LCOV - code coverage report
Current view: top level - lib/Analysis - Lint.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 243 277 87.7 %
Date: 2018-10-20 13:21:21 Functions: 39 44 88.6 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This pass statically checks for common and easily-identified constructs
      11             : // which produce undefined or likely unintended behavior in LLVM IR.
      12             : //
      13             : // It is not a guarantee of correctness, in two ways. First, it isn't
      14             : // comprehensive. There are checks which could be done statically which are
      15             : // not yet implemented. Some of these are indicated by TODO comments, but
      16             : // those aren't comprehensive either. Second, many conditions cannot be
      17             : // checked statically. This pass does no dynamic instrumentation, so it
      18             : // can't check for all possible problems.
      19             : //
      20             : // Another limitation is that it assumes all code will be executed. A store
      21             : // through a null pointer in a basic block which is never reached is harmless,
      22             : // but this pass will warn about it anyway. This is the main reason why most
      23             : // of these checks live here instead of in the Verifier pass.
      24             : //
      25             : // Optimization passes may make conditions that this pass checks for more or
      26             : // less obvious. If an optimization pass appears to be introducing a warning,
      27             : // it may be that the optimization pass is merely exposing an existing
      28             : // condition in the code.
      29             : //
      30             : // This code may be run before instcombine. In many cases, instcombine checks
      31             : // for the same kinds of things and turns instructions with undefined behavior
      32             : // into unreachable (or equivalent). Because of this, this pass makes some
      33             : // effort to look through bitcasts and so on.
      34             : //
      35             : //===----------------------------------------------------------------------===//
      36             : 
      37             : #include "llvm/Analysis/Lint.h"
      38             : #include "llvm/ADT/APInt.h"
      39             : #include "llvm/ADT/ArrayRef.h"
      40             : #include "llvm/ADT/SmallPtrSet.h"
      41             : #include "llvm/ADT/Twine.h"
      42             : #include "llvm/Analysis/AliasAnalysis.h"
      43             : #include "llvm/Analysis/AssumptionCache.h"
      44             : #include "llvm/Analysis/ConstantFolding.h"
      45             : #include "llvm/Analysis/InstructionSimplify.h"
      46             : #include "llvm/Analysis/Loads.h"
      47             : #include "llvm/Analysis/MemoryLocation.h"
      48             : #include "llvm/Analysis/Passes.h"
      49             : #include "llvm/Analysis/TargetLibraryInfo.h"
      50             : #include "llvm/Analysis/ValueTracking.h"
      51             : #include "llvm/IR/Argument.h"
      52             : #include "llvm/IR/BasicBlock.h"
      53             : #include "llvm/IR/CallSite.h"
      54             : #include "llvm/IR/Constant.h"
      55             : #include "llvm/IR/Constants.h"
      56             : #include "llvm/IR/DataLayout.h"
      57             : #include "llvm/IR/DerivedTypes.h"
      58             : #include "llvm/IR/Dominators.h"
      59             : #include "llvm/IR/Function.h"
      60             : #include "llvm/IR/GlobalVariable.h"
      61             : #include "llvm/IR/InstVisitor.h"
      62             : #include "llvm/IR/InstrTypes.h"
      63             : #include "llvm/IR/Instruction.h"
      64             : #include "llvm/IR/Instructions.h"
      65             : #include "llvm/IR/IntrinsicInst.h"
      66             : #include "llvm/IR/LegacyPassManager.h"
      67             : #include "llvm/IR/Module.h"
      68             : #include "llvm/IR/Type.h"
      69             : #include "llvm/IR/Value.h"
      70             : #include "llvm/Pass.h"
      71             : #include "llvm/Support/Casting.h"
      72             : #include "llvm/Support/Debug.h"
      73             : #include "llvm/Support/KnownBits.h"
      74             : #include "llvm/Support/MathExtras.h"
      75             : #include "llvm/Support/raw_ostream.h"
      76             : #include <cassert>
      77             : #include <cstdint>
      78             : #include <iterator>
      79             : #include <string>
      80             : 
      81             : using namespace llvm;
      82             : 
      83             : namespace {
      84             :   namespace MemRef {
      85             :     static const unsigned Read     = 1;
