             :   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
    1185             :        ++I) {
    1186     3461622 :     Constant *C = dyn_cast<Constant>(*I);
    1187             :     if (!C)
    1188             :       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
    1189             :     if (!C)
    1190     6902186 :       return false; // This argument doesn't map to a constant.
    1191             : 
    1192             :     ConstantArgs.push_back(C);
    1193      202098 :   }
    1194             :   if (Constant *C = ConstantFoldCall(CS, F, ConstantArgs)) {
    1195             :     SimplifiedValues[CS.getInstruction()] = C;
    1196             :     return true;
    1197        1432 :   }
    1198             : 
    1199             :   return false;
    1200             : }
    1201    10462080 : 
    1202             : bool CallAnalyzer::visitCallSite(CallSite CS) {
    1203             :   if (CS.hasFnAttr(Attribute::ReturnsTwice) &&
    1204        7926 :       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
    1205             :     // This aborts the entire analysis.
    1206     3461622 :     ExposesReturnsTwice = true;
    1207             :     return false;
    1208             :   }
    1209             :   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->cannotDuplicate())
    1210     3452929 :     ContainsNoDuplicateCall = true;
    1211     3452929 : 
    1212             :   if (Function *F = CS.getCalledFunction()) {
    1213             :     // When we have a concrete function, first try to simplify it directly.
    1214             :     if (simplifyCallSite(F, CS))
    1215             :       return true;
    1216     3453295 : 
    1217         366 :     // Next check if it is an intrinsic we know about.
    1218          36 :     // FIXME: Lift this into part of the InstVisitor.
    1219             :     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
    1220             :       switch (II->getIntrinsicID()) {
    1221             :       default:
    1222             :         if (!CS.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
    1223     3767345 :           disableLoadElimination();
    1224             :         return Base::visitCallSite(CS);
    1225     3767345 : 
    1226     3767345 :       case Intrinsic::load_relative:
    1227             :         // This is normally lowered to 4 LLVM instructions.
    1228      138518 :         Cost += 3 * InlineConstants::InstrCost;
    1229      138518 :         return false;
    1230             : 
    1231             :       case Intrinsic::memset:
    1232         216 :       case Intrinsic::memcpy:
    1233             :       case Intrinsic::memmove:
    1234             :         disableLoadElimination();
    1235             :         // SROA can usually chew through these intrinsics, but they aren't free.
    1236             :         return false;
    1237             :       case Intrinsic::icall_branch_funnel:
    1238     3913045 :       case Intrinsic::localescape:
    1239     3628971 :         HasUninlineableIntrinsic = true;
    1240         663 :         return false;
    1241         663 :       case Intrinsic::vastart:
    1242             :         InitsVargArgs = true;
    1243             :         return false;
    1244             :       }
    1245             :     }
    1246             : 
    1247     3614266 :     if (F == CS.getInstruction()->getFunction()) {
    1248             :       // This flag will fully abort the analysis, so don't bother with anything
    1249     3614266 :       // else.
    1250     3614266 :       IsRecursiveCall = true;
    1251             :       return false;
    1252       46033 :     }
    1253       46033 : 
    1254             :     if (TTI.isLoweredToCall(F)) {
    1255             :       // We account for the average 1 instruction per call argument setup
    1256          59 :       // here.
    1257             :       Cost += CS.arg_size() * InlineConstants::InstrCost;
    1258             : 
    1259             :       // Everything other than inline ASM will also have a significant cost
    1260             :       // merely from making the call.
    1261             :       if (!isa<InlineAsm>(CS.getCalledValue()))
    1262             :         Cost += InlineConstants::CallPenalty;
    1263             :     }
    1264             : 
    1265             :     if (!CS.onlyReadsMemory())
    1266             :       disableLoadElimination();
    1267             :     return Base::visitCallSite(CS);
    1268             :   }
    1269             : 
    1270             :   // Otherwise we're in a very special case -- an indirect function call. See
    1271             :   // if we can be particularly clever about this.
    1272             :   Value *Callee = CS.getCalledValue();
    1273      153410 : 
    1274           2 :   // First, pay the price of the argument setup. We account for the average
    1275             :   // 1 instruction per call argument setup here.
    1276             :   Cost += CS.arg_size() * InlineConstants::InstrCost;
    1277             : 
    1278             :   // Next, check if this happens to be an indirect function call to a known
    1279             :   // function in this inline context. If not, we've done all we can.
    1280             :   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
    1281             :   if (!F) {
    1282             :     if (!CS.onlyReadsMemory())
    1283             :       disableLoadElimination();
    1284       19732 :     return Base::visitCallSite(CS);
    1285             :   }
    1286             : 
    1287             :   // If we have a constant that we are calling as a function, we can peer
    1288             :   // through it and see the function target. This happens not infrequently
    1289             :   // during devirtualization and so we want to give it a hefty bonus for
    1290             :   // inlining, but cap that bonus in the event that inlining wouldn't pan
    1291             :   // out. Pretend to inline the function, with a custom threshold.
    1292             :   auto IndirectCallParams = Params;
    1293             :   IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold;
    1294             :   CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, CS,
    1295             :                   IndirectCallParams);
    1296             :   if (CA.analyzeCall(CS)) {
    1297             :     // We were able to inline the indirect call! Subtract the cost from the
    1298             :     // threshold to get the bonus we want to apply, but don't go below zero.
    1299             :     Cost -= std::max(0, CA.getThreshold() - CA.getCost());
    1300             :   }
    1301     1149947 : 
    1302             :   if (!F->onlyReadsMemory())
    1303             :     disableLoadElimination();
    1304             :   return Base::visitCallSite(CS);
    1305             : }
    1306     1149947 : 
    1307             : bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
    1308             :   // At least one return instruction will be free after inlining.
