Line data Source code
1 : //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis Implementation -==//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements divergence analysis which determines whether a branch
11 : // in a GPU program is divergent.It can help branch optimizations such as jump
12 : // threading and loop unswitching to make better decisions.
13 : //
14 : // GPU programs typically use the SIMD execution model, where multiple threads
15 : // in the same execution group have to execute in lock-step. Therefore, if the
16 : // code contains divergent branches (i.e., threads in a group do not agree on
17 : // which path of the branch to take), the group of threads has to execute all
18 : // the paths from that branch with different subsets of threads enabled until
19 : // they converge at the immediately post-dominating BB of the paths.
20 : //
21 : // Due to this execution model, some optimizations such as jump
22 : // threading and loop unswitching can be unfortunately harmful when performed on
23 : // divergent branches. Therefore, an analysis that computes which branches in a
24 : // GPU program are divergent can help the compiler to selectively run these
25 : // optimizations.
26 : //
27 : // This file defines divergence analysis which computes a conservative but
28 : // non-trivial approximation of all divergent branches in a GPU program. It
29 : // partially implements the approach described in
30 : //
31 : // Divergence Analysis
32 : // Sampaio, Souza, Collange, Pereira
33 : // TOPLAS '13
34 : //
35 : // The divergence analysis identifies the sources of divergence (e.g., special
36 : // variables that hold the thread ID), and recursively marks variables that are
37 : // data or sync dependent on a source of divergence as divergent.
38 : //
39 : // While data dependency is a well-known concept, the notion of sync dependency
40 : // is worth more explanation. Sync dependence characterizes the control flow
41 : // aspect of the propagation of branch divergence. For example,
42 : //
43 : // %cond = icmp slt i32 %tid, 10
44 : // br i1 %cond, label %then, label %else
45 : // then:
46 : // br label %merge
47 : // else:
48 : // br label %merge
49 : // merge:
50 : // %a = phi i32 [ 0, %then ], [ 1, %else ]
51 : //
52 : // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 : // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 : // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 : // is assigned to.
56 : //
57 : // The current implementation has the following limitations:
58 : // 1. intra-procedural. It conservatively considers the arguments of a
59 : // non-kernel-entry function and the return value of a function call as
60 : // divergent.
61 : // 2. memory as black box. It conservatively considers values loaded from
62 : // generic or local address as divergent. This can be improved by leveraging
63 : // pointer analysis.
64 : //
65 : //===----------------------------------------------------------------------===//
66 :
67 : #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
68 : #include "llvm/Analysis/Passes.h"
69 : #include "llvm/Analysis/PostDominators.h"
70 : #include "llvm/Analysis/TargetTransformInfo.h"
71 : #include "llvm/IR/Dominators.h"
72 : #include "llvm/IR/InstIterator.h"
73 : #include "llvm/IR/Instructions.h"
74 : #include "llvm/IR/Value.h"
75 : #include "llvm/Support/Debug.h"
76 : #include "llvm/Support/raw_ostream.h"
77 : #include <vector>
78 : using namespace llvm;
79 :
80 : #define DEBUG_TYPE "divergence"
81 :
82 : namespace {
83 :
84 : class DivergencePropagator {
85 : public:
86 : DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
87 : PostDominatorTree &PDT, DenseSet<const Value *> &DV)
88 97961 : : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
89 : void populateWithSourcesOfDivergence();
90 : void propagate();
91 :
92 : private:
93 : // A helper function that explores data dependents of V.
94 : void exploreDataDependency(Value *V);
95 : // A helper function that explores sync dependents of TI.
96 : void exploreSyncDependency(Instruction *TI);
97 : // Computes the influence region from Start to End. This region includes all
98 : // basic blocks on any simple path from Start to End.
99 : void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
100 : DenseSet<BasicBlock *> &InfluenceRegion);
101 : // Finds all users of I that are outside the influence region, and add these
102 : // users to Worklist.
103 : void findUsersOutsideInfluenceRegion(
104 : Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
105 :
106 : Function &F;
107 : TargetTransformInfo &TTI;
108 : DominatorTree &DT;
109 : PostDominatorTree &PDT;
110 : std::vector<Value *> Worklist; // Stack for DFS.
111 : DenseSet<const Value *> &DV; // Stores all divergent values.
