LCOV - code coverage report
Current view: top level - lib/Analysis - InstructionSimplify.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 1583 2067 76.6 %
Date: 2018-10-20 13:21:21 Functions: 102 126 81.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file implements routines for folding instructions into simpler forms
      11             : // that do not require creating new instructions.  This does constant folding
      12             : // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
      13             : // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
      14             : // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
      15             : // simplified: This is usually true and assuming it simplifies the logic (if
      16             : // they have not been simplified then results are correct but maybe suboptimal).
      17             : //
      18             : //===----------------------------------------------------------------------===//
      19             : 
      20             : #include "llvm/Analysis/InstructionSimplify.h"
      21             : #include "llvm/ADT/SetVector.h"
      22             : #include "llvm/ADT/Statistic.h"
      23             : #include "llvm/Analysis/AliasAnalysis.h"
      24             : #include "llvm/Analysis/AssumptionCache.h"
      25             : #include "llvm/Analysis/CaptureTracking.h"
      26             : #include "llvm/Analysis/CmpInstAnalysis.h"
      27             : #include "llvm/Analysis/ConstantFolding.h"
      28             : #include "llvm/Analysis/LoopAnalysisManager.h"
      29             : #include "llvm/Analysis/MemoryBuiltins.h"
      30             : #include "llvm/Analysis/ValueTracking.h"
      31             : #include "llvm/Analysis/VectorUtils.h"
      32             : #include "llvm/IR/ConstantRange.h"
      33             : #include "llvm/IR/DataLayout.h"
      34             : #include "llvm/IR/Dominators.h"
      35             : #include "llvm/IR/GetElementPtrTypeIterator.h"
      36             : #include "llvm/IR/GlobalAlias.h"
      37             : #include "llvm/IR/Operator.h"
      38             : #include "llvm/IR/PatternMatch.h"
      39             : #include "llvm/IR/ValueHandle.h"
      40             : #include "llvm/Support/KnownBits.h"
      41             : #include <algorithm>
      42             : using namespace llvm;
      43             : using namespace llvm::PatternMatch;
      44             : 
      45             : #define DEBUG_TYPE "instsimplify"
      46             : 
      47             : enum { RecursionLimit = 3 };
      48             : 
      49             : STATISTIC(NumExpand,  "Number of expansions");
      50             : STATISTIC(NumReassoc, "Number of reassociations");
      51             : 
      52             : static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
      53             : static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
      54             :                             unsigned);
      55             : static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
      56             :                               const SimplifyQuery &, unsigned);
      57             : static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
      58             :                               unsigned);
      59             : static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
      60             :                                const SimplifyQuery &Q, unsigned MaxRecurse);
      61             : static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
      62             : static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
      63             : static Value *SimplifyCastInst(unsigned, Value *, Type *,
      64             :                                const SimplifyQuery &, unsigned);
      65             : static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
      66             :                               unsigned);
      67             : 
      68      118531 : static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
      69             :                                      Value *FalseVal) {
      70             :   BinaryOperator::BinaryOps BinOpCode;
      71             :   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
      72             :     BinOpCode = BO->getOpcode();
      73             :   else
      74             :     return nullptr;
      75             : 
      76             :   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
      77         999 :   if (BinOpCode == BinaryOperator::Or) {
      78             :     ExpectedPred = ICmpInst::ICMP_NE;
      79         348 :   } else if (BinOpCode == BinaryOperator::And) {
      80             :     ExpectedPred = ICmpInst::ICMP_EQ;
      81             :   } else
      82             :     return nullptr;
      83             : 
      84             :   // %A = icmp eq %TV, %FV
      85             :   // %B = icmp eq %X, %Y (and one of these is a select operand)
      86             :   // %C = and %A, %B
      87             :   // %D = select %C, %TV, %FV
      88             :   // -->
      89             :   // %FV
      90             : 
      91             :   // %A = icmp ne %TV, %FV
      92             :   // %B = icmp ne %X, %Y (and one of these is a select operand)
      93             :   // %C = or %A, %B
      94             :   // %D = select %C, %TV, %FV
      95             :   // -->
      96             :   // %TV
      97             :   Value *X, *Y;
      98         933 :   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
      99             :                                       m_Specific(FalseVal)),
     100         578 :                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
     101         953 :       Pred1 != Pred2 || Pred1 != ExpectedPred)
     102         933 :     return nullptr;
     103             : 
     104          20 :   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
     105          30 :     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
     106             : 
     107             :   return nullptr;
     108             : }
     109             : 
     110             : /// For a boolean type or a vector of boolean type, return false or a vector
     111             : /// with every element false.
     112             : static Constant *getFalse(Type *Ty) {
     113        4705 :   return ConstantInt::getFalse(Ty);
     114             : }
     115             : 
     116             : /// For a boolean type or a vector of boolean type, return true or a vector
     117             : /// with every element true.
     118             : static Constant *getTrue(Type *Ty) {
     119         455 :   return ConstantInt::getTrue(Ty);
     120             : }
     121             : 
     122             : /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
     123       13812 : static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
     124             :                           Value *RHS) {
     125             :   CmpInst *Cmp = dyn_cast<CmpInst>(V);
     126             :   if (!Cmp)
     127             :     return false;
     128             :   CmpInst::Predicate CPred = Cmp->getPredicate();
     129             :   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
     130       12451 :   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
     131             :     return true;
     132       12428 :   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
     133        4848 :     CRHS == LHS;
     134             : }
     135             : 
     136             : /// Does the given value dominate the specified phi node?
     137      198374 : static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
     138             :   Instruction *I = dyn_cast<Instruction>(V);
     139             :   if (!I)
     140             :     // Arguments and constants dominate all instructions.
     141             :     return true;
     142             : 
     143             :   // If we are processing instructions (and/or basic blocks) that have not been
     144             :   // fully added to a function, the parent nodes may still be null. Simply
     145             :   // return the conservative answer in these cases.
     146      167482 :   if (!I->getParent() || !P->getParent() || !I->getFunction())
     147       11387 :     return false;
     148             : 
     149             :   // If we have a DominatorTree then do a precise test.
     150       72354 :   if (DT)
     151       57988 :     return DT->dominates(I, P);
     152             : 
     153             :   // Otherwise, if the instruction is in the entry block and is not an invoke,
     154             :   // then it obviously dominates all phi nodes.
     155       28732 :   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
     156             :       !isa<InvokeInst>(I))
     157         295 :     return true;
     158             : 
     159             :   return false;
     160             : }
     161             : 
     162             : /// Simplify "A op (B op' C)" by distributing op over op', turning it into
     163             : /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
     164             : /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
     165             : /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
     166             : /// Returns the simplified value, or null if no simplification was performed.
     167      865295 : static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
     168             :                           Instruction::BinaryOps OpcodeToExpand,
     169             :                           const SimplifyQuery &Q, unsigned MaxRecurse) {
     170             :   // Recursion is always used, so bail out at once if we already hit the limit.
     171      865295 :   if (!MaxRecurse--)
     172             :     return nullptr;
     173             : 
     174             :   // Check whether the expression has the form "(A op' B) op C".
     175             :   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
     176      188998 :     if (Op0->getOpcode() == OpcodeToExpand) {
     177             :       // It does!  Try turning it into "(A op C) op' (B op C)".
     178             :       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
     179             :       // Do "A op C" and "B op C" both simplify?
     180       39270 :       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
     181        2321 :         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
     182             :           // They do! Return "L op' R" if it simplifies or is already available.
     183             :           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
     184         750 :           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
     185         692 :                                      && L == B && R == A)) {
     186             :             ++NumExpand;
     187             :             return LHS;
     188             :           }
     189             :           // Otherwise return "L op' R" if it simplifies.
     190         692 :           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
     191             :             ++NumExpand;
     192             :             return V;
     193             :           }
     194             :         }
     195             :     }
     196             : 
     197             :   // Check whether the expression has the form "A op (B op' C)".
     198             :   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
     199      155658 :     if (Op1->getOpcode() == OpcodeToExpand) {
     200             :       // It does!  Try turning it into "(A op B) op' (A op C)".
     201             :       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
     202             :       // Do "A op B" and "A op C" both simplify?
     203       30915 :       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
     204        1090 :         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
     205             :           // They do! Return "L op' R" if it simplifies or is already available.
     206             :           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
     207          41 :           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
     208          41 :                                      && L == C && R == B)) {
     209             :             ++NumExpand;
     210             :             return RHS;
     211             :           }
     212             :           // Otherwise return "L op' R" if it simplifies.
     213          41 :           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
     214             :             ++NumExpand;
     215           2 :             return V;
     216             :           }
     217             :         }
     218             :     }
     219             : 
     220             :   return nullptr;
     221             : }
     222             : 
     223             : /// Generic simplifications for associative binary operations.
     224             : /// Returns the simpler value, or null if none was found.
     225    11889938 : static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
     226             :                                        Value *LHS, Value *RHS,
     227             :                                        const SimplifyQuery &Q,
     228             :                                        unsigned MaxRecurse) {
     229             :   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
     230             : 
     231             :   // Recursion is always used, so bail out at once if we already hit the limit.
     232    11889938 :   if (!MaxRecurse--)
     233             :     return nullptr;
     234             : 
     235             :   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
     236             :   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
     237             : 
     238             :   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
     239    11775167 :   if (Op0 && Op0->getOpcode() == Opcode) {
     240             :     Value *A = Op0->getOperand(0);
     241             :     Value *B = Op0->getOperand(1);
     242             :     Value *C = RHS;
     243             : 
     244             :     // Does "B op C" simplify?
     245      137367 :     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
     246             :       // It does!  Return "A op V" if it simplifies or is already available.
     247             :       // If V equals B then "A op V" is just the LHS.
     248       89798 :       if (V == B) return LHS;
     249             :       // Otherwise return "A op V" if it simplifies.
     250       89256 :       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
     251             :         ++NumReassoc;
     252             :         return W;
     253             :       }
     254             :     }
     255             :   }
     256             : 
     257             :   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
     258    11771500 :   if (Op1 && Op1->getOpcode() == Opcode) {
     259             :     Value *A = LHS;
     260             :     Value *B = Op1->getOperand(0);
     261             :     Value *C = Op1->getOperand(1);
     262             : 
     263             :     // Does "A op B" simplify?
     264       43944 :     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
     265             :       // It does!  Return "V op C" if it simplifies or is already available.
     266             :       // If V equals B then "V op C" is just the RHS.
     267          26 :       if (V == B) return RHS;
     268             :       // Otherwise return "V op C" if it simplifies.
     269           2 :       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
     270             :         ++NumReassoc;
     271             :         return W;
     272             :       }
     273             :     }
     274             :   }
     275             : 
     276             :   // The remaining transforms require commutativity as well as associativity.
     277             :   if (!Instruction::isCommutative(Opcode))
     278             :     return nullptr;
     279             : 
     280             :   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
     281    11771475 :   if (Op0 && Op0->getOpcode() == Opcode) {
     282             :     Value *A = Op0->getOperand(0);
     283             :     Value *B = Op0->getOperand(1);
     284             :     Value *C = RHS;
     285             : 
     286             :     // Does "C op A" simplify?
     287      133700 :     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
     288             :       // It does!  Return "V op B" if it simplifies or is already available.
     289             :       // If V equals A then "V op B" is just the LHS.
     290         165 :       if (V == A) return LHS;
     291             :       // Otherwise return "V op B" if it simplifies.
     292          54 :       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
     293             :         ++NumReassoc;
     294             :         return W;
     295             :       }
     296             :     }
     297             :   }
     298             : 
     299             :   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
     300    11771359 :   if (Op1 && Op1->getOpcode() == Opcode) {
     301             :     Value *A = LHS;
     302             :     Value *B = Op1->getOperand(0);
     303             :     Value *C = Op1->getOperand(1);
     304             : 
     305             :     // Does "C op A" simplify?
     306       43919 :     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
     307             :       // It does!  Return "B op V" if it simplifies or is already available.
     308             :       // If V equals C then "B op V" is just the RHS.
     309         107 :       if (V == C) return RHS;
     310             :       // Otherwise return "B op V" if it simplifies.
     311          99 :       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
     312             :         ++NumReassoc;
     313           3 :         return W;
     314             :       }
     315             :     }
     316             :   }
     317             : 
     318             :   return nullptr;
     319             : }
     320             : 
     321             : /// In the case of a binary operation with a select instruction as an operand,
     322             : /// try to simplify the binop by seeing whether evaluating it on both branches
     323             : /// of the select results in the same value. Returns the common value if so,
     324             : /// otherwise returns null.
     325        6745 : static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
     326             :                                     Value *RHS, const SimplifyQuery &Q,
     327             :                                     unsigned MaxRecurse) {
     328             :   // Recursion is always used, so bail out at once if we already hit the limit.
     329        6745 :   if (!MaxRecurse--)
     330             :     return nullptr;
     331             : 
     332             :   SelectInst *SI;
     333             :   if (isa<SelectInst>(LHS)) {
     334             :     SI = cast<SelectInst>(LHS);
     335             :   } else {
     336             :     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
     337             :     SI = cast<SelectInst>(RHS);
     338             :   }
     339             : 
     340             :   // Evaluate the BinOp on the true and false branches of the select.
     341             :   Value *TV;
     342             :   Value *FV;
     343        6438 :   if (SI == LHS) {
     344        5409 :     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
     345        5409 :     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
     346             :   } else {
     347        1029 :     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
     348        1029 :     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
     349             :   }
     350             : 
     351             :   // If they simplified to the same value, then return the common value.
     352             :   // If they both failed to simplify then return null.
     353        6438 :   if (TV == FV)
     354             :     return TV;
     355             : 
     356             :   // If one branch simplified to undef, return the other one.
     357        4197 :   if (TV && isa<UndefValue>(TV))
     358             :     return FV;
     359        4194 :   if (FV && isa<UndefValue>(FV))
     360             :     return TV;
     361             : 
     362             :   // If applying the operation did not change the true and false select values,
     363             :   // then the result of the binop is the select itself.
     364        4187 :   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
     365             :     return SI;
     366             : 
     367             :   // If one branch simplified and the other did not, and the simplified
     368             :   // value is equal to the unsimplified one, return the simplified value.
     369             :   // For example, select (cond, X, X & Z) & Z -> X & Z.
     370        4185 :   if ((FV && !TV) || (TV && !FV)) {
     371             :     // Check that the simplified value has the form "X op Y" where "op" is the
     372             :     // same as the original operation.
     373        3341 :     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
     374         957 :     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
     375             :       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
     376             :       // We already know that "op" is the same as for the simplified value.  See
     377             :       // if the operands match too.  If so, return the simplified value.
     378         143 :       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
     379         143 :       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
     380         143 :       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
     381         286 :       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
     382             :           Simplified->getOperand(1) == UnsimplifiedRHS)
     383             :         return Simplified;
     384         143 :       if (Simplified->isCommutative() &&
     385           0 :           Simplified->getOperand(1) == UnsimplifiedLHS &&
     386             :           Simplified->getOperand(0) == UnsimplifiedRHS)
     387           0 :         return Simplified;
     388             :     }
     389             :   }
     390             : 
     391             :   return nullptr;
     392             : }
     393             : 
     394             : /// In the case of a comparison with a select instruction, try to simplify the
     395             : /// comparison by seeing whether both branches of the select result in the same
     396             : /// value. Returns the common value if so, otherwise returns null.
     397       14235 : static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
     398             :                                   Value *RHS, const SimplifyQuery &Q,
     399             :                                   unsigned MaxRecurse) {
     400             :   // Recursion is always used, so bail out at once if we already hit the limit.
     401       14235 :   if (!MaxRecurse--)
     402             :     return nullptr;
     403             : 
     404             :   // Make sure the select is on the LHS.
     405             :   if (!isa<SelectInst>(LHS)) {
     406             :     std::swap(LHS, RHS);
     407        3178 :     Pred = CmpInst::getSwappedPredicate(Pred);
     408             :   }
     409             :   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
     410             :   SelectInst *SI = cast<SelectInst>(LHS);
     411             :   Value *Cond = SI->getCondition();
     412             :   Value *TV = SI->getTrueValue();
     413             :   Value *FV = SI->getFalseValue();
     414             : 
     415             :   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
     416             :   // Does "cmp TV, RHS" simplify?
     417       14071 :   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
     418       14071 :   if (TCmp == Cond) {
     419             :     // It not only simplified, it simplified to the select condition.  Replace
     420             :     // it with 'true'.
     421          37 :     TCmp = getTrue(Cond->getType());
     422       14034 :   } else if (!TCmp) {
     423             :     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
     424             :     // condition then we can replace it with 'true'.  Otherwise give up.
     425       10993 :     if (!isSameCompare(Cond, Pred, TV, RHS))
     426             :       return nullptr;
     427           8 :     TCmp = getTrue(Cond->getType());
     428             :   }
     429             : 
     430             :   // Does "cmp FV, RHS" simplify?
     431        3086 :   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
     432        3086 :   if (FCmp == Cond) {
     433             :     // It not only simplified, it simplified to the select condition.  Replace
     434             :     // it with 'false'.
     435           1 :     FCmp = getFalse(Cond->getType());
     436        3085 :   } else if (!FCmp) {
     437             :     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
     438             :     // condition then we can replace it with 'false'.  Otherwise give up.
     439        2819 :     if (!isSameCompare(Cond, Pred, FV, RHS))
     440             :       return nullptr;
     441          15 :     FCmp = getFalse(Cond->getType());
     442             :   }
     443             : 
     444             :   // If both sides simplified to the same value, then use it as the result of
     445             :   // the original comparison.
     446         282 :   if (TCmp == FCmp)
     447             :     return TCmp;
     448             : 
     449             :   // The remaining cases only make sense if the select condition has the same
     450             :   // type as the result of the comparison, so bail out if this is not so.
     451         588 :   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
     452             :     return nullptr;
     453             :   // If the false value simplified to false, then the result of the compare
     454             :   // is equal to "Cond && TCmp".  This also catches the case when the false
     455             :   // value simplified to false and the true value to true, returning "Cond".
     456         195 :   if (match(FCmp, m_Zero()))
     457          59 :     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
     458             :       return V;
     459             :   // If the true value simplified to true, then the result of the compare
     460             :   // is equal to "Cond || FCmp".
     461         136 :   if (match(TCmp, m_One()))
     462           4 :     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
     463             :       return V;
     464             :   // Finally, if the false value simplified to true and the true value to
     465             :   // false, then the result of the compare is equal to "!Cond".
     466         262 :   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
     467         126 :     if (Value *V =
     468         126 :         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
     469             :                         Q, MaxRecurse))
     470           7 :       return V;
     471             : 
     472             :   return nullptr;
     473             : }
     474             : 
     475             : /// In the case of a binary operation with an operand that is a PHI instruction,
     476             : /// try to simplify the binop by seeing whether evaluating it on the incoming
     477             : /// phi values yields the same result for every value. If so returns the common
     478             : /// value, otherwise returns null.
     479       73856 : static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
     480             :                                  Value *RHS, const SimplifyQuery &Q,
     481             :                                  unsigned MaxRecurse) {
     482             :   // Recursion is always used, so bail out at once if we already hit the limit.
     483       73856 :   if (!MaxRecurse--)
     484             :     return nullptr;
     485             : 
     486             :   PHINode *PI;
     487             :   if (isa<PHINode>(LHS)) {
     488             :     PI = cast<PHINode>(LHS);
     489             :     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
     490       50162 :     if (!valueDominatesPHI(RHS, PI, Q.DT))
     491             :       return nullptr;
     492             :   } else {
     493             :     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
     494             :     PI = cast<PHINode>(RHS);
     495             :     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
     496       15154 :     if (!valueDominatesPHI(LHS, PI, Q.DT))
     497             :       return nullptr;
     498             :   }
     499             : 
     500             :   // Evaluate the BinOp on the incoming phi values.
     501             :   Value *CommonValue = nullptr;
     502       56531 :   for (Value *Incoming : PI->incoming_values()) {
     503             :     // If the incoming value is the phi node itself, it can safely be skipped.
     504       56524 :     if (Incoming == PI) continue;
     505       56524 :     Value *V = PI == LHS ?
     506       54102 :       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
     507        2422 :       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
     508             :     // If the operation failed to simplify, or simplified to a different value
     509             :     // to previously, then give up.
     510       56524 :     if (!V || (CommonValue && V != CommonValue))
     511             :       return nullptr;
     512             :     CommonValue = V;
     513             :   }
     514             : 
     515             :   return CommonValue;
     516             : }
     517             : 
     518             : /// In the case of a comparison with a PHI instruction, try to simplify the
     519             : /// comparison by seeing whether comparing with all of the incoming phi values
     520             : /// yields the same result every time. If so returns the common result,
     521             : /// otherwise returns null.
     522      124377 : static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
     523             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
     524             :   // Recursion is always used, so bail out at once if we already hit the limit.
     525      124377 :   if (!MaxRecurse--)
     526             :     return nullptr;
     527             : 
     528             :   // Make sure the phi is on the LHS.
     529             :   if (!isa<PHINode>(LHS)) {
     530             :     std::swap(LHS, RHS);
     531       21771 :     Pred = CmpInst::getSwappedPredicate(Pred);
     532             :   }
     533             :   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
     534             :   PHINode *PI = cast<PHINode>(LHS);
     535             : 
     536             :   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
     537      121315 :   if (!valueDominatesPHI(RHS, PI, Q.DT))
     538             :     return nullptr;
     539             : 
     540             :   // Evaluate the BinOp on the incoming phi values.
     541             :   Value *CommonValue = nullptr;
     542      111594 :   for (Value *Incoming : PI->incoming_values()) {
     543             :     // If the incoming value is the phi node itself, it can safely be skipped.
     544      111238 :     if (Incoming == PI) continue;
     545      111229 :     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
     546             :     // If the operation failed to simplify, or simplified to a different value
     547             :     // to previously, then give up.
     548      111229 :     if (!V || (CommonValue && V != CommonValue))
     549             :       return nullptr;
     550             :     CommonValue = V;
     551             :   }
     552             : 
     553             :   return CommonValue;
     554             : }
     555             : 
     556           0 : static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
     557             :                                        Value *&Op0, Value *&Op1,
     558             :                                        const SimplifyQuery &Q) {
     559           0 :   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
     560           0 :     if (auto *CRHS = dyn_cast<Constant>(Op1))
     561           0 :       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
     562             : 
     563             :     // Canonicalize the constant to the RHS if this is a commutative operation.
     564             :     if (Instruction::isCommutative(Opcode))
     565             :       std::swap(Op0, Op1);
     566             :   }
     567             :   return nullptr;
     568             : }
     569             : 
     570             : /// Given operands for an Add, see if we can fold the result.
     571             : /// If not, this returns null.
     572    11344480 : static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
     573             :                               const SimplifyQuery &Q, unsigned MaxRecurse) {
     574    11344480 :   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
     575             :     return C;
     576             : 
     577             :   // X + undef -> undef
     578    22437082 :   if (match(Op1, m_Undef()))
     579             :     return Op1;
     580             : 
     581             :   // X + 0 -> X
     582    11218537 :   if (match(Op1, m_Zero()))
     583        6840 :     return Op0;
     584             : 
     585             :   // If two operands are negative, return 0.
     586    11211697 :   if (isKnownNegation(Op0, Op1))
     587           7 :     return Constant::getNullValue(Op0->getType());
     588             : 
     589             :   // X + (Y - X) -> Y
     590             :   // (Y - X) + X -> Y
     591             :   // Eg: X + -X -> 0
     592    11211690 :   Value *Y = nullptr;
     593    22423379 :   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
     594    11211689 :       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
     595         278 :     return Y;
     596             : 
     597             :   // X + ~X -> -1   since   ~X = -X-1
     598    11211412 :   Type *Ty = Op0->getType();
     599    22422822 :   if (match(Op0, m_Not(m_Specific(Op1))) ||
     600    11211410 :       match(Op1, m_Not(m_Specific(Op0))))
     601           2 :     return Constant::getAllOnesValue(Ty);
     602             : 
     603             :   // add nsw/nuw (xor Y, signmask), signmask --> Y
     604             :   // The no-wrapping add guarantees that the top bit will be set by the add.
     605             :   // Therefore, the xor must be clearing the already set sign bit of Y.
     606    11211419 :   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
     607           9 :       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
     608           5 :     return Y;
     609             : 
     610             :   // add nuw %x, -1  ->  -1, because %x can only be 0.
     611    11211405 :   if (IsNUW && match(Op1, m_AllOnes()))
     612          29 :     return Op1; // Which is -1.
     613             : 
     614             :   /// i1 add -> xor.
     615    22341258 :   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
     616         107 :     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
     617             :       return V;
     618             : 
     619             :   // Try some generic simplifications for associative operations.
     620    11211371 :   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
     621             :                                           MaxRecurse))
     622         163 :     return V;
     623             : 
     624             :   // Threading Add over selects and phi nodes is pointless, so don't bother.
     625             :   // Threading over the select in "A + select(cond, B, C)" means evaluating
     626             :   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
     627             :   // only if B and C are equal.  If B and C are equal then (since we assume
     628             :   // that operands have already been simplified) "select(cond, B, C)" should
     629             :   // have been simplified to the common value of B and C already.  Analysing
     630             :   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
     631             :   // for threading over phi nodes.
     632             : 
     633             :   return nullptr;
     634             : }
     635             : 
     636     7626350 : Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
     637             :                              const SimplifyQuery &Query) {
     638     7626350 :   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
     639             : }
     640             : 
     641             : /// Compute the base pointer and cumulative constant offsets for V.
     642             : ///
     643             : /// This strips all constant offsets off of V, leaving it the base pointer, and
     644             : /// accumulates the total constant offset applied in the returned constant. It
     645             : /// returns 0 if V is not a pointer, and returns the constant '0' if there are
     646             : /// no constant offsets applied.
     647             : ///
     648             : /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
     649             : /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
     650             : /// folding.
     651     2314670 : static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
     652             :                                                 bool AllowNonInbounds = false) {
     653             :   assert(V->getType()->isPtrOrPtrVectorTy());
     654             : 
     655     2314670 :   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
     656     2314670 :   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
     657             : 
     658             :   // Even though we don't look through PHI nodes, we could be called on an
     659             :   // instruction in an unreachable block, which may be on a cycle.