    1309             :   bool Free = !HasReturn;
    1310             :   HasReturn = true;
    1311         969 :   return Free;
    1312        1029 : }
    1313             : 
    1314        1008 : bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
    1315        1008 :   // We model unconditional branches as essentially free -- they really
    1316        1942 :   // shouldn't exist at all, but handling them makes the behavior of the
    1317        1008 :   // inliner more regular and predictable. Interestingly, conditional branches
    1318         948 :   // which will fold away are also free.
    1319             :   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
    1320          60 :          dyn_cast_or_null<ConstantInt>(
    1321             :              SimplifiedValues.lookup(BI.getCondition()));
    1322          21 : }
    1323          21 : 
    1324          21 : bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
    1325             :   bool CheckSROA = SI.getType()->isPointerTy();
    1326             :   Value *TrueVal = SI.getTrueValue();
    1327             :   Value *FalseVal = SI.getFalseValue();
    1328             : 
    1329             :   Constant *TrueC = dyn_cast<Constant>(TrueVal);
    1330     1170240 :   if (!TrueC)
    1331     1170248 :     TrueC = SimplifiedValues.lookup(TrueVal);
    1332           8 :   Constant *FalseC = dyn_cast<Constant>(FalseVal);
    1333             :   if (!FalseC)
    1334           4 :     FalseC = SimplifiedValues.lookup(FalseVal);
    1335           4 :   Constant *CondC =
    1336             :       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
    1337     1170236 : 
    1338          11 :   if (!CondC) {
    1339             :     // Select C, X, X => X
    1340             :     if (TrueC == FalseC && TrueC) {
    1341             :       SimplifiedValues[&SI] = TrueC;
    1342     1149947 :       return true;
    1343             :     }
    1344             : 
    1345             :     if (!CheckSROA)
    1346             :       return Base::visitSelectInst(SI);
    1347             : 
    1348      356782 :     std::pair<Value *, APInt> TrueBaseAndOffset =
    1349      332194 :         ConstantOffsetPtrs.lookup(TrueVal);
    1350      332194 :     std::pair<Value *, APInt> FalseBaseAndOffset =
    1351             :         ConstantOffsetPtrs.lookup(FalseVal);
    1352      332194 :     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
    1353             :       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
    1354           0 : 
    1355             :       Value *SROAArg;
    1356           0 :       DenseMap<Value *, int>::iterator CostIt;
    1357           0 :       if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt))
    1358             :         SROAArgValues[&SI] = SROAArg;
    1359             :       return true;
    1360             :     }
    1361             : 
    1362             :     return Base::visitSelectInst(SI);
    1363             :   }
    1364       23920 : 
    1365           7 :   // Select condition is a constant.
    1366             :   Value *SelectedV = CondC->isAllOnesValue()
    1367           7 :                          ? TrueVal
    1368           7 :                          : (CondC->isNullValue()) ? FalseVal : nullptr;
    1369         661 :   if (!SelectedV) {
    1370         661 :     // Condition is a vector constant that is not all 1s or all 0s.  If all
    1371         661 :     // operands are constants, ConstantExpr::getSelect() can handle the cases
    1372             :     // such as select vectors.
    1373             :     if (TrueC && FalseC) {
    1374             :       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
    1375      793144 :         SimplifiedValues[&SI] = C;
    1376             :         return true;
    1377             :       }
    1378        1758 :     }
    1379        1758 :     return Base::visitSelectInst(SI);
    1380             :   }
    1381             : 
    1382      791386 :   // Condition is either all 1s or all 0s. SI can be simplified.
    1383             :   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
    1384             :     SimplifiedValues[&SI] = SelectedC;
    1385      791384 :     return true;
    1386             :   }
    1387             : 
    1388             :   if (!CheckSROA)
    1389      791384 :     return true;
    1390      791384 : 
    1391             :   std::pair<Value *, APInt> BaseAndOffset =
    1392             :       ConstantOffsetPtrs.lookup(SelectedV);
    1393      791386 :   if (BaseAndOffset.first) {
    1394             :     ConstantOffsetPtrs[&SI] = BaseAndOffset;
    1395      791386 : 
    1396             :     Value *SROAArg;
    1397             :     DenseMap<Value *, int>::iterator CostIt;
    1398             :     if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt))
    1399             :       SROAArgValues[&SI] = SROAArg;
    1400             :   }
    1401             : 
    1402             :   return true;
    1403             : }
    1404       20289 : 
    1405             : bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
    1406             :   // We model unconditional switches as free, see the comments on handling
    1407             :   // branches.
    1408       40578 :   if (isa<ConstantInt>(SI.getCondition()))
    1409             :     return true;
    1410       19843 :   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
    1411             :     if (isa<ConstantInt>(V))
    1412       19843 :       return true;
    1413             : 
    1414             :   // Assume the most general case where the switch is lowered into
    1415             :   // either a jump table, bit test, or a balanced binary tree consisting of
    1416             :   // case clusters without merging adjacent clusters with the same
    1417             :   // destination. We do not consider the switches that are lowered with a mix
    1418             :   // of jump table/bit test/binary search tree. The cost of the switch is
    1419             :   // proportional to the size of the tree or the size of jump table range.
    1420         446 :   //
    1421         446 :   // NB: We convert large switches which are just used to initialize large phi
    1422             :   // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
    1423         892 :   // inlining those. It will prevent inlining in cases where the optimization
    1424         446 :   // does not (yet) fire.
    1425             : 
    1426             :   // Maximum valid cost increased in this function.
    1427         574 :   int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
    1428             : 
    1429             :   // Exit early for a large switch, assuming one case needs at least one
    1430         446 :   // instruction.
    1431             :   // FIXME: This is not true for a bit test, but ignore such case for now to
    1432         446 :   // save compile-time.
