Line data Source code
1 : //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------===//
9 : //
10 : // This file implements the MemorySSAUpdater class.
11 : //
12 : //===----------------------------------------------------------------===//
13 : #include "llvm/Analysis/MemorySSAUpdater.h"
14 : #include "llvm/ADT/STLExtras.h"
15 : #include "llvm/ADT/SetVector.h"
16 : #include "llvm/ADT/SmallPtrSet.h"
17 : #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 : #include "llvm/Analysis/MemorySSA.h"
19 : #include "llvm/IR/DataLayout.h"
20 : #include "llvm/IR/Dominators.h"
21 : #include "llvm/IR/GlobalVariable.h"
22 : #include "llvm/IR/IRBuilder.h"
23 : #include "llvm/IR/LLVMContext.h"
24 : #include "llvm/IR/Metadata.h"
25 : #include "llvm/IR/Module.h"
26 : #include "llvm/Support/Debug.h"
27 : #include "llvm/Support/FormattedStream.h"
28 : #include <algorithm>
29 :
30 : #define DEBUG_TYPE "memoryssa"
31 : using namespace llvm;
32 :
33 : // This is the marker algorithm from "Simple and Efficient Construction of
34 : // Static Single Assignment Form"
35 : // The simple, non-marker algorithm places phi nodes at any join
36 : // Here, we place markers, and only place phi nodes if they end up necessary.
37 : // They are only necessary if they break a cycle (IE we recursively visit
38 : // ourselves again), or we discover, while getting the value of the operands,
39 : // that there are two or more definitions needing to be merged.
40 : // This still will leave non-minimal form in the case of irreducible control
41 : // flow, where phi nodes may be in cycles with themselves, but unnecessary.
42 103 : MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
43 : BasicBlock *BB,
44 : DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
45 : // First, do a cache lookup. Without this cache, certain CFG structures
46 : // (like a series of if statements) take exponential time to visit.
47 103 : auto Cached = CachedPreviousDef.find(BB);
48 103 : if (Cached != CachedPreviousDef.end()) {
49 5 : return Cached->second;
50 : }
51 :
52 98 : if (BasicBlock *Pred = BB->getSinglePredecessor()) {
53 : // Single predecessor case, just recurse, we can only have one definition.
54 44 : MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
55 88 : CachedPreviousDef.insert({BB, Result});
56 : return Result;
57 : }
58 :
59 54 : if (VisitedBlocks.count(BB)) {
60 : // We hit our node again, meaning we had a cycle, we must insert a phi
61 : // node to break it so we have an operand. The only case this will
62 : // insert useless phis is if we have irreducible control flow.
63 3 : MemoryAccess *Result = MSSA->createMemoryPhi(BB);
64 6 : CachedPreviousDef.insert({BB, Result});
65 : return Result;
66 : }
67 :
68 51 : if (VisitedBlocks.insert(BB).second) {
69 : // Mark us visited so we can detect a cycle
70 51 : SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
71 :
72 : // Recurse to get the values in our predecessors for placement of a
73 : // potential phi node. This will insert phi nodes if we cycle in order to
74 : // break the cycle and have an operand.
75 77 : for (auto *Pred : predecessors(BB))
76 52 : PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77 :
78 : // Now try to simplify the ops to avoid placing a phi.
79 : // This may return null if we never created a phi yet, that's okay
80 51 : MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
81 :
82 : // See if we can avoid the phi by simplifying it.
83 51 : auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
84 : // If we couldn't simplify, we may have to create a phi
85 51 : if (Result == Phi) {
86 5 : if (!Phi)
87 4 : Phi = MSSA->createMemoryPhi(BB);
88 :
89 : // See if the existing phi operands match what we need.
90 : // Unlike normal SSA, we only allow one phi node per block, so we can't just
91 : // create a new one.
92 5 : if (Phi->getNumOperands() != 0) {
93 : // FIXME: Figure out whether this is dead code and if so remove it.
94 0 : if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
95 : // These will have been filled in by the recursive read we did above.
96 : std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
97 : std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
98 : }
99 : } else {
100 : unsigned i = 0;
101 15 : for (auto *Pred : predecessors(BB))
102 20 : Phi->addIncoming(&*PhiOps[i++], Pred);
103 15 : InsertedPHIs.push_back(Phi);
104 : }
105 : Result = Phi;
106 : }
107 :
108 : // Set ourselves up for the next variable by resetting visited state.