      86             :     static const unsigned Write    = 2;
      87             :     static const unsigned Callee   = 4;
      88             :     static const unsigned Branchee = 8;
      89             :   } // end namespace MemRef
      90             : 
      91             :   class Lint : public FunctionPass, public InstVisitor<Lint> {
      92             :     friend class InstVisitor<Lint>;
      93             : 
      94             :     void visitFunction(Function &F);
      95             : 
      96             :     void visitCallSite(CallSite CS);
      97             :     void visitMemoryReference(Instruction &I, Value *Ptr,
      98             :                               uint64_t Size, unsigned Align,
      99             :                               Type *Ty, unsigned Flags);
     100             :     void visitEHBeginCatch(IntrinsicInst *II);
     101             :     void visitEHEndCatch(IntrinsicInst *II);
     102             : 
     103             :     void visitCallInst(CallInst &I);
     104             :     void visitInvokeInst(InvokeInst &I);
     105             :     void visitReturnInst(ReturnInst &I);
     106             :     void visitLoadInst(LoadInst &I);
     107             :     void visitStoreInst(StoreInst &I);
     108             :     void visitXor(BinaryOperator &I);
     109             :     void visitSub(BinaryOperator &I);
     110             :     void visitLShr(BinaryOperator &I);
     111             :     void visitAShr(BinaryOperator &I);
     112             :     void visitShl(BinaryOperator &I);
     113             :     void visitSDiv(BinaryOperator &I);
     114             :     void visitUDiv(BinaryOperator &I);
     115             :     void visitSRem(BinaryOperator &I);
     116             :     void visitURem(BinaryOperator &I);
     117             :     void visitAllocaInst(AllocaInst &I);
     118             :     void visitVAArgInst(VAArgInst &I);
     119             :     void visitIndirectBrInst(IndirectBrInst &I);
     120             :     void visitExtractElementInst(ExtractElementInst &I);
     121             :     void visitInsertElementInst(InsertElementInst &I);
     122             :     void visitUnreachableInst(UnreachableInst &I);
     123             : 
     124             :     Value *findValue(Value *V, bool OffsetOk) const;
     125             :     Value *findValueImpl(Value *V, bool OffsetOk,
     126             :                          SmallPtrSetImpl<Value *> &Visited) const;
     127             : 
     128             :   public:
     129             :     Module *Mod;
     130             :     const DataLayout *DL;
     131             :     AliasAnalysis *AA;
     132             :     AssumptionCache *AC;
     133             :     DominatorTree *DT;
     134             :     TargetLibraryInfo *TLI;
     135             : 
     136             :     std::string Messages;
     137             :     raw_string_ostream MessagesStr;
     138             : 
     139             :     static char ID; // Pass identification, replacement for typeid
     140          18 :     Lint() : FunctionPass(ID), MessagesStr(Messages) {
     141           9 :       initializeLintPass(*PassRegistry::getPassRegistry());
     142           9 :     }
     143             : 
     144             :     bool runOnFunction(Function &F) override;
     145             : 
     146           9 :     void getAnalysisUsage(AnalysisUsage &AU) const override {
     147             :       AU.setPreservesAll();
     148             :       AU.addRequired<AAResultsWrapperPass>();
     149             :       AU.addRequired<AssumptionCacheTracker>();
     150             :       AU.addRequired<TargetLibraryInfoWrapperPass>();
     151             :       AU.addRequired<DominatorTreeWrapperPass>();
     152           9 :     }
     153           0 :     void print(raw_ostream &O, const Module *M) const override {}
     154             : 
     155          63 :     void WriteValues(ArrayRef<const Value *> Vs) {
     156         126 :       for (const Value *V : Vs) {
     157          63 :         if (!V)
     158             :           continue;
     159          63 :         if (isa<Instruction>(V)) {
     160          62 :           MessagesStr << *V << '\n';
     161             :         } else {
     162           1 :           V->printAsOperand(MessagesStr, true, Mod);
     163             :           MessagesStr << '\n';
     164             :         }
     165             :       }
     166          63 :     }
     167             : 
     168             :     /// A check failed, so printout out the condition and the message.
     169             :     ///
     170             :     /// This provides a nice place to put a breakpoint if you want to see why
     171             :     /// something is not correct.