    1433             :   int64_t CostLowerBound =
    1434             :       std::min((int64_t)CostUpperBound,
    1435           0 :                (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost);
    1436             : 
    1437      230078 :   if (CostLowerBound > Threshold && !ComputeFullInlineCost) {
    1438      230078 :     Cost = CostLowerBound;
    1439           0 :     return false;
    1440             :   }
    1441             : 
    1442      716568 :   unsigned JumpTableSize = 0;
    1443             :   unsigned NumCaseCluster =
    1444             :       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize);
    1445             : 
    1446             :   // If suitable for a jump table, consider the cost for the table size and
    1447     1082043 :   // branch to destination.
    1448      365478 :   if (JumpTableSize) {
    1449      365478 :     int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
    1450             :                      4 * InlineConstants::InstrCost;
    1451             : 
    1452       12146 :     Cost = std::min((int64_t)CostUpperBound, JTCost + Cost);
    1453       12146 :     return false;
    1454             :   }
    1455             : 
    1456             :   // Considering forming a binary search, we should find the number of nodes
    1457             :   // which is same as the number of comparisons when lowered. For a given
    1458             :   // number of clusters, n, we can define a recursive function, f(n), to find
    1459        8724 :   // the number of nodes in the tree. The recursion is :
    1460             :   // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
    1461             :   // and f(n) = n, when n <= 3.
    1462       12282 :   // This will lead a binary tree where the leaf should be either f(2) or f(3)
    1463             :   // when n > 3.  So, the number of comparisons from leaves should be n, while
    1464       24292 :   // the number of non-leaf should be :
    1465             :   //   2^(log2(n) - 1) - 1
    1466             :   //   = 2^log2(n) * 2^-1 - 1
    1467             :   //   = n / 2 - 1.
    1468       12005 :   // Considering comparisons from leaf and non-leaf nodes, we can estimate the
    1469           1 :   // number of comparisons in a simple closed form :
    1470           1 :   //   n + n / 2 - 1 = n * 3 / 2 - 1
    1471             :   if (NumCaseCluster <= 3) {
    1472             :     // Suppose a comparison includes one compare and one conditional branch.
    1473       12004 :     Cost += NumCaseCluster * 2 * InlineConstants::InstrCost;
    1474        9577 :     return false;
    1475             :   }
    1476             : 
    1477        2427 :   int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
    1478             :   int64_t SwitchCost =
    1479        2427 :       ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
    1480        2427 : 
    1481           1 :   Cost = std::min((int64_t)CostUpperBound, SwitchCost + Cost);
    1482             :   return false;
    1483             : }
    1484           1 : 
    1485           1 : bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
    1486           1 :   // We never want to inline functions that contain an indirectbr.  This is
    1487             :   // incorrect because all the blockaddress's (in static global initializers
    1488             :   // for example) would be referring to the original function, and this
    1489             :   // indirect jump would jump from the inlined copy of the function into the
    1490        2426 :   // original function which is extremely undefined behavior.
    1491             :   // FIXME: This logic isn't really right; we can safely inline functions with
    1492             :   // indirectbr's as long as no other function or global references the
    1493             :   // blockaddress of a block within the current function.
    1494         141 :   HasIndirectBr = true;
    1495         141 :   return false;
    1496         132 : }
    1497             : 
    1498             : bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
    1499             :   // FIXME: It's not clear that a single instruction is an accurate model for
    1500             :   // the inline cost of a resume instruction.
    1501           2 :   return false;
    1502           1 : }
    1503           1 : 
    1504           1 : bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
    1505             :   // FIXME: It's not clear that a single instruction is an accurate model for
    1506             :   // the inline cost of a cleanupret instruction.
    1507           1 :   return false;
    1508             : }
    1509             : 
    1510             : bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
    1511             :   // FIXME: It's not clear that a single instruction is an accurate model for
    1512         129 :   // the inline cost of a catchret instruction.
    1513         129 :   return false;
    1514             : }
    1515             : 
    1516          10 : bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
    1517             :   // FIXME: It might be reasonably to discount the cost of instructions leading
    1518             :   // to unreachable as they have the lowest possible impact on both runtime and
    1519             :   // code size.
    1520           4 :   return true; // No actual code is needed for unreachable.
    1521           4 : }
    1522           3 : 
    1523             : bool CallAnalyzer::visitInstruction(Instruction &I) {
    1524             :   // Some instructions are free. All of the free intrinsics can also be
    1525           3 :   // handled by SROA, etc.
    1526           3 :   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
    1527           2 :     return true;
    1528             : 
    1529             :   // We found something we don't understand or can't handle. Mark any SROA-able
    1530             :   // values in the operand list as no longer viable.
    1531             :   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
    1532             :     disableSROA(*OI);
    1533       10588 : 
    1534             :   return false;
    1535             : }
    1536       10588 : 
    1537             : /// Analyze a basic block for its contribution to the inline cost.
    1538       21176 : ///
    1539         181 : /// This method walks the analyzer over every instruction in the given basic
    1540             : /// block and accounts for their cost during inlining at this callsite. It
    1541             : /// aborts early if the threshold has been exceeded or an impossible to inline
    1542             : /// construct has been detected. It returns false if inlining is no longer
    1543             : /// viable, and true if inlining remains viable.
    1544             : InlineResult
    1545             : CallAnalyzer::analyzeBlock(BasicBlock *BB,
    1546             :                            SmallPtrSetImpl<const Value *> &EphValues) {
    1547             :   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    1548             :     // FIXME: Currently, the number of instructions in a function regardless of
    1549             :     // our ability to simplify them during inline to constants or dead code,
    1550             :     // are actually used by the vector bonus heuristic. As long as that's true,
    1551             :     // we have to special case debug intrinsics here to prevent differences in
    1552             :     // inlining due to debug symbols. Eventually, the number of unsimplified
    1553             :     // instructions shouldn't factor into the cost computation, but until then,
    1554             :     // hack around it here.
    1555             :     if (isa<DbgInfoIntrinsic>(I))
    1556             :       continue;
    1557             : 
    1558             :     // Skip ephemeral values.