109 : VisitedBlocks.erase(BB);
110 102 : CachedPreviousDef.insert({BB, Result});
111 : return Result;
112 : }
113 0 : llvm_unreachable("Should have hit one of the three cases above");
114 : }
115 :
116 : // This starts at the memory access, and goes backwards in the block to find the
117 : // previous definition. If a definition is not found the block of the access,
118 : // it continues globally, creating phi nodes to ensure we have a single
119 : // definition.
120 81 : MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
121 81 : if (auto *LocalResult = getPreviousDefInBlock(MA))
122 : return LocalResult;
123 : DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
124 52 : return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
125 : }
126 :
127 : // This starts at the memory access, and goes backwards in the block to the find
128 : // the previous definition. If the definition is not found in the block of the
129 : // access, it returns nullptr.
130 81 : MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
131 81 : auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
132 :
133 : // It's possible there are no defs, or we got handed the first def to start.
134 52 : if (Defs) {
135 : // If this is a def, we can just use the def iterators.
136 52 : if (!isa<MemoryUse>(MA)) {
137 : auto Iter = MA->getReverseDefsIterator();
138 : ++Iter;
139 33 : if (Iter != Defs->rend())
140 : return &*Iter;
141 : } else {
142 : // Otherwise, have to walk the all access iterator.
143 19 : auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
144 58 : for (auto &U : make_range(++MA->getReverseIterator(), End))
145 57 : if (!isa<MemoryUse>(U))
146 : return cast<MemoryAccess>(&U);
147 : // Note that if MA comes before Defs->begin(), we won't hit a def.
148 : return nullptr;
149 : }
150 : }
151 : return nullptr;
152 : }
153 :
154 : // This starts at the end of block
155 70 : MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
156 : BasicBlock *BB,
157 : DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
158 70 : auto *Defs = MSSA->getWritableBlockDefs(BB);
159 :
160 19 : if (Defs)
161 : return &*Defs->rbegin();
162 :
163 51 : return getPreviousDefRecursive(BB, CachedPreviousDef);
164 : }
165 : // Recurse over a set of phi uses to eliminate the trivial ones
166 10 : MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
167 10 : if (!Phi)
168 : return nullptr;
169 : TrackingVH<MemoryAccess> Res(Phi);
170 10 : SmallVector<TrackingVH<Value>, 8> Uses;
171 : std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
172 50 : for (auto &U : Uses) {
173 : if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
174 5 : auto OperRange = UsePhi->operands();
175 5 : tryRemoveTrivialPhi(UsePhi, OperRange);
176 : }
177 : }
178 : return Res;
179 : }
180 :
181 : // Eliminate trivial phis
182 : // Phis are trivial if they are defined either by themselves, or all the same
183 : // argument.
184 : // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
185 : // We recursively try to remove them.
186 : template <class RangeType>
187 56 : MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
188 : RangeType &Operands) {
189 : // Bail out on non-opt Phis.
190 112 : if (NonOptPhis.count(Phi))
191 : return Phi;
192 :
193 : // Detect equal or self arguments
194 : MemoryAccess *Same = nullptr;
195 78 : for (auto &Op : Operands) {
196 : // If the same or self, good so far
197 30 : if (Op == Phi || Op == Same)
198 : continue;
199 : // not the same, return the phi since it's not eliminatable by us
200 20 : if (Same)
201 : return Phi;
202 : Same = cast<MemoryAccess>(&*Op);
203 : }
204 : // Never found a non-self reference, the phi is undef
205 48 : if (Same == nullptr)
206 76 : return MSSA->getLiveOnEntryDef();
207 10 : if (Phi) {
208 4 : Phi->replaceAllUsesWith(Same);
209 4 : removeMemoryAccess(Phi);
210 : }
211 :
212 : // We should only end up recursing in case we replaced something, in which
213 : // case, we may have made other Phis trivial.