     172          63 :     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
     173             : 
     174             :     /// A check failed (with values to print).
     175             :     ///
     176             :     /// This calls the Message-only version so that the above is easier to set
     177             :     /// a breakpoint on.
     178             :     template <typename T1, typename... Ts>
     179          63 :     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
     180          63 :       CheckFailed(Message);
     181         126 :       WriteValues({V1, Vs...});
     182          63 :     }
     183           1 :   };
     184           1 : } // end anonymous namespace
     185           2 : 
     186           1 : char Lint::ID = 0;
     187           1 : INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
     188           1 :                       false, true)
     189           2 : INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     190           1 : INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
     191           1 : INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     192           1 : INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
     193           2 : INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
     194           1 :                     false, true)
     195           1 : 
     196           1 : // Assert - We know that cond should be true, if not print an error message.
     197           2 : #define Assert(C, ...) \
     198           1 :     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
     199           1 : 
     200           1 : // Lint::run - This is the main Analysis entry point for a
     201           2 : // function.
     202           1 : //
     203          17 : bool Lint::runOnFunction(Function &F) {
     204          17 :   Mod = F.getParent();
     205          34 :   DL = &F.getParent()->getDataLayout();
     206          17 :   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
     207           3 :   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
     208           3 :   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
     209           6 :   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
     210           3 :   visit(F);
     211          37 :   dbgs() << MessagesStr.str();
     212          37 :   Messages.clear();
     213          74 :   return false;
     214          37 : }
     215           1 : 
     216           1 : void Lint::visitFunction(Function &F) {
     217           2 :   // This isn't undefined behavior, it's just a little unusual, and it's a
     218           1 :   // fairly common mistake to neglect to name a function.
     219             :   Assert(F.hasName() || F.hasLocalLinkage(),
     220             :          "Unusual: Unnamed function with non-local linkage", &F);
     221             : 
     222             :   // TODO: Check for irreducible control flow.
     223       10756 : }
     224             : 
     225       10756 : void Lint::visitCallSite(CallSite CS) {
     226       10756 :   Instruction &I = *CS.getInstruction();
     227       10756 :   Value *Callee = CS.getCalledValue();
     228       10756 : 
     229       21521 :   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
     230             :                        MemRef::Callee);
     231             : 
     232             :   if (Function *F = dyn_cast<Function>(findValue(Callee,
     233             :                                                  /*OffsetOk=*/false))) {
     234             :     Assert(CS.getCallingConv() == F->getCallingConv(),
     235             :            "Undefined behavior: Caller and callee calling convention differ",
     236             :            &I);
     237             : 
     238             :     FunctionType *FT = F->getFunctionType();
     239          38 :     unsigned NumActualArgs = CS.arg_size();
     240          38 : 
     241          38 :     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
     242          38 :                           : FT->getNumParams() == NumActualArgs,
     243          38 :            "Undefined behavior: Call argument count mismatches callee "
     244          38 :            "argument count",
     245          38 :            &I);
     246          38 : 
     247          38 :     Assert(FT->getReturnType() == I.getType(),
     248             :            "Undefined behavior: Call return type mismatches "
     249          38 :            "callee return type",
     250             :            &I);
     251             : 
     252          38 :     // Check argument types (in case the callee was casted) and attributes.
     253             :     // TODO: Verify that caller and callee attributes are compatible.
     254             :     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
     255          40 :     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
     256             :     for (; AI != AE; ++AI) {
     257             :       Value *Actual = *AI;
     258             :       if (PI != PE) {
     259             :         Argument *Formal = &*PI++;
     260             :         Assert(Formal->getType() == Actual->getType(),
     261          53 :                "Undefined behavior: Call argument type mismatches "
     262             :                "callee parameter type",
     263             :                &I);
     264             : 
     265          53 :         // Check that noalias arguments don't alias other arguments. This is
     266             :         // not fully precise because we don't know the sizes of the dereferenced
     267             :         // memory regions.
     268          53 :         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
     269             :           AttributeList PAL = CS.getAttributes();
     270          51 :           unsigned ArgNo = 0;
     271             :           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) {
     272             :             // Skip ByVal arguments since they will be memcpy'd to the callee's
     273             :             // stack so we're not really passing the pointer anyway.