    1559             :     if (EphValues.count(&*I))
    1560             :       continue;
    1561             : 
    1562       20814 :     ++NumInstructions;
    1563       10407 :     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
    1564             :       ++NumVectorInstructions;
    1565       10407 : 
    1566        2411 :     // If the instruction simplified to a constant, there is no cost to this
    1567        2411 :     // instruction. Visit the instructions using our InstVisitor to account for
    1568             :     // all of the per-instruction logic. The visit tree returns true if we
    1569             :     // consumed the instruction in any way, and false if the instruction's base
    1570        7996 :     // cost should count against inlining.
    1571             :     if (Base::visit(&*I))
    1572        7996 :       ++NumInstructionsSimplified;
    1573             :     else
    1574             :       Cost += InlineConstants::InstrCost;
    1575             : 
    1576        7996 :     using namespace ore;
    1577        4592 :     // If the visit this instruction detected an uninlinable pattern, abort.
    1578             :     InlineResult IR;
    1579             :     if (IsRecursiveCall)
    1580        4592 :       IR = "recursive";
    1581        4592 :     else if (ExposesReturnsTwice)
    1582             :       IR = "exposes returns twice";
    1583             :     else if (HasDynamicAlloca)
    1584             :       IR = "dynamic alloca";
    1585             :     else if (HasIndirectBr)
    1586             :       IR = "indirect branch";
    1587             :     else if (HasUninlineableIntrinsic)
    1588             :       IR = "uninlinable intrinsic";
    1589             :     else if (InitsVargArgs)
    1590             :       IR = "varargs";
    1591             :     if (!IR) {
    1592             :       if (ORE)
    1593             :         ORE->emit([&]() {
    1594             :           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
    1595             :                                           CandidateCS.getInstruction())
    1596             :                  << NV("Callee", &F) << " has uninlinable pattern ("
    1597             :                  << NV("InlineResult", IR.message)
    1598             :                  << ") and cost is not fully computed";
    1599        3404 :         });
    1600             :       return IR;
    1601        3318 :     }
    1602        3318 : 
    1603             :     // If the caller is a recursive function then we don't want to inline
    1604             :     // functions which allocate a lot of stack space because it would increase
    1605          86 :     // the caller stack usage dramatically.
    1606          86 :     if (IsCallerRecursive &&
    1607             :         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
    1608             :       InlineResult IR = "recursive and allocates too much stack space";
    1609          86 :       if (ORE)
    1610          86 :         ORE->emit([&]() {
    1611             :           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
    1612             :                                           CandidateCS.getInstruction())
    1613           0 :                  << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
    1614             :                  << ". Cost is not fully computed";
    1615             :         });
    1616             :       return IR;
    1617             :     }
    1618             : 
    1619             :     // Check if we've past the maximum possible threshold so we don't spin in
    1620             :     // huge basic blocks that will never inline.
    1621             :     if (Cost >= Threshold && !ComputeFullInlineCost)
    1622           0 :       return false;
    1623           0 :   }
    1624             : 
    1625             :   return true;
    1626           0 : }
    1627             : 
    1628             : /// Compute the base pointer and cumulative constant offsets for V.
    1629           0 : ///
    1630             : /// This strips all constant offsets off of V, leaving it the base pointer, and
    1631             : /// accumulates the total constant offset applied in the returned constant. It
    1632           0 : /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    1633             : /// no constant offsets applied.
    1634             : ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
    1635           0 :   if (!V->getType()->isPointerTy())
    1636             :     return nullptr;
    1637             : 
    1638           0 :   unsigned AS = V->getType()->getPointerAddressSpace();
    1639             :   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
    1640             :   APInt Offset = APInt::getNullValue(IntPtrWidth);
    1641           0 : 
    1642             :   // Even though we don't look through PHI nodes, we could be called on an
    1643             :   // instruction in an unreachable block, which may be on a cycle.
    1644           0 :   SmallPtrSet<Value *, 4> Visited;
    1645             :   Visited.insert(V);
    1646             :   do {
    1647             :     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    1648           0 :       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
    1649             :         return nullptr;
    1650             :       V = GEP->getPointerOperand();
    1651     1286296 :     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    1652             :       V = cast<Operator>(V)->getOperand(0);
    1653             :     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    1654     1286296 :       if (GA->isInterposable())
    1655             :         break;
    1656             :       V = GA->getAliasee();
    1657             :     } else {
    1658             :       break;
    1659     3596096 :     }
    1660     2640784 :     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    1661             :   } while (Visited.insert(V).second);
    1662             : 
    1663             :   Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS);
    1664             :   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
    1665             : }
    1666             : 
    1667             : /// Find dead blocks due to deleted CFG edges during inlining.
    1668             : ///
    1669             : /// If we know the successor of the current block, \p CurrBB, has to be \p
    1670             : /// NextBB, the other successors of \p CurrBB are dead if these successors have
    1671             : /// no live incoming CFG edges.  If one block is found to be dead, we can
    1672             : /// continue growing the dead block list by checking the successors of the dead
    1673     1335000 : /// blocks to see if all their incoming edges are dead or not.
    1674             : void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
    1675    20376938 :   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
    1676             :     // A CFG edge is dead if the predecessor is dead or the predessor has a
    1677             :     // known successor which is not the one under exam.
    1678             :     return (DeadBlocks.count(Pred) ||
    1679             :             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
    1680             :   };
    1681             : 
    1682             :   auto IsNewlyDead = [&](BasicBlock *BB) {
    1683    19133463 :     // If all the edges to a block are dead, the block is also dead.
    1684      943578 :     return (!DeadBlocks.count(BB) &&
    1685             :             llvm::all_of(predecessors(BB),
    1686             :                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
    1687    18189888 :   };
    1688             : 
    1689             :   for (BasicBlock *Succ : successors(CurrBB)) {
    1690    18189885 :     if (Succ == NextBB || !IsNewlyDead(Succ))
    1691    18189885 :       continue;
    1692          24 :     SmallVector<BasicBlock *, 4> NewDead;
    1693             :     NewDead.push_back(Succ);
    1694             :     while (!NewDead.empty()) {
    1695             :       BasicBlock *Dead = NewDead.pop_back_val();
    1696             :       if (DeadBlocks.insert(Dead))
    1697             :         // Continue growing the dead block lists.