112 : };
113 :
114 97961 : void DivergencePropagator::populateWithSourcesOfDivergence() {
115 97961 : Worklist.clear();
116 97961 : DV.clear();
117 1316993 : for (auto &I : instructions(F)) {
118 1219032 : if (TTI.isSourceOfDivergence(&I)) {
119 43370 : Worklist.push_back(&I);
120 43370 : DV.insert(&I);
121 : }
122 : }
123 323666 : for (auto &Arg : F.args()) {
124 225705 : if (TTI.isSourceOfDivergence(&Arg)) {
125 40046 : Worklist.push_back(&Arg);
126 40046 : DV.insert(&Arg);
127 : }
128 : }
129 97961 : }
130 :
131 2793 : void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
132 : // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
133 : // immediate post dominator are divergent. This rule handles if-then-else
134 : // patterns. For example,
135 : //
136 : // if (tid < 5)
137 : // a1 = 1;
138 : // else
139 : // a2 = 2;
140 : // a = phi(a1, a2); // sync dependent on (tid < 5)
141 2793 : BasicBlock *ThisBB = TI->getParent();
142 :
143 : // Unreachable blocks may not be in the dominator tree.
144 2793 : if (!DT.isReachableFromEntry(ThisBB))
145 140 : return;
146 :
147 : // If the function has no exit blocks or doesn't reach any exit blocks, the
148 : // post dominator may be null.
149 2792 : DomTreeNode *ThisNode = PDT.getNode(ThisBB);
150 : if (!ThisNode)
151 0 : return;
152 :
153 2792 : BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
154 2792 : if (IPostDom == nullptr)
155 : return;
156 :
157 6762 : for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
158 : // A PHINode is uniform if it returns the same value no matter which path is
159 : // taken.
160 4109 : if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
161 986 : Worklist.push_back(&*I);
162 : }
163 :
164 : // Propagation rule 2: if a value defined in a loop is used outside, the user
165 : // is sync dependent on the condition of the loop exits that dominate the
166 : // user. For example,
167 : //
168 : // int i = 0;
169 : // do {
170 : // i++;
171 : // if (foo(i)) ... // uniform
172 : // } while (i < tid);
173 : // if (bar(i)) ... // divergent
174 : //
175 : // A program may contain unstructured loops. Therefore, we cannot leverage
176 : // LoopInfo, which only recognizes natural loops.
177 : //
178 : // The algorithm used here handles both natural and unstructured loops. Given
179 : // a branch TI, we first compute its influence region, the union of all simple
180 : // paths from TI to its immediate post dominator (IPostDom). Then, we search
181 : // for all the values defined in the influence region but used outside. All
182 : // these users are sync dependent on TI.
183 : DenseSet<BasicBlock *> InfluenceRegion;
184 2653 : computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
185 : // An insight that can speed up the search process is that all the in-region
186 : // values that are used outside must dominate TI. Therefore, instead of
187 : // searching every basic blocks in the influence region, we search all the
188 : // dominators of TI until it is outside the influence region.
189 : BasicBlock *InfluencedBB = ThisBB;
190 622 : while (InfluenceRegion.count(InfluencedBB)) {
191 11601 : for (auto &I : *InfluencedBB)
192 10979 : findUsersOutsideInfluenceRegion(I, InfluenceRegion);
193 622 : DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
194 622 : if (IDomNode == nullptr)
195 : break;
196 622 : InfluencedBB = IDomNode->getBlock();
197 : }
198 : }
199 :
200 10979 : void DivergencePropagator::findUsersOutsideInfluenceRegion(
201 : Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
202 27813 : for (User *U : I.users()) {
203 : Instruction *UserInst = cast<Instruction>(U);
204 16834 : if (!InfluenceRegion.count(UserInst->getParent())) {
205 5535 : if (DV.insert(UserInst).second)
206 3768 : Worklist.push_back(UserInst);
207 : }
208 : }
209 10979 : }
210 :
211 : // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
212 : // to the influence region.
213 : static void
214 6893 : addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
215 : DenseSet<BasicBlock *> &InfluenceRegion,
216 : std::vector<BasicBlock *> &InfluenceStack) {
217 24627 : for (BasicBlock *Succ : successors(ThisBB)) {
218 16184 : if (Succ != End && InfluenceRegion.insert(Succ).second)
219 4240 : InfluenceStack.push_back(Succ);
220 : }
221 6893 : }
222 :
223 0 : void DivergencePropagator::computeInfluenceRegion(
224 : BasicBlock *Start, BasicBlock *End,
225 : DenseSet<BasicBlock *> &InfluenceRegion) {
226 : assert(PDT.properlyDominates(End, Start) &&
227 : "End does not properly dominate Start");
228 :
229 : // The influence region starts from the end of "Start" to the beginning of
230 : // "End". Therefore, "Start" should not be in the region unless "Start" is in
231 : // a loop that doesn't contain "End".