     274             :             if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
     275          50 :               continue;
     276             :             if (AI != BI && (*BI)->getType()->isPointerTy()) {
     277          50 :               AliasResult Result = AA->alias(*AI, *BI);
     278             :               Assert(Result != MustAlias && Result != PartialAlias,
     279             :                      "Unusual: noalias argument aliases another argument", &I);
     280             :             }
     281             :           }
     282             :         }
     283          96 : 
     284             :         // Check that an sret argument points to valid memory.
     285             :         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
     286             :           Type *Ty =
     287             :             cast<PointerType>(Formal->getType())->getElementType();
     288             :           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
     289             :                                DL->getABITypeAlignment(Ty), Ty,
     290             :                                MemRef::Read | MemRef::Write);
     291          47 :         }
     292         133 :       }
     293          89 :     }
     294          89 :   }
     295          85 : 
     296          85 :   if (CS.isCall()) {
     297             :     const CallInst *CI = cast<CallInst>(CS.getInstruction());
     298             :     if (CI->isTailCall()) {
     299             :       const AttributeList &PAL = CI->getAttributes();
     300             :       unsigned ArgNo = 0;
     301             :       for (Value *Arg : CS.args()) {
     302             :         // Skip ByVal arguments since they will be memcpy'd to the callee's
     303             :         // stack anyway.
     304          84 :         if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
     305           3 :           continue;
     306             :         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
     307           7 :         Assert(!isa<AllocaInst>(Obj),
     308             :                "Undefined behavior: Call with \"tail\" keyword references "
     309             :                "alloca",
     310           6 :                &I);
     311             :       }
     312           5 :     }
     313           2 :   }
     314           2 : 
     315             : 
     316             :   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
     317             :     switch (II->getIntrinsicID()) {
     318             :     default: break;
     319             : 
     320             :     // TODO: Check more intrinsics
     321          82 : 
     322             :     case Intrinsic::memcpy: {
     323           2 :       MemCpyInst *MCI = cast<MemCpyInst>(&I);
     324           2 :       // TODO: If the size is known, use it.
     325           2 :       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
     326             :                            MCI->getDestAlignment(), nullptr, MemRef::Write);
     327             :       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
     328             :                            MCI->getSourceAlignment(), nullptr, MemRef::Read);
     329             : 
     330             :       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
     331             :       // isn't expressive enough for what we really want to do. Known partial
     332          46 :       // overlap is not distinguished from the case where nothing is known.
     333             :       uint64_t Size = 0;
     334          40 :       if (const ConstantInt *Len =
     335           5 :               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
     336             :                                               /*OffsetOk=*/false)))
     337           7 :         if (Len->getValue().isIntN(32))
     338             :           Size = Len->getValue().getZExtValue();
     339             :       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
     340           4 :                  MustAlias,
     341             :              "Undefined behavior: memcpy source and destination overlap", &I);
     342           3 :       break;
     343           4 :     }
     344             :     case Intrinsic::memmove: {
     345             :       MemMoveInst *MMI = cast<MemMoveInst>(&I);
     346             :       // TODO: If the size is known, use it.
     347             :       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
     348             :                            MMI->getDestAlignment(), nullptr, MemRef::Write);
     349             :       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
     350             :                            MMI->getSourceAlignment(), nullptr, MemRef::Read);
     351             :       break;
     352             :     }
     353          28 :     case Intrinsic::memset: {
     354             :       MemSetInst *MSI = cast<MemSetInst>(&I);
     355             :       // TODO: If the size is known, use it.
     356             :       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
     357             :                            MSI->getDestAlignment(), nullptr, MemRef::Write);
     358             :       break;
     359             :     }
     360             : 
     361           6 :     case Intrinsic::vastart:
     362             :       Assert(I.getParent()->getParent()->isVarArg(),
     363           6 :              "Undefined behavior: va_start called in a non-varargs function",
     364             :              &I);
     365             : 
     366             :       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
     367             :                            nullptr, MemRef::Read | MemRef::Write);
     368             :       break;
     369             :     case Intrinsic::vacopy:
     370             :       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
     371           6 :                            nullptr, MemRef::Write);
     372             :       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
     373           6 :                            nullptr, MemRef::Read);
     374             :       break;
     375          12 :     case Intrinsic::vaend:
     376             :       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
     377             :                            nullptr, MemRef::Read | MemRef::Write);
     378             :       break;
     379             : 
     380             :     case Intrinsic::stackrestore:
     381             :       // Stackrestore doesn't read or write memory, but it sets the
     382             :       // stack pointer, which the compiler may read from or write to
     383           5 :       // at any time, so check it for both readability and writeability.