    1698             :         for (BasicBlock *S : successors(Dead))
    1699    36379770 :           if (IsNewlyDead(S))
    1700     3035908 :             NewDead.push_back(S);
    1701             :     }
    1702    15153977 :   }
    1703             : }
    1704             : 
    1705             : /// Analyze a call site for potential inlining.
    1706             : ///
    1707    18189885 : /// Returns true if inlining this call is viable, and false if it is not
    1708        1758 : /// viable. It computes the cost and adjusts the threshold based on numerous
    1709    18188127 : /// factors and heuristics. If this method returns false but the computed cost
    1710           4 : /// is below the computed threshold, then inlining was forcibly disabled by
    1711    18188123 : /// some artifact of the routine.
    1712           7 : InlineResult CallAnalyzer::analyzeCall(CallSite CS) {
    1713    18188116 :   ++NumCallsAnalyzed;
    1714           0 : 
    1715    18188116 :   // Perform some tweaks to the cost and threshold based on the direct
    1716           7 :   // callsite information.
    1717    18188109 : 
    1718         661 :   // We want to more aggressively inline vector-dense kernels, so up the
    1719    18189885 :   // threshold, and we'll lower it if the % of vector instructions gets too
    1720        2437 :   // low. Note that these bonuses are some what arbitrary and evolved over time
    1721          39 :   // by accident as much as because they are principled bonuses.
    1722             :   //
    1723             :   // FIXME: It would be nice to remove all such bonuses. At least it would be
    1724             :   // nice to base the bonus values on something more scientific.
    1725             :   assert(NumInstructions == 0);
    1726             :   assert(NumVectorInstructions == 0);
    1727             : 
    1728       91525 :   // Update the threshold based on callsite properties
    1729             :   updateThreshold(CS, F);
    1730             : 
    1731             :   // Speculatively apply all possible bonuses to Threshold. If cost exceeds
    1732             :   // this Threshold any time, and cost cannot decrease, we can stop processing
    1733             :   // the rest of the function body.
    1734    18187448 :   Threshold += (SingleBBBonus + VectorBonus);
    1735      894706 : 
    1736             :   // Give out bonuses for the callsite, as the instructions setting them up
    1737        6516 :   // will be gone after inlining.
    1738           3 :   Cost -= getCallsiteCost(CS, DL);
    1739             : 
    1740             :   // If this function uses the coldcc calling convention, prefer not to inline
    1741             :   // it.
    1742             :   if (F.getCallingConv() == CallingConv::Cold)
    1743             :     Cost += InlineConstants::ColdccPenalty;
    1744        6516 : 
    1745             :   // Check if we're done. This can happen due to bonuses and penalties.
    1746             :   if (Cost >= Threshold && !ComputeFullInlineCost)
    1747             :     return "high cost";
    1748             : 
    1749    18180932 :   if (F.empty())
    1750       82572 :     return true;
    1751             : 
    1752             :   Function *Caller = CS.getInstruction()->getFunction();
    1753     1243475 :   // Check if the caller function is recursive itself.
    1754             :   for (User *U : Caller->users()) {
    1755             :     CallSite Site(U);
    1756             :     if (!Site)
    1757             :       continue;
    1758             :     Instruction *I = Site.getInstruction();
    1759             :     if (I->getFunction() == Caller) {
    1760             :       IsCallerRecursive = true;
    1761             :       break;
    1762      527549 :     }
    1763     1055098 :   }
    1764             : 
    1765             :   // Populate our simplified values by mapping from function arguments to call
    1766             :   // arguments with known important simplifications.
    1767      472189 :   CallSite::arg_iterator CAI = CS.arg_begin();
    1768      472189 :   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
    1769             :        FAI != FAE; ++FAI, ++CAI) {
    1770             :     assert(CAI != CS.arg_end());
    1771             :     if (Constant *C = dyn_cast<Constant>(CAI))
    1772             :       SimplifiedValues[&*FAI] = C;
    1773      472189 : 
    1774             :     Value *PtrArg = *CAI;
    1775      611435 :     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
    1776      102429 :       ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
    1777        5200 : 
    1778       97229 :       // We can SROA any pointer arguments derived from alloca instructions.
    1779      321299 :       if (isa<AllocaInst>(PtrArg)) {
    1780       84034 :         SROAArgValues[&*FAI] = PtrArg;
    1781             :         SROAArgCosts[PtrArg] = 0;
    1782             :       }
    1783             :     }
    1784           0 :   }
    1785             :   NumConstantArgs = SimplifiedValues.size();
    1786             :   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
    1787             :   NumAllocaArgs = SROAArgValues.size();
    1788             : 
    1789      139246 :   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
    1790             :   // the ephemeral values multiple times (and they're completely determined by
    1791      466989 :   // the callee, so this is purely duplicate work).
    1792      466989 :   SmallPtrSet<const Value *, 32> EphValues;
    1793             :   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
    1794             : 
    1795             :   // The worklist of live basic blocks in the callee *after* inlining. We avoid
    1796             :   // adding basic blocks of the callee which can be proven to be dead for this
    1797             :   // particular call site in order to get more accurate cost estimates. This
    1798             :   // requires a somewhat heavyweight iteration pattern: we need to walk the
    1799             :   // basic blocks in a breadth-first order as we insert live successors. To
    1800             :   // accomplish this, prioritizing for small iterations because we exit after
    1801             :   // crossing our threshold, we use a small-size optimized SetVector.
    1802        9376 :   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
    1803             :                     SmallPtrSet<BasicBlock *, 16>>
    1804             :       BBSetVector;
    1805             :   BBSetVector BBWorklist;
    1806             :   BBWorklist.insert(&F.getEntryBlock());
    1807             :   bool SingleBB = true;
    1808        9376 :   // Note that we *must not* cache the size, this loop grows the worklist.