     660             :   SmallPtrSet<Value *, 4> Visited;
     661     2314670 :   Visited.insert(V);
     662             :   do {
     663     2378485 :     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
     664      170860 :       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
     665       82784 :           !GEP->accumulateConstantOffset(DL, Offset))
     666             :         break;
     667       62884 :       V = GEP->getPointerOperand();
     668     1376392 :     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
     669        1856 :       V = cast<Operator>(V)->getOperand(0);
     670             :     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
     671             :       if (GA->isInterposable())
     672             :         break;
     673           0 :       V = GA->getAliasee();
     674             :     } else {
     675     2289481 :       if (auto CS = CallSite(V))
     676       72405 :         if (Value *RV = CS.getReturnedArgOperand()) {
     677           3 :           V = RV;
     678           3 :           continue;
     679             :         }
     680     2289478 :       break;
     681             :     }
     682             :     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
     683       63815 :   } while (Visited.insert(V).second);
     684             : 
     685     2314670 :   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
     686     4629340 :   if (V->getType()->isVectorTy())
     687           2 :     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
     688           2 :                                     OffsetIntPtr);
     689             :   return OffsetIntPtr;
     690             : }
     691             : 
     692             : /// Compute the constant difference between two pointer values.
     693             : /// If the difference is not a constant, returns zero.
     694      107886 : static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
     695             :                                           Value *RHS) {
     696      107886 :   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
     697      107886 :   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
     698             : 
     699             :   // If LHS and RHS are not related via constant offsets to the same base
     700             :   // value, there is nothing we can do here.
     701      107886 :   if (LHS != RHS)
     702             :     return nullptr;
     703             : 
     704             :   // Otherwise, the difference of LHS - RHS can be computed as:
     705             :   //    LHS - RHS
     706             :   //  = (LHSOffset + Base) - (RHSOffset + Base)
     707             :   //  = LHSOffset - RHSOffset
     708          15 :   return ConstantExpr::getSub(LHSOffset, RHSOffset);
     709             : }
     710             : 
     711             : /// Given operands for a Sub, see if we can fold the result.
     712             : /// If not, this returns null.
     713      280552 : static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
     714             :                               const SimplifyQuery &Q, unsigned MaxRecurse) {
     715      280552 :   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
     716             :     return C;
     717             : 
     718             :   // X - undef -> undef
     719             :   // undef - X -> undef
     720      556422 :   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
     721           2 :     return UndefValue::get(Op0->getType());
     722             : 
     723             :   // X - 0 -> X
     724      278209 :   if (match(Op1, m_Zero()))
     725         641 :     return Op0;
     726             : 
     727             :   // X - X -> 0
     728      277568 :   if (Op0 == Op1)
     729         214 :     return Constant::getNullValue(Op0->getType());
     730             : 
     731             :   // Is this a negation?
     732      277354 :   if (match(Op0, m_Zero())) {
     733             :     // 0 - X -> 0 if the sub is NUW.
     734       12085 :     if (isNUW)
     735          13 :       return Constant::getNullValue(Op0->getType());
     736             : 
     737       24150 :     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
     738       12078 :     if (Known.Zero.isMaxSignedValue()) {
     739             :       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
     740             :       // Op1 must be 0 because negating the minimum signed value is undefined.
     741           6 :       if (isNSW)
     742           6 :         return Constant::getNullValue(Op0->getType());
     743             : 
     744             :       // 0 - X -> X if X is 0 or the minimum signed value.
     745           3 :       return Op1;
     746             :     }
     747             :   }
     748             : 
     749             :   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
     750             :   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
     751      277341 :   Value *X = nullptr, *Y = nullptr, *Z = Op1;
     752      277341 :   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
     753             :     // See if "V === Y - Z" simplifies.
     754        9132 :     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
     755             :       // It does!  Now see if "X + V" simplifies.
     756         651 :       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
     757             :         // It does, we successfully reassociated!
     758             :         ++NumReassoc;
     759             :         return W;
     760             :       }
     761             :     // See if "V === X - Z" simplifies.
     762        9113 :     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
     763             :       // It does!  Now see if "Y + V" simplifies.
     764         300 :       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
     765             :         // It does, we successfully reassociated!
     766             :         ++NumReassoc;
     767             :         return W;
     768             :       }
     769             :   }
     770             : 
     771             :   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
     772             :   // For example, X - (X + 1) -> -1
     773      277294 :   X = Op0;
     774      277294 :   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
     775             :     // See if "V === X - Y" simplifies.
     776        2171 :     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
     777             :       // It does!  Now see if "V - Z" simplifies.
     778          51 :       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
     779             :         // It does, we successfully reassociated!
     780             :         ++NumReassoc;
     781             :         return W;
     782             :       }
     783             :     // See if "V === X - Z" simplifies.
     784        2127 :     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
     785             :       // It does!  Now see if "V - Y" simplifies.
     786         266 :       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
     787             :         // It does, we successfully reassociated!
     788             :         ++NumReassoc;
     789             :         return W;
     790             :       }
     791             :   }
     792             : 
     793             :   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
     794             :   // For example, X - (X - Y) -> Y.
     795      277250 :   Z = Op0;
     796      277250 :   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
     797             :     // See if "V === Z - X" simplifies.
     798         941 :     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
     799             :       // It does!  Now see if "V + Y" simplifies.
     800          55 :       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
     801             :         // It does, we successfully reassociated!
     802             :         ++NumReassoc;
     803             :         return W;
     804             :       }
     805             : 
     806             :   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
     807      277611 :   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
     808      277607 :       match(Op1, m_Trunc(m_Value(Y))))
     809           4 :     if (X->getType() == Y->getType())
     810             :       // See if "V === X - Y" simplifies.
     811           4 :       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
     812             :         // It does!  Now see if "trunc V" simplifies.
     813           1 :         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
     814             :                                         Q, MaxRecurse - 1))
     815             :           // It does, return the simplified "trunc V".
     816             :           return W;
     817             : 
     818             :   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
     819      391834 :   if (match(Op0, m_PtrToInt(m_Value(X))) &&
     820      283948 :       match(Op1, m_PtrToInt(m_Value(Y))))
     821      107886 :     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
     822          15 :       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
     823             : 
     824             :   // i1 sub -> xor.
     825      553753 :   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
     826           6 :     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
     827           3 :       return V;
     828             : 
     829             :   // Threading Sub over selects and phi nodes is pointless, so don't bother.
     830             :   // Threading over the select in "A - select(cond, B, C)" means evaluating
     831             :   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
     832             :   // only if B and C are equal.  If B and C are equal then (since we assume
     833             :   // that operands have already been simplified) "select(cond, B, C)" should
     834             :   // have been simplified to the common value of B and C already.  Analysing
     835             :   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
     836             :   // for threading over phi nodes.
     837             : 
     838             :   return nullptr;
     839             : }
     840             : 
     841      206209 : Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
     842             :                              const SimplifyQuery &Q) {
     843      206209 :   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
     844             : }
     845             : 
     846             : /// Given operands for a Mul, see if we can fold the result.
     847             : /// If not, this returns null.
     848      115655 : static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
     849             :                               unsigned MaxRecurse) {
     850      115655 :   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
     851             :     return C;
     852             : 
     853             :   // X * undef -> 0
     854             :   // X * 0 -> 0
     855      110403 :   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
     856         875 :     return Constant::getNullValue(Op0->getType());
     857             : 
     858             :   // X * 1 -> X
     859      109528 :   if (match(Op1, m_One()))
     860        1792 :     return Op0;
     861             : 
     862             :   // (X / Y) * Y -> X if the division is exact.
     863      107736 :   Value *X = nullptr;
     864      215441 :   if (Q.IIQ.UseInstrInfo &&
     865      107705 :       (match(Op0,
     866      214997 :              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
     867      107292 :        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
     868         415 :     return X;
     869             : 
     870             :   // i1 mul -> and.
     871      191869 :   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
     872           4 :     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
     873             :       return V;
     874             : 
     875             :   // Try some generic simplifications for associative operations.
     876      107319 :   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
     877             :                                           MaxRecurse))
     878             :     return V;
     879             : 
     880             :   // Mul distributes over Add. Try some generic simplifications based on this.
     881      107317 :   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
     882             :                              Q, MaxRecurse))
     883             :     return V;
     884             : 
     885             :   // If the operation is with the result of a select instruction, check whether
     886             :   // operating on either branch of the select always yields the same value.
     887      201998 :   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
     888        1371 :     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
     889             :                                          MaxRecurse))
     890             :       return V;
     891             : 
     892             :   // If the operation is with the result of a phi instruction, check whether
     893             :   // operating on all incoming values of the phi always yields the same value.
     894      190685 :   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
     895       18749 :     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
     896             :                                       MaxRecurse))
     897           0 :       return V;
     898             : 
     899             :   return nullptr;
     900             : }
     901             : 
     902       48940 : Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
     903       48940 :   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
     904             : }
     905             : 
     906             : /// Check for common or similar folds of integer division or integer remainder.
     907             : /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
     908      123466 : static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
     909      123466 :   Type *Ty = Op0->getType();
     910             : 
     911             :   // X / undef -> undef
     912             :   // X % undef -> undef
     913      123466 :   if (match(Op1, m_Undef()))
     914             :     return Op1;
     915             : 
     916             :   // X / 0 -> undef
     917             :   // X % 0 -> undef
     918             :   // We don't need to preserve faults!
     919      123451 :   if (match(Op1, m_Zero()))
     920          66 :     return UndefValue::get(Ty);
     921             : 
     922             :   // If any element of a constant divisor vector is zero or undef, the whole op
     923             :   // is undef.
     924             :   auto *Op1C = dyn_cast<Constant>(Op1);
     925       96660 :   if (Op1C && Ty->isVectorTy()) {
     926             :     unsigned NumElts = Ty->getVectorNumElements();
     927        1582 :     for (unsigned i = 0; i != NumElts; ++i) {
     928        1275 :       Constant *Elt = Op1C->getAggregateElement(i);
     929        1275 :       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
     930          20 :         return UndefValue::get(Ty);
     931             :     }
     932             :   }
     933             : 
     934             :   // undef / X -> 0
     935             :   // undef % X -> 0
     936      123365 :   if (match(Op0, m_Undef()))
     937           0 :     return Constant::getNullValue(Ty);
     938             : 
     939             :   // 0 / X -> 0
     940             :   // 0 % X -> 0
     941      123365 :   if (match(Op0, m_Zero()))
     942          19 :     return Constant::getNullValue(Op0->getType());
     943             : 
     944             :   // X / X -> 1
     945             :   // X % X -> 0
     946      123346 :   if (Op0 == Op1)
     947          22 :     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
     948             : 
     949             :   // X / 1 -> X
     950             :   // X % 1 -> 0
     951             :   // If this is a boolean op (single-bit element type), we can't have
     952             :   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
     953             :   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
     954             :   Value *X;
     955      369644 :   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
     956      246464 :       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
     957         173 :     return IsDiv ? Op0 : Constant::getNullValue(Ty);
     958             : 
     959             :   return nullptr;
     960             : }
     961             : 
     962             : /// Given a predicate and two operands, return true if the comparison is true.
     963             : /// This is a helper for div/rem simplification where we return some other value
     964             : /// when we can prove a relationship between the operands.
     965      122126 : static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
     966             :                        const SimplifyQuery &Q, unsigned MaxRecurse) {
     967      122126 :   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
     968             :   Constant *C = dyn_cast_or_null<Constant>(V);
     969         985 :   return (C && C->isAllOnesValue());
     970             : }
     971             : 
     972             : /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
     973             : /// to simplify X % Y to X.
     974      123132 : static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
     975             :                       unsigned MaxRecurse, bool IsSigned) {
     976             :   // Recursion is always used, so bail out at once if we already hit the limit.
     977      123132 :   if (!MaxRecurse--)
     978             :     return false;
     979             : 
     980      123130 :   if (IsSigned) {
     981             :     // |X| / |Y| --> 0
     982             :     //
     983             :     // We require that 1 operand is a simple constant. That could be extended to
     984             :     // 2 variables if we computed the sign bit for each.
     985             :     //
     986             :     // Make sure that a constant is not the minimum signed value because taking
     987             :     // the abs() of that is undefined.
     988       79066 :     Type *Ty = X->getType();
     989             :     const APInt *C;
     990       79066 :     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
     991             :       // Is the variable divisor magnitude always greater than the constant
     992             :       // dividend magnitude?
     993             :       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
     994          61 :       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
     995         183 :       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
     996         122 :       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
     997          61 :           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
     998           0 :         return true;
     999             :     }
    1000       79066 :     if (match(Y, m_APInt(C))) {
    1001             :       // Special-case: we can't take the abs() of a minimum signed value. If
    1002             :       // that's the divisor, then all we have to do is prove that the dividend
    1003             :       // is also not the minimum signed value.
    1004       77703 :       if (C->isMinSignedValue())
    1005           9 :         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
    1006             : 
    1007             :       // Is the variable dividend magnitude always less than the constant
    1008             :       // divisor magnitude?
    1009             :       // |X| < |C| --> X > -abs(C) and X < abs(C)
    1010       77694 :       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
    1011      233082 :       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
    1012       77931 :       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
    1013         237 :           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
    1014             :         return true;
    1015             :     }
    1016       79038 :     return false;
    1017             :   }
    1018             : 
    1019             :   // IsSigned == false.
    1020             :   // Is the dividend unsigned less than the divisor?
    1021       44064 :   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
    1022             : }
    1023             : 
    1024             : /// These are simplifications common to SDiv and UDiv.
    1025       94402 : static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    1026             :                           const SimplifyQuery &Q, unsigned MaxRecurse) {
    1027       94402 :   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
    1028             :     return C;
    1029             : 
    1030       93479 :   if (Value *V = simplifyDivRem(Op0, Op1, true))
    1031             :     return V;
    1032             : 
    1033       93240 :   bool IsSigned = Opcode == Instruction::SDiv;
    1034             : 
    1035             :   // (X * Y) / Y -> X if the multiplication does not overflow.
    1036             :   Value *X;
    1037       93240 :   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
    1038          81 :     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
    1039             :     // If the Mul does not overflow, then we are good to go.
    1040          81 :     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
    1041          57 :         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
    1042           4 :       return X;
    1043             :     // If X has the form X = A / Y, then X * Y cannot overflow.
    1044          77 :     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
    1045         130 :         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
    1046           4 :       return X;
    1047             :   }
    1048             : 
    1049             :   // (X rem Y) / Y -> 0
    1050       93232 :   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
    1051       34636 :       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
    1052           2 :     return Constant::getNullValue(Op0->getType());
    1053             : 
    1054             :   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
    1055             :   ConstantInt *C1, *C2;
    1056       93236 :   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
    1057          32 :       match(Op1, m_ConstantInt(C2))) {
    1058             :     bool Overflow;
    1059          52 :     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
    1060          26 :     if (Overflow)
    1061           1 :       return Constant::getNullValue(Op0->getType());
    1062             :   }
    1063             : 
    1064             :   // If the operation is with the result of a select instruction, check whether
    1065             :   // operating on either branch of the select always yields the same value.
    1066      182352 :   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    1067         166 :     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
    1068             :       return V;
    1069             : 
    1070             :   // If the operation is with the result of a phi instruction, check whether
    1071             :   // operating on all incoming values of the phi always yields the same value.
    1072      180548 :   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    1073        3012 :     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
    1074             :       return V;
    1075             : 
    1076       93229 :   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
    1077          16 :     return Constant::getNullValue(Op0->getType());
    1078             : 
    1079             :   return nullptr;
    1080             : }
    1081             : 
    1082             : /// These are simplifications common to SRem and URem.
    1083       30212 : static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    1084             :                           const SimplifyQuery &Q, unsigned MaxRecurse) {
    1085       30212 :   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
    1086             :     return C;
    1087             : 
    1088       29987 :   if (Value *V = simplifyDivRem(Op0, Op1, false))
    1089             :     return V;
    1090             : 
    1091             :   // (X % Y) % Y -> X % Y
    1092        3157 :   if ((Opcode == Instruction::SRem &&
    1093       29911 :        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
    1094       26754 :       (Opcode == Instruction::URem &&
    1095       26754 :        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
    1096           2 :     return Op0;
    1097             : 
    1098             :   // (X << Y) % X -> 0
    1099       29909 :   if (Q.IIQ.UseInstrInfo &&
    1100        3156 :       ((Opcode == Instruction::SRem &&
    1101       29909 :         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
    1102       26753 :        (Opcode == Instruction::URem &&
    1103       26753 :         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
    1104           4 :     return Constant::getNullValue(Op0->getType());
    1105             : 
    1106             :   // If the operation is with the result of a select instruction, check whether
    1107             :   // operating on either branch of the select always yields the same value.
    1108       56935 :   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    1109         114 :     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
    1110             :       return V;
    1111             : 
    1112             :   // If the operation is with the result of a phi instruction, check whether
    1113             :   // operating on all incoming values of the phi always yields the same value.
    1114       55725 :   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    1115        1769 :     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
    1116             :       return V;
    1117             : 
    1118             :   // If X / Y == 0, then X % Y == X.
    1119       29903 :   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
    1120          14 :     return Op0;
    1121             : 
    1122             :   return nullptr;
    1123             : }
    1124             : 
    1125             : /// Given operands for an SDiv, see if we can fold the result.
    1126             : /// If not, this returns null.
    1127       76231 : static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    1128             :                                unsigned MaxRecurse) {
    1129             :   // If two operands are negated and no signed overflow, return -1.
    1130       76231 :   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
    1131           7 :     return Constant::getAllOnesValue(Op0->getType());
    1132             : 
    1133       76224 :   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
    1134             : }
    1135             : 
    1136       71977 : Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    1137       71977 :   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
    1138             : }
    1139             : 
    1140             : /// Given operands for a UDiv, see if we can fold the result.
    1141             : /// If not, this returns null.
    1142        4527 : static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    1143             :                                unsigned MaxRecurse) {
    1144        4527 :   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
    1145             : }
    1146             : 
    1147       13651 : Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    1148       13651 :   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
    1149             : }
    1150             : 
    1151             : /// Given operands for an SRem, see if we can fold the result.
    1152             : /// If not, this returns null.
    1153        3212 : static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    1154             :                                unsigned MaxRecurse) {
    1155             :   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
    1156             :   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
    1157             :   Value *X;
    1158        3219 :   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
    1159           2 :     return ConstantInt::getNullValue(Op0->getType());
    1160             : 
    1161             :   // If the two operands are negated, return 0.
    1162        3210 :   if (isKnownNegation(Op0, Op1))
    1163           6 :     return ConstantInt::getNullValue(Op0->getType());
    1164             : 
    1165        3204 :   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
    1166             : }
    1167             : 
    1168        3077 : Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    1169        3077 :   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
    1170             : }
    1171             : 
    1172             : /// Given operands for a URem, see if we can fold the result.
    1173             : /// If not, this returns null.
    1174        3708 : static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    1175             :                                unsigned MaxRecurse) {
    1176        3708 :   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
    1177             : }
    1178             : 
    1179       23300 : Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    1180       23300 :   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
    1181             : }
    1182             : 
    1183             : /// Returns true if a shift by \c Amount always yields undef.
    1184      232799 : static bool isUndefShift(Value *Amount) {
    1185             :   Constant *C = dyn_cast<Constant>(Amount);
    1186             :   if (!C)
    1187             :     return false;
    1188             : 
    1189             :   // X shift by undef -> undef because it may shift by the bitwidth.
    1190      204046 :   if (isa<UndefValue>(C))
    1191             :     return true;
    1192             : 
    1193             :   // Shifting by the bitwidth or more is undefined.
    1194             :   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
    1195      201632 :     if (CI->getValue().getLimitedValue() >=
    1196      201632 :         CI->getType()->getScalarSizeInBits())
    1197             :       return true;
    1198             : 
    1199             :   // If all lanes of a vector shift are undefined the whole shift is.
    1200      203968 :   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
    1201        2327 :     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
    1202        2323 :       if (!isUndefShift(C->getAggregateElement(I)))
    1203             :         return false;
    1204             :     return true;
    1205             :   }
    1206             : 
    1207             :   return false;
    1208             : }
    1209             : 
    1210             : /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
    1211             : /// If not, this returns null.
    1212      239702 : static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
    1213             :                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
    1214      239702 :   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
    1215             :     return C;
    1216             : 
    1217             :   // 0 shift by X -> 0
    1218      231180 :   if (match(Op0, m_Zero()))
    1219         569 :     return Constant::getNullValue(Op0->getType());
    1220             : 
    1221             :   // X shift by 0 -> X
    1222             :   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
    1223             :   // would be poison.
    1224             :   Value *X;
    1225      461093 :   if (match(Op1, m_Zero()) ||
    1226      230516 :       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
    1227         135 :     return Op0;
    1228             : 
    1229             :   // Fold undefined shifts.
    1230      230476 :   if (isUndefShift(Op1))
    1231          20 :     return UndefValue::get(Op0->getType());
    1232             : 
    1233             :   // If the operation is with the result of a select instruction, check whether
    1234             :   // operating on either branch of the select always yields the same value.
    1235      420118 :   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    1236        3407 :     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
    1237             :       return V;
    1238             : 
    1239             :   // If the operation is with the result of a phi instruction, check whether
    1240             :   // operating on all incoming values of the phi always yields the same value.
    1241      408492 :   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    1242       15610 :     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
    1243             :       return V;
    1244             : 
    1245             :   // If any bits in the shift amount make that value greater than or equal to
    1246             :   // the number of bits in the type, the shift is undefined.
    1247      460910 :   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    1248      230455 :   if (Known.One.getLimitedValue() >= Known.getBitWidth())
    1249           4 :     return UndefValue::get(Op0->getType());
    1250             : 
    1251             :   // If all valid bits in the shift amount are known zero, the first operand is
    1252             :   // unchanged.
    1253             :   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
    1254      230451 :   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
    1255           6 :     return Op0;
    1256             : 
    1257             :   return nullptr;
    1258             : }
    1259             : 
    1260             : /// Given operands for an Shl, LShr or AShr, see if we can
    1261             : /// fold the result.  If not, this returns null.
    1262      134861 : static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
    1263             :                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
    1264             :                                  unsigned MaxRecurse) {
    1265      134861 :   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
    1266             :     return V;
    1267             : 
    1268             :   // X >> X -> 0
    1269      132687 :   if (Op0 == Op1)
    1270           3 :     return Constant::getNullValue(Op0->getType());
    1271             : 
    1272             :   // undef >> X -> 0
    1273             :   // undef >> X -> undef (if it's exact)
    1274      132684 :   if (match(Op0, m_Undef()))
    1275           3 :     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
    1276             : 
    1277             :   // The low bit cannot be shifted out of an exact shift if it is set.
    1278      132681 :   if (isExact) {
    1279       59086 :     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
    1280       29545 :     if (Op0Known.One[0])
    1281           4 :       return Op0;
    1282             :   }
    1283             : 
    1284             :   return nullptr;
    1285             : }
    1286             : 
    1287             : /// Given operands for an Shl, see if we can fold the result.
    1288             : /// If not, this returns null.
    1289      104841 : static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    1290             :                               const SimplifyQuery &Q, unsigned MaxRecurse) {
    1291      104841 :   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
    1292             :     return V;
    1293             : 
    1294             :   // undef << X -> 0
    1295             :   // undef << X -> undef if (if it's NSW/NUW)
    1296       97758 :   if (match(Op0, m_Undef()))
    1297           4 :     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
    1298             : 
    1299             :   // (X >> A) << A -> X
    1300             :   Value *X;
    1301      195487 :   if (Q.IIQ.UseInstrInfo &&
    1302       97733 :       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
    1303          57 :     return X;
    1304             : 
    1305             :   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
    1306      105069 :   if (isNUW && match(Op0, m_Negative()))
    1307           6 :     return Op0;
    1308             :   // NOTE: could use computeKnownBits() / LazyValueInfo,
    1309             :   // but the cost-benefit analysis suggests it isn't worth it.
    1310             : 
    1311             :   return nullptr;
    1312             : }
    1313             : 
    1314       66882 : Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    1315             :                              const SimplifyQuery &Q) {
    1316       66882 :   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
    1317             : }
    1318             : 
    1319             : /// Given operands for an LShr, see if we can fold the result.
    1320             : /// If not, this returns null.
    1321       66618 : static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
    1322             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    1323       66618 :   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
    1324             :                                     MaxRecurse))
    1325             :       return V;
    1326             : 
    1327             :   // (X << A) >> A -> X
    1328             :   Value *X;
    1329       64653 :   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
    1330          12 :     return X;
    1331             : 
    1332             :   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
    1333             :   // We can return X as we do in the above case since OR alters no bits in X.
    1334             :   // SimplifyDemandedBits in InstCombine can do more general optimization for
    1335             :   // bit manipulation. This pattern aims to provide opportunities for other
    1336             :   // optimizers by supporting a simple but common case in InstSimplify.
    1337             :   Value *Y;
    1338             :   const APInt *ShRAmt, *ShLAmt;
    1339      123400 :   if (match(Op1, m_APInt(ShRAmt)) &&
    1340      123400 :       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
    1341         147 :       *ShRAmt == *ShLAmt) {
    1342          66 :     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    1343          55 :     const unsigned Width = Op0->getType()->getScalarSizeInBits();
    1344          55 :     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
    1345         110 :     if (ShRAmt->uge(EffWidthY))
    1346          44 :       return X;
    1347             :   }
    1348             : 
    1349             :   return nullptr;
    1350             : }
    1351             : 
    1352       50098 : Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
    1353             :                               const SimplifyQuery &Q) {
    1354       50098 :   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
    1355             : }
    1356             : 
    1357             : /// Given operands for an AShr, see if we can fold the result.
    1358             : /// If not, this returns null.
    1359       68243 : static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
    1360             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    1361       68243 :   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
    1362             :                                     MaxRecurse))
    1363             :     return V;
    1364             : 
    1365             :   // all ones >>a X -> -1
    1366             :   // Do not return Op0 because it may contain undef elements if it's a vector.
    1367       68024 :   if (match(Op0, m_AllOnes()))
    1368           8 :     return Constant::getAllOnesValue(Op0->getType());
    1369             : 
    1370             :   // (X << A) >> A -> X
    1371             :   Value *X;
    1372       68016 :   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
    1373           3 :     return X;
    1374             : 
    1375             :   // Arithmetic shifting an all-sign-bit value is a no-op.