214 10 : return recursePhi(Same);
215 : }
216 5 :
217 : void MemorySSAUpdater::insertUse(MemoryUse *MU) {
218 : InsertedPHIs.clear();
219 10 : MU->setDefiningAccess(getPreviousDef(MU));
220 : // Unlike for defs, there is no extra work to do. Because uses do not create
221 : // new may-defs, there are only two cases:
222 : //
223 : // 1. There was a def already below us, and therefore, we should not have
224 6 : // created a phi node because it was already needed for the def.
225 : //
226 4 : // 2. There is no def below us, and therefore, there is no extra renaming work
227 : // to do.
228 : }
229 2 :
230 : // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
231 : static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
232 : MemoryAccess *NewDef) {
233 : // Replace any operand with us an incoming block with the new defining
234 2 : // access.
235 0 : int i = MP->getBasicBlockIndex(BB);
236 2 : assert(i != -1 && "Should have found the basic block in the phi");
237 2 : // We can't just compare i against getNumOperands since one is signed and the
238 2 : // other not. So use it to index into the block iterator.
239 : for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
240 : ++BBIter) {
241 : if (*BBIter != BB)
242 : break;
243 2 : MP->setIncomingValue(i, NewDef);
244 : ++i;
245 51 : }
246 : }
247 :
248 102 : // A brief description of the algorithm:
249 : // First, we compute what should define the new def, using the SSA
250 : // construction algorithm.
251 : // Then, we update the defs below us (and any new phi nodes) in the graph to
252 : // point to the correct new defs, to ensure we only have one variable, and no
253 72 : // disconnected stores.
254 : void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
255 26 : InsertedPHIs.clear();
256 :
257 : // See if we had a local def, and if not, go hunting.
258 18 : MemoryAccess *DefBefore = getPreviousDef(MD);
259 : bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
260 :
261 : // There is a def before us, which means we can replace any store/phi uses
262 : // of that thing with us, since we are in the way of whatever was there
263 46 : // before.
264 76 : // We now define that def's memorydefs and memoryphis
265 8 : if (DefBeforeSameBlock) {
266 2 : for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
267 2 : UI != UE;) {
268 : Use &U = *UI++;
269 : // Leave the MemoryUses alone.
270 : // Also make sure we skip ourselves to avoid self references.
271 : if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
272 8 : continue;
273 : U.set(MD);
274 : }
275 48 : }
276 :
277 96 : // and that def is now our defining access.
278 : MD->setDefiningAccess(DefBefore);
279 :
280 : SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
281 : if (!DefBeforeSameBlock) {
282 : // If there was a local def before us, we must have the same effect it
283 : // did. Because every may-def is the same, any phis/etc we would create, it
284 : // would also have created. If there was no local def before us, we
285 : // performed a global update, and have to search all successors and make
286 48 : // sure we update the first def in each of them (following all paths until
287 : // we hit the first def along each path). This may also insert phi nodes.
288 : // TODO: There are other cases we can skip this work, such as when we have a
289 3 : // single successor, and only used a straight line of single pred blocks
290 : // backwards to find the def. To make that work, we'd have to track whether
291 : // getDefRecursive only ever used the single predecessor case. These types
292 : // of paths also only exist in between CFG simplifications.
293 3 : FixupList.push_back(MD);
294 : }
295 :
296 : while (!FixupList.empty()) {
297 9 : unsigned StartingPHISize = InsertedPHIs.size();
298 : fixupDefs(FixupList);
299 4 : FixupList.clear();
300 : // Put any new phis on the fixup list, and process them
301 3 : FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
302 3 : }
303 : // Now that all fixups are done, rename all uses if we are asked.
304 3 : if (RenameUses) {
305 : SmallPtrSet<BasicBlock *, 16> Visited;
306 : BasicBlock *StartBlock = MD->getBlock();
307 : // We are guaranteed there is a def in the block, because we just got it
308 : // handed to us in this function.
309 : MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
310 : // Convert to incoming value if it's a memorydef. A phi *is* already an
311 : // incoming value.
312 27 : if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
313 : FirstDef = MD->getDefiningAccess();
314 :
315 : MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
316 27 : // We just inserted a phi into this block, so the incoming value will become
317 27 : // the phi anyway, so it does not matter what we pass.
318 : for (auto &MP : InsertedPHIs) {
319 : MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
320 : if (Phi)
321 : MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
322 : }
323 27 : }
324 : }
325 66 :
326 : void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
327 : SmallPtrSet<const BasicBlock *, 8> Seen;
328 : SmallVector<const BasicBlock *, 16> Worklist;
329 96 : for (auto &Var : Vars) {
330 : MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
331 27 : if (!NewDef)
332 : continue;
333 : // First, see if there is a local def after the operand.