     384             :       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
     385           5 :                            nullptr, MemRef::Read | MemRef::Write);
     386             :       break;
     387           5 :     }
     388             : }
     389             : 
     390             : void Lint::visitCallInst(CallInst &I) {
     391             :   return visitCallSite(&I);
     392           5 : }
     393             : 
     394           5 : void Lint::visitInvokeInst(InvokeInst &I) {
     395             :   return visitCallSite(&I);
     396             : }
     397           1 : 
     398           2 : void Lint::visitReturnInst(ReturnInst &I) {
     399             :   Function *F = I.getParent()->getParent();
     400             :   Assert(!F->doesNotReturn(),
     401             :          "Unusual: Return statement in function with noreturn attribute", &I);
     402           0 : 
     403             :   if (Value *V = I.getReturnValue()) {
     404           0 :     Value *Obj = findValue(V, /*OffsetOk=*/true);
     405             :     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
     406           0 :   }
     407             : }
     408           0 : 
     409             : // TODO: Check that the reference is in bounds.
     410           0 : // TODO: Check readnone/readonly function attributes.
     411             : void Lint::visitMemoryReference(Instruction &I,
     412           0 :                                 Value *Ptr, uint64_t Size, unsigned Align,
     413             :                                 Type *Ty, unsigned Flags) {
     414           0 :   // If no memory is being referenced, it doesn't matter if the pointer
     415             :   // is valid.
     416             :   if (Size == 0)
     417             :     return;
     418             : 
     419             :   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
     420           1 :   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
     421             :          "Undefined behavior: Null pointer dereference", &I);
     422           1 :   Assert(!isa<UndefValue>(UnderlyingObject),
     423             :          "Undefined behavior: Undef pointer dereference", &I);
     424             :   Assert(!isa<ConstantInt>(UnderlyingObject) ||
     425             :              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
     426             :          "Unusual: All-ones pointer dereference", &I);
     427          47 :   Assert(!isa<ConstantInt>(UnderlyingObject) ||
     428             :              !cast<ConstantInt>(UnderlyingObject)->isOne(),
     429             :          "Unusual: Address one pointer dereference", &I);
     430             : 
     431           6 :   if (Flags & MemRef::Write) {
     432             :     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
     433             :       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
     434          35 :              &I);
     435          35 :     Assert(!isa<Function>(UnderlyingObject) &&
     436          35 :                !isa<BlockAddress>(UnderlyingObject),
     437             :            "Undefined behavior: Write to text section", &I);
     438             :   }
     439             :   if (Flags & MemRef::Read) {
     440          18 :     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
     441           4 :            &I);
     442             :     Assert(!isa<BlockAddress>(UnderlyingObject),
     443             :            "Undefined behavior: Load from block address", &I);
     444             :   }
     445             :   if (Flags & MemRef::Callee) {
     446             :     Assert(!isa<BlockAddress>(UnderlyingObject),
     447         103 :            "Undefined behavior: Call to block address", &I);
     448             :   }
     449             :   if (Flags & MemRef::Branchee) {
     450             :     Assert(!isa<Constant>(UnderlyingObject) ||
     451             :                isa<BlockAddress>(UnderlyingObject),
     452         103 :            "Undefined behavior: Branch to non-blockaddress", &I);
     453          26 :   }
     454             : 
     455         103 :   // Check for buffer overflows and misalignment.
     456         103 :   // Only handles memory references that read/write something simple like an
     457             :   // alloca instruction or a global variable.
     458          98 :   int64_t Offset = 0;
     459             :   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
     460          97 :     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
     461             :     // something we can handle and if so extract the size of this base object
     462             :     // along with its alignment.