    1376       68013 :   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    1377       68013 :   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
    1378           7 :     return Op0;
    1379             : 
    1380             :   return nullptr;
    1381             : }
    1382             : 
    1383       54666 : Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
    1384             :                               const SimplifyQuery &Q) {
    1385       54666 :   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
    1386             : }
    1387             : 
    1388             : /// Commuted variants are assumed to be handled by calling this function again
    1389             : /// with the parameters swapped.
    1390       35550 : static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
    1391             :                                          ICmpInst *UnsignedICmp, bool IsAnd) {
    1392             :   Value *X, *Y;
    1393             : 
    1394             :   ICmpInst::Predicate EqPred;
    1395       35550 :   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
    1396       12878 :       !ICmpInst::isEquality(EqPred))
    1397       23222 :     return nullptr;
    1398             : 
    1399             :   ICmpInst::Predicate UnsignedPred;
    1400       12395 :   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
    1401          67 :       ICmpInst::isUnsigned(UnsignedPred))
    1402             :     ;
    1403             :   else if (match(UnsignedICmp,
    1404       13230 :                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
    1405         911 :            ICmpInst::isUnsigned(UnsignedPred))
    1406         137 :     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
    1407             :   else
    1408       12182 :     return nullptr;
    1409             : 
    1410             :   // X < Y && Y != 0  -->  X < Y
    1411             :   // X < Y || Y != 0  -->  Y != 0
    1412         146 :   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
    1413          11 :     return IsAnd ? UnsignedICmp : ZeroICmp;
    1414             : 
    1415             :   // X >= Y || Y != 0  -->  true
    1416             :   // X >= Y || Y == 0  -->  X >= Y
    1417         137 :   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
    1418           5 :     if (EqPred == ICmpInst::ICMP_NE)
    1419           3 :       return getTrue(UnsignedICmp->getType());
    1420             :     return UnsignedICmp;
    1421             :   }
    1422             : 
    1423             :   // X < Y && Y == 0  -->  false
    1424         132 :   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
    1425             :       IsAnd)
    1426           4 :     return getFalse(UnsignedICmp->getType());
    1427             : 
    1428             :   return nullptr;
    1429             : }
    1430             : 
    1431             : /// Commuted variants are assumed to be handled by calling this function again
    1432             : /// with the parameters swapped.
    1433       16154 : static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
    1434             :   ICmpInst::Predicate Pred0, Pred1;
    1435             :   Value *A ,*B;
    1436             :   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
    1437             :       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
    1438       15932 :     return nullptr;
    1439             : 
    1440             :   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
    1441             :   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
    1442             :   // can eliminate Op1 from this 'and'.
    1443         222 :   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
    1444             :     return Op0;
    1445             : 
    1446             :   // Check for any combination of predicates that are guaranteed to be disjoint.
    1447         349 :   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
    1448         163 :       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
    1449         340 :       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
    1450          13 :       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
    1451          39 :     return getFalse(Op0->getType());
    1452             : 
    1453             :   return nullptr;
    1454             : }
    1455             : 
    1456             : /// Commuted variants are assumed to be handled by calling this function again
    1457             : /// with the parameters swapped.
    1458       19193 : static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
    1459             :   ICmpInst::Predicate Pred0, Pred1;
    1460             :   Value *A ,*B;
    1461             :   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
    1462             :       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
    1463       18876 :     return nullptr;
    1464             : 
    1465             :   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
    1466             :   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
    1467             :   // can eliminate Op0 from this 'or'.
    1468         317 :   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
    1469             :     return Op1;
    1470             : 
    1471             :   // Check for any combination of predicates that cover the entire range of
    1472             :   // possibilities.
    1473         409 :   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
    1474         192 :       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
    1475         401 :       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
    1476          13 :       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
    1477          37 :     return getTrue(Op0->getType());
    1478             : 
    1479             :   return nullptr;
    1480             : }
    1481             : 
    1482             : /// Test if a pair of compares with a shared operand and 2 constants has an
    1483             : /// empty set intersection, full set union, or if one compare is a superset of
    1484             : /// the other.
    1485       17549 : static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
    1486             :                                                 bool IsAnd) {
    1487             :   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
    1488       17549 :   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
    1489             :     return nullptr;
    1490             : 
    1491             :   const APInt *C0, *C1;
    1492        7764 :   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
    1493        1064 :       !match(Cmp1->getOperand(1), m_APInt(C1)))
    1494        2405 :     return nullptr;
    1495             : 
    1496        2835 :   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
    1497        2835 :   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
    1498             : 
    1499             :   // For and-of-compares, check if the intersection is empty:
    1500             :   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
    1501         945 :   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
    1502          53 :     return getFalse(Cmp0->getType());
    1503             : 
    1504             :   // For or-of-compares, check if the union is full:
    1505             :   // (icmp X, C0) || (icmp X, C1) --> full set --> true
    1506         892 :   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
    1507          43 :     return getTrue(Cmp0->getType());
    1508             : 
    1509             :   // Is one range a superset of the other?
    1510             :   // If this is and-of-compares, take the smaller set:
    1511             :   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
    1512             :   // If this is or-of-compares, take the larger set:
    1513             :   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
    1514         849 :   if (Range0.contains(Range1))
    1515         150 :     return IsAnd ? Cmp1 : Cmp0;
    1516         744 :   if (Range1.contains(Range0))
    1517         172 :     return IsAnd ? Cmp0 : Cmp1;
    1518             : 
    1519             :   return nullptr;
    1520             : }
    1521             : 
    1522       17232 : static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
    1523             :                                            bool IsAnd) {
    1524             :   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
    1525        6839 :   if (!match(Cmp0->getOperand(1), m_Zero()) ||
    1526       21035 :       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
    1527       15812 :     return nullptr;
    1528             : 
    1529        1420 :   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
    1530             :     return nullptr;
    1531             : 
    1532             :   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
    1533             :   Value *X = Cmp0->getOperand(0);
    1534             :   Value *Y = Cmp1->getOperand(0);
    1535             : 
    1536             :   // If one of the compares is a masked version of a (not) null check, then
    1537             :   // that compare implies the other, so we eliminate the other. Optionally, look
    1538             :   // through a pointer-to-int cast to match a null check of a pointer type.
    1539             : 
    1540             :   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
    1541             :   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
    1542             :   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
    1543             :   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
    1544        2534 :   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
    1545        1262 :       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
    1546           9 :     return Cmp1;
    1547             : 
    1548             :   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
    1549             :   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
    1550             :   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
    1551             :   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
    1552        2516 :   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
    1553        1253 :       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
    1554           9 :     return Cmp0;
    1555             : 
    1556             :   return nullptr;
    1557             : }
    1558             : 
    1559       15686 : static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
    1560             :                                         const InstrInfoQuery &IIQ) {
    1561             :   // (icmp (add V, C0), C1) & (icmp V, C0)
    1562             :   ICmpInst::Predicate Pred0, Pred1;
    1563             :   const APInt *C0, *C1;
    1564             :   Value *V;
    1565       15686 :   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
    1566             :     return nullptr;
    1567             : 
    1568         595 :   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
    1569         565 :     return nullptr;
    1570             : 
    1571             :   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
    1572          60 :   if (AddInst->getOperand(1) != Op1->getOperand(1))
    1573             :     return nullptr;
    1574             : 
    1575          17 :   Type *ITy = Op0->getType();
    1576          17 :   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
    1577             :   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
    1578             : 
    1579          17 :   const APInt Delta = *C1 - *C0;
    1580          17 :   if (C0->isStrictlyPositive()) {
    1581          17 :     if (Delta == 2) {
    1582           6 :       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
    1583           2 :         return getFalse(ITy);
    1584           4 :       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
    1585           2 :         return getFalse(ITy);
    1586             :     }
    1587          13 :     if (Delta == 1) {
    1588           6 :       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
    1589           2 :         return getFalse(ITy);
    1590           4 :       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
    1591           2 :         return getFalse(ITy);
    1592             :     }
    1593             :   }
    1594           9 :   if (C0->getBoolValue() && isNUW) {
    1595           4 :     if (Delta == 2)
    1596           2 :       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
    1597           2 :         return getFalse(ITy);
    1598           2 :     if (Delta == 1)
    1599           2 :       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
    1600           2 :         return getFalse(ITy);
    1601             :   }
    1602             : 
    1603             :   return nullptr;
    1604             : }
    1605             : 
    1606        8116 : static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
    1607             :                                  const InstrInfoQuery &IIQ) {
    1608        8116 :   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
    1609             :     return X;
    1610        8109 :   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
    1611             :     return X;
    1612             : 
    1613        8105 :   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
    1614             :     return X;
    1615        8049 :   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
    1616             :     return X;
    1617             : 
    1618        8030 :   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
    1619             :     return X;
    1620             : 
    1621        7857 :   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
    1622             :     return X;
    1623             : 
    1624        7849 :   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
    1625             :     return X;
    1626        7837 :   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
    1627           0 :     return X;
    1628             : 
    1629             :   return nullptr;
    1630             : }
    1631             : 
    1632       18718 : static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
    1633             :                                        const InstrInfoQuery &IIQ) {
    1634             :   // (icmp (add V, C0), C1) | (icmp V, C0)
    1635             :   ICmpInst::Predicate Pred0, Pred1;
    1636             :   const APInt *C0, *C1;
    1637             :   Value *V;
    1638       18718 :   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
    1639             :     return nullptr;
    1640             : 
    1641         120 :   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
    1642          23 :     return nullptr;
    1643             : 
    1644             :   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
    1645          97 :   if (AddInst->getOperand(1) != Op1->getOperand(1))
    1646             :     return nullptr;
    1647             : 
    1648          12 :   Type *ITy = Op0->getType();
    1649          12 :   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
    1650          12 :   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
    1651             : 
    1652          12 :   const APInt Delta = *C1 - *C0;
    1653          12 :   if (C0->isStrictlyPositive()) {
    1654          12 :     if (Delta == 2) {
    1655           6 :       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
    1656           2 :         return getTrue(ITy);
    1657           4 :       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
    1658           2 :         return getTrue(ITy);
    1659             :     }
    1660           8 :     if (Delta == 1) {
    1661           6 :       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
    1662           2 :         return getTrue(ITy);
    1663           4 :       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
    1664           2 :         return getTrue(ITy);
    1665             :     }
    1666             :   }
    1667           4 :   if (C0->getBoolValue() && isNUW) {
    1668           4 :     if (Delta == 2)
    1669           2 :       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
    1670           2 :         return getTrue(ITy);
    1671           2 :     if (Delta == 1)
    1672           2 :       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
    1673           2 :         return getTrue(ITy);
    1674             :   }
    1675             : 
    1676             :   return nullptr;
    1677             : }
    1678             : 
    1679        9663 : static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
    1680             :                                 const InstrInfoQuery &IIQ) {
    1681        9663 :   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
    1682             :     return X;
    1683        9662 :   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
    1684             :     return X;
    1685             : 
    1686        9656 :   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
    1687             :     return X;
    1688        9537 :   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
    1689             :     return X;
    1690             : 
    1691        9519 :   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
    1692             :     return X;
    1693             : 
    1694        9375 :   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
    1695             :     return X;
    1696             : 
    1697        9365 :   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
    1698             :     return X;
    1699        9353 :   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
    1700           0 :     return X;
    1701             : 
    1702             :   return nullptr;
    1703             : }
    1704             : 
    1705        1275 : static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
    1706             :                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
    1707             :   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
    1708             :   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
    1709        1275 :   if (LHS0->getType() != RHS0->getType())
    1710             :     return nullptr;
    1711             : 
    1712             :   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
    1713        1272 :   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
    1714        1257 :       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
    1715             :     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
    1716             :     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
    1717             :     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
    1718             :     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
    1719             :     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
    1720             :     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
    1721             :     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
    1722             :     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
    1723          56 :     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
    1724          42 :         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
    1725           8 :       return RHS;
    1726             : 
    1727             :     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
    1728             :     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
    1729             :     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
    1730             :     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
    1731             :     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
    1732             :     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
    1733             :     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
    1734             :     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
    1735          40 :     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
    1736          34 :         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
    1737           8 :       return LHS;
    1738             :   }
    1739             : 
    1740             :   return nullptr;
    1741             : }
    1742             : 
    1743      465082 : static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
    1744             :                                   Value *Op0, Value *Op1, bool IsAnd) {
    1745             :   // Look through casts of the 'and' operands to find compares.
    1746             :   auto *Cast0 = dyn_cast<CastInst>(Op0);
    1747             :   auto *Cast1 = dyn_cast<CastInst>(Op1);
    1748      467677 :   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
    1749             :       Cast0->getSrcTy() == Cast1->getSrcTy()) {
    1750             :     Op0 = Cast0->getOperand(0);
    1751             :     Op1 = Cast1->getOperand(0);
    1752             :   }
    1753             : 
    1754             :   Value *V = nullptr;
    1755             :   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
    1756             :   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
    1757      465082 :   if (ICmp0 && ICmp1)
    1758       17779 :     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
    1759        9663 :               : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
    1760             : 
    1761             :   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
    1762             :   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
    1763      465082 :   if (FCmp0 && FCmp1)
    1764        1275 :     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
    1765             : 
    1766      465082 :   if (!V)
    1767             :     return nullptr;
    1768         605 :   if (!Cast0)
    1769             :     return V;
    1770             : 
    1771             :   // If we looked through casts, we can only handle a constant simplification
    1772             :   // because we are not allowed to create a cast instruction here.
    1773             :   if (auto *C = dyn_cast<Constant>(V))
    1774          16 :     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
    1775             : 
    1776             :   return nullptr;
    1777             : }
    1778             : 
    1779             : /// Given operands for an And, see if we can fold the result.
    1780             : /// If not, this returns null.
    1781      314124 : static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    1782             :                               unsigned MaxRecurse) {
    1783      314124 :   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
    1784             :     return C;
    1785             : 
    1786             :   // X & undef -> 0
    1787      607672 :   if (match(Op1, m_Undef()))
    1788           2 :     return Constant::getNullValue(Op0->getType());
    1789             : 
    1790             :   // X & X = X
    1791      303834 :   if (Op0 == Op1)
    1792             :     return Op0;
    1793             : 
    1794             :   // X & 0 = 0
    1795      303758 :   if (match(Op1, m_Zero()))
    1796        1326 :     return Constant::getNullValue(Op0->getType());
    1797             : 
    1798             :   // X & -1 = X
    1799      302432 :   if (match(Op1, m_AllOnes()))
    1800        4776 :     return Op0;
    1801             : 
    1802             :   // A & ~A  =  ~A & A  =  0
    1803      595275 :   if (match(Op0, m_Not(m_Specific(Op1))) ||
    1804      297619 :       match(Op1, m_Not(m_Specific(Op0))))
    1805          60 :     return Constant::getNullValue(Op0->getType());
    1806             : 
    1807             :   // (A | ?) & A = A
    1808      595192 :   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
    1809             :     return Op1;
    1810             : 
    1811             :   // A & (A | ?) = A
    1812      595102 :   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
    1813             :     return Op0;
    1814             : 
    1815             :   // A mask that only clears known zeros of a shifted value is a no-op.
    1816             :   Value *X;
    1817             :   const APInt *Mask;
    1818             :   const APInt *ShAmt;
    1819      297498 :   if (match(Op1, m_APInt(Mask))) {
    1820             :     // If all bits in the inverted and shifted mask are clear:
    1821             :     // and (shl X, ShAmt), Mask --> shl X, ShAmt
    1822      208472 :     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
    1823      226920 :         (~(*Mask)).lshr(*ShAmt).isNullValue())
    1824         232 :       return Op0;
    1825             : 
    1826             :     // If all bits in the inverted and shifted mask are clear:
    1827             :     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
    1828      210429 :     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
    1829      237633 :         (~(*Mask)).shl(*ShAmt).isNullValue())
    1830          59 :       return Op0;
    1831             :   }
    1832             : 
    1833             :   // A & (-A) = A if A is a power of two or zero.
    1834      594414 :   if (match(Op0, m_Neg(m_Specific(Op1))) ||
    1835      594404 :       match(Op1, m_Neg(m_Specific(Op0)))) {
    1836          10 :     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
    1837          10 :                                Q.DT))
    1838           2 :       return Op0;
    1839           8 :     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
    1840           8 :                                Q.DT))
    1841           0 :       return Op1;
    1842             :   }
    1843             : 
    1844      297205 :   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
    1845             :     return V;
    1846             : 
    1847             :   // Try some generic simplifications for associative operations.
    1848      296918 :   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
    1849             :                                           MaxRecurse))
    1850             :     return V;
    1851             : 
    1852             :   // And distributes over Or.  Try some generic simplifications based on this.
    1853      295683 :   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
    1854             :                              Q, MaxRecurse))
    1855             :     return V;
    1856             : 
    1857             :   // And distributes over Xor.  Try some generic simplifications based on this.
    1858      295018 :   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
    1859             :                              Q, MaxRecurse))
    1860             :     return V;
    1861             : 
    1862             :   // If the operation is with the result of a select instruction, check whether
    1863             :   // operating on either branch of the select always yields the same value.
    1864      571840 :   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    1865         713 :     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
    1866             :                                          MaxRecurse))
    1867             :       return V;
    1868             : 
    1869             :   // If the operation is with the result of a phi instruction, check whether
    1870             :   // operating on all incoming values of the phi always yields the same value.
    1871      554137 :   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    1872       20591 :     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
    1873             :                                       MaxRecurse))
    1874             :       return V;
    1875             : 
    1876             :   // Assuming the effective width of Y is not larger than A, i.e. all bits
    1877             :   // from X and Y are disjoint in (X << A) | Y,
    1878             :   // if the mask of this AND op covers all bits of X or Y, while it covers
    1879             :   // no bits from the other, we can bypass this AND op. E.g.,
    1880             :   // ((X << A) | Y) & Mask -> Y,
    1881             :   //     if Mask = ((1 << effective_width_of(Y)) - 1)
    1882             :   // ((X << A) | Y) & Mask -> X << A,
    1883             :   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
    1884             :   // SimplifyDemandedBits in InstCombine can optimize the general case.
    1885             :   // This pattern aims to help other passes for a common case.
    1886             :   Value *Y, *XShifted;
    1887      496692 :   if (match(Op1, m_APInt(Mask)) &&
    1888      496545 :       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
    1889             :                                      m_Value(XShifted)),
    1890             :                         m_Value(Y)))) {
    1891         147 :     const unsigned Width = Op0->getType()->getScalarSizeInBits();
    1892         147 :     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
    1893         276 :     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    1894         147 :     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
    1895         147 :     if (EffWidthY <= ShftCnt) {
    1896          73 :       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
    1897         128 :                                                 Q.DT);
    1898          73 :       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
    1899          73 :       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
    1900          73 :       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
    1901             :       // If the mask is extracting all bits from X or Y as is, we can skip
    1902             :       // this AND op.
    1903         193 :       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
    1904          11 :         return Y;
    1905          71 :       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
    1906           7 :         return XShifted;
    1907             :     }
    1908             :   }
    1909             : 
    1910             :   return nullptr;
    1911             : }
    1912             : 
    1913      229278 : Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    1914      229278 :   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
    1915             : }
    1916             : 
    1917             : /// Given operands for an Or, see if we can fold the result.
    1918             : /// If not, this returns null.
    1919      182141 : static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    1920             :                              unsigned MaxRecurse) {
    1921      182141 :   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
    1922             :     return C;
    1923             : 
    1924             :   // X | undef -> -1
    1925             :   // X | -1 = -1
    1926             :   // Do not return Op1 because it may contain undef elements if it's a vector.
    1927      514674 :   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
    1928          62 :     return Constant::getAllOnesValue(Op0->getType());
    1929             : 
    1930             :   // X | X = X
    1931             :   // X | 0 = X
    1932      342871 :   if (Op0 == Op1 || match(Op1, m_Zero()))
    1933        1295 :     return Op0;
    1934             : 
    1935             :   // A | ~A  =  ~A | A  =  -1
    1936      340305 :   if (match(Op0, m_Not(m_Specific(Op1))) ||
    1937      170102 :       match(Op1, m_Not(m_Specific(Op0))))
    1938        2060 :     return Constant::getAllOnesValue(Op0->getType());
    1939             : 
    1940             :   // (A & ?) | A = A
    1941      336286 :   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
    1942             :     return Op1;
    1943             : 
    1944             :   // A | (A & ?) = A
    1945      336118 :   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
    1946             :     return Op0;
    1947             : 
    1948             :   // ~(A & ?) | A = -1
    1949      167895 :   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
    1950           2 :     return Constant::getAllOnesValue(Op1->getType());
    1951             : 
    1952             :   // A | ~(A & ?) = -1
    1953      167893 :   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
    1954           0 :     return Constant::getAllOnesValue(Op0->getType());
    1955             : 
    1956             :   Value *A, *B;
    1957             :   // (A & ~B) | (A ^ B) -> (A ^ B)
    1958             :   // (~B & A) | (A ^ B) -> (A ^ B)
    1959             :   // (A & ~B) | (B ^ A) -> (B ^ A)
    1960             :   // (~B & A) | (B ^ A) -> (B ^ A)
    1961      171462 :   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
    1962       10705 :       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
    1963        7134 :        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
    1964           4 :     return Op1;
    1965             : 
    1966             :   // Commute the 'or' operands.
    1967             :   // (A ^ B) | (A & ~B) -> (A ^ B)
    1968             :   // (A ^ B) | (~B & A) -> (A ^ B)
    1969             :   // (B ^ A) | (A & ~B) -> (B ^ A)
    1970             :   // (B ^ A) | (~B & A) -> (B ^ A)
    1971      168701 :   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
    1972        2434 :       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
    1973        1620 :        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
    1974           4 :     return Op0;
    1975             : 
    1976             :   // (A & B) | (~A ^ B) -> (~A ^ B)
    1977             :   // (B & A) | (~A ^ B) -> (~A ^ B)
    1978             :   // (A & B) | (B ^ ~A) -> (B ^ ~A)
    1979             :   // (B & A) | (B ^ ~A) -> (B ^ ~A)
    1980      196870 :   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
    1981       86953 :       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
    1982       57966 :        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
    1983           4 :     return Op1;
    1984             : 
    1985             :   // (~A ^ B) | (A & B) -> (~A ^ B)
    1986             :   // (~A ^ B) | (B & A) -> (~A ^ B)
    1987             :   // (B ^ ~A) | (A & B) -> (B ^ ~A)
    1988             :   // (B ^ ~A) | (B & A) -> (B ^ ~A)
    1989      186156 :   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
    1990       54823 :       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
    1991       36546 :        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
    1992           4 :     return Op0;
    1993             : 
    1994      167877 :   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
    1995             :     return V;
    1996             : 
    1997             :   // Try some generic simplifications for associative operations.
    1998      167559 :   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
    1999             :                                           MaxRecurse))
    2000             :     return V;
    2001             : 
    2002             :   // Or distributes over And.  Try some generic simplifications based on this.
    2003      167277 :   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
    2004             :                              MaxRecurse))
    2005             :     return V;
    2006             : 
    2007             :   // If the operation is with the result of a select instruction, check whether
    2008             :   // operating on either branch of the select always yields the same value.
    2009      326898 :   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    2010         974 :     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
    2011             :                                          MaxRecurse))
    2012             :       return V;
    2013             : 
    2014             :   // (A & C1)|(B & C2)
    2015             :   const APInt *C1, *C2;
    2016      190640 :   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
    2017      187638 :       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
    2018        9006 :     if (*C1 == ~*C2) {
    2019             :       // (A & C1)|(B & C2)
    2020             :       // If we have: ((V + N) & C1) | (V & C2)
    2021             :       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
    2022             :       // replace with V+N.
    2023             :       Value *N;
    2024         399 :       if (C2->isMask() && // C2 == 0+1+
    2025         395 :           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
    2026             :         // Add commutes, try both ways.
    2027           4 :         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
    2028           7 :           return A;
    2029             :       }
    2030             :       // Or commutes, try both ways.
    2031         323 :       if (C1->isMask() &&
    2032         320 :           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
    2033             :         // Add commutes, try both ways.
    2034           3 :         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
    2035           3 :           return B;
    2036             :       }
    2037             :     }
    2038             :   }
    2039             : 
    2040             :   // If the operation is with the result of a phi instruction, check whether
    2041             :   // operating on all incoming values of the phi always yields the same value.
    2042      318985 :   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    2043       14125 :     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
    2044           0 :       return V;
    2045             : 
    2046             :   return nullptr;
    2047             : }
    2048             : 
    2049       64925 : Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    2050       64925 :   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
    2051             : }
    2052             : 
    2053             : /// Given operands for a Xor, see if we can fold the result.
    2054             : /// If not, this returns null.
    2055      112412 : static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
    2056             :                               unsigned MaxRecurse) {
    2057      112412 :   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
    2058             :     return C;
    2059             : 
    2060             :   // A ^ undef -> undef
    2061      218152 :   if (match(Op1, m_Undef()))
    2062             :     return Op1;
    2063             : 
    2064             :   // A ^ 0 = A
    2065      109076 :   if (match(Op1, m_Zero()))
    2066        2277 :     return Op0;
    2067             : 
    2068             :   // A ^ A = 0
    2069      106799 :   if (Op0 == Op1)
    2070          23 :     return Constant::getNullValue(Op0->getType());
    2071             : 
    2072             :   // A ^ ~A  =  ~A ^ A  =  -1
    2073      213552 :   if (match(Op0, m_Not(m_Specific(Op1))) ||
    2074      106776 :       match(Op1, m_Not(m_Specific(Op0))))
    2075           5 :     return Constant::getAllOnesValue(Op0->getType());
    2076             : 
    2077             :   // Try some generic simplifications for associative operations.
    2078      106771 :   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
    2079             :                                           MaxRecurse))
    2080        2137 :     return V;
    2081             : 
    2082             :   // Threading Xor over selects and phi nodes is pointless, so don't bother.
    2083             :   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
    2084             :   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
    2085             :   // only if B and C are equal.  If B and C are equal then (since we assume
    2086             :   // that operands have already been simplified) "select(cond, B, C)" should
    2087             :   // have been simplified to the common value of B and C already.  Analysing
    2088             :   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
    2089             :   // for threading over phi nodes.
    2090             : 
    2091             :   return nullptr;
    2092             : }
    2093             : 
    2094       77974 : Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
    2095       77974 :   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
    2096             : }
    2097             : 
    2098             : 
    2099             : static Type *GetCompareTy(Value *Op) {
    2100     2352205 :   return CmpInst::makeCmpResultType(Op->getType());
    2101             : }
    2102             : 
    2103             : /// Rummage around inside V looking for something equivalent to the comparison
    2104             : /// "LHS Pred RHS". Return such a value if found, otherwise return null.