232 : std::vector<BasicBlock *> InfluenceStack;
233 0 : addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
234 0 : while (!InfluenceStack.empty()) {
235 0 : BasicBlock *BB = InfluenceStack.back();
236 : InfluenceStack.pop_back();
237 0 : addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
238 : }
239 0 : }
240 :
241 282397 : void DivergencePropagator::exploreDataDependency(Value *V) {
242 : // Follow def-use chains of V.
243 536479 : for (User *U : V->users()) {
244 : Instruction *UserInst = cast<Instruction>(U);
245 254082 : if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
246 194227 : Worklist.push_back(UserInst);
247 : }
248 282397 : }
249 :
250 97961 : void DivergencePropagator::propagate() {
251 : // Traverse the dependency graph using DFS.
252 380358 : while (!Worklist.empty()) {
253 282397 : Value *V = Worklist.back();
254 : Worklist.pop_back();
255 : if (Instruction *I = dyn_cast<Instruction>(V)) {
256 : // Terminators with less than two successors won't introduce sync
257 : // dependency. Ignore them.
258 242351 : if (I->isTerminator() && I->getNumSuccessors() > 1)
259 2793 : exploreSyncDependency(I);
260 : }
261 282397 : exploreDataDependency(V);
262 : }
263 97961 : }
264 :
265 : } /// end namespace anonymous
266 :
267 : // Register this pass.
268 : char LegacyDivergenceAnalysis::ID = 0;
269 85117 : INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence", "Legacy Divergence Analysis",
270 : false, true)
271 85117 : INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
272 85117 : INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
273 681711 : INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence", "Legacy Divergence Analysis",
274 : false, true)
275 :
276 0 : FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
277 0 : return new LegacyDivergenceAnalysis();
278 : }
279 :
280 10143 : void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
281 : AU.addRequired<DominatorTreeWrapperPass>();
282 : AU.addRequired<PostDominatorTreeWrapperPass>();
283 : AU.setPreservesAll();
284 10143 : }
285 :
286 101149 : bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
287 101149 : auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
288 101149 : if (TTIWP == nullptr)
289 : return false;
290 :
291 101149 : TargetTransformInfo &TTI = TTIWP->getTTI(F);
292 : // Fast path: if the target does not have branch divergence, we do not mark
293 : // any branch as divergent.
294 101149 : if (!TTI.hasBranchDivergence())
295 : return false;
296 :
297 : DivergentValues.clear();
298 97961 : auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
299 : DivergencePropagator DP(F, TTI,
300 97961 : getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
301 97961 : PDT, DivergentValues);
302 97961 : DP.populateWithSourcesOfDivergence();
303 97961 : DP.propagate();
304 : LLVM_DEBUG(
305 : dbgs() << "\nAfter divergence analysis on " << F.getName() << ":\n";
306 : print(dbgs(), F.getParent())
307 : );
308 : return false;
309 : }
310 :
311 53 : void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
312 53 : if (DivergentValues.empty())
313 : return;
314 52 : const Value *FirstDivergentValue = *DivergentValues.begin();
315 : const Function *F;
316 : if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
317 12 : F = Arg->getParent();
318 : } else if (const Instruction *I =
319 : dyn_cast<Instruction>(FirstDivergentValue)) {
320 40 : F = I->getParent()->getParent();
321 : } else {
322 0 : llvm_unreachable("Only arguments and instructions can be divergent");
323 : }
324 :
325 : // Dumps all divergent values in F, arguments and then instructions.
326 167 : for (auto &Arg : F->args()) {
327 230 : OS << (DivergentValues.count(&Arg) ? "DIVERGENT: " : " ");
328 115 : OS << Arg << "\n";
329 : }
330 : // Iterate instructions using instructions() to ensure a deterministic order.
331 143 : for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
332 : auto &BB = *BI;
333 91 : OS << "\n " << BB.getName() << ":\n";
334 485 : for (auto &I : BB.instructionsWithoutDebug()) {
335 424 : OS << (DivergentValues.count(&I) ? "DIVERGENT: " : " ");
336 212 : OS << I << "\n";
337 : }
338 : }
339 52 : OS << "\n";
340 : }
|