     463          95 :     uint64_t BaseSize = MemoryLocation::UnknownSize;
     464             :     unsigned BaseAlign = 0;
     465             : 
     466             :     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
     467          93 :       Type *ATy = AI->getAllocatedType();
     468             :       if (!AI->isArrayAllocation() && ATy->isSized())
     469           3 :         BaseSize = DL->getTypeAllocSize(ATy);
     470             :       BaseAlign = AI->getAlignment();
     471          24 :       if (BaseAlign == 0 && ATy->isSized())
     472             :         BaseAlign = DL->getABITypeAlignment(ATy);
     473             :     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
     474             :       // If the global may be defined differently in another compilation unit
     475          90 :       // then don't warn about funky memory accesses.
     476          14 :       if (GV->hasDefinitiveInitializer()) {
     477             :         Type *GTy = GV->getValueType();
     478          14 :         if (GTy->isSized())
     479             :           BaseSize = DL->getTypeAllocSize(GTy);
     480             :         BaseAlign = GV->getAlignment();
     481          89 :         if (BaseAlign == 0 && GTy->isSized())
     482          53 :           BaseAlign = DL->getABITypeAlignment(GTy);
     483             :       }
     484             :     }
     485          88 : 
     486           1 :     // Accesses from before the start or after the end of the object are not
     487             :     // defined.
     488             :     Assert(Size == MemoryLocation::UnknownSize ||
     489             :                BaseSize == MemoryLocation::UnknownSize ||
     490             :                (Offset >= 0 && Offset + Size <= BaseSize),
     491             :            "Undefined behavior: Buffer overflow", &I);
     492             : 
     493             :     // Accesses that say that the memory is more aligned than it is are not
     494          87 :     // defined.
     495          87 :     if (Align == 0 && Ty && Ty->isSized())
     496             :       Align = DL->getABITypeAlignment(Ty);
     497             :     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
     498             :            "Undefined behavior: Memory reference address is misaligned", &I);
     499             :   }
     500             : }
     501             : 
     502             : void Lint::visitLoadInst(LoadInst &I) {
     503          33 :   visitMemoryReference(I, I.getPointerOperand(),
     504          33 :                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
     505          33 :                        I.getType(), MemRef::Read);
     506             : }
     507          33 : 
     508           8 : void Lint::visitStoreInst(StoreInst &I) {
     509             :   visitMemoryReference(I, I.getPointerOperand(),
     510             :                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
     511             :                        I.getAlignment(),
     512           2 :                        I.getOperand(0)->getType(), MemRef::Write);
     513           1 : }
     514           1 : 
     515           1 : void Lint::visitXor(BinaryOperator &I) {
     516             :   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
     517           1 :          "Undefined result: xor(undef, undef)", &I);
     518           1 : }
     519             : 
     520             : void Lint::visitSub(BinaryOperator &I) {
     521             :   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
     522             :          "Undefined result: sub(undef, undef)", &I);
     523             : }
     524          87 : 
     525             : void Lint::visitLShr(BinaryOperator &I) {
     526             :   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
     527             :                                                         /*OffsetOk=*/false)))
     528             :     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
     529             :            "Undefined result: Shift count out of range", &I);
     530             : }
     531          84 : 
     532           3 : void Lint::visitAShr(BinaryOperator &I) {
     533          84 :   if (ConstantInt *CI =
     534             :           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
     535             :     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
     536             :            "Undefined result: Shift count out of range", &I);
     537             : }
     538           5 : 
     539          10 : void Lint::visitShl(BinaryOperator &I) {
     540           5 :   if (ConstantInt *CI =
     541             :           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
     542           5 :     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
     543             :            "Undefined result: Shift count out of range", &I);
     544          13 : }
     545          26 : 
     546          13 : static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
     547             :                    AssumptionCache *AC) {
     548             :   // Assume undef could be zero.