    2105             : /// Helper function for analyzing max/min idioms.
    2106         352 : static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
    2107             :                                          Value *LHS, Value *RHS) {
    2108             :   SelectInst *SI = dyn_cast<SelectInst>(V);
    2109             :   if (!SI)
    2110             :     return nullptr;
    2111             :   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
    2112             :   if (!Cmp)
    2113             :     return nullptr;
    2114             :   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
    2115         181 :   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
    2116             :     return Cmp;
    2117         169 :   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
    2118         169 :       LHS == CmpRHS && RHS == CmpLHS)
    2119          44 :     return Cmp;
    2120             :   return nullptr;
    2121             : }
    2122             : 
    2123             : // A significant optimization not implemented here is assuming that alloca
    2124             : // addresses are not equal to incoming argument values. They don't *alias*,
    2125             : // as we say, but that doesn't mean they aren't equal, so we take a
    2126             : // conservative approach.
    2127             : //
    2128             : // This is inspired in part by C++11 5.10p1:
    2129             : //   "Two pointers of the same type compare equal if and only if they are both
    2130             : //    null, both point to the same function, or both represent the same
    2131             : //    address."
    2132             : //
    2133             : // This is pretty permissive.
    2134             : //
    2135             : // It's also partly due to C11 6.5.9p6:
    2136             : //   "Two pointers compare equal if and only if both are null pointers, both are
    2137             : //    pointers to the same object (including a pointer to an object and a
    2138             : //    subobject at its beginning) or function, both are pointers to one past the
    2139             : //    last element of the same array object, or one is a pointer to one past the
    2140             : //    end of one array object and the other is a pointer to the start of a
    2141             : //    different array object that happens to immediately follow the first array
    2142             : //    object in the address space.)
    2143             : //
    2144             : // C11's version is more restrictive, however there's no reason why an argument
    2145             : // couldn't be a one-past-the-end value for a stack object in the caller and be
    2146             : // equal to the beginning of a stack object in the callee.
    2147             : //
    2148             : // If the C and C++ standards are ever made sufficiently restrictive in this
    2149             : // area, it may be possible to update LLVM's semantics accordingly and reinstate
    2150             : // this optimization.
    2151             : static Constant *
    2152           0 : computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
    2153             :                    const DominatorTree *DT, CmpInst::Predicate Pred,
    2154             :                    AssumptionCache *AC, const Instruction *CxtI,
    2155             :                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
    2156             :   // First, skip past any trivial no-ops.
    2157           0 :   LHS = LHS->stripPointerCasts();
    2158           0 :   RHS = RHS->stripPointerCasts();
    2159             : 
    2160             :   // A non-null pointer is not equal to a null pointer.
    2161           0 :   if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
    2162           0 :                            IIQ.UseInstrInfo) &&
    2163           0 :       isa<ConstantPointerNull>(RHS) &&
    2164           0 :       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
    2165           0 :     return ConstantInt::get(GetCompareTy(LHS),
    2166           0 :                             !CmpInst::isTrueWhenEqual(Pred));
    2167             : 
    2168             :   // We can only fold certain predicates on pointer comparisons.
    2169           0 :   switch (Pred) {
    2170             :   default:
    2171             :     return nullptr;
    2172             : 
    2173             :     // Equality comaprisons are easy to fold.
    2174             :   case CmpInst::ICMP_EQ:
    2175             :   case CmpInst::ICMP_NE:
    2176             :     break;
    2177             : 
    2178             :     // We can only handle unsigned relational comparisons because 'inbounds' on
    2179             :     // a GEP only protects against unsigned wrapping.
    2180           0 :   case CmpInst::ICMP_UGT:
    2181             :   case CmpInst::ICMP_UGE:
    2182             :   case CmpInst::ICMP_ULT:
    2183             :   case CmpInst::ICMP_ULE:
    2184             :     // However, we have to switch them to their signed variants to handle
    2185             :     // negative indices from the base pointer.
    2186           0 :     Pred = ICmpInst::getSignedPredicate(Pred);
    2187           0 :     break;
    2188             :   }
    2189             : 
    2190             :   // Strip off any constant offsets so that we can reason about them.
    2191             :   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
    2192             :   // here and compare base addresses like AliasAnalysis does, however there are
    2193             :   // numerous hazards. AliasAnalysis and its utilities rely on special rules
    2194             :   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
    2195             :   // doesn't need to guarantee pointer inequality when it says NoAlias.
    2196           0 :   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
    2197           0 :   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
    2198             : 
    2199             :   // If LHS and RHS are related via constant offsets to the same base
    2200             :   // value, we can replace it with an icmp which just compares the offsets.
    2201           0 :   if (LHS == RHS)
    2202           0 :     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
    2203             : 
    2204             :   // Various optimizations for (in)equality comparisons.
    2205           0 :   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
    2206             :     // Different non-empty allocations that exist at the same time have
    2207             :     // different addresses (if the program can tell). Global variables always
    2208             :     // exist, so they always exist during the lifetime of each other and all
    2209             :     // allocas. Two different allocas usually have different addresses...
    2210             :     //
    2211             :     // However, if there's an @llvm.stackrestore dynamically in between two
    2212             :     // allocas, they may have the same address. It's tempting to reduce the
    2213             :     // scope of the problem by only looking at *static* allocas here. That would
    2214             :     // cover the majority of allocas while significantly reducing the likelihood
    2215             :     // of having an @llvm.stackrestore pop up in the middle. However, it's not
    2216             :     // actually impossible for an @llvm.stackrestore to pop up in the middle of
    2217             :     // an entry block. Also, if we have a block that's not attached to a
    2218             :     // function, we can't tell if it's "static" under the current definition.
    2219             :     // Theoretically, this problem could be fixed by creating a new kind of
    2220             :     // instruction kind specifically for static allocas. Such a new instruction
    2221             :     // could be required to be at the top of the entry block, thus preventing it
    2222             :     // from being subject to a @llvm.stackrestore. Instcombine could even
    2223             :     // convert regular allocas into these special allocas. It'd be nifty.
    2224             :     // However, until then, this problem remains open.
    2225             :     //
    2226             :     // So, we'll assume that two non-empty allocas have different addresses
    2227             :     // for now.
    2228             :     //
    2229             :     // With all that, if the offsets are within the bounds of their allocations
    2230             :     // (and not one-past-the-end! so we can't use inbounds!), and their
    2231             :     // allocations aren't the same, the pointers are not equal.
    2232             :     //
    2233             :     // Note that it's not necessary to check for LHS being a global variable
    2234             :     // address, due to canonicalization and constant folding.
    2235             :     if (isa<AllocaInst>(LHS) &&
    2236           0 :         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
    2237             :       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
    2238             :       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
    2239             :       uint64_t LHSSize, RHSSize;
    2240           0 :       ObjectSizeOpts Opts;
    2241           0 :       Opts.NullIsUnknownSize =
    2242           0 :           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
    2243           0 :       if (LHSOffsetCI && RHSOffsetCI &&
    2244           0 :           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
    2245           0 :           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
    2246             :         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
    2247             :         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
    2248           0 :         if (!LHSOffsetValue.isNegative() &&
    2249           0 :             !RHSOffsetValue.isNegative() &&
    2250           0 :             LHSOffsetValue.ult(LHSSize) &&
    2251           0 :             RHSOffsetValue.ult(RHSSize)) {
    2252           0 :           return ConstantInt::get(GetCompareTy(LHS),
    2253           0 :                                   !CmpInst::isTrueWhenEqual(Pred));
    2254             :         }
    2255             :       }
    2256             : 
    2257             :       // Repeat the above check but this time without depending on DataLayout
    2258             :       // or being able to compute a precise size.
    2259           0 :       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
    2260           0 :           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
    2261           0 :           LHSOffset->isNullValue() &&
    2262           0 :           RHSOffset->isNullValue())
    2263           0 :         return ConstantInt::get(GetCompareTy(LHS),
    2264           0 :                                 !CmpInst::isTrueWhenEqual(Pred));
    2265             :     }
    2266             : 
    2267             :     // Even if an non-inbounds GEP occurs along the path we can still optimize
    2268             :     // equality comparisons concerning the result. We avoid walking the whole
    2269             :     // chain again by starting where the last calls to
    2270             :     // stripAndComputeConstantOffsets left off and accumulate the offsets.
    2271           0 :     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
    2272           0 :     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
    2273           0 :     if (LHS == RHS)
    2274           0 :       return ConstantExpr::getICmp(Pred,
    2275             :                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
    2276           0 :                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
    2277             : 
    2278             :     // If one side of the equality comparison must come from a noalias call
    2279             :     // (meaning a system memory allocation function), and the other side must
    2280             :     // come from a pointer that cannot overlap with dynamically-allocated
    2281             :     // memory within the lifetime of the current function (allocas, byval
    2282             :     // arguments, globals), then determine the comparison result here.
    2283             :     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
    2284           0 :     GetUnderlyingObjects(LHS, LHSUObjs, DL);
    2285           0 :     GetUnderlyingObjects(RHS, RHSUObjs, DL);
    2286             : 
    2287             :     // Is the set of underlying objects all noalias calls?
    2288             :     auto IsNAC = [](ArrayRef<Value *> Objects) {
    2289             :       return all_of(Objects, isNoAliasCall);
    2290             :     };
    2291             : 
    2292             :     // Is the set of underlying objects all things which must be disjoint from
    2293             :     // noalias calls. For allocas, we consider only static ones (dynamic
    2294             :     // allocas might be transformed into calls to malloc not simultaneously
    2295             :     // live with the compared-to allocation). For globals, we exclude symbols
    2296             :     // that might be resolve lazily to symbols in another dynamically-loaded
    2297             :     // library (and, thus, could be malloc'ed by the implementation).
    2298             :     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
    2299             :       return all_of(Objects, [](Value *V) {
    2300             :         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
    2301             :           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
    2302             :         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
    2303             :           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
    2304             :                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
    2305             :                  !GV->isThreadLocal();
    2306             :         if (const Argument *A = dyn_cast<Argument>(V))
    2307             :           return A->hasByValAttr();
    2308             :         return false;
    2309             :       });
    2310             :     };
    2311             : 
    2312           0 :     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
    2313           0 :         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
    2314           0 :         return ConstantInt::get(GetCompareTy(LHS),
    2315           0 :                                 !CmpInst::isTrueWhenEqual(Pred));
    2316             : 
    2317             :     // Fold comparisons for non-escaping pointer even if the allocation call
    2318             :     // cannot be elided. We cannot fold malloc comparison to null. Also, the
    2319             :     // dynamic allocation call could be either of the operands.
    2320             :     Value *MI = nullptr;
    2321           0 :     if (isAllocLikeFn(LHS, TLI) &&
    2322           0 :         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
    2323           0 :       MI = LHS;
    2324           0 :     else if (isAllocLikeFn(RHS, TLI) &&
    2325           0 :              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
    2326           0 :       MI = RHS;
    2327             :     // FIXME: We should also fold the compare when the pointer escapes, but the
    2328             :     // compare dominates the pointer escape
    2329           0 :     if (MI && !PointerMayBeCaptured(MI, true, true))
    2330           0 :       return ConstantInt::get(GetCompareTy(LHS),
    2331           0 :                               CmpInst::isFalseWhenEqual(Pred));
    2332             :   }
    2333             : 
    2334             :   // Otherwise, fail.
    2335             :   return nullptr;
    2336             : }
    2337             : 
    2338             : /// Fold an icmp when its operands have i1 scalar type.
    2339           0 : static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
    2340             :                                   Value *RHS, const SimplifyQuery &Q) {
    2341             :   Type *ITy = GetCompareTy(LHS); // The return type.
    2342           0 :   Type *OpTy = LHS->getType();   // The operand type.
    2343           0 :   if (!OpTy->isIntOrIntVectorTy(1))
    2344           0 :     return nullptr;
    2345             : 
    2346             :   // A boolean compared to true/false can be simplified in 14 out of the 20
    2347             :   // (10 predicates * 2 constants) possible combinations. Cases not handled here
    2348             :   // require a 'not' of the LHS, so those must be transformed in InstCombine.
    2349           0 :   if (match(RHS, m_Zero())) {
    2350           0 :     switch (Pred) {
    2351           0 :     case CmpInst::ICMP_NE:  // X !=  0 -> X
    2352             :     case CmpInst::ICMP_UGT: // X >u  0 -> X
    2353             :     case CmpInst::ICMP_SLT: // X <s  0 -> X
    2354           0 :       return LHS;
    2355             : 
    2356             :     case CmpInst::ICMP_ULT: // X <u  0 -> false
    2357             :     case CmpInst::ICMP_SGT: // X >s  0 -> false
    2358           0 :       return getFalse(ITy);
    2359             : 
    2360             :     case CmpInst::ICMP_UGE: // X >=u 0 -> true
    2361             :     case CmpInst::ICMP_SLE: // X <=s 0 -> true
    2362           0 :       return getTrue(ITy);
    2363             : 
    2364             :     default: break;
    2365             :     }
    2366           0 :   } else if (match(RHS, m_One())) {
    2367           0 :     switch (Pred) {
    2368           0 :     case CmpInst::ICMP_EQ:  // X ==   1 -> X
    2369             :     case CmpInst::ICMP_UGE: // X >=u  1 -> X
    2370             :     case CmpInst::ICMP_SLE: // X <=s -1 -> X
    2371           0 :       return LHS;
    2372             : 
    2373             :     case CmpInst::ICMP_UGT: // X >u   1 -> false
    2374             :     case CmpInst::ICMP_SLT: // X <s  -1 -> false
    2375           0 :       return getFalse(ITy);
    2376             : 
    2377             :     case CmpInst::ICMP_ULE: // X <=u  1 -> true
    2378             :     case CmpInst::ICMP_SGE: // X >=s -1 -> true
    2379           0 :       return getTrue(ITy);
    2380             : 
    2381             :     default: break;
    2382             :     }
    2383             :   }
    2384             : 
    2385           0 :   switch (Pred) {
    2386             :   default:
    2387             :     break;
    2388           0 :   case ICmpInst::ICMP_UGE:
    2389           0 :     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
    2390           0 :       return getTrue(ITy);
    2391             :     break;
    2392           0 :   case ICmpInst::ICMP_SGE:
    2393             :     /// For signed comparison, the values for an i1 are 0 and -1
    2394             :     /// respectively. This maps into a truth table of:
    2395             :     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
    2396             :     ///  0  |  0  |  1 (0 >= 0)   |  1
    2397             :     ///  0  |  1  |  1 (0 >= -1)  |  1
    2398             :     ///  1  |  0  |  0 (-1 >= 0)  |  0
    2399             :     ///  1  |  1  |  1 (-1 >= -1) |  1
    2400           0 :     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
    2401           0 :       return getTrue(ITy);
    2402             :     break;
    2403           0 :   case ICmpInst::ICMP_ULE:
    2404           0 :     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
    2405           0 :       return getTrue(ITy);
    2406             :     break;
    2407             :   }
    2408             : 
    2409             :   return nullptr;
    2410             : }
    2411             : 
    2412             : /// Try hard to fold icmp with zero RHS because this is a common case.
    2413     1567158 : static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
    2414             :                                    Value *RHS, const SimplifyQuery &Q) {
    2415     1567158 :   if (!match(RHS, m_Zero()))
    2416             :     return nullptr;
    2417             : 
    2418             :   Type *ITy = GetCompareTy(LHS); // The return type.
    2419      761695 :   switch (Pred) {
    2420           0 :   default:
    2421           0 :     llvm_unreachable("Unknown ICmp predicate!");
    2422             :   case ICmpInst::ICMP_ULT:
    2423         112 :     return getFalse(ITy);
    2424             :   case ICmpInst::ICMP_UGE:
    2425          75 :     return getTrue(ITy);
    2426      545890 :   case ICmpInst::ICMP_EQ:
    2427             :   case ICmpInst::ICMP_ULE:
    2428      545890 :     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
    2429        3178 :       return getFalse(ITy);
    2430             :     break;
    2431      183113 :   case ICmpInst::ICMP_NE:
    2432             :   case ICmpInst::ICMP_UGT:
    2433      183113 :     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
    2434         223 :       return getTrue(ITy);
    2435             :     break;
    2436        9702 :   case ICmpInst::ICMP_SLT: {
    2437        9702 :     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2438        9702 :     if (LHSKnown.isNegative())
    2439          22 :       return getTrue(ITy);
    2440        9699 :     if (LHSKnown.isNonNegative())
    2441          19 :       return getFalse(ITy);
    2442        9680 :     break;
    2443             :   }
    2444          73 :   case ICmpInst::ICMP_SLE: {
    2445          73 :     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2446          73 :     if (LHSKnown.isNegative())
    2447           0 :       return getTrue(ITy);
    2448          76 :     if (LHSKnown.isNonNegative() &&
    2449           3 :         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
    2450           0 :       return getFalse(ITy);
    2451          73 :     break;
    2452             :   }
    2453        5294 :   case ICmpInst::ICMP_SGE: {
    2454        5294 :     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2455        5294 :     if (LHSKnown.isNegative())
    2456           3 :       return getFalse(ITy);
    2457        5294 :     if (LHSKnown.isNonNegative())
    2458           3 :       return getTrue(ITy);
    2459        5291 :     break;
    2460             :   }
    2461       17436 :   case ICmpInst::ICMP_SGT: {
    2462       17436 :     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2463       17436 :     if (LHSKnown.isNegative())
    2464          15 :       return getFalse(ITy);
    2465       17711 :     if (LHSKnown.isNonNegative() &&
    2466         276 :         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
    2467          14 :       return getTrue(ITy);
    2468       17421 :     break;
    2469             :   }
    2470             :   }
    2471             : 
    2472             :   return nullptr;
    2473             : }
    2474             : 
    2475             : /// Many binary operators with a constant operand have an easy-to-compute
    2476             : /// range of outputs. This can be used to fold a comparison to always true or
    2477             : /// always false.
    2478      314511 : static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper,
    2479             :                               const InstrInfoQuery &IIQ) {
    2480      314511 :   unsigned Width = Lower.getBitWidth();
    2481             :   const APInt *C;
    2482      314511 :   switch (BO.getOpcode()) {
    2483             :   case Instruction::Add:
    2484      172191 :     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
    2485             :       // FIXME: If we have both nuw and nsw, we should reduce the range further.
    2486       51933 :       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
    2487             :         // 'add nuw x, C' produces [C, UINT_MAX].
    2488       15342 :         Lower = *C;
    2489       36554 :       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
    2490       10360 :         if (C->isNegative()) {
    2491             :           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
    2492        7406 :           Lower = APInt::getSignedMinValue(Width);
    2493       14812 :           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
    2494             :         } else {
    2495             :           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
    2496        2954 :           Lower = APInt::getSignedMinValue(Width) + *C;
    2497        5908 :           Upper = APInt::getSignedMaxValue(Width) + 1;
    2498             :         }
    2499             :       }
    2500             :     }
    2501             :     break;
    2502             : 
    2503             :   case Instruction::And:
    2504      283574 :     if (match(BO.getOperand(1), m_APInt(C)))
    2505             :       // 'and x, C' produces [0, C].
    2506      237388 :       Upper = *C + 1;
    2507             :     break;
    2508             : 
    2509             :   case Instruction::Or:
    2510        2540 :     if (match(BO.getOperand(1), m_APInt(C)))
    2511             :       // 'or x, C' produces [C, UINT_MAX].
    2512         526 :       Lower = *C;
    2513             :     break;
    2514             : 
    2515             :   case Instruction::AShr:
    2516        7190 :     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
    2517             :       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
    2518        7092 :       Lower = APInt::getSignedMinValue(Width).ashr(*C);
    2519        7093 :       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
    2520          98 :     } else if (match(BO.getOperand(0), m_APInt(C))) {
    2521          36 :       unsigned ShiftAmount = Width - 1;
    2522         108 :       if (!C->isNullValue() && IIQ.isExact(&BO))
    2523          16 :         ShiftAmount = C->countTrailingZeros();
    2524          36 :       if (C->isNegative()) {
    2525             :         // 'ashr C, x' produces [C, C >> (Width-1)]
    2526          35 :         Lower = *C;
    2527          70 :         Upper = C->ashr(ShiftAmount) + 1;
    2528             :       } else {
    2529             :         // 'ashr C, x' produces [C >> (Width-1), C]
    2530           1 :         Lower = C->ashr(ShiftAmount);
    2531           2 :         Upper = *C + 1;
    2532             :       }
    2533             :     }
    2534             :     break;
    2535             : 
    2536             :   case Instruction::LShr:
    2537        7054 :     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
    2538             :       // 'lshr x, C' produces [0, UINT_MAX >> C].
    2539        6546 :       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
    2540         512 :     } else if (match(BO.getOperand(0), m_APInt(C))) {
    2541             :       // 'lshr C, x' produces [C >> (Width-1), C].
    2542         103 :       unsigned ShiftAmount = Width - 1;
    2543         309 :       if (!C->isNullValue() && IIQ.isExact(&BO))
    2544          16 :         ShiftAmount = C->countTrailingZeros();
    2545         103 :       Lower = C->lshr(ShiftAmount);
    2546         206 :       Upper = *C + 1;
    2547             :     }
    2548             :     break;
    2549             : 
    2550             :   case Instruction::Shl:
    2551        1790 :     if (match(BO.getOperand(0), m_APInt(C))) {
    2552         104 :       if (IIQ.hasNoUnsignedWrap(&BO)) {
    2553             :         // 'shl nuw C, x' produces [C, C << CLZ(C)]
    2554           3 :         Lower = *C;
    2555           6 :         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
    2556          49 :       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
    2557           8 :         if (C->isNegative()) {
    2558             :           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
    2559           6 :           unsigned ShiftAmount = C->countLeadingOnes() - 1;
    2560           6 :           Lower = C->shl(ShiftAmount);
    2561          12 :           Upper = *C + 1;
    2562             :         } else {
    2563             :           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
    2564           2 :           unsigned ShiftAmount = C->countLeadingZeros() - 1;
    2565           2 :           Lower = *C;
    2566           4 :           Upper = C->shl(ShiftAmount) + 1;
    2567             :         }
    2568             :       }
    2569             :     }
    2570             :     break;
    2571             : 
    2572             :   case Instruction::SDiv:
    2573        5974 :     if (match(BO.getOperand(1), m_APInt(C))) {
    2574        2984 :       APInt IntMin = APInt::getSignedMinValue(Width);
    2575        2984 :       APInt IntMax = APInt::getSignedMaxValue(Width);
    2576        5968 :       if (C->isAllOnesValue()) {
    2577             :         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
    2578             :         //    where C != -1 and C != 0 and C != 1
    2579           2 :         Lower = IntMin + 1;
    2580           2 :         Upper = IntMax + 1;
    2581        2982 :       } else if (C->countLeadingZeros() < Width - 1) {
    2582             :         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
    2583             :         //    where C != -1 and C != 0 and C != 1
    2584        2982 :         Lower = IntMin.sdiv(*C);
    2585        5964 :         Upper = IntMax.sdiv(*C);
    2586        2982 :         if (Lower.sgt(Upper))
    2587             :           std::swap(Lower, Upper);
    2588        2982 :         Upper = Upper + 1;
    2589             :         assert(Upper != Lower && "Upper part of range has wrapped!");
    2590             :       }
    2591           6 :     } else if (match(BO.getOperand(0), m_APInt(C))) {
    2592           3 :       if (C->isMinSignedValue()) {
    2593             :         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
    2594           1 :         Lower = *C;
    2595           2 :         Upper = Lower.lshr(1) + 1;
    2596             :       } else {
    2597             :         // 'sdiv C, x' produces [-|C|, |C|].
    2598           4 :         Upper = C->abs() + 1;
    2599           2 :         Lower = (-Upper) + 1;
    2600             :       }
    2601             :     }
    2602             :     break;
    2603             : 
    2604             :   case Instruction::UDiv:
    2605        4193 :     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
    2606             :       // 'udiv x, C' produces [0, UINT_MAX / C].
    2607         374 :       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
    2608        3632 :     } else if (match(BO.getOperand(0), m_APInt(C))) {
    2609             :       // 'udiv C, x' produces [0, C].
    2610        3382 :       Upper = *C + 1;
    2611             :     }
    2612             :     break;
    2613             : 
    2614             :   case Instruction::SRem:
    2615         634 :     if (match(BO.getOperand(1), m_APInt(C))) {
    2616             :       // 'srem x, C' produces (-|C|, |C|).
    2617         128 :       Upper = C->abs();
    2618          64 :       Lower = (-Upper) + 1;
    2619             :     }
    2620             :     break;
    2621             : 
    2622             :   case Instruction::URem:
    2623        4294 :     if (match(BO.getOperand(1), m_APInt(C)))
    2624             :       // 'urem x, C' produces [0, C).
    2625        1164 :       Upper = *C;
    2626             :     break;
    2627             : 
    2628             :   default:
    2629             :     break;
    2630             :   }
    2631      314511 : }
    2632             : 
    2633     1563530 : static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
    2634             :                                        Value *RHS, const InstrInfoQuery &IIQ) {
    2635             :   Type *ITy = GetCompareTy(RHS); // The return type.
    2636             : 
    2637             :   Value *X;
    2638             :   // Sign-bit checks can be optimized to true/false after unsigned
    2639             :   // floating-point casts:
    2640             :   // icmp slt (bitcast (uitofp X)),  0 --> false
    2641             :   // icmp sgt (bitcast (uitofp X)), -1 --> true
    2642     1563530 :   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
    2643          45 :     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
    2644           9 :       return ConstantInt::getFalse(ITy);
    2645          36 :     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
    2646           9 :       return ConstantInt::getTrue(ITy);
    2647             :   }
    2648             : 
    2649             :   const APInt *C;
    2650     1563512 :   if (!match(RHS, m_APInt(C)))
    2651             :     return nullptr;
    2652             : 
    2653             :   // Rule out tautological comparisons (eg., ult 0 or uge 0).
    2654     1529152 :   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
    2655      764576 :   if (RHS_CR.isEmptySet())
    2656         804 :     return ConstantInt::getFalse(ITy);
    2657      763772 :   if (RHS_CR.isFullSet())
    2658           5 :     return ConstantInt::getTrue(ITy);
    2659             : 
    2660             :   // Find the range of possible values for binary operators.