    1809             :   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
    1810             :     // Bail out the moment we cross the threshold. This means we'll under-count
    1811             :     // the cost, but only when undercounting doesn't matter.
    1812             :     if (Cost >= Threshold && !ComputeFullInlineCost)
    1813             :       break;
    1814       32064 : 
    1815        9376 :     BasicBlock *BB = BBWorklist[Idx];
    1816             :     if (BB->empty())
    1817       37778 :       continue;
    1818       19026 : 
    1819       11290 :     // Disallow inlining a blockaddress. A blockaddress only has defined
    1820             :     // behavior for an indirect branch in the same function, and we do not
    1821        7736 :     // currently support inlining indirect branches. But, the inliner may not
    1822       22947 :     // see an indirect branch that ends up being dead code at a particular call
    1823       15211 :     // site. If the blockaddress escapes the function, e.g., via a global
    1824       15211 :     // variable, inlining may lead to an invalid cross-function reference.
    1825             :     if (BB->hasAddressTaken())
    1826       46248 :       return "blockaddress";
    1827       15826 : 
    1828        7475 :     // Analyze the cost of this block. If we blow through the threshold, this
    1829             :     // returns false, and we can bail on out.
    1830             :     InlineResult IR = analyzeBlock(BB, EphValues);
    1831        9376 :     if (!IR)
    1832             :       return IR;
    1833             : 
    1834             :     Instruction *TI = BB->getTerminator();
    1835             : 
    1836             :     // Add in the live successors by first checking whether we have terminator
    1837             :     // that may be simplified based on the values simplified by this call.
    1838             :     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    1839             :       if (BI->isConditional()) {
    1840      306857 :         Value *Cond = BI->getCondition();
    1841             :         if (ConstantInt *SimpleCond =
    1842             :                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
    1843             :           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
    1844             :           BBWorklist.insert(NextBB);
    1845             :           KnownSuccessors[BB] = NextBB;
    1846             :           findDeadBlocks(BB, NextBB);
    1847             :           continue;
    1848             :         }
    1849             :       }
    1850             :     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    1851             :       Value *Cond = SI->getCondition();
    1852             :       if (ConstantInt *SimpleCond =
    1853             :               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
    1854             :         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
    1855             :         BBWorklist.insert(NextBB);
    1856             :         KnownSuccessors[BB] = NextBB;
    1857      306857 :         findDeadBlocks(BB, NextBB);
    1858             :         continue;
    1859             :       }
    1860             :     }
    1861             : 
    1862      306857 :     // If we're unable to select a particular successor, just count all of
    1863             :     // them.
    1864             :     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
    1865             :          ++TIdx)
    1866      306857 :       BBWorklist.insert(TI->getSuccessor(TIdx));
    1867             : 
    1868             :     // If we had any successors at this point, than post-inlining is likely to
    1869             :     // have them as well. Note that we assume any basic blocks which existed
    1870      613714 :     // due to branches or switches which folded above will also fold after
    1871          11 :     // inlining.
    1872             :     if (SingleBB && TI->getNumSuccessors() > 1) {
    1873             :       // Take off the bonus we applied to the threshold.
    1874      306857 :       Threshold -= SingleBBBonus;
    1875           3 :       SingleBB = false;
    1876             :     }
    1877      306854 :   }
    1878          18 : 
    1879             :   bool OnlyOneCallAndLocalLinkage =
    1880             :       F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction();
    1881             :   // If this is a noduplicate call, we can still inline as long as
    1882      990477 :   // inlining this would cause the removal of the caller (so the instruction
    1883             :   // is not actually duplicated, just moved).
    1884      695280 :   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
    1885             :     return "noduplicate";
    1886             : 
    1887      624240 :   // We applied the maximum possible vector bonus at the beginning. Now,
    1888       11639 :   // subtract the excess bonus, if any, from the Threshold before
    1889             :   // comparing against Cost.
    1890             :   if (NumVectorInstructions <= NumInstructions / 10)
    1891             :     Threshold -= VectorBonus;
    1892             :   else if (NumVectorInstructions <= NumInstructions / 2)
    1893             :     Threshold -= VectorBonus/2;
    1894             : 
    1895             :   return Cost < std::max(1, Threshold);
    1896      834385 : }
    1897      834385 : 
    1898             : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    1899             : /// Dump stats about this call's analysis.
    1900       71067 : LLVM_DUMP_METHOD void CallAnalyzer::dump() {
    1901             : #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
    1902      527549 :   DEBUG_PRINT_STAT(NumConstantArgs);
    1903      527549 :   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
    1904      933978 :   DEBUG_PRINT_STAT(NumAllocaArgs);
    1905             :   DEBUG_PRINT_STAT(NumConstantPtrCmps);
    1906             :   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
    1907      466989 :   DEBUG_PRINT_STAT(NumInstructionsSimplified);
    1908      212262 :   DEBUG_PRINT_STAT(NumInstructions);
    1909      212262 :   DEBUG_PRINT_STAT(SROACostSavings);
    1910             :   DEBUG_PRINT_STAT(SROACostSavingsLost);
    1911             :   DEBUG_PRINT_STAT(LoadEliminationCost);
    1912             :   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
    1913      306836 :   DEBUG_PRINT_STAT(Cost);
    1914      306836 :   DEBUG_PRINT_STAT(Threshold);
    1915      306836 : #undef DEBUG_PRINT_STAT
    1916             : }
    1917             : #endif
    1918             : 
    1919             : /// Test that there are no attribute conflicts between Caller and Callee
    1920             : ///        that prevent inlining.