     549          13 :   if (isa<UndefValue>(V))
     550             :     return true;
     551           1 : 
     552           2 :   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
     553             :   if (!VecTy) {
     554             :     KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
     555             :     return Known.isZero();
     556           1 :   }
     557           2 : 
     558             :   // Per-component check doesn't work with zeroinitializer
     559             :   Constant *C = dyn_cast<Constant>(V);
     560             :   if (!C)
     561           1 :     return false;
     562           1 : 
     563             :   if (C->isZeroValue())
     564           2 :     return true;
     565             : 
     566             :   // For a vector, KnownZero will only be true if all values are zero, so check
     567             :   // this per component
     568           1 :   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
     569             :     Constant *Elem = C->getAggregateElement(I);
     570           1 :     if (isa<UndefValue>(Elem))
     571           2 :       return true;
     572             : 
     573             :     KnownBits Known = computeKnownBits(Elem, DL);
     574             :     if (Known.isZero())
     575           1 :       return true;
     576             :   }
     577           1 : 
     578           2 :   return false;
     579             : }
     580             : 
     581             : void Lint::visitSDiv(BinaryOperator &I) {
     582          16 :   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
     583             :          "Undefined behavior: Division by zero", &I);
     584             : }
     585          16 : 
     586             : void Lint::visitUDiv(BinaryOperator &I) {
     587             :   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
     588          15 :          "Undefined behavior: Division by zero", &I);
     589             : }
     590          12 : 
     591             : void Lint::visitSRem(BinaryOperator &I) {
     592             :   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
     593             :          "Undefined behavior: Division by zero", &I);
     594             : }
     595             : 
     596             : void Lint::visitURem(BinaryOperator &I) {
     597             :   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
     598             :          "Undefined behavior: Division by zero", &I);
     599           9 : }
     600             : 
     601             : void Lint::visitAllocaInst(AllocaInst &I) {
     602             :   if (isa<ConstantInt>(I.getArraySize()))
     603             :     // This isn't undefined behavior, it's just an obvious pessimization.
     604          18 :     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
     605          14 :            "Pessimization: Static alloca outside of entry block", &I);
     606          14 : 
     607           4 :   // TODO: Check for an unusual size (MSB set?)
     608             : }
     609          22 : 
     610          12 : void Lint::visitVAArgInst(VAArgInst &I) {
     611           2 :   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
     612             :                        nullptr, MemRef::Read | MemRef::Write);
     613             : }
     614             : 
     615             : void Lint::visitIndirectBrInst(IndirectBrInst &I) {
     616             :   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
     617          10 :                        nullptr, MemRef::Branchee);
     618          20 : 
     619             :   Assert(I.getNumDestinations() != 0,
     620             :          "Undefined behavior: indirectbr with no destinations", &I);
     621             : }
     622           2 : 
     623           4 : void Lint::visitExtractElementInst(ExtractElementInst &I) {
     624             :   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
     625             :                                                         /*OffsetOk=*/false)))
     626             :     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
     627           2 :            "Undefined result: extractelement index out of range", &I);
     628           4 : }
     629             : 
     630             : void Lint::visitInsertElementInst(InsertElementInst &I) {
     631             :   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
     632           2 :                                                         /*OffsetOk=*/false)))
     633           4 :     Assert(CI->getValue().ult(I.getType()->getNumElements()),
     634             :            "Undefined result: insertelement index out of range", &I);
     635             : }
     636             : 
     637          18 : void Lint::visitUnreachableInst(UnreachableInst &I) {
     638          18 :   // This isn't undefined behavior, it's merely suspicious.
     639             :   Assert(&I == &I.getParent()->front() ||
     640          34 :              std::prev(I.getIterator())->mayHaveSideEffects(),
     641             :          "Unusual: unreachable immediately preceded by instruction without "
     642             :          "side effects",
     643             :          &I);
     644             : }
     645             : 
     646           0 : /// findValue - Look through bitcasts and simple memory reference patterns
     647           0 : /// to identify an equivalent, but more informative, value.  If OffsetOk
     648             : /// is true, look through getelementptrs with non-zero offsets too.
     649           0 : ///
     650             : /// Most analysis passes don't require this logic, because instcombine
     651           2 : /// will simplify most of these kinds of things away. But it's a goal of
     652           2 : /// this Lint pass to be useful even on non-optimized IR.
     653             : Value *Lint::findValue(Value *V, bool OffsetOk) const {
     654             :   SmallPtrSet<Value *, 4> Visited;
     655           2 :   return findValueImpl(V, OffsetOk, Visited);
     656             : }
     657             : 
     658             : /// findValueImpl - Implementation helper for findValue.