    2661      763767 :   unsigned Width = C->getBitWidth();
    2662             :   APInt Lower = APInt(Width, 0);
    2663             :   APInt Upper = APInt(Width, 0);
    2664             :   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
    2665      314511 :     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
    2666             : 
    2667             :   ConstantRange LHS_CR =
    2668     2001465 :       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
    2669             : 
    2670             :   if (auto *I = dyn_cast<Instruction>(LHS))
    2671     1118077 :     if (auto *Ranges = IIQ.getMetadata(I, LLVMContext::MD_range))
    2672       41198 :       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
    2673             : 
    2674      763767 :   if (!LHS_CR.isFullSet()) {
    2675      199175 :     if (RHS_CR.contains(LHS_CR))
    2676         454 :       return ConstantInt::getTrue(ITy);
    2677      198721 :     if (RHS_CR.inverse().contains(LHS_CR))
    2678         344 :       return ConstantInt::getFalse(ITy);
    2679             :   }
    2680             : 
    2681             :   return nullptr;
    2682             : }
    2683             : 
    2684             : /// TODO: A large part of this logic is duplicated in InstCombine's
    2685             : /// foldICmpBinOp(). We should be able to share that and avoid the code
    2686             : /// duplication.
    2687     1555246 : static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
    2688             :                                     Value *RHS, const SimplifyQuery &Q,
    2689             :                                     unsigned MaxRecurse) {
    2690             :   Type *ITy = GetCompareTy(LHS); // The return type.
    2691             : 
    2692             :   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
    2693             :   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
    2694     1555246 :   if (MaxRecurse && (LBO || RBO)) {
    2695             :     // Analyze the case when either LHS or RHS is an add instruction.
    2696             :     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
    2697             :     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
    2698             :     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
    2699      387046 :     if (LBO && LBO->getOpcode() == Instruction::Add) {
    2700             :       A = LBO->getOperand(0);
    2701             :       B = LBO->getOperand(1);
    2702             :       NoLHSWrapProblem =
    2703       62801 :           ICmpInst::isEquality(Pred) ||
    2704      115741 :           (CmpInst::isUnsigned(Pred) &&
    2705      186100 :            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
    2706       58893 :           (CmpInst::isSigned(Pred) &&
    2707        9849 :            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
    2708             :     }
    2709      387046 :     if (RBO && RBO->getOpcode() == Instruction::Add) {
    2710             :       C = RBO->getOperand(0);
    2711             :       D = RBO->getOperand(1);
    2712             :       NoRHSWrapProblem =
    2713        8378 :           ICmpInst::isEquality(Pred) ||
    2714       16394 :           (CmpInst::isUnsigned(Pred) &&
    2715       31173 :            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
    2716        8500 :           (CmpInst::isSigned(Pred) &&
    2717         357 :            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
    2718             :     }
    2719             : 
    2720             :     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
    2721      387046 :     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
    2722        2319 :       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
    2723        1164 :                                       Constant::getNullValue(RHS->getType()), Q,
    2724             :                                       MaxRecurse - 1))
    2725             :         return V;
    2726             : 
    2727             :     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
    2728      387025 :     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
    2729           1 :       if (Value *V =
    2730           1 :               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
    2731             :                                C == LHS ? D : C, Q, MaxRecurse - 1))
    2732             :         return V;
    2733             : 
    2734             :     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
    2735      387024 :     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
    2736             :         NoRHSWrapProblem) {
    2737             :       // Determine Y and Z in the form icmp (X+Y), (X+Z).
    2738             :       Value *Y, *Z;
    2739          16 :       if (A == C) {
    2740             :         // C + B == C + D  ->  B == D
    2741             :         Y = B;
    2742             :         Z = D;
    2743          12 :       } else if (A == D) {
    2744             :         // D + B == C + D  ->  B == C
    2745             :         Y = B;
    2746             :         Z = C;
    2747          10 :       } else if (B == C) {
    2748             :         // A + C == C + D  ->  A == D
    2749             :         Y = A;
    2750             :         Z = D;
    2751             :       } else {
    2752             :         assert(B == D);
    2753             :         // A + D == C + D  ->  A == C
    2754             :         Y = A;
    2755             :         Z = C;
    2756             :       }
    2757          16 :       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
    2758             :         return V;
    2759             :     }
    2760             :   }
    2761             : 
    2762             :   {
    2763     1555218 :     Value *Y = nullptr;
    2764             :     // icmp pred (or X, Y), X
    2765     1555218 :     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
    2766        1027 :       if (Pred == ICmpInst::ICMP_ULT)
    2767          28 :         return getFalse(ITy);
    2768        1026 :       if (Pred == ICmpInst::ICMP_UGE)
    2769           1 :         return getTrue(ITy);
    2770             : 
    2771        1025 :       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
    2772         204 :         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2773         204 :         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2774         156 :         if (RHSKnown.isNonNegative() && YKnown.isNegative())
    2775          14 :           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
    2776         206 :         if (RHSKnown.isNegative() || YKnown.isNonNegative())
    2777          10 :           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
    2778             :       }
    2779             :     }
    2780             :     // icmp pred X, (or X, Y)
    2781     1555204 :     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
    2782         108 :       if (Pred == ICmpInst::ICMP_ULE)
    2783           1 :         return getTrue(ITy);
    2784         107 :       if (Pred == ICmpInst::ICMP_UGT)
    2785           1 :         return getFalse(ITy);
    2786             : 
    2787         106 :       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
    2788         200 :         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2789         200 :         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2790         152 :         if (LHSKnown.isNonNegative() && YKnown.isNegative())
    2791          14 :           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
    2792         202 :         if (LHSKnown.isNegative() || YKnown.isNonNegative())
    2793          10 :           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
    2794             :       }
    2795             :     }
    2796             :   }
    2797             : 
    2798             :   // icmp pred (and X, Y), X
    2799     1555190 :   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
    2800        2912 :     if (Pred == ICmpInst::ICMP_UGT)
    2801           4 :       return getFalse(ITy);
    2802        2908 :     if (Pred == ICmpInst::ICMP_ULE)
    2803           4 :       return getTrue(ITy);
    2804             :   }
    2805             :   // icmp pred X, (and X, Y)
    2806     1555182 :   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
    2807         739 :     if (Pred == ICmpInst::ICMP_UGE)
    2808           4 :       return getTrue(ITy);
    2809         735 :     if (Pred == ICmpInst::ICMP_ULT)
    2810           4 :       return getFalse(ITy);
    2811             :   }
    2812             : 
    2813             :   // 0 - (zext X) pred C
    2814     2774131 :   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
    2815             :     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
    2816           6 :       if (RHSC->getValue().isStrictlyPositive()) {
    2817           4 :         if (Pred == ICmpInst::ICMP_SLT)
    2818           1 :           return ConstantInt::getTrue(RHSC->getContext());
    2819           3 :         if (Pred == ICmpInst::ICMP_SGE)
    2820           1 :           return ConstantInt::getFalse(RHSC->getContext());
    2821           2 :         if (Pred == ICmpInst::ICMP_EQ)
    2822           1 :           return ConstantInt::getFalse(RHSC->getContext());
    2823           1 :         if (Pred == ICmpInst::ICMP_NE)
    2824           1 :           return ConstantInt::getTrue(RHSC->getContext());
    2825             :       }
    2826           2 :       if (RHSC->getValue().isNonNegative()) {
    2827           2 :         if (Pred == ICmpInst::ICMP_SLE)
    2828           1 :           return ConstantInt::getTrue(RHSC->getContext());
    2829           1 :         if (Pred == ICmpInst::ICMP_SGT)
    2830           1 :           return ConstantInt::getFalse(RHSC->getContext());
    2831             :       }
    2832             :     }
    2833             :   }
    2834             : 
    2835             :   // icmp pred (urem X, Y), Y
    2836     1555168 :   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
    2837          32 :     switch (Pred) {
    2838             :     default:
    2839             :       break;
    2840           1 :     case ICmpInst::ICMP_SGT:
    2841             :     case ICmpInst::ICMP_SGE: {
    2842           1 :       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2843           1 :       if (!Known.isNonNegative())
    2844             :         break;
    2845             :       LLVM_FALLTHROUGH;
    2846             :     }
    2847             :     case ICmpInst::ICMP_EQ:
    2848             :     case ICmpInst::ICMP_UGT:
    2849             :     case ICmpInst::ICMP_UGE:
    2850          10 :       return getFalse(ITy);
    2851           1 :     case ICmpInst::ICMP_SLT:
    2852             :     case ICmpInst::ICMP_SLE: {
    2853           1 :       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2854           1 :       if (!Known.isNonNegative())
    2855             :         break;
    2856             :       LLVM_FALLTHROUGH;
    2857             :     }
    2858             :     case ICmpInst::ICMP_NE:
    2859             :     case ICmpInst::ICMP_ULT:
    2860             :     case ICmpInst::ICMP_ULE:
    2861          20 :       return getTrue(ITy);
    2862             :     }
    2863             :   }
    2864             : 
    2865             :   // icmp pred X, (urem Y, X)
    2866     1555138 :   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
    2867         358 :     switch (Pred) {
    2868             :     default:
    2869             :       break;
    2870           0 :     case ICmpInst::ICMP_SGT:
    2871             :     case ICmpInst::ICMP_SGE: {
    2872           0 :       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2873           0 :       if (!Known.isNonNegative())
    2874             :         break;
    2875             :       LLVM_FALLTHROUGH;
    2876             :     }
    2877             :     case ICmpInst::ICMP_NE:
    2878             :     case ICmpInst::ICMP_UGT:
    2879             :     case ICmpInst::ICMP_UGE:
    2880           1 :       return getTrue(ITy);
    2881           0 :     case ICmpInst::ICMP_SLT:
    2882             :     case ICmpInst::ICMP_SLE: {
    2883           0 :       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
    2884           0 :       if (!Known.isNonNegative())
    2885             :         break;
    2886             :       LLVM_FALLTHROUGH;
    2887             :     }
    2888             :     case ICmpInst::ICMP_EQ:
    2889             :     case ICmpInst::ICMP_ULT:
    2890             :     case ICmpInst::ICMP_ULE:
    2891         357 :       return getFalse(ITy);
    2892             :     }
    2893             :   }
    2894             : 
    2895             :   // x >> y <=u x
    2896             :   // x udiv y <=u x.
    2897     1554780 :   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
    2898     1554774 :               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
    2899             :     // icmp pred (X op Y), X
    2900          10 :     if (Pred == ICmpInst::ICMP_UGT)
    2901           2 :       return getFalse(ITy);
    2902           8 :     if (Pred == ICmpInst::ICMP_ULE)
    2903           2 :       return getTrue(ITy);
    2904             :   }
    2905             : 
    2906             :   // x >=u x >> y
    2907             :   // x >=u x udiv y.
    2908     1554776 :   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
    2909     1554774 :               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
    2910             :     // icmp pred X, (X op Y)
    2911           4 :     if (Pred == ICmpInst::ICMP_ULT)
    2912           2 :       return getFalse(ITy);
    2913           2 :     if (Pred == ICmpInst::ICMP_UGE)
    2914           2 :       return getTrue(ITy);
    2915             :   }
    2916             : 
    2917             :   // handle:
    2918             :   //   CI2 << X == CI
    2919             :   //   CI2 << X != CI
    2920             :   //
    2921             :   //   where CI2 is a power of 2 and CI isn't
    2922             :   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
    2923             :     const APInt *CI2Val, *CIVal = &CI->getValue();
    2924      753549 :     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
    2925          28 :         CI2Val->isPowerOf2()) {
    2926          22 :       if (!CIVal->isPowerOf2()) {
    2927             :         // CI2 << X can equal zero in some circumstances,
    2928             :         // this simplification is unsafe if CI is zero.
    2929             :         //
    2930             :         // We know it is safe if:
    2931             :         // - The shift is nsw, we can't shift out the one bit.
    2932             :         // - The shift is nuw, we can't shift out the one bit.
    2933             :         // - CI2 is one
    2934             :         // - CI isn't zero
    2935          26 :         if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
    2936          12 :             Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
    2937          14 :             CI2Val->isOneValue() || !CI->isZero()) {
    2938          12 :           if (Pred == ICmpInst::ICMP_EQ)
    2939           5 :             return ConstantInt::getFalse(RHS->getContext());
    2940          10 :           if (Pred == ICmpInst::ICMP_NE)
    2941           1 :             return ConstantInt::getTrue(RHS->getContext());
    2942             :         }
    2943             :       }
    2944          23 :       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
    2945           4 :         if (Pred == ICmpInst::ICMP_UGT)
    2946           1 :           return ConstantInt::getFalse(RHS->getContext());
    2947           3 :         if (Pred == ICmpInst::ICMP_ULE)
    2948           1 :           return ConstantInt::getTrue(RHS->getContext());
    2949             :       }
    2950             :     }
    2951             :   }
    2952             : 
    2953     1560267 :   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
    2954             :       LBO->getOperand(1) == RBO->getOperand(1)) {
    2955        2078 :     switch (LBO->getOpcode()) {
    2956             :     default:
    2957             :       break;
    2958         408 :     case Instruction::UDiv:
    2959             :     case Instruction::LShr:
    2960         817 :       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
    2961             :           !Q.IIQ.isExact(RBO))
    2962             :         break;
    2963           2 :       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
    2964             :                                       RBO->getOperand(0), Q, MaxRecurse - 1))
    2965           1 :           return V;
    2966             :       break;
    2967             :     case Instruction::SDiv:
    2968        1063 :       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
    2969             :           !Q.IIQ.isExact(RBO))
    2970             :         break;
    2971         600 :       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
    2972             :                                       RBO->getOperand(0), Q, MaxRecurse - 1))
    2973         300 :         return V;
    2974             :       break;
    2975         562 :     case Instruction::AShr:
    2976        1672 :       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
    2977             :         break;
    2978        1096 :       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
    2979             :                                       RBO->getOperand(0), Q, MaxRecurse - 1))
    2980         548 :         return V;
    2981             :       break;
    2982          60 :     case Instruction::Shl: {
    2983         177 :       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
    2984         120 :       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
    2985          60 :       if (!NUW && !NSW)
    2986             :         break;
    2987          57 :       if (!NSW && ICmpInst::isSigned(Pred))
    2988             :         break;
    2989           0 :       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
    2990             :                                       RBO->getOperand(0), Q, MaxRecurse - 1))
    2991           0 :         return V;
    2992             :       break;
    2993             :     }
    2994             :     }
    2995             :   }
    2996             :   return nullptr;
    2997             : }
    2998             : 
    2999             : /// Simplify integer comparisons where at least one operand of the compare
    3000             : /// matches an integer min/max idiom.
    3001     1554765 : static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
    3002             :                                      Value *RHS, const SimplifyQuery &Q,
    3003             :                                      unsigned MaxRecurse) {
    3004             :   Type *ITy = GetCompareTy(LHS); // The return type.
    3005             :   Value *A, *B;
    3006             :   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
    3007             :   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
    3008             : 
    3009             :   // Signed variants on "max(a,b)>=a -> true".
    3010     1554765 :   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
    3011         101 :     if (A != RHS)
    3012             :       std::swap(A, B);       // smax(A, B) pred A.
    3013             :     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
    3014             :     // We analyze this as smax(A, B) pred A.
    3015             :     P = Pred;
    3016     1554675 :   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
    3017         128 :              (A == LHS || B == LHS)) {
    3018          11 :     if (A != LHS)
    3019             :       std::swap(A, B);       // A pred smax(A, B).
    3020             :     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
    3021             :     // We analyze this as smax(A, B) swapped-pred A.
    3022          11 :     P = CmpInst::getSwappedPredicate(Pred);
    3023     1554669 :   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
    3024         527 :              (A == RHS || B == RHS)) {
    3025          16 :     if (A != RHS)
    3026             :       std::swap(A, B);       // smin(A, B) pred A.
    3027             :     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
    3028             :     // We analyze this as smax(-A, -B) swapped-pred -A.
    3029             :     // Note that we do not need to actually form -A or -B thanks to EqP.
    3030          16 :     P = CmpInst::getSwappedPredicate(Pred);
    3031     1555272 :   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
    3032         635 :              (A == LHS || B == LHS)) {
    3033          68 :     if (A != LHS)
    3034             :       std::swap(A, B);       // A pred smin(A, B).
    3035             :     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
    3036             :     // We analyze this as smax(-A, -B) pred -A.
    3037             :     // Note that we do not need to actually form -A or -B thanks to EqP.
    3038             :     P = Pred;
    3039             :   }
    3040         196 :   if (P != CmpInst::BAD_ICMP_PREDICATE) {
    3041             :     // Cases correspond to "max(A, B) p A".
    3042         196 :     switch (P) {
    3043             :     default:
    3044             :       break;
    3045          18 :     case CmpInst::ICMP_EQ:
    3046             :     case CmpInst::ICMP_SLE:
    3047             :       // Equivalent to "A EqP B".  This may be the same as the condition tested
    3048             :       // in the max/min; if so, we can just return that.
    3049          18 :       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
    3050          17 :         return V;
    3051          17 :       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
    3052          16 :         return V;
    3053             :       // Otherwise, see if "A EqP B" simplifies.
    3054          16 :       if (MaxRecurse)
    3055          16 :         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
    3056             :           return V;
    3057             :       break;
    3058          73 :     case CmpInst::ICMP_NE:
    3059             :     case CmpInst::ICMP_SGT: {
    3060          73 :       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
    3061             :       // Equivalent to "A InvEqP B".  This may be the same as the condition
    3062             :       // tested in the max/min; if so, we can just return that.
    3063          73 :       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
    3064             :         return V;
    3065          69 :       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
    3066             :         return V;
    3067             :       // Otherwise, see if "A InvEqP B" simplifies.
    3068          47 :       if (MaxRecurse)
    3069          47 :         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
    3070             :           return V;
    3071             :       break;
    3072             :     }
    3073             :     case CmpInst::ICMP_SGE:
    3074             :       // Always true.
    3075           8 :       return getTrue(ITy);
    3076             :     case CmpInst::ICMP_SLT:
    3077             :       // Always false.
    3078          97 :       return getFalse(ITy);
    3079             :     }
    3080             :   }
    3081             : 
    3082             :   // Unsigned variants on "max(a,b)>=a -> true".
    3083             :   P = CmpInst::BAD_ICMP_PREDICATE;
    3084     1554632 :   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
    3085         126 :     if (A != RHS)
    3086             :       std::swap(A, B);       // umax(A, B) pred A.
    3087             :     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
    3088             :     // We analyze this as umax(A, B) pred A.
    3089             :     P = Pred;
    3090     1554521 :   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
    3091         117 :              (A == LHS || B == LHS)) {
    3092          15 :     if (A != LHS)
    3093             :       std::swap(A, B);       // A pred umax(A, B).
    3094             :     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
    3095             :     // We analyze this as umax(A, B) swapped-pred A.
    3096          15 :     P = CmpInst::getSwappedPredicate(Pred);
    3097     1554502 :   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
    3098        2432 :              (A == RHS || B == RHS)) {
    3099          11 :     if (A != RHS)
    3100             :       std::swap(A, B);       // umin(A, B) pred A.
    3101             :     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
    3102             :     // We analyze this as umax(-A, -B) swapped-pred -A.
    3103             :     // Note that we do not need to actually form -A or -B thanks to EqP.
    3104          11 :     P = CmpInst::getSwappedPredicate(Pred);
    3105     1555643 :   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
    3106        1163 :              (A == LHS || B == LHS)) {
    3107          65 :     if (A != LHS)
    3108             :       std::swap(A, B);       // A pred umin(A, B).
    3109             :     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
    3110             :     // We analyze this as umax(-A, -B) pred -A.
    3111             :     // Note that we do not need to actually form -A or -B thanks to EqP.
    3112             :     P = Pred;
    3113             :   }
    3114         217 :   if (P != CmpInst::BAD_ICMP_PREDICATE) {
    3115             :     // Cases correspond to "max(A, B) p A".
    3116         217 :     switch (P) {
    3117             :     default:
    3118             :       break;
    3119          19 :     case CmpInst::ICMP_EQ:
    3120             :     case CmpInst::ICMP_ULE:
    3121             :       // Equivalent to "A EqP B".  This may be the same as the condition tested
    3122             :       // in the max/min; if so, we can just return that.
    3123          19 :       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
    3124          18 :         return V;
    3125          18 :       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
    3126          17 :         return V;
    3127             :       // Otherwise, see if "A EqP B" simplifies.
    3128          17 :       if (MaxRecurse)
    3129          17 :         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
    3130             :           return V;
    3131             :       break;
    3132          71 :     case CmpInst::ICMP_NE:
    3133             :     case CmpInst::ICMP_UGT: {
    3134          71 :       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
    3135             :       // Equivalent to "A InvEqP B".  This may be the same as the condition
    3136             :       // tested in the max/min; if so, we can just return that.
    3137          71 :       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
    3138             :         return V;
    3139          67 :       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
    3140             :         return V;
    3141             :       // Otherwise, see if "A InvEqP B" simplifies.
    3142          45 :       if (MaxRecurse)
    3143          45 :         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
    3144             :           return V;
    3145             :       break;
    3146             :     }
    3147             :     case CmpInst::ICMP_UGE:
    3148             :       // Always true.
    3149           4 :       return getTrue(ITy);
    3150             :     case CmpInst::ICMP_ULT:
    3151             :       // Always false.
    3152         123 :       return getFalse(ITy);
    3153             :     }
    3154             :   }
    3155             : 
    3156             :   // Variants on "max(x,y) >= min(x,z)".
    3157             :   Value *C, *D;
    3158     1555107 :   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
    3159     1554515 :       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
    3160          38 :       (A == C || A == D || B == C || B == D)) {
    3161             :     // max(x, ?) pred min(x, ?).
    3162          38 :     if (Pred == CmpInst::ICMP_SGE)
    3163             :       // Always true.
    3164           1 :       return getTrue(ITy);
    3165          37 :     if (Pred == CmpInst::ICMP_SLT)
    3166             :       // Always false.
    3167           1 :       return getFalse(ITy);
    3168     1554956 :   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
    3169     1554441 :              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
    3170           2 :              (A == C || A == D || B == C || B == D)) {
    3171             :     // min(x, ?) pred max(x, ?).
    3172           2 :     if (Pred == CmpInst::ICMP_SLE)
    3173             :       // Always true.
    3174           1 :       return getTrue(ITy);
    3175           1 :     if (Pred == CmpInst::ICMP_SGT)
    3176             :       // Always false.
    3177           1 :       return getFalse(ITy);
    3178     1555352 :   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
    3179     1554475 :              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
    3180          38 :              (A == C || A == D || B == C || B == D)) {
    3181             :     // max(x, ?) pred min(x, ?).
    3182          38 :     if (Pred == CmpInst::ICMP_UGE)
    3183             :       // Always true.
    3184           1 :       return getTrue(ITy);
    3185          37 :     if (Pred == CmpInst::ICMP_ULT)
    3186             :       // Always false.
    3187           1 :       return getFalse(ITy);
    3188     1556827 :   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
    3189     1556827 :              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
    3190           2 :              (A == C || A == D || B == C || B == D)) {
    3191             :     // min(x, ?) pred max(x, ?).
    3192           2 :     if (Pred == CmpInst::ICMP_ULE)
    3193             :       // Always true.
    3194           1 :       return getTrue(ITy);
    3195           1 :     if (Pred == CmpInst::ICMP_UGT)
    3196             :       // Always false.
    3197           1 :       return getFalse(ITy);
    3198             :   }
    3199             : 
    3200             :   return nullptr;
    3201             : }
    3202             : 
    3203             : /// Given operands for an ICmpInst, see if we can fold the result.
    3204             : /// If not, this returns null.
    3205     1621688 : static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
    3206             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    3207             :   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
    3208             :   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
    3209             : 
    3210             :   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    3211             :     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    3212       49035 :       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
    3213             : 
    3214             :     // If we have a constant, make sure it is on the RHS.
    3215             :     std::swap(LHS, RHS);
    3216        9342 :     Pred = CmpInst::getSwappedPredicate(Pred);
    3217             :   }
    3218             : 
    3219             :   Type *ITy = GetCompareTy(LHS); // The return type.
    3220             : 
    3221             :   // icmp X, X -> true/false
    3222             :   // icmp X, undef -> true/false because undef could be X.
    3223     1572653 :   if (LHS == RHS || isa<UndefValue>(RHS))
    3224        1273 :     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
    3225             : 
    3226     1571380 :   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
    3227             :     return V;
    3228             : 
    3229     1567158 :   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
    3230             :     return V;
    3231             : 
    3232     1563530 :   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
    3233             :     return V;
    3234             : 
    3235             :   // If both operands have range metadata, use the metadata
    3236             :   // to simplify the comparison.
    3237     1561905 :   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
    3238             :     auto RHS_Instr = cast<Instruction>(RHS);
    3239             :     auto LHS_Instr = cast<Instruction>(LHS);
    3240             : 
    3241      541735 :     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
    3242         657 :         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
    3243             :       auto RHS_CR = getConstantRangeFromMetadata(
    3244        1266 :           *RHS_Instr->getMetadata(LLVMContext::MD_range));
    3245             :       auto LHS_CR = getConstantRangeFromMetadata(
    3246        1266 :           *LHS_Instr->getMetadata(LLVMContext::MD_range));
    3247             : 
    3248        1266 :       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
    3249         634 :       if (Satisfied_CR.contains(LHS_CR))
    3250           2 :         return ConstantInt::getTrue(RHS->getContext());
    3251             : 
    3252             :       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
    3253        1265 :                 CmpInst::getInversePredicate(Pred), RHS_CR);
    3254         633 :       if (InversedSatisfied_CR.contains(LHS_CR))
    3255           1 :         return ConstantInt::getFalse(RHS->getContext());
    3256             :     }
    3257             :   }
    3258             : 
    3259             :   // Compare of cast, for example (zext X) != 0 -> X != 0
    3260       41693 :   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
    3261             :     Instruction *LI = cast<CastInst>(LHS);
    3262       36175 :     Value *SrcOp = LI->getOperand(0);
    3263       36175 :     Type *SrcTy = SrcOp->getType();
    3264       36175 :     Type *DstTy = LI->getType();
    3265             : 
    3266             :     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
    3267             :     // if the integer type is the same size as the pointer type.
    3268       36175 :     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
    3269        1642 :         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
    3270             :       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    3271             :         // Transfer the cast to the constant.