    1921      613672 : static bool functionsHaveCompatibleAttributes(Function *Caller,
    1922             :                                               Function *Callee,
    1923             :                                               TargetTransformInfo &TTI) {
    1924             :   return TTI.areInlineCompatible(Caller, Callee) &&
    1925             :          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
    1926             : }
    1927             : 
    1928             : int llvm::getCallsiteCost(CallSite CS, const DataLayout &DL) {
    1929             :   int Cost = 0;
    1930             :   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
    1931             :     if (CS.isByValArgument(I)) {
    1932             :       // We approximate the number of loads and stores needed by dividing the
    1933      306836 :       // size of the byval type by the target's pointer size.
    1934      613672 :       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
    1935             :       unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
    1936             :       unsigned AS = PTy->getAddressSpace();
    1937     1857147 :       unsigned PointerSize = DL.getPointerSizeInBits(AS);
    1938             :       // Ceiling division.
    1939             :       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
    1940     1339462 : 
    1941             :       // If it generates more than 8 stores it is likely to be expanded as an
    1942             :       // inline memcpy so we take that as an upper bound. Otherwise we assume
    1943     1335002 :       // one load and one store per word copied.
    1944     1335002 :       // FIXME: The maxStoresPerMemcpy setting from the target should be used
    1945        9376 :       // here instead of a magic number of 8, but it's not available via
    1946             :       // DataLayout.
    1947             :       NumStores = std::min(NumStores, 8U);
    1948             : 
    1949             :       Cost += 2 * NumStores * InlineConstants::InstrCost;
    1950             :     } else {
    1951             :       // For non-byval arguments subtract off one instruction per call
    1952             :       // argument.
    1953     1335002 :       Cost += InlineConstants::InstrCost;
    1954           2 :     }
    1955             :   }
    1956             :   // The call instruction also disappears after inlining.
    1957             :   Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
    1958     1335000 :   return Cost;
    1959     1335000 : }
    1960       91525 : 
    1961             : InlineCost llvm::getInlineCost(
    1962     1243475 :     CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
    1963             :     std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
    1964             :     Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
    1965             :     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
    1966             :   return getInlineCost(CS, CS.getCalledFunction(), Params, CalleeTTI,
    1967      714323 :                        GetAssumptionCache, GetBFI, PSI, ORE);
    1968             : }
    1969             : 
    1970      728792 : InlineCost llvm::getInlineCost(
    1971        9195 :     CallSite CS, Function *Callee, const InlineParams &Params,
    1972        9195 :     TargetTransformInfo &CalleeTTI,
    1973        9195 :     std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
    1974        9195 :     Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
    1975             :     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
    1976             : 
    1977             :   // Cannot inline indirect calls.
    1978             :   if (!Callee)
    1979             :     return llvm::InlineCost::getNever("indirect call");
    1980             : 
    1981       16068 :   // Never inline calls with byval arguments that does not have the alloca
    1982         181 :   // address space. Since byval arguments can be replaced with a copy to an
    1983         181 :   // alloca, the inlined code would need to be adjusted to handle that the
    1984         181 :   // argument is in the alloca address space (so it is a little bit complicated
    1985         181 :   // to solve).
    1986             :   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
    1987             :   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I)
    1988             :     if (CS.isByValArgument(I)) {
    1989             :       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
    1990             :       if (PTy->getAddressSpace() != AllocaAS)
    1991             :         return llvm::InlineCost::getNever("byval arguments without alloca"
    1992     2812570 :                                           " address space");
    1993             :     }
    1994     1578471 : 
    1995             :   // Calls to functions with always-inline attributes should be inlined
    1996             :   // whenever possible.
    1997             :   if (CS.hasFnAttr(Attribute::AlwaysInline)) {
    1998             :     if (isInlineViable(*Callee))
    1999             :       return llvm::InlineCost::getAlways("always inline attribute");
    2000     1234099 :     return llvm::InlineCost::getNever("inapplicable always inline attribute");
    2001             :   }
    2002      175770 : 
    2003             :   // Never inline functions with conflicting attributes (unless callee has
    2004             :   // always-inline attribute).
    2005             :   Function *Caller = CS.getCaller();
    2006             :   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
    2007             :     return llvm::InlineCost::getNever("conflicting attributes");
    2008      237045 : 
    2009             :   // Don't inline this call if the caller has the optnone attribute.
    2010             :   if (Caller->hasFnAttribute(Attribute::OptimizeNone))
    2011             :     return llvm::InlineCost::getNever("optnone attribute");
    2012      208818 : 
    2013           9 :   // Don't inline a function that treats null pointer as valid into a caller
    2014             :   // that does not have this attribute.
    2015             :   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
    2016             :     return llvm::InlineCost::getNever("nullptr definitions incompatible");
    2017             : 
    2018      215300 :   // Don't inline functions which can be interposed at link-time.
    2019      215289 :   if (Callee->isInterposable())
    2020          11 :     return llvm::InlineCost::getNever("interposable");
    2021           7 : 
    2022             :   // Don't inline functions marked noinline.
    2023      498799 :   if (Callee->hasFnAttribute(Attribute::NoInline))
    2024             :     return llvm::InlineCost::getNever("noinline function attribute");
    2025             : 
    2026             :   // Don't inline call sites marked noinline.
    2027             :   if (CS.isNoInline())
    2028             :     return llvm::InlineCost::getNever("noinline call site attribute");
    2029             : 
    2030             :   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
    2031             :                           << "... (caller:" << Caller->getName() << ")\n");
    2032             : 
    2033             :   CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee, CS,
    2034             :                   Params);
    2035             :   InlineResult ShouldInline = CA.analyzeCall(CS);
    2036             : 
    2037             :   LLVM_DEBUG(CA.dump());
    2038             : 
    2039             :   // Check if there was a reason to force inlining or no inlining.