     659           1 : Value *Lint::findValueImpl(Value *V, bool OffsetOk,
     660           1 :                            SmallPtrSetImpl<Value *> &Visited) const {
     661             :   // Detect self-referential values.
     662           1 :   if (!Visited.insert(V).second)
     663             :     return UndefValue::get(V->getType());
     664             : 
     665             :   // TODO: Look through sext or zext cast, when the result is known to
     666           1 :   // be interpreted as signed or unsigned, respectively.
     667           1 :   // TODO: Look through eliminable cast pairs.
     668             :   // TODO: Look through calls with unique return values.
     669           1 :   // TODO: Look through vector insert/extract/shuffle.
     670             :   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
     671             :   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
     672             :     BasicBlock::iterator BBI = L->getIterator();
     673           3 :     BasicBlock *BB = L->getParent();
     674             :     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
     675           7 :     for (;;) {
     676             :       if (!VisitedBlocks.insert(BB).second)
     677             :         break;
     678             :       if (Value *U =
     679             :           FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
     680             :         return findValueImpl(U, OffsetOk, Visited);
     681             :       if (BBI != BB->begin()) break;
     682             :       BB = BB->getUniquePredecessor();
     683             :       if (!BB) break;
     684             :       BBI = BB->end();
     685             :     }
     686             :   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
     687             :     if (Value *W = PN->hasConstantValue())
     688             :       if (W != V)
     689         188 :         return findValueImpl(W, OffsetOk, Visited);
     690             :   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
     691         188 :     if (CI->isNoopCast(*DL))
     692             :       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
     693             :   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
     694             :     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
     695         206 :                                      Ex->getIndices()))
     696             :       if (W != V)
     697             :         return findValueImpl(W, OffsetOk, Visited);
     698         206 :   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
     699           1 :     // Same as above, but for ConstantExpr instead of Instruction.
     700             :     if (Instruction::isCast(CE->getOpcode())) {
     701             :       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
     702             :                                CE->getOperand(0)->getType(), CE->getType(),
     703             :                                *DL))
     704             :         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
     705             :     } else if (CE->getOpcode() == Instruction::ExtractValue) {
     706         205 :       ArrayRef<unsigned> Indices = CE->getIndices();
     707             :       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
     708           1 :         if (W != V)
     709           1 :           return findValueImpl(W, OffsetOk, Visited);
     710             :     }
     711             :   }
     712           2 : 
     713             :   // As a last resort, try SimplifyInstruction or constant folding.
     714           2 :   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
     715           4 :     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
     716           1 :       return findValueImpl(W, OffsetOk, Visited);
     717           1 :   } else if (auto *C = dyn_cast<Constant>(V)) {
     718             :     if (Value *W = ConstantFoldConstant(C, *DL, TLI))
     719           1 :       if (W && W != V)
     720           1 :         return findValueImpl(W, OffsetOk, Visited);
     721           1 :   }
     722             : 
     723           1 :   return V;
     724           1 : }
     725           1 : 
     726             : //===----------------------------------------------------------------------===//
     727           7 : //  Implement the public interfaces to this file...
     728           3 : //===----------------------------------------------------------------------===//
     729             : 
     730           0 : FunctionPass *llvm::createLintPass() {
     731             :   return new Lint();
     732           0 : }
     733           0 : 
     734             : /// lintFunction - Check a function for errors, printing messages on stderr.
     735             : ///
     736           7 : void llvm::lintFunction(const Function &f) {
     737           7 :   Function &F = const_cast<Function&>(f);
     738             :   assert(!F.isDeclaration() && "Cannot lint external functions");
     739           7 : 
     740           4 :   legacy::FunctionPassManager FPM(F.getParent());
     741           0 :   Lint *V = new Lint();
     742           0 :   FPM.add(V);
     743           0 :   FPM.run(F);
     744           0 : }
     745           0 : 
     746             : /// lintModule - Check a module for errors, printing messages on stderr.
     747             : ///
     748             : void llvm::lintModule(const Module &M) {
     749             :   legacy::PassManager PM;
     750             :   Lint *V = new Lint();
     751         108 :   PM.add(V);
     752           9 :   PM.run(const_cast<Module&>(M));
     753             : }

Generated by: LCOV version 1.13