    3272         972 :         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
    3273         972 :                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
    3274             :                                         Q, MaxRecurse-1))
    3275             :           return V;
    3276             :       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
    3277         612 :         if (RI->getOperand(0)->getType() == SrcTy)
    3278             :           // Compare without the cast.
    3279         562 :           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
    3280             :                                           Q, MaxRecurse-1))
    3281             :             return V;
    3282             :       }
    3283             :     }
    3284             : 
    3285             :     if (isa<ZExtInst>(LHS)) {
    3286             :       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
    3287             :       // same type.
    3288             :       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
    3289        2864 :         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
    3290             :           // Compare X and Y.  Note that signed predicates become unsigned.
    3291        1262 :           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
    3292             :                                           SrcOp, RI->getOperand(0), Q,
    3293             :                                           MaxRecurse-1))
    3294             :             return V;
    3295             :       }
    3296             :       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
    3297             :       // too.  If not, then try to deduce the result of the comparison.
    3298             :       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    3299             :         // Compute the constant that would happen if we truncated to SrcTy then
    3300             :         // reextended to DstTy.
    3301       15043 :         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
    3302       15043 :         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
    3303             : 
    3304             :         // If the re-extended constant didn't change then this is effectively
    3305             :         // also a case of comparing two zero-extended values.
    3306       15043 :         if (RExt == CI && MaxRecurse)
    3307       13262 :           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
    3308             :                                         SrcOp, Trunc, Q, MaxRecurse-1))
    3309             :             return V;
    3310             : 
    3311             :         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
    3312             :         // there.  Use this to work out the result of the comparison.
    3313       10920 :         if (RExt != CI) {
    3314        1655 :           switch (Pred) {
    3315           0 :           default: llvm_unreachable("Unknown ICmp predicate!");
    3316             :           // LHS <u RHS.
    3317        1422 :           case ICmpInst::ICMP_EQ:
    3318             :           case ICmpInst::ICMP_UGT:
    3319             :           case ICmpInst::ICMP_UGE:
    3320        1422 :             return ConstantInt::getFalse(CI->getContext());
    3321             : 
    3322          15 :           case ICmpInst::ICMP_NE:
    3323             :           case ICmpInst::ICMP_ULT:
    3324             :           case ICmpInst::ICMP_ULE:
    3325          15 :             return ConstantInt::getTrue(CI->getContext());
    3326             : 
    3327             :           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
    3328             :           // is non-negative then LHS <s RHS.
    3329             :           case ICmpInst::ICMP_SGT:
    3330             :           case ICmpInst::ICMP_SGE:
    3331         209 :             return CI->getValue().isNegative() ?
    3332         207 :               ConstantInt::getTrue(CI->getContext()) :
    3333         209 :               ConstantInt::getFalse(CI->getContext());
    3334             : 
    3335             :           case ICmpInst::ICMP_SLT:
    3336             :           case ICmpInst::ICMP_SLE:
    3337           9 :             return CI->getValue().isNegative() ?
    3338           3 :               ConstantInt::getFalse(CI->getContext()) :
    3339           9 :               ConstantInt::getTrue(CI->getContext());
    3340             :           }
    3341             :         }
    3342             :       }
    3343             :     }
    3344             : 
    3345             :     if (isa<SExtInst>(LHS)) {
    3346             :       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
    3347             :       // same type.
    3348             :       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
    3349        3720 :         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
    3350             :           // Compare X and Y.  Note that the predicate does not change.
    3351        1857 :           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
    3352             :                                           Q, MaxRecurse-1))
    3353             :             return V;
    3354             :       }
    3355             :       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
    3356             :       // too.  If not, then try to deduce the result of the comparison.
    3357             :       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    3358             :         // Compute the constant that would happen if we truncated to SrcTy then
    3359             :         // reextended to DstTy.
    3360        3040 :         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
    3361        3040 :         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
    3362             : 
    3363             :         // If the re-extended constant didn't change then this is effectively
    3364             :         // also a case of comparing two sign-extended values.
    3365        3040 :         if (RExt == CI && MaxRecurse)
    3366        3001 :           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
    3367             :             return V;
    3368             : 
    3369             :         // Otherwise the upper bits of LHS are all equal, while RHS has varying
    3370             :         // bits there.  Use this to work out the result of the comparison.
    3371        2971 :         if (RExt != CI) {
    3372          39 :           switch (Pred) {
    3373           0 :           default: llvm_unreachable("Unknown ICmp predicate!");
    3374           7 :           case ICmpInst::ICMP_EQ:
    3375           7 :             return ConstantInt::getFalse(CI->getContext());
    3376           8 :           case ICmpInst::ICMP_NE:
    3377           8 :             return ConstantInt::getTrue(CI->getContext());
    3378             : 
    3379             :           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
    3380             :           // LHS >s RHS.
    3381             :           case ICmpInst::ICMP_SGT:
    3382             :           case ICmpInst::ICMP_SGE:
    3383           9 :             return CI->getValue().isNegative() ?
    3384           8 :               ConstantInt::getTrue(CI->getContext()) :
    3385           9 :               ConstantInt::getFalse(CI->getContext());
    3386             :           case ICmpInst::ICMP_SLT:
    3387             :           case ICmpInst::ICMP_SLE:
    3388           9 :             return CI->getValue().isNegative() ?
    3389           1 :               ConstantInt::getFalse(CI->getContext()) :
    3390           9 :               ConstantInt::getTrue(CI->getContext());
    3391             : 
    3392             :           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
    3393             :           // LHS >u RHS.
    3394           3 :           case ICmpInst::ICMP_UGT:
    3395             :           case ICmpInst::ICMP_UGE:
    3396             :             // Comparison is true iff the LHS <s 0.
    3397           3 :             if (MaxRecurse)
    3398           3 :               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
    3399           3 :                                               Constant::getNullValue(SrcTy),
    3400             :                                               Q, MaxRecurse-1))
    3401             :                 return V;
    3402             :             break;
    3403           3 :           case ICmpInst::ICMP_ULT:
    3404             :           case ICmpInst::ICMP_ULE:
    3405             :             // Comparison is true iff the LHS >=s 0.
    3406           3 :             if (MaxRecurse)
    3407           3 :               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
    3408           3 :                                               Constant::getNullValue(SrcTy),
    3409             :                                               Q, MaxRecurse-1))
    3410             :                 return V;
    3411             :             break;
    3412             :           }
    3413             :         }
    3414             :       }
    3415             :     }
    3416             :   }
    3417             : 
    3418             :   // icmp eq|ne X, Y -> false|true if X != Y
    3419     2610181 :   if (ICmpInst::isEquality(Pred) &&
    3420     1054214 :       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
    3421         721 :     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
    3422             :   }
    3423             : 
    3424     1555246 :   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
    3425             :     return V;
    3426             : 
    3427     1554765 :   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
    3428             :     return V;
    3429             : 
    3430             :   // Simplify comparisons of related pointers using a powerful, recursive
    3431             :   // GEP-walk when we have target data available..
    3432     3108938 :   if (LHS->getType()->isPointerTy())
    3433      535681 :     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
    3434             :                                      Q.IIQ, LHS, RHS))
    3435             :       return C;
    3436             :   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
    3437             :     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
    3438        1326 :       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
    3439        1282 :               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
    3440        1238 :           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
    3441         619 :               Q.DL.getTypeSizeInBits(CRHS->getType()))
    3442         619 :         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
    3443             :                                          Q.IIQ, CLHS->getPointerOperand(),
    3444             :                                          CRHS->getPointerOperand()))
    3445             :           return C;
    3446             : 
    3447             :   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
    3448             :     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
    3449         565 :       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
    3450        7086 :           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
    3451          10 :           (ICmpInst::isEquality(Pred) ||
    3452          18 :            (GLHS->isInBounds() && GRHS->isInBounds() &&
    3453           4 :             Pred == ICmpInst::getSignedPredicate(Pred)))) {
    3454             :         // The bases are equal and the indices are constant.  Build a constant
    3455             :         // expression GEP with the same indices and a null base pointer to see
    3456             :         // what constant folding can make out of it.
    3457           4 :         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
    3458             :         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
    3459           4 :         Constant *NewLHS = ConstantExpr::getGetElementPtr(
    3460             :             GLHS->getSourceElementType(), Null, IndicesLHS);
    3461             : 
    3462             :         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
    3463           4 :         Constant *NewRHS = ConstantExpr::getGetElementPtr(
    3464             :             GLHS->getSourceElementType(), Null, IndicesRHS);
    3465           4 :         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
    3466             :       }
    3467             :     }
    3468             :   }
    3469             : 
    3470             :   // If the comparison is with the result of a select instruction, check whether
    3471             :   // comparing with either branch of the select always yields the same value.
    3472             :   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
    3473       14001 :     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
    3474             :       return V;
    3475             : 
    3476             :   // If the comparison is with the result of a phi instruction, check whether
    3477             :   // doing the compare with each incoming phi value yields a common result.
    3478             :   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
    3479      123987 :     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
    3480         353 :       return V;
    3481             : 
    3482             :   return nullptr;
    3483             : }
    3484             : 
    3485     1330972 : Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
    3486             :                               const SimplifyQuery &Q) {
    3487     1330972 :   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
    3488             : }
    3489             : 
    3490             : /// Given operands for an FCmpInst, see if we can fold the result.
    3491             : /// If not, this returns null.
    3492       18027 : static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
    3493             :                                FastMathFlags FMF, const SimplifyQuery &Q,
    3494             :                                unsigned MaxRecurse) {
    3495             :   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
    3496             :   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
    3497             : 
    3498             :   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    3499             :     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    3500         170 :       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
    3501             : 
    3502             :     // If we have a constant, make sure it is on the RHS.
    3503             :     std::swap(LHS, RHS);
    3504         277 :     Pred = CmpInst::getSwappedPredicate(Pred);
    3505             :   }
    3506             : 
    3507             :   // Fold trivial predicates.
    3508             :   Type *RetTy = GetCompareTy(LHS);
    3509       17857 :   if (Pred == FCmpInst::FCMP_FALSE)
    3510          35 :     return getFalse(RetTy);
    3511       17822 :   if (Pred == FCmpInst::FCMP_TRUE)
    3512          35 :     return getTrue(RetTy);
    3513             : 
    3514             :   // Fold (un)ordered comparison if we can determine there are no NaNs.
    3515       17787 :   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
    3516        4892 :     if (FMF.noNaNs() ||
    3517        1653 :         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
    3518          36 :       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
    3519             : 
    3520             :   // NaN is unordered; NaN is not ordered.
    3521             :   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
    3522             :          "Comparison must be either ordered or unordered");
    3523       17751 :   if (match(RHS, m_NaN()))
    3524          15 :     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
    3525             : 
    3526             :   // fcmp pred x, undef  and  fcmp pred undef, x
    3527             :   // fold to true if unordered, false if ordered
    3528       17736 :   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
    3529             :     // Choosing NaN for the undef will always make unordered comparison succeed
    3530             :     // and ordered comparison fail.
    3531           8 :     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
    3532             :   }
    3533             : 
    3534             :   // fcmp x,x -> true/false.  Not all compares are foldable.
    3535       17728 :   if (LHS == RHS) {
    3536         565 :     if (CmpInst::isTrueWhenEqual(Pred))
    3537           2 :       return getTrue(RetTy);
    3538         563 :     if (CmpInst::isFalseWhenEqual(Pred))
    3539           7 :       return getFalse(RetTy);
    3540             :   }
    3541             : 
    3542             :   // Handle fcmp with constant RHS.
    3543             :   const APFloat *C;
    3544       17719 :   if (match(RHS, m_APFloat(C))) {
    3545             :     // Check whether the constant is an infinity.
    3546        9676 :     if (C->isInfinity()) {
    3547        1019 :       if (C->isNegative()) {
    3548          90 :         switch (Pred) {
    3549             :         case FCmpInst::FCMP_OLT:
    3550             :           // No value is ordered and less than negative infinity.
    3551           1 :           return getFalse(RetTy);
    3552             :         case FCmpInst::FCMP_UGE:
    3553             :           // All values are unordered with or at least negative infinity.
    3554           1 :           return getTrue(RetTy);
    3555             :         default:
    3556             :           break;
    3557             :         }
    3558             :       } else {
    3559         929 :         switch (Pred) {
    3560             :         case FCmpInst::FCMP_OGT:
    3561             :           // No value is ordered and greater than infinity.
    3562           1 :           return getFalse(RetTy);
    3563             :         case FCmpInst::FCMP_ULE:
    3564             :           // All values are unordered with and at most infinity.
    3565           3 :           return getTrue(RetTy);
    3566             :         default:
    3567             :           break;
    3568             :         }
    3569             :       }
    3570             :     }
    3571        4832 :     if (C->isZero()) {
    3572        2358 :       switch (Pred) {
    3573          24 :       case FCmpInst::FCMP_UGE:
    3574          24 :         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
    3575           5 :           return getTrue(RetTy);
    3576             :         break;
    3577         176 :       case FCmpInst::FCMP_OLT:
    3578             :         // X < 0
    3579         176 :         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
    3580           6 :           return getFalse(RetTy);
    3581             :         break;
    3582             :       default:
    3583             :         break;
    3584             :       }
    3585        2474 :     } else if (C->isNegative()) {
    3586             :       assert(!C->isNaN() && "Unexpected NaN constant!");
    3587             :       // TODO: We can catch more cases by using a range check rather than
    3588             :       //       relying on CannotBeOrderedLessThanZero.
    3589             :       switch (Pred) {
    3590          27 :       case FCmpInst::FCMP_UGE:
    3591             :       case FCmpInst::FCMP_UGT:
    3592             :       case FCmpInst::FCMP_UNE:
    3593             :         // (X >= 0) implies (X > C) when (C < 0)
    3594          27 :         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
    3595           5 :           return getTrue(RetTy);
    3596             :         break;
    3597          97 :       case FCmpInst::FCMP_OEQ:
    3598             :       case FCmpInst::FCMP_OLE:
    3599             :       case FCmpInst::FCMP_OLT:
    3600             :         // (X >= 0) implies !(X < C) when (C < 0)
    3601          97 :         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
    3602           6 :           return getFalse(RetTy);
    3603             :         break;
    3604             :       default:
    3605             :         break;
    3606             :       }
    3607             :     }
    3608             :   }
    3609             : 
    3610             :   // If the comparison is with the result of a select instruction, check whether
    3611             :   // comparing with either branch of the select always yields the same value.
    3612             :   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
    3613         234 :     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
    3614             :       return V;
    3615             : 
    3616             :   // If the comparison is with the result of a phi instruction, check whether
    3617             :   // doing the compare with each incoming phi value yields a common result.
    3618             :   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
    3619         390 :     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
    3620           3 :       return V;
    3621             : 
    3622             :   return nullptr;
    3623             : }
    3624             : 
    3625       17392 : Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
    3626             :                               FastMathFlags FMF, const SimplifyQuery &Q) {
    3627       17392 :   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
    3628             : }
    3629             : 
    3630             : /// See if V simplifies when its operand Op is replaced with RepOp.
    3631      269924 : static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    3632             :                                            const SimplifyQuery &Q,
    3633             :                                            unsigned MaxRecurse) {
    3634             :   // Trivial replacement.
    3635      269924 :   if (V == Op)
    3636        5236 :     return RepOp;
    3637             : 
    3638             :   // We cannot replace a constant, and shouldn't even try.
    3639      264688 :   if (isa<Constant>(Op))
    3640             :     return nullptr;
    3641             : 
    3642             :   auto *I = dyn_cast<Instruction>(V);
    3643             :   if (!I)
    3644             :     return nullptr;
    3645             : 
    3646             :   // If this is a binary operator, try to simplify it with the replaced op.
    3647             :   if (auto *B = dyn_cast<BinaryOperator>(I)) {
    3648             :     // Consider:
    3649             :     //   %cmp = icmp eq i32 %x, 2147483647
    3650             :     //   %add = add nsw i32 %x, 1
    3651             :     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
    3652             :     //
    3653             :     // We can't replace %sel with %add unless we strip away the flags.
    3654             :     if (isa<OverflowingBinaryOperator>(B))
    3655        8254 :       if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
    3656         251 :         return nullptr;
    3657        1792 :     if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
    3658             :       return nullptr;
    3659             : 
    3660        3325 :     if (MaxRecurse) {
    3661        3325 :       if (B->getOperand(0) == Op)
    3662          81 :         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
    3663          81 :                              MaxRecurse - 1);
    3664        3244 :       if (B->getOperand(1) == Op)
    3665          21 :         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
    3666          21 :                              MaxRecurse - 1);
    3667             :     }
    3668             :   }
    3669             : 
    3670             :   // Same for CmpInsts.
    3671             :   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    3672         214 :     if (MaxRecurse) {
    3673         214 :       if (C->getOperand(0) == Op)
    3674          17 :         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
    3675          17 :                                MaxRecurse - 1);
    3676         197 :       if (C->getOperand(1) == Op)
    3677           0 :         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
    3678           0 :                                MaxRecurse - 1);
    3679             :     }
    3680             :   }
    3681             : 
    3682             :   // Same for GEPs.
    3683             :   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
    3684       30089 :     if (MaxRecurse) {
    3685       60178 :       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
    3686       30089 :       transform(GEP->operands(), NewOps.begin(),
    3687      104914 :                 [&](Value *V) { return V == Op ? RepOp : V; });
    3688       30089 :       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
    3689             :                              MaxRecurse - 1);
    3690             :     }
    3691             :   }
    3692             : 
    3693             :   // TODO: We could hand off more cases to instsimplify here.
    3694             : 
    3695             :   // If all operands are constant after substituting Op for RepOp then we can
    3696             :   // constant fold the instruction.
    3697       72893 :   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    3698             :     // Build a list of all constant operands.
    3699             :     SmallVector<Constant *, 8> ConstOps;
    3700       64297 :     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    3701      127524 :       if (I->getOperand(i) == Op)
    3702         249 :         ConstOps.push_back(CRepOp);
    3703       63513 :       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    3704        2293 :         ConstOps.push_back(COp);
    3705             :       else
    3706             :         break;
    3707             :     }
    3708             : 
    3709             :     // All operands were constants, fold it.
    3710      123510 :     if (ConstOps.size() == I->getNumOperands()) {
    3711             :       if (CmpInst *C = dyn_cast<CmpInst>(I))
    3712           0 :         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
    3713           0 :                                                ConstOps[1], Q.DL, Q.TLI);
    3714             : 
    3715             :       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    3716         201 :         if (!LI->isVolatile())
    3717         378 :           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
    3718             : 
    3719         692 :       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
    3720             :     }
    3721             :   }
    3722             : 
    3723       66789 :   return nullptr;
    3724             : }
    3725             : 
    3726             : /// Try to simplify a select instruction when its condition operand is an
    3727             : /// integer comparison where one operand of the compare is a constant.
    3728       33857 : static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
    3729             :                                     const APInt *Y, bool TrueWhenUnset) {
    3730             :   const APInt *C;
    3731             : 
    3732             :   // (X & Y) == 0 ? X & ~Y : X  --> X
    3733             :   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
    3734       33868 :   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
    3735       33890 :       *Y == ~*C)
    3736          17 :     return TrueWhenUnset ? FalseVal : TrueVal;
    3737             : 
    3738             :   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
    3739             :   // (X & Y) != 0 ? X : X & ~Y  --> X
    3740       33857 :   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
    3741       33879 :       *Y == ~*C)
    3742          16 :     return TrueWhenUnset ? FalseVal : TrueVal;
    3743             : 
    3744       33835 :   if (Y->isPowerOf2()) {
    3745             :     // (X & Y) == 0 ? X | Y : X  --> X | Y
    3746             :     // (X & Y) != 0 ? X | Y : X  --> X
    3747       28485 :     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
    3748           8 :         *Y == *C)
    3749          11 :       return TrueWhenUnset ? TrueVal : FalseVal;
    3750             : 
    3751             :     // (X & Y) == 0 ? X : X | Y  --> X
    3752             :     // (X & Y) != 0 ? X : X | Y  --> X | Y
    3753       28476 :     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
    3754           7 :         *Y == *C)
    3755          11 :       return TrueWhenUnset ? TrueVal : FalseVal;
    3756             :   }
    3757             : 
    3758             :   return nullptr;
    3759             : }
    3760             : 
    3761             : /// An alternative way to test if a bit is set or not uses sgt/slt instead of
    3762             : /// eq/ne.
    3763       99009 : static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
    3764             :                                            ICmpInst::Predicate Pred,
    3765             :                                            Value *TrueVal, Value *FalseVal) {
    3766             :   Value *X;
    3767             :   APInt Mask;
    3768       99009 :   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
    3769             :     return nullptr;
    3770             : 
    3771        6826 :   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
    3772        6826 :                                Pred == ICmpInst::ICMP_EQ);
    3773             : }
    3774             : 
    3775             : /// Try to simplify a select instruction when its condition operand is an
    3776             : /// integer comparison.
    3777      118609 : static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
    3778             :                                          Value *FalseVal, const SimplifyQuery &Q,
    3779             :                                          unsigned MaxRecurse) {
    3780             :   ICmpInst::Predicate Pred;
    3781             :   Value *CmpLHS, *CmpRHS;
    3782             :   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
    3783       19588 :     return nullptr;
    3784             : 
    3785      166543 :   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
    3786             :     Value *X;
    3787             :     const APInt *Y;
    3788       35370 :     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
    3789       27031 :       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
    3790             :                                            Pred == ICmpInst::ICMP_EQ))
    3791          12 :         return V;
    3792             :   }
    3793             : 
    3794             :   // Check for other compares that behave like bit test.
    3795       99009 :   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
    3796             :                                               TrueVal, FalseVal))
    3797             :     return V;
    3798             : 
    3799             :   // If we have an equality comparison, then we know the value in one of the
    3800             :   // arms of the select. See if substituting this value into the arm and
    3801             :   // simplifying the result yields the same value as the other arm.
    3802       98984 :   if (Pred == ICmpInst::ICMP_EQ) {
    3803       65853 :     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
    3804      131683 :             TrueVal ||
    3805       65830 :         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
    3806             :             TrueVal)
    3807          25 :       return FalseVal;
    3808       65828 :     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
    3809      131654 :             FalseVal ||
    3810       65826 :         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
    3811             :             FalseVal)
    3812           2 :       return FalseVal;
    3813       33131 :   } else if (Pred == ICmpInst::ICMP_NE) {
    3814        1657 :     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
    3815        3301 :             FalseVal ||
    3816        1644 :         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
    3817             :             FalseVal)
    3818          14 :       return TrueVal;
    3819        1643 :     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
    3820        3286 :             TrueVal ||
    3821        1643 :         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
    3822             :             TrueVal)
    3823           0 :       return TrueVal;
    3824             :   }
    3825             : 
    3826             :   return nullptr;
    3827             : }
    3828             : 
    3829             : /// Given operands for a SelectInst, see if we can fold the result.
    3830             : /// If not, this returns null.
    3831      119228 : static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
    3832             :                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
    3833             :   if (auto *CondC = dyn_cast<Constant>(Cond)) {
    3834             :     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
    3835             :       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
    3836          79 :         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
    3837             : 
    3838             :     // select undef, X, Y -> X or Y
    3839         526 :     if (isa<UndefValue>(CondC))
    3840          49 :       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
    3841             : 
    3842             :     // TODO: Vector constants with undef elements don't simplify.
    3843             : 
    3844             :     // select true, X, Y  -> X
    3845         477 :     if (CondC->isAllOnesValue())
    3846             :       return TrueVal;
    3847             :     // select false, X, Y -> Y
    3848         436 :     if (CondC->isNullValue())
    3849             :       return FalseVal;
    3850             :   }
    3851             : 
    3852             :   // select ?, X, X -> X
    3853      118655 :   if (TrueVal == FalseVal)
    3854             :     return TrueVal;
    3855             : 
    3856      118626 :   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
    3857             :     return FalseVal;
    3858      118614 :   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
    3859             :     return TrueVal;
    3860             : 
    3861      118609 :   if (Value *V =
    3862      118609 :           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
    3863             :     return V;
    3864             : 
    3865      118531 :   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
    3866          20 :     return V;
    3867             : 
    3868             :   return nullptr;
    3869             : }
    3870             : 
    3871      119228 : Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
    3872             :                                 const SimplifyQuery &Q) {
    3873      119228 :   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
    3874             : }
    3875             : 
    3876             : /// Given operands for an GetElementPtrInst, see if we can fold the result.
    3877             : /// If not, this returns null.
    3878           0 : static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
    3879             :                               const SimplifyQuery &Q, unsigned) {
    3880             :   // The type of the GEP pointer operand.
    3881             :   unsigned AS =
    3882           0 :       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
    3883             : 
    3884             :   // getelementptr P -> P.
    3885           0 :   if (Ops.size() == 1)
    3886             :     return Ops[0];
    3887             : 
    3888             :   // Compute the (pointer) type returned by the GEP instruction.
    3889           0 :   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
    3890           0 :   Type *GEPTy = PointerType::get(LastType, AS);
    3891           0 :   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
    3892           0 :     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
    3893           0 :   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
    3894           0 :     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
    3895             : 
    3896           0 :   if (isa<UndefValue>(Ops[0]))
    3897           0 :     return UndefValue::get(GEPTy);
    3898             : 
    3899           0 :   if (Ops.size() == 2) {
    3900             :     // getelementptr P, 0 -> P.
    3901           0 :     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
    3902             :       return Ops[0];
    3903             : 
    3904             :     Type *Ty = SrcTy;
    3905           0 :     if (Ty->isSized()) {
    3906             :       Value *P;
    3907             :       uint64_t C;
    3908           0 :       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
    3909             :       // getelementptr P, N -> P if P points to a type of zero size.
    3910           0 :       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
    3911           0 :         return Ops[0];
    3912             : 
    3913             :       // The following transforms are only safe if the ptrtoint cast
    3914             :       // doesn't truncate the pointers.
    3915           0 :       if (Ops[1]->getType()->getScalarSizeInBits() ==
    3916           0 :           Q.DL.getIndexSizeInBits(AS)) {
    3917             :         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
    3918             :           if (match(P, m_Zero()))
    3919             :             return Constant::getNullValue(GEPTy);
    3920             :           Value *Temp;
    3921             :           if (match(P, m_PtrToInt(m_Value(Temp))))
    3922             :             if (Temp->getType() == GEPTy)
    3923             :               return Temp;
    3924             :           return nullptr;
    3925           0 :         };
    3926             : 
    3927             :         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
    3928           0 :         if (TyAllocSize == 1 &&
    3929           0 :             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
    3930           0 :           if (Value *R = PtrToIntOrZero(P))
    3931           0 :             return R;
    3932             : 
    3933             :         // getelementptr V, (ashr (sub P, V), C) -> Q
    3934             :         // if P points to a type of size 1 << C.