    2040             :   if (!ShouldInline && CA.getCost() < CA.getThreshold())
    2041             :     return InlineCost::getNever(ShouldInline.message);
    2042             :   if (ShouldInline && CA.getCost() >= CA.getThreshold())
    2043             :     return InlineCost::getAlways("empty function");
    2044             : 
    2045             :   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
    2046             : }
    2047             : 
    2048             : bool llvm::isInlineViable(Function &F) {
    2049      334810 :   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
    2050             :   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
    2051             :     // Disallow inlining of functions which contain indirect branches or
    2052      669602 :     // blockaddresses.
    2053      334792 :     if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken())
    2054             :       return false;
    2055             : 
    2056      307739 :     for (auto &II : *BI) {
    2057             :       CallSite CS(&II);
    2058      836650 :       if (!CS)
    2059      528911 :         continue;
    2060             : 
    2061             :       // Disallow recursive calls.
    2062        5426 :       if (&F == CS.getCalledFunction())
    2063        5426 :         return false;
    2064             : 
    2065             :       // Disallow calls which expose returns-twice to a function not previously
    2066             :       // attributed as such.
    2067        5426 :       if (!ReturnsTwice && CS.isCall() &&
    2068             :           cast<CallInst>(CS.getInstruction())->canReturnTwice())
    2069             :         return false;
    2070             : 
    2071             :       if (CS.getCalledFunction())
    2072             :         switch (CS.getCalledFunction()->getIntrinsicID()) {
    2073             :         default:
    2074             :           break;
    2075        5426 :         // Disallow inlining of @llvm.icall.branch.funnel because current
    2076             :         // backend can't separate call targets from call arguments.
    2077        5426 :         case llvm::Intrinsic::icall_branch_funnel:
    2078             :         // Disallow inlining functions that call @llvm.localescape. Doing this
    2079             :         // correctly would require major changes to the inliner.
    2080             :         case llvm::Intrinsic::localescape:
    2081      523485 :         // Disallow inlining of functions that initialize VarArgs with va_start.
    2082             :         case llvm::Intrinsic::vastart:
    2083             :           return false;
    2084             :         }
    2085      307739 :     }
    2086      307739 :   }
    2087             : 
    2088             :   return true;
    2089      348535 : }
    2090             : 
    2091             : // APIs to create InlineParams based on command line flags and/or other
    2092             : // parameters.
    2093             : 
    2094             : InlineParams llvm::getInlineParams(int Threshold) {
    2095      348535 :   InlineParams Params;
    2096             : 
    2097             :   // This field is the threshold to use for a callee by default. This is
    2098      348546 :   // derived from one or more of:
    2099             :   //  * optimization or size-optimization levels,
    2100             :   //  * a value passed to createFunctionInliningPass function, or
    2101             :   //  * the -inline-threshold flag.
    2102             :   //  If the -inline-threshold flag is explicitly specified, that is used
    2103             :   //  irrespective of anything else.
    2104             :   if (InlineThreshold.getNumOccurrences() > 0)
    2105             :     Params.DefaultThreshold = InlineThreshold;
    2106      348546 :   else
    2107             :     Params.DefaultThreshold = Threshold;
    2108             : 
    2109             :   // Set the HintThreshold knob from the -inlinehint-threshold.
    2110             :   Params.HintThreshold = HintThreshold;
    2111             : 
    2112             :   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
    2113             :   Params.HotCallSiteThreshold = HotCallSiteThreshold;
    2114      348546 : 
    2115      928864 :   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
    2116      580321 :   // populate LocallyHotCallSiteThreshold. Later, we populate
    2117        5454 :   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
    2118        5454 :   // we know that optimization level is O3 (in the getInlineParams variant that
    2119             :   // takes the opt and size levels).
    2120             :   // FIXME: Remove this check (and make the assignment unconditional) after
    2121             :   // addressing size regression issues at O2.
    2122             :   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
    2123             :     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
    2124             : 
    2125      348543 :   // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold.
    2126       13733 :   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
    2127             : 
    2128             :   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
    2129             :   // -inlinehint-threshold commandline option is not explicitly given. If that
    2130             :   // option is present, then its value applies even for callees with size and
    2131             :   // minsize attributes.
    2132             :   // If the -inline-threshold is not specified, set the ColdThreshold from the
    2133             :   // -inlinecold-threshold even if it is not explicitly passed. If
    2134      334810 :   // -inline-threshold is specified, then -inlinecold-threshold needs to be
    2135             :   // explicitly specified to set the ColdThreshold knob
    2136             :   if (InlineThreshold.getNumOccurrences() == 0) {
    2137             :     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
    2138      334765 :     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
    2139             :     Params.ColdThreshold = ColdThreshold;
    2140             :   } else if (ColdThreshold.getNumOccurrences() > 0) {
    2141             :     Params.ColdThreshold = ColdThreshold;
    2142             :   }
    2143      334762 :   return Params;
    2144             : }
    2145             : 
    2146             : InlineParams llvm::getInlineParams() {
    2147             :   return getInlineParams(InlineThreshold);
    2148             : }
    2149             : 
    2150             : // Compute the default threshold for inlining based on the opt level and the
    2151      334706 : // size opt level.
    2152             : static int computeThresholdFromOptLevels(unsigned OptLevel,
    2153             :                                          unsigned SizeOptLevel) {
    2154             :   if (OptLevel > 2)
    2155      306433 :     return InlineConstants::OptAggressiveThreshold;
    2156             :   if (SizeOptLevel == 1) // -Os
    2157             :     return InlineConstants::OptSizeThreshold;
    2158             :   if (SizeOptLevel == 2) // -Oz
    2159             :     return InlineConstants::OptMinSizeThreshold;
    2160             :   return InlineThreshold;
    2161             : }
    2162      612822 : 
    2163      306411 : InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
    2164             :   auto Params =
    2165             :       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
    2166             :   // At O3, use the value of -locally-hot-callsite-threshold option to populate
    2167             :   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
    2168      306411 :   // when it is specified explicitly.
    2169             :   if (OptLevel > 2)
    2170      297457 :     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
    2171             :   return Params;
    2172             : }

Generated by: LCOV version 1.13