    3935           0 :         if (match(Ops[1],
    3936           0 :                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
    3937           0 :                          m_ConstantInt(C))) &&
    3938           0 :             TyAllocSize == 1ULL << C)
    3939           0 :           if (Value *R = PtrToIntOrZero(P))
    3940           0 :             return R;
    3941             : 
    3942             :         // getelementptr V, (sdiv (sub P, V), C) -> Q
    3943             :         // if P points to a type of size C.
    3944           0 :         if (match(Ops[1],
    3945           0 :                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
    3946             :                          m_SpecificInt(TyAllocSize))))
    3947           0 :           if (Value *R = PtrToIntOrZero(P))
    3948           0 :             return R;
    3949             :       }
    3950             :     }
    3951             :   }
    3952             : 
    3953           0 :   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
    3954             :       all_of(Ops.slice(1).drop_back(1),
    3955             :              [](Value *Idx) { return match(Idx, m_Zero()); })) {
    3956             :     unsigned IdxWidth =
    3957           0 :         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
    3958           0 :     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
    3959             :       APInt BasePtrOffset(IdxWidth, 0);
    3960             :       Value *StrippedBasePtr =
    3961           0 :           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
    3962             :                                                             BasePtrOffset);
    3963             : 
    3964             :       // gep (gep V, C), (sub 0, V) -> C
    3965           0 :       if (match(Ops.back(),
    3966           0 :                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
    3967           0 :         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
    3968           0 :         return ConstantExpr::getIntToPtr(CI, GEPTy);
    3969             :       }
    3970             :       // gep (gep V, C), (xor V, -1) -> C-1
    3971           0 :       if (match(Ops.back(),
    3972           0 :                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
    3973           0 :         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
    3974           0 :         return ConstantExpr::getIntToPtr(CI, GEPTy);
    3975             :       }
    3976             :     }
    3977             :   }
    3978             : 
    3979             :   // Check to see if this is constant foldable.
    3980           0 :   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
    3981           0 :     return nullptr;
    3982             : 
    3983           0 :   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
    3984             :                                             Ops.slice(1));
    3985           0 :   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
    3986           0 :     return CEFolded;
    3987             :   return CE;
    3988             : }
    3989             : 
    3990     6214690 : Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
    3991             :                              const SimplifyQuery &Q) {
    3992     6214690 :   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
    3993             : }
    3994             : 
    3995             : /// Given operands for an InsertValueInst, see if we can fold the result.
    3996             : /// If not, this returns null.
    3997           0 : static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
    3998             :                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
    3999             :                                       unsigned) {
    4000             :   if (Constant *CAgg = dyn_cast<Constant>(Agg))
    4001             :     if (Constant *CVal = dyn_cast<Constant>(Val))
    4002           0 :       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
    4003             : 
    4004             :   // insertvalue x, undef, n -> x
    4005           0 :   if (match(Val, m_Undef()))
    4006           0 :     return Agg;
    4007             : 
    4008             :   // insertvalue x, (extractvalue y, n), n
    4009             :   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
    4010           0 :     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
    4011           0 :         EV->getIndices() == Idxs) {
    4012             :       // insertvalue undef, (extractvalue y, n), n -> y
    4013           0 :       if (match(Agg, m_Undef()))
    4014             :         return EV->getAggregateOperand();
    4015             : 
    4016             :       // insertvalue y, (extractvalue y, n), n -> y
    4017           0 :       if (Agg == EV->getAggregateOperand())
    4018           0 :         return Agg;
    4019             :     }
    4020             : 
    4021             :   return nullptr;
    4022             : }
    4023             : 
    4024       79973 : Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
    4025             :                                      ArrayRef<unsigned> Idxs,
    4026             :                                      const SimplifyQuery &Q) {
    4027       79973 :   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
    4028             : }
    4029             : 
    4030       30052 : Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
    4031             :                                        const SimplifyQuery &Q) {
    4032             :   // Try to constant fold.
    4033             :   auto *VecC = dyn_cast<Constant>(Vec);
    4034             :   auto *ValC = dyn_cast<Constant>(Val);
    4035             :   auto *IdxC = dyn_cast<Constant>(Idx);
    4036       30052 :   if (VecC && ValC && IdxC)
    4037         463 :     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
    4038             : 
    4039             :   // Fold into undef if index is out of bounds.
    4040             :   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
    4041       28375 :     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
    4042       28375 :     if (CI->uge(NumElements))
    4043           9 :       return UndefValue::get(Vec->getType());
    4044             :   }
    4045             : 
    4046             :   // If index is undef, it might be out of bounds (see above case)
    4047       29580 :   if (isa<UndefValue>(Idx))
    4048          14 :     return UndefValue::get(Vec->getType());
    4049             : 
    4050             :   return nullptr;
    4051             : }
    4052             : 
    4053             : /// Given operands for an ExtractValueInst, see if we can fold the result.
    4054             : /// If not, this returns null.
    4055           0 : static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
    4056             :                                        const SimplifyQuery &, unsigned) {
    4057             :   if (auto *CAgg = dyn_cast<Constant>(Agg))
    4058           0 :     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
    4059             : 
    4060             :   // extractvalue x, (insertvalue y, elt, n), n -> elt
    4061           0 :   unsigned NumIdxs = Idxs.size();
    4062           0 :   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
    4063             :        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
    4064             :     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
    4065           0 :     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
    4066           0 :     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
    4067           0 :     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
    4068             :         Idxs.slice(0, NumCommonIdxs)) {
    4069           0 :       if (NumIdxs == NumInsertValueIdxs)
    4070           0 :         return IVI->getInsertedValueOperand();
    4071           0 :       break;
    4072             :     }
    4073             :   }
    4074             : 
    4075             :   return nullptr;
    4076             : }
    4077             : 
    4078     1116833 : Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
    4079             :                                       const SimplifyQuery &Q) {
    4080     1116833 :   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
    4081             : }
    4082             : 
    4083             : /// Given operands for an ExtractElementInst, see if we can fold the result.
    4084             : /// If not, this returns null.
    4085           0 : static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
    4086             :                                          unsigned) {
    4087             :   if (auto *CVec = dyn_cast<Constant>(Vec)) {
    4088             :     if (auto *CIdx = dyn_cast<Constant>(Idx))
    4089           0 :       return ConstantFoldExtractElementInstruction(CVec, CIdx);
    4090             : 
    4091             :     // The index is not relevant if our vector is a splat.
    4092           0 :     if (auto *Splat = CVec->getSplatValue())
    4093           0 :       return Splat;
    4094             : 
    4095           0 :     if (isa<UndefValue>(Vec))
    4096           0 :       return UndefValue::get(Vec->getType()->getVectorElementType());
    4097             :   }
    4098             : 
    4099             :   // If extracting a specified index from the vector, see if we can recursively
    4100             :   // find a previously computed scalar that was inserted into the vector.
    4101             :   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
    4102           0 :     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
    4103             :       // definitely out of bounds, thus undefined result
    4104           0 :       return UndefValue::get(Vec->getType()->getVectorElementType());
    4105           0 :     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
    4106           0 :       return Elt;
    4107             :   }
    4108             : 
    4109             :   // An undef extract index can be arbitrarily chosen to be an out-of-range
    4110             :   // index value, which would result in the instruction being undef.
    4111           0 :   if (isa<UndefValue>(Idx))
    4112           0 :     return UndefValue::get(Vec->getType()->getVectorElementType());
    4113             : 
    4114             :   return nullptr;
    4115             : }
    4116             : 
    4117       28944 : Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
    4118             :                                         const SimplifyQuery &Q) {
    4119       28944 :   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
    4120             : }
    4121             : 
    4122             : /// See if we can fold the given phi. If not, returns null.
    4123           0 : static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
    4124             :   // If all of the PHI's incoming values are the same then replace the PHI node
    4125             :   // with the common value.
    4126             :   Value *CommonValue = nullptr;
    4127             :   bool HasUndefInput = false;
    4128           0 :   for (Value *Incoming : PN->incoming_values()) {
    4129             :     // If the incoming value is the phi node itself, it can safely be skipped.
    4130           0 :     if (Incoming == PN) continue;
    4131           0 :     if (isa<UndefValue>(Incoming)) {
    4132             :       // Remember that we saw an undef value, but otherwise ignore them.
    4133             :       HasUndefInput = true;
    4134           0 :       continue;
    4135             :     }
    4136           0 :     if (CommonValue && Incoming != CommonValue)
    4137           0 :       return nullptr;  // Not the same, bail out.
    4138             :     CommonValue = Incoming;
    4139             :   }
    4140             : 
    4141             :   // If CommonValue is null then all of the incoming values were either undef or
    4142             :   // equal to the phi node itself.
    4143           0 :   if (!CommonValue)
    4144           0 :     return UndefValue::get(PN->getType());
    4145             : 
    4146             :   // If we have a PHI node like phi(X, undef, X), where X is defined by some
    4147             :   // instruction, we cannot return X as the result of the PHI node unless it
    4148             :   // dominates the PHI block.
    4149           0 :   if (HasUndefInput)
    4150           0 :     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
    4151             : 
    4152             :   return CommonValue;
    4153             : }
    4154             : 
    4155           0 : static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
    4156             :                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
    4157             :   if (auto *C = dyn_cast<Constant>(Op))
    4158           0 :     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
    4159             : 
    4160             :   if (auto *CI = dyn_cast<CastInst>(Op)) {
    4161             :     auto *Src = CI->getOperand(0);
    4162           0 :     Type *SrcTy = Src->getType();
    4163           0 :     Type *MidTy = CI->getType();
    4164             :     Type *DstTy = Ty;
    4165           0 :     if (Src->getType() == Ty) {
    4166             :       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
    4167             :       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
    4168             :       Type *SrcIntPtrTy =
    4169           0 :           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
    4170             :       Type *MidIntPtrTy =
    4171           0 :           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
    4172             :       Type *DstIntPtrTy =
    4173           0 :           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
    4174           0 :       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
    4175             :                                          SrcIntPtrTy, MidIntPtrTy,
    4176             :                                          DstIntPtrTy) == Instruction::BitCast)
    4177           0 :         return Src;
    4178             :     }
    4179             :   }
    4180             : 
    4181             :   // bitcast x -> x
    4182           0 :   if (CastOpc == Instruction::BitCast)
    4183           0 :     if (Op->getType() == Ty)
    4184           0 :       return Op;
    4185             : 
    4186             :   return nullptr;
    4187             : }
    4188             : 
    4189     4704445 : Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
    4190             :                               const SimplifyQuery &Q) {
    4191     4704445 :   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
    4192             : }
    4193             : 
    4194             : /// For the given destination element of a shuffle, peek through shuffles to
    4195             : /// match a root vector source operand that contains that element in the same
    4196             : /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
    4197       20883 : static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
    4198             :                                    int MaskVal, Value *RootVec,
    4199             :                                    unsigned MaxRecurse) {
    4200       21548 :   if (!MaxRecurse--)
    4201             :     return nullptr;
    4202             : 
    4203             :   // Bail out if any mask value is undefined. That kind of shuffle may be
    4204             :   // simplified further based on demanded bits or other folds.
    4205       21544 :   if (MaskVal == -1)
    4206             :     return nullptr;
    4207             : 
    4208             :   // The mask value chooses which source operand we need to look at next.
    4209       21538 :   int InVecNumElts = Op0->getType()->getVectorNumElements();
    4210             :   int RootElt = MaskVal;
    4211             :   Value *SourceOp = Op0;
    4212       21538 :   if (MaskVal >= InVecNumElts) {
    4213        2910 :     RootElt = MaskVal - InVecNumElts;
    4214             :     SourceOp = Op1;
    4215             :   }
    4216             : 
    4217             :   // If the source operand is a shuffle itself, look through it to find the
    4218             :   // matching root vector.
    4219             :   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
    4220         665 :     return foldIdentityShuffles(
    4221             :         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
    4222         665 :         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
    4223             :   }
    4224             : 
    4225             :   // TODO: Look through bitcasts? What if the bitcast changes the vector element
    4226             :   // size?
    4227             : 
    4228             :   // The source operand is not a shuffle. Initialize the root vector value for
    4229             :   // this shuffle if that has not been done yet.
    4230       20873 :   if (!RootVec)
    4231             :     RootVec = SourceOp;
    4232             : 
    4233             :   // Give up as soon as a source operand does not match the existing root value.
    4234       20873 :   if (RootVec != SourceOp)
    4235             :     return nullptr;
    4236             : 
    4237             :   // The element must be coming from the same lane in the source vector
    4238             :   // (although it may have crossed lanes in intermediate shuffles).
    4239       18628 :   if (RootElt != DestElt)
    4240        5953 :     return nullptr;
    4241             : 
    4242             :   return RootVec;
    4243             : }
    4244             : 
    4245           0 : static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
    4246             :                                         Type *RetTy, const SimplifyQuery &Q,
    4247             :                                         unsigned MaxRecurse) {
    4248           0 :   if (isa<UndefValue>(Mask))
    4249           0 :     return UndefValue::get(RetTy);
    4250             : 
    4251           0 :   Type *InVecTy = Op0->getType();
    4252           0 :   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
    4253             :   unsigned InVecNumElts = InVecTy->getVectorNumElements();
    4254             : 
    4255             :   SmallVector<int, 32> Indices;
    4256           0 :   ShuffleVectorInst::getShuffleMask(Mask, Indices);
    4257             :   assert(MaskNumElts == Indices.size() &&
    4258             :          "Size of Indices not same as number of mask elements?");
    4259             : 
    4260             :   // Canonicalization: If mask does not select elements from an input vector,
    4261             :   // replace that input vector with undef.
    4262             :   bool MaskSelects0 = false, MaskSelects1 = false;
    4263           0 :   for (unsigned i = 0; i != MaskNumElts; ++i) {
    4264           0 :     if (Indices[i] == -1)
    4265           0 :       continue;
    4266           0 :     if ((unsigned)Indices[i] < InVecNumElts)
    4267             :       MaskSelects0 = true;
    4268             :     else
    4269             :       MaskSelects1 = true;
    4270             :   }
    4271           0 :   if (!MaskSelects0)
    4272           0 :     Op0 = UndefValue::get(InVecTy);
    4273           0 :   if (!MaskSelects1)
    4274           0 :     Op1 = UndefValue::get(InVecTy);
    4275             : 
    4276             :   auto *Op0Const = dyn_cast<Constant>(Op0);
    4277             :   auto *Op1Const = dyn_cast<Constant>(Op1);
    4278             : 
    4279             :   // If all operands are constant, constant fold the shuffle.
    4280           0 :   if (Op0Const && Op1Const)
    4281           0 :     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
    4282             : 
    4283             :   // Canonicalization: if only one input vector is constant, it shall be the
    4284             :   // second one.
    4285           0 :   if (Op0Const && !Op1Const) {
    4286             :     std::swap(Op0, Op1);
    4287             :     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
    4288             :   }
    4289             : 
    4290             :   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
    4291             :   // value type is same as the input vectors' type.
    4292             :   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
    4293           0 :     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
    4294           0 :         OpShuf->getMask()->getSplatValue())
    4295           0 :       return Op0;
    4296             : 
    4297             :   // Don't fold a shuffle with undef mask elements. This may get folded in a
    4298             :   // better way using demanded bits or other analysis.
    4299             :   // TODO: Should we allow this?
    4300           0 :   if (find(Indices, -1) != Indices.end())
    4301           0 :     return nullptr;
    4302             : 
    4303             :   // Check if every element of this shuffle can be mapped back to the
    4304             :   // corresponding element of a single root vector. If so, we don't need this
    4305             :   // shuffle. This handles simple identity shuffles as well as chains of
    4306             :   // shuffles that may widen/narrow and/or move elements across lanes and back.
    4307             :   Value *RootVec = nullptr;
    4308           0 :   for (unsigned i = 0; i != MaskNumElts; ++i) {
    4309             :     // Note that recursion is limited for each vector element, so if any element
    4310             :     // exceeds the limit, this will fail to simplify.
    4311             :     RootVec =
    4312           0 :         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
    4313             : 
    4314             :     // We can't replace a widening/narrowing shuffle with one of its operands.
    4315           0 :     if (!RootVec || RootVec->getType() != RetTy)
    4316           0 :       return nullptr;
    4317             :   }
    4318             :   return RootVec;
    4319             : }
    4320             : 
    4321             : /// Given operands for a ShuffleVectorInst, fold the result or return null.
    4322       12836 : Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
    4323             :                                        Type *RetTy, const SimplifyQuery &Q) {
    4324       12836 :   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
    4325             : }
    4326             : 
    4327          98 : static Constant *propagateNaN(Constant *In) {
    4328             :   // If the input is a vector with undef elements, just return a default NaN.
    4329          98 :   if (!In->isNaN())
    4330           1 :     return ConstantFP::getNaN(In->getType());
    4331             : 
    4332             :   // Propagate the existing NaN constant when possible.
    4333             :   // TODO: Should we quiet a signaling NaN?
    4334             :   return In;
    4335             : }
    4336             : 
    4337       49803 : static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
    4338       49803 :   if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
    4339         224 :     return ConstantFP::getNaN(Op0->getType());
    4340             : 
    4341       49579 :   if (match(Op0, m_NaN()))
    4342          14 :     return propagateNaN(cast<Constant>(Op0));
    4343       49565 :   if (match(Op1, m_NaN()))
    4344          84 :     return propagateNaN(cast<Constant>(Op1));
    4345             : 
    4346             :   return nullptr;
    4347             : }
    4348             : 
    4349             : /// Given operands for an FAdd, see if we can fold the result.  If not, this
    4350             : /// returns null.
    4351           0 : static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4352             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    4353           0 :   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
    4354           0 :     return C;
    4355             : 
    4356           0 :   if (Constant *C = simplifyFPBinop(Op0, Op1))
    4357           0 :     return C;
    4358             : 
    4359             :   // fadd X, -0 ==> X
    4360           0 :   if (match(Op1, m_NegZeroFP()))
    4361           0 :     return Op0;
    4362             : 
    4363             :   // fadd X, 0 ==> X, when we know X is not -0
    4364           0 :   if (match(Op1, m_PosZeroFP()) &&
    4365           0 :       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
    4366           0 :     return Op0;
    4367             : 
    4368             :   // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant)
    4369             :   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
    4370             :   // Negative zeros are allowed because we always end up with positive zero:
    4371             :   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
    4372             :   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
    4373             :   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
    4374             :   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
    4375           0 :   if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
    4376           0 :                        match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))))
    4377           0 :     return ConstantFP::getNullValue(Op0->getType());
    4378             : 
    4379             :   // (X - Y) + Y --> X
    4380             :   // Y + (X - Y) --> X
    4381             :   Value *X;
    4382           0 :   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
    4383           0 :       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
    4384           0 :        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
    4385           0 :     return X;
    4386             : 
    4387             :   return nullptr;
    4388             : }
    4389             : 
    4390             : /// Given operands for an FSub, see if we can fold the result.  If not, this
    4391             : /// returns null.
    4392           0 : static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4393             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    4394           0 :   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
    4395           0 :     return C;
    4396             : 
    4397           0 :   if (Constant *C = simplifyFPBinop(Op0, Op1))
    4398           0 :     return C;
    4399             : 
    4400             :   // fsub X, +0 ==> X
    4401           0 :   if (match(Op1, m_PosZeroFP()))
    4402           0 :     return Op0;
    4403             : 
    4404             :   // fsub X, -0 ==> X, when we know X is not -0
    4405           0 :   if (match(Op1, m_NegZeroFP()) &&
    4406           0 :       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
    4407           0 :     return Op0;
    4408             : 
    4409             :   // fsub -0.0, (fsub -0.0, X) ==> X
    4410             :   Value *X;
    4411           0 :   if (match(Op0, m_NegZeroFP()) &&
    4412           0 :       match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
    4413           0 :     return X;
    4414             : 
    4415             :   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
    4416           0 :   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
    4417           0 :       match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
    4418           0 :     return X;
    4419             : 
    4420             :   // fsub nnan x, x ==> 0.0
    4421           0 :   if (FMF.noNaNs() && Op0 == Op1)
    4422           0 :     return Constant::getNullValue(Op0->getType());
    4423             : 
    4424             :   // Y - (Y - X) --> X
    4425             :   // (X + Y) - Y --> X
    4426           0 :   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
    4427           0 :       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
    4428           0 :        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
    4429           0 :     return X;
    4430             : 
    4431             :   return nullptr;
    4432             : }
    4433             : 
    4434             : /// Given the operands for an FMul, see if we can fold the result
    4435           0 : static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4436             :                                const SimplifyQuery &Q, unsigned MaxRecurse) {
    4437           0 :   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
    4438           0 :     return C;
    4439             : 
    4440           0 :   if (Constant *C = simplifyFPBinop(Op0, Op1))
    4441           0 :     return C;
    4442             : 
    4443             :   // fmul X, 1.0 ==> X
    4444           0 :   if (match(Op1, m_FPOne()))
    4445           0 :     return Op0;
    4446             : 
    4447             :   // fmul nnan nsz X, 0 ==> 0
    4448           0 :   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
    4449           0 :     return ConstantFP::getNullValue(Op0->getType());
    4450             : 
    4451             :   // sqrt(X) * sqrt(X) --> X, if we can:
    4452             :   // 1. Remove the intermediate rounding (reassociate).
    4453             :   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
    4454             :   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
    4455             :   Value *X;
    4456           0 :   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
    4457           0 :       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
    4458           0 :     return X;
    4459             : 
    4460             :   return nullptr;
    4461             : }
    4462             : 
    4463       15645 : Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4464             :                               const SimplifyQuery &Q) {
    4465       15645 :   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
    4466             : }
    4467             : 
    4468             : 
    4469        9307 : Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4470             :                               const SimplifyQuery &Q) {
    4471        9307 :   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
    4472             : }
    4473             : 
    4474       16771 : Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4475             :                               const SimplifyQuery &Q) {
    4476       16771 :   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
    4477             : }
    4478             : 
    4479           0 : static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4480             :                                const SimplifyQuery &Q, unsigned) {
    4481           0 :   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
    4482           0 :     return C;
    4483             : 
    4484           0 :   if (Constant *C = simplifyFPBinop(Op0, Op1))
    4485           0 :     return C;
    4486             : 
    4487             :   // X / 1.0 -> X
    4488           0 :   if (match(Op1, m_FPOne()))
    4489           0 :     return Op0;
    4490             : 
    4491             :   // 0 / X -> 0
    4492             :   // Requires that NaNs are off (X could be zero) and signed zeroes are
    4493             :   // ignored (X could be positive or negative, so the output sign is unknown).
    4494           0 :   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
    4495           0 :     return ConstantFP::getNullValue(Op0->getType());
    4496             : 
    4497           0 :   if (FMF.noNaNs()) {
    4498             :     // X / X -> 1.0 is legal when NaNs are ignored.
    4499             :     // We can ignore infinities because INF/INF is NaN.
    4500           0 :     if (Op0 == Op1)
    4501           0 :       return ConstantFP::get(Op0->getType(), 1.0);
    4502             : 
    4503             :     // (X * Y) / Y --> X if we can reassociate to the above form.
    4504             :     Value *X;
    4505           0 :     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
    4506           0 :       return X;
    4507             : 
    4508             :     // -X /  X -> -1.0 and
    4509             :     //  X / -X -> -1.0 are legal when NaNs are ignored.
    4510             :     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
    4511           0 :     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
    4512           0 :         match(Op1, m_FNegNSZ(m_Specific(Op0))))
    4513           0 :       return ConstantFP::get(Op0->getType(), -1.0);
    4514             :   }
    4515             : 
    4516             :   return nullptr;
    4517             : }
    4518             : 
    4519        5940 : Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4520             :                               const SimplifyQuery &Q) {
    4521        5940 :   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
    4522             : }
    4523             : 
    4524           0 : static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4525             :                                const SimplifyQuery &Q, unsigned) {
    4526           0 :   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
    4527           0 :     return C;
    4528             : 
    4529           0 :   if (Constant *C = simplifyFPBinop(Op0, Op1))
    4530           0 :     return C;
    4531             : 
    4532             :   // Unlike fdiv, the result of frem always matches the sign of the dividend.
    4533             :   // The constant match may include undef elements in a vector, so return a full
    4534             :   // zero constant as the result.
    4535           0 :   if (FMF.noNaNs()) {
    4536             :     // +0 % X -> 0
    4537           0 :     if (match(Op0, m_PosZeroFP()))
    4538           0 :       return ConstantFP::getNullValue(Op0->getType());
    4539             :     // -0 % X -> -0
    4540           0 :     if (match(Op0, m_NegZeroFP()))
    4541           0 :       return ConstantFP::getNegativeZero(Op0->getType());
    4542             :   }
    4543             : 
    4544             :   return nullptr;
    4545             : }
    4546             : 
    4547         146 : Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    4548             :                               const SimplifyQuery &Q) {
    4549         146 :   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
    4550             : }
    4551             : 
    4552             : //=== Helper functions for higher up the class hierarchy.
    4553             : 
    4554             : /// Given operands for a BinaryOperator, see if we can fold the result.
    4555             : /// If not, this returns null.
    4556     4178233 : static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    4557             :                             const SimplifyQuery &Q, unsigned MaxRecurse) {
    4558     4178233 :   switch (Opcode) {
    4559     3718130 :   case Instruction::Add:
    4560     3718130 :     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
    4561       74343 :   case Instruction::Sub:
    4562       74343 :     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
    4563       66715 :   case Instruction::Mul:
    4564       66715 :     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
    4565        4254 :   case Instruction::SDiv:
    4566        4254 :     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
    4567        4527 :   case Instruction::UDiv:
    4568        4527 :     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
    4569         135 :   case Instruction::SRem:
    4570         135 :     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
    4571        3708 :   case Instruction::URem:
    4572        3708 :     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
    4573       37959 :   case Instruction::Shl:
    4574       37959 :     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
    4575       16520 :   case Instruction::LShr:
    4576       16520 :     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
    4577       13577 :   case Instruction::AShr:
    4578       13577 :     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
    4579       84783 :   case Instruction::And:
    4580       84783 :     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
    4581      117212 :   case Instruction::Or:
    4582      117212 :     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
    4583       34199 :   case Instruction::Xor:
    4584       34199 :     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
    4585         527 :   case Instruction::FAdd:
    4586         527 :     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
    4587          14 :   case Instruction::FSub:
    4588          14 :     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
    4589        1621 :   case Instruction::FMul:
    4590        1621 :     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
    4591           9 :   case Instruction::FDiv:
    4592           9 :     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
    4593           0 :   case Instruction::FRem:
    4594           0 :     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
    4595           0 :   default:
    4596           0 :     llvm_unreachable("Unexpected opcode");
    4597             :   }
    4598             : }
    4599             : 
    4600             : /// Given operands for a BinaryOperator, see if we can fold the result.
    4601             : /// If not, this returns null.
    4602             : /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
    4603             : /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
    4604           0 : static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    4605             :                               const FastMathFlags &FMF, const SimplifyQuery &Q,
    4606             :                               unsigned MaxRecurse) {
    4607           0 :   switch (Opcode) {
    4608           0 :   case Instruction::FAdd:
    4609           0 :     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
    4610           0 :   case Instruction::FSub:
    4611           0 :     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
    4612           0 :   case Instruction::FMul:
    4613           0 :     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
    4614           0 :   case Instruction::FDiv:
    4615           0 :     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
    4616           0 :   default:
    4617           0 :     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
    4618             :   }
    4619             : }
    4620             : 
    4621     3561250 : Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    4622             :                            const SimplifyQuery &Q) {
    4623     3561250 :   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
    4624             : }
    4625             : 
    4626         398 : Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    4627             :                              FastMathFlags FMF, const SimplifyQuery &Q) {
    4628         398 :   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
    4629             : }
    4630             : 
    4631             : /// Given operands for a CmpInst, see if we can fold the result.
    4632      146149 : static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
    4633             :                               const SimplifyQuery &Q, unsigned MaxRecurse) {
    4634      146149 :   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
    4635      145514 :     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
    4636         635 :   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
    4637             : }
    4638             : 
    4639       17746 : Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
    4640             :                              const SimplifyQuery &Q) {
    4641       17746 :   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
    4642             : }
    4643             : 
    4644             : static bool IsIdempotent(Intrinsic::ID ID) {
    4645           0 :   switch (ID) {
    4646             :   default: return false;
    4647             : 
    4648             :   // Unary idempotent: f(f(x)) = f(x)
    4649             :   case Intrinsic::fabs:
    4650             :   case Intrinsic::floor:
    4651             :   case Intrinsic::ceil:
    4652             :   case Intrinsic::trunc:
    4653             :   case Intrinsic::rint:
    4654             :   case Intrinsic::nearbyint:
    4655             :   case Intrinsic::round:
    4656             :   case Intrinsic::canonicalize:
    4657             :     return true;
    4658             :   }
    4659             : }
    4660             : 
    4661           9 : static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
    4662             :                                    const DataLayout &DL) {
    4663             :   GlobalValue *PtrSym;
    4664             :   APInt PtrOffset;
    4665           9 :   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
    4666             :     return nullptr;
    4667             : 
    4668           8 :   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
    4669           8 :   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
    4670           8 :   Type *Int32PtrTy = Int32Ty->getPointerTo();
    4671           8 :   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
    4672             : 
    4673             :   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
    4674           8 :   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
    4675             :     return nullptr;
    4676             : 
    4677           8 :   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
    4678           8 :   if (OffsetInt % 4 != 0)
    4679             :     return nullptr;
    4680             : 
    4681           7 :   Constant *C = ConstantExpr::getGetElementPtr(
    4682             :       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
    4683             :       ConstantInt::get(Int64Ty, OffsetInt / 4));
    4684           7 :   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
    4685           7 :   if (!Loaded)
    4686             :     return nullptr;
    4687             : 
    4688             :   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
    4689             :   if (!LoadedCE)
    4690             :     return nullptr;
    4691             : 
    4692           7 :   if (LoadedCE->getOpcode() == Instruction::Trunc) {
    4693             :     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
    4694             :     if (!LoadedCE)
    4695             :       return nullptr;
    4696             :   }
    4697             : 
    4698           7 :   if (LoadedCE->getOpcode() != Instruction::Sub)
    4699             :     return nullptr;
    4700             : 
    4701             :   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
    4702           5 :   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
    4703             :     return nullptr;
    4704             :   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
    4705             : 
    4706             :   Constant *LoadedRHS = LoadedCE->getOperand(1);
    4707             :   GlobalValue *LoadedRHSSym;
    4708             :   APInt LoadedRHSOffset;
    4709           5 :   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
    4710           4 :                                   DL) ||
    4711           9 :       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
    4712             :     return nullptr;
    4713             : 
    4714           4 :   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
    4715             : }
    4716             : 
    4717         746 : static bool maskIsAllZeroOrUndef(Value *Mask) {
    4718             :   auto *ConstMask = dyn_cast<Constant>(Mask);
    4719             :   if (!ConstMask)
    4720             :     return false;
    4721          17 :   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
    4722             :     return true;
    4723          29 :   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
    4724             :        ++I) {
    4725          29 :     if (auto *MaskElt = ConstMask->getAggregateElement(I))
    4726          29 :       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
    4727             :         continue;
    4728             :     return false;
    4729             :   }
    4730             :   return true;
    4731             : }
    4732             : 
    4733           0 : static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
    4734             :                                      const SimplifyQuery &Q) {
    4735             :   // Idempotent functions return the same result when called repeatedly.
    4736           0 :   Intrinsic::ID IID = F->getIntrinsicID();
    4737             :   if (IsIdempotent(IID))
    4738             :     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
    4739           0 :       if (II->getIntrinsicID() == IID)
    4740           0 :         return II;
    4741             : 
    4742             :   Value *X;
    4743           0 :   switch (IID) {
    4744           0 :   case Intrinsic::fabs:
    4745           0 :     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
    4746             :     break;
    4747             :   case Intrinsic::bswap:
    4748             :     // bswap(bswap(x)) -> x
    4749           0 :     if (match(Op0, m_BSwap(m_Value(X)))) return X;
    4750             :     break;
    4751             :   case Intrinsic::bitreverse:
    4752             :     // bitreverse(bitreverse(x)) -> x
    4753           0 :     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
    4754             :     break;
    4755           0 :   case Intrinsic::exp:
    4756             :     // exp(log(x)) -> x
    4757           0 :     if (Q.CxtI->hasAllowReassoc() &&
    4758           0 :         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
    4759             :     break;
    4760           0 :   case Intrinsic::exp2:
    4761             :     // exp2(log2(x)) -> x
    4762           0 :     if (Q.CxtI->hasAllowReassoc() &&
    4763           0 :         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
    4764             :     break;
    4765           0 :   case Intrinsic::log:
    4766             :     // log(exp(x)) -> x
    4767           0 :     if (Q.CxtI->hasAllowReassoc() &&
    4768           0 :         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
    4769             :     break;
    4770           0 :   case Intrinsic::log2:
    4771             :     // log2(exp2(x)) -> x
    4772           0 :     if (Q.CxtI->hasAllowReassoc() &&
    4773           0 :         match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X;
    4774             :     break;
    4775             :   default:
    4776             :     break;
    4777             :   }
    4778             : 
    4779             :   return nullptr;
    4780             : }
    4781             : 
    4782           0 : static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
    4783             :                                       const SimplifyQuery &Q) {
    4784           0 :   Intrinsic::ID IID = F->getIntrinsicID();
    4785             :   Type *ReturnType = F->getReturnType();
    4786           0 :   switch (IID) {
    4787           0 :   case Intrinsic::usub_with_overflow:
    4788             :   case Intrinsic::ssub_with_overflow:
    4789             :     // X - X -> { 0, false }
    4790           0 :     if (Op0 == Op1)
    4791           0 :       return Constant::getNullValue(ReturnType);
    4792             :     // X - undef -> undef
    4793             :     // undef - X -> undef
    4794           0 :     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
    4795           0 :       return UndefValue::get(ReturnType);
    4796             :     break;
    4797           0 :   case Intrinsic::uadd_with_overflow:
    4798             :   case Intrinsic::sadd_with_overflow:
    4799             :     // X + undef -> undef
    4800           0 :     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
    4801           0 :       return UndefValue::get(ReturnType);
    4802             :     break;
    4803             :   case Intrinsic::umul_with_overflow:
    4804             :   case Intrinsic::smul_with_overflow:
    4805             :     // 0 * X -> { 0, false }
    4806             :     // X * 0 -> { 0, false }
    4807           0 :     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
    4808           0 :       return Constant::getNullValue(ReturnType);
    4809             :     // undef * X -> { 0, false }
    4810             :     // X * undef -> { 0, false }
    4811           0 :     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    4812           0 :       return Constant::getNullValue(ReturnType);
    4813             :     break;
    4814           0 :   case Intrinsic::load_relative:
    4815             :     if (auto *C0 = dyn_cast<Constant>(Op0))
    4816             :       if (auto *C1 = dyn_cast<Constant>(Op1))
    4817           0 :         return SimplifyRelativeLoad(C0, C1, Q.DL);
    4818             :     break;
    4819           0 :   case Intrinsic::powi:
    4820             :     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
    4821             :       // powi(x, 0) -> 1.0
    4822           0 :       if (Power->isZero())
    4823           0 :         return ConstantFP::get(Op0->getType(), 1.0);
    4824             :       // powi(x, 1) -> x
    4825           0 :       if (Power->isOne())
    4826           0 :         return Op0;
    4827             :     }
    4828             :     break;
    4829           0 :   case Intrinsic::maxnum:
    4830             :   case Intrinsic::minnum: {
    4831             :     // If the arguments are the same, this is a no-op.
    4832           0 :     if (Op0 == Op1) return Op0;
    4833             : 
    4834             :     // If one argument is NaN or undef, return the other argument.
    4835           0 :     if (match(Op0, m_CombineOr(m_NaN(), m_Undef()))) return Op1;
    4836           0 :     if (match(Op1, m_CombineOr(m_NaN(), m_Undef()))) return Op0;
    4837             : 
    4838             :     // Min/max of the same operation with common operand:
    4839             :     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
    4840             :     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
    4841           0 :       if (M0->getIntrinsicID() == IID &&
    4842           0 :           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
    4843           0 :         return Op0;
    4844             :     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
    4845           0 :       if (M1->getIntrinsicID() == IID &&
    4846           0 :           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
    4847           0 :         return Op1;
    4848             : 
    4849             :     // minnum(X, -Inf) --> -Inf (and commuted variant)
    4850             :     // maxnum(X, +Inf) --> +Inf (and commuted variant)
    4851           0 :     bool UseNegInf = IID == Intrinsic::minnum;
    4852             :     const APFloat *C;
    4853           0 :     if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
    4854           0 :          C->isNegative() == UseNegInf) ||
    4855           0 :         (match(Op1, m_APFloat(C)) && C->isInfinity() &&
    4856             :          C->isNegative() == UseNegInf))
    4857           0 :       return ConstantFP::getInfinity(ReturnType, UseNegInf);
    4858             : 
    4859             :     // TODO: minnum(nnan x, inf) -> x
    4860             :     // TODO: minnum(nnan ninf x, flt_max) -> x
    4861             :     // TODO: maxnum(nnan x, -inf) -> x
    4862             :     // TODO: maxnum(nnan ninf x, -flt_max) -> x
    4863           0 :     break;
    4864             :   }
    4865             :   default:
    4866             :     break;
    4867             :   }
    4868             : 
    4869             :   return nullptr;
    4870             : }
    4871             : 
    4872             : template <typename IterTy>
    4873     2438249 : static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
    4874             :                                 const SimplifyQuery &Q) {
    4875             :   // Intrinsics with no operands have some kind of side effect. Don't simplify.
    4876     2438249 :   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
    4877     2438249 :   if (NumOperands == 0)
    4878             :     return nullptr;
    4879             : 
    4880     2292207 :   Intrinsic::ID IID = F->getIntrinsicID();
    4881     2292207 :   if (NumOperands == 1)
    4882       32915 :     return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
    4883             : 
    4884     2259292 :   if (NumOperands == 2)
    4885     1066394 :     return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
    4886             : 
    4887             :   // Handle intrinsics with 3 or more arguments.
    4888     1192898 :   switch (IID) {
    4889         746 :   case Intrinsic::masked_load: {
    4890         746 :     Value *MaskArg = ArgBegin[2];
    4891         746 :     Value *PassthruArg = ArgBegin[3];
    4892             :     // If the mask is all zeros or undef, the "passthru" argument is the result.
    4893         746 :     if (maskIsAllZeroOrUndef(MaskArg))
    4894           4 :       return PassthruArg;
    4895             :     return nullptr;
    4896             :   }
    4897          48 :   case Intrinsic::fshl:
    4898             :   case Intrinsic::fshr: {
    4899          48 :     Value *ShAmtArg = ArgBegin[2];
    4900             :     const APInt *ShAmtC;
    4901          48 :     if (match(ShAmtArg, m_APInt(ShAmtC))) {
    4902             :       // If there's effectively no shift, return the 1st arg or 2nd arg.
    4903             :       // TODO: For vectors, we could check each element of a non-splat constant.
    4904          36 :       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
    4905          72 :       if (ShAmtC->urem(BitWidth).isNullValue())
    4906          20 :         return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
    4907             :     }
    4908             :     return nullptr;
    4909             :   }
    4910             :   default:
    4911             :     return nullptr;
    4912             :   }
    4913             : }
    4914           0 : 
    4915             : template <typename IterTy>
    4916             : static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
    4917           0 :                            IterTy ArgEnd, const SimplifyQuery &Q,
    4918           0 :                            unsigned MaxRecurse) {
    4919             :   Type *Ty = V->getType();
    4920             :   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    4921           0 :     Ty = PTy->getElementType();
    4922           0 :   FunctionType *FTy = cast<FunctionType>(Ty);
    4923           0 : 
    4924             :   // call undef -> undef
    4925           0 :   // call null -> undef
    4926           0 :   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
    4927             :     return UndefValue::get(FTy->getReturnType());
    4928             : 
    4929           0 :   Function *F = dyn_cast<Function>(V);
    4930           0 :   if (!F)
    4931           0 :     return nullptr;
    4932           0 : 
    4933             :   if (F->isIntrinsic())
    4934           0 :     if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
    4935           0 :       return Ret;
    4936             : 
    4937             :   if (!canConstantFoldCallTo(CS, F))
    4938           0 :     return nullptr;
    4939             : 
    4940           0 :   SmallVector<Constant *, 4> ConstantArgs;
    4941             :   ConstantArgs.reserve(ArgEnd - ArgBegin);
    4942           0 :   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
    4943             :     Constant *C = dyn_cast<Constant>(*I);
    4944             :     if (!C)
    4945           0 :       return nullptr;
    4946           0 :     ConstantArgs.push_back(C);
    4947           0 :   }
    4948             : 
    4949             :   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
    4950             : }
    4951             : 
    4952             : Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
    4953             :                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
    4954             :                           const SimplifyQuery &Q) {
    4955     2438249 :   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
    4956             : }
    4957             : 
    4958     2438249 : Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
    4959     2438249 :                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
    4960             :   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
    4961             : }
    4962     2292207 : 
    4963     2292207 : Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) {
    4964       32915 :   CallSite CS(const_cast<Instruction*>(ICS.getInstruction()));
    4965             :   return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
    4966     2259292 :                         Q, RecursionLimit);
    4967     1066394 : }
    4968             : 
    4969             : /// See if we can compute a simplified version of this instruction.
    4970     1192898 : /// If not, this returns null.
    4971         746 : 
    4972         746 : Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
    4973         746 :                                  OptimizationRemarkEmitter *ORE) {
    4974             :   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
    4975         746 :   Value *Result;
    4976           4 : 
    4977             :   switch (I->getOpcode()) {
    4978             :   default:
    4979          48 :     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
    4980             :     break;
    4981          48 :   case Instruction::FAdd:
    4982             :     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
    4983          48 :                               I->getFastMathFlags(), Q);
    4984             :     break;
    4985             :   case Instruction::Add:
    4986          36 :     Result =
    4987          72 :         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
    4988          20 :                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
    4989             :                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
    4990             :     break;
    4991             :   case Instruction::FSub:
    4992             :     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
    4993             :                               I->getFastMathFlags(), Q);
    4994             :     break;
    4995             :   case Instruction::Sub:
    4996             :     Result =
    4997             :         SimplifySubInst(I->getOperand(0), I->getOperand(1),
    4998           0 :                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
    4999             :                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
    5000             :     break;
    5001           0 :   case Instruction::FMul:
    5002             :     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
    5003           0 :                               I->getFastMathFlags(), Q);
    5004             :     break;
    5005             :   case Instruction::Mul:
    5006             :     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
    5007             :     break;
    5008           0 :   case Instruction::SDiv:
    5009           0 :     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
    5010             :     break;
    5011             :   case Instruction::UDiv:
    5012             :     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
    5013           0 :     break;
    5014             :   case Instruction::FDiv:
    5015           0 :     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
    5016           0 :                               I->getFastMathFlags(), Q);
    5017           0 :     break;
    5018             :   case Instruction::SRem:
    5019           0 :     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
    5020           0 :     break;
    5021             :   case Instruction::URem:
    5022             :     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
    5023           0 :     break;
    5024           0 :   case Instruction::FRem:
    5025           0 :     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
    5026           0 :                               I->getFastMathFlags(), Q);
    5027           0 :     break;
    5028           0 :   case Instruction::Shl:
    5029             :     Result =
    5030             :         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
    5031           0 :                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
    5032             :                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
    5033           0 :     break;
    5034             :   case Instruction::LShr:
    5035             :     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
    5036           0 :                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
    5037             :     break;
    5038           0 :   case Instruction::AShr:
    5039             :     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
    5040             :                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
    5041             :     break;
    5042             :   case Instruction::And:
    5043           0 :     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
    5044           0 :     break;
    5045             :   case Instruction::Or:
    5046             :     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
    5047             :     break;
    5048           0 :   case Instruction::Xor:
    5049             :     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
    5050           0 :     break;
    5051           0 :   case Instruction::ICmp:
    5052           0 :     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
    5053             :                               I->getOperand(0), I->getOperand(1), Q);
    5054           0 :     break;
    5055           0 :   case Instruction::FCmp:
    5056             :     Result =
    5057             :         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
    5058           0 :                          I->getOperand(1), I->getFastMathFlags(), Q);
    5059           0 :     break;
    5060           0 :   case Instruction::Select:
    5061           0 :     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
    5062           0 :                                 I->getOperand(2), Q);
    5063           0 :     break;
    5064             :   case Instruction::GetElementPtr: {
    5065             :     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
    5066           0 :     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
    5067             :                              Ops, Q);
    5068           0 :     break;
    5069             :   }
    5070             :   case Instruction::InsertValue: {
    5071           0 :     InsertValueInst *IV = cast<InsertValueInst>(I);
    5072             :     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
    5073           0 :                                      IV->getInsertedValueOperand(),
    5074             :                                      IV->getIndices(), Q);
    5075             :     break;
    5076             :   }
    5077             :   case Instruction::InsertElement: {
    5078           0 :     auto *IE = cast<InsertElementInst>(I);
    5079           0 :     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
    5080             :                                        IE->getOperand(2), Q);
    5081             :     break;
    5082             :   }
    5083           0 :   case Instruction::ExtractValue: {
    5084             :     auto *EVI = cast<ExtractValueInst>(I);
    5085           0 :     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
    5086           0 :                                       EVI->getIndices(), Q);
    5087           0 :     break;
    5088             :   }
    5089           0 :   case Instruction::ExtractElement: {
    5090           0 :     auto *EEI = cast<ExtractElementInst>(I);
    5091             :     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
    5092             :                                         EEI->getIndexOperand(), Q);
    5093           0 :     break;
    5094           0 :   }
    5095           0 :   case Instruction::ShuffleVector: {
    5096           0 :     auto *SVI = cast<ShuffleVectorInst>(I);
    5097           0 :     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
    5098           0 :                                        SVI->getMask(), SVI->getType(), Q);
    5099             :     break;
    5100             :   }
    5101           0 :   case Instruction::PHI:
    5102             :     Result = SimplifyPHINode(cast<PHINode>(I), Q);
    5103             :     break;
    5104           0 :   case Instruction::Call: {
    5105             :     CallSite CS(cast<CallInst>(I));
    5106             :     Result = SimplifyCall(CS, Q);
    5107           0 :     break;
    5108             :   }
    5109             : #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
    5110           0 : #include "llvm/IR/Instruction.def"
    5111             : #undef HANDLE_CAST_INST
    5112           0 :     Result =
    5113             :         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
    5114             :     break;
    5115     5220588 :   case Instruction::Alloca:
    5116             :     // No simplifications for Alloca and it can't be constant folded.
    5117    10441176 :     Result = nullptr;
    5118     5220588 :     break;
    5119             :   }
    5120             : 
    5121             :   // In general, it is possible for computeKnownBits to determine all bits in a
    5122             :   // value even when the operands are not all constants.
    5123             :   if (!Result && I->getType()->isIntOrIntVectorTy()) {
    5124    65856975 :     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
    5125             :     if (Known.isConstant())
    5126    65856975 :       Result = ConstantInt::get(I->getType(), Known.getConstant());
    5127             :   }
    5128             : 
    5129    65856975 :   /// If called on unreachable code, the above logic may report that the
    5130    27584677 :   /// instruction simplified to itself.  Make life easier for users by
    5131    27584677 :   /// detecting that case here, returning a safe value instead.
    5132    27584677 :   return Result == I ? UndefValue::get(I->getType()) : Result;
    5133       11332 : }
    5134       22664 : 
    5135             : /// Implementation of recursive simplification through an instruction's
    5136       11332 : /// uses.
    5137             : ///
    5138             : /// This is the common implementation of the recursive simplification routines.
    5139     4781666 : /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
    5140     2390833 : /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
    5141     2390833 : /// instructions to process and attempt to simplify it using
    5142     2390833 : /// InstructionSimplify.
    5143        6815 : ///
    5144       13630 : /// This routine returns 'true' only when *it* simplifies something. The passed
    5145             : /// in simplified value does not count toward this.
    5146        6815 : static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
    5147             :                                               const TargetLibraryInfo *TLI,
    5148             :                                               const DominatorTree *DT,
    5149      296974 :                                               AssumptionCache *AC) {
    5150      148487 :   bool Simplified = false;
    5151      148487 :   SmallSetVector<Instruction *, 8> Worklist;
    5152      148487 :   const DataLayout &DL = I->getModule()->getDataLayout();
    5153       11859 : 
    5154       23718 :   // If we have an explicit value to collapse to, do that round of the
    5155             :   // simplification loop by hand initially.
    5156       11859 :   if (SimpleV) {
    5157       34816 :     for (User *U : I->users())
    5158       69632 :       if (U != I)
    5159       34816 :         Worklist.insert(cast<Instruction>(U));
    5160       66415 : 
    5161      132830 :     // Replace the instruction with its simplified value.
    5162       66415 :     I->replaceAllUsesWith(SimpleV);
    5163        8721 : 
    5164       17442 :     // Gracefully handle edge cases where the instruction is not wired into any
    5165        8721 :     // parent block.
    5166        4429 :     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
    5167        8858 :         !I->mayHaveSideEffects())
    5168             :       I->eraseFromParent();
    5169        4429 :   } else {
    5170        2701 :     Worklist.insert(I);
    5171        5402 :   }
    5172        2701 : 
    5173       18370 :   // Note that we must test the size on each iteration, the worklist can grow.
    5174       36740 :   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    5175       18370 :     I = Worklist[Idx];
    5176          96 : 
    5177         192 :     // See if this instruction simplifies.
    5178             :     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
    5179          96 :     if (!SimpleV)
    5180             :       continue;
    5181             : 
    5182       54700 :     Simplified = true;
    5183       27350 : 
    5184       27350 :     // Stash away all the uses of the old instruction so we can check them for
    5185       27350 :     // recursive simplifications after a RAUW. This is cheaper than checking all
    5186             :     // uses of To on the recursive step in most cases.
    5187       35138 :     for (User *U : I->users())
    5188       17569 :       Worklist.insert(cast<Instruction>(U));
    5189       17569 : 
    5190             :     // Replace the instruction with its simplified value.
    5191       70588 :     I->replaceAllUsesWith(SimpleV);
    5192       35294 : 
    5193       35294 :     // Gracefully handle edge cases where the instruction is not wired into any
    5194      144544 :     // parent block.
    5195      289088 :     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
    5196      144544 :         !I->mayHaveSideEffects())
    5197       29596 :       I->eraseFromParent();
    5198       59192 :   }
    5199       29596 :   return Simplified;
    5200       50298 : }
    5201      100596 : 
    5202       50298 : bool llvm::recursivelySimplifyInstruction(Instruction *I,
    5203      689208 :                                           const TargetLibraryInfo *TLI,
    5204     1378416 :                                           const DominatorTree *DT,
    5205             :                                           AssumptionCache *AC) {
    5206      689208 :   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
    5207       10957 : }
    5208             : 
    5209       21914 : bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
    5210             :                                          const TargetLibraryInfo *TLI,
    5211       10957 :                                          const DominatorTree *DT,
    5212       89353 :                                          AssumptionCache *AC) {
    5213      178706 :   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
    5214             :   assert(SimpleV && "Must provide a simplified value.");
    5215       89353 :   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
    5216     4941799 : }
    5217     4941799 : 
    5218     4941799 : namespace llvm {
    5219             : const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
    5220             :   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    5221             :   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    5222             :   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    5223             :   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
    5224       79973 :   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
    5225             :   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
    5226             :   return {F.getParent()->getDataLayout(), TLI, DT, AC};
    5227       79973 : }
    5228             : 
    5229             : const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
    5230             :                                          const DataLayout &DL) {
    5231       20282 :   return {DL, &AR.TLI, &AR.DT, &AR.AC};
    5232             : }
    5233       20282 : 
    5234             : template <class T, class... TArgs>
    5235             : const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
    5236             :                                          Function &F) {
    5237      472784 :   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
    5238             :   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
    5239      472784 :   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
    5240             :   return {F.getParent()->getDataLayout(), TLI, DT, AC};
    5241             : }
    5242             : template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
    5243       19010 :                                                   Function &);
    5244             : }

Generated by: LCOV version 1.13