334 : auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
335 : auto DefIter = NewDef->getDefsIterator();
336 54 :
337 : // The temporary Phi is being fixed, unmark it for not to optimize.
338 27 : if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
339 27 : NonOptPhis.erase(Phi);
340 :
341 : // If there is a local def after us, we only have to rename that.
342 : if (++DefIter != Defs->end()) {
343 : cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
344 : continue;
345 : }
346 :
347 : // Otherwise, we need to search down through the CFG.
348 : // For each of our successors, handle it directly if their is a phi, or
349 : // place on the fixup worklist.
350 : for (const auto *S : successors(NewDef->getBlock())) {
351 18 : if (auto *MP = MSSA->getMemoryAccess(S))
352 : setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
353 : else
354 36 : Worklist.push_back(S);
355 9 : }
356 9 :
357 : while (!Worklist.empty()) {
358 : const BasicBlock *FixupBlock = Worklist.back();
359 9 : Worklist.pop_back();
360 :
361 : // Get the first def in the block that isn't a phi node.
362 27 : if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
363 : auto *FirstDef = &*Defs->begin();
364 1 : // The loop above and below should have taken care of phi nodes
365 : assert(!isa<MemoryPhi>(FirstDef) &&
366 : "Should have already handled phi nodes!");
367 1 : // We are now this def's defining access, make sure we actually dominate
368 : // it
369 : assert(MSSA->dominates(NewDef, FirstDef) &&
370 : "Should have dominated the new access");
371 :
372 : // This may insert new phi nodes, because we are not guaranteed the
373 1 : // block we are processing has a single pred, and depending where the
374 : // store was inserted, it may require phi nodes below it.
375 : cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
376 1 : return;
377 : }
378 : // We didn't find a def, so we must continue.
379 0 : for (const auto *S : successors(FixupBlock)) {
380 : // If there is a phi node, handle it.
381 : // Otherwise, put the block on the worklist
382 27 : if (auto *MP = MSSA->getMemoryAccess(S))
383 : setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
384 9 : else {
385 : // If we cycle, we should have ended up at a phi node that we already
386 : // processed. FIXME: Double check this
387 13 : if (!Seen.insert(S).second)
388 : continue;
389 : Worklist.push_back(S);
390 : }
391 : }
392 9 : }
393 : }
394 : }
395 :
396 : void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
397 0 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
398 : MPhi->unorderedDeleteIncomingBlock(From);
399 : if (MPhi->getNumIncomingValues() == 1)
400 9 : removeMemoryAccess(MPhi);
401 0 : }
402 0 : }
403 :
404 : void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(BasicBlock *From,
405 : BasicBlock *To) {
406 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
407 : bool Found = false;
408 33 : MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
409 15 : if (From != B)
410 1 : return false;
411 : if (Found)
412 14 : return true;
413 : Found = true;
414 : return false;
415 13 : });
416 10 : if (MPhi->getNumIncomingValues() == 1)
417 : removeMemoryAccess(MPhi);
418 : }
419 : }
420 16 :
421 : void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
422 : const ValueToValueMapTy &VMap,
423 : PhiToDefMap &MPhiMap) {
424 : auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
425 : MemoryAccess *InsnDefining = MA;
426 : if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
427 : if (!MSSA->isLiveOnEntryDef(DefMUD)) {
428 : Instruction *DefMUDI = DefMUD->getMemoryInst();
429 : assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
430 : if (Instruction *NewDefMUDI =
431 : cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
432 : InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
433 12 : }
434 : } else {
435 : MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
436 : if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
437 10 : InsnDefining = NewDefPhi;
438 : }
439 : assert(InsnDefining && "Defining instruction cannot be nullptr.");
440 2 : return InsnDefining;
441 2 : };
442 :
443 : const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
444 : if (!Acc)
445 0 : return;
446 : for (const MemoryAccess &MA : *Acc) {
447 0 : if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
448 : Instruction *Insn = MUD->getMemoryInst();
449 : // Entry does not exist if the clone of the block did not clone all
450 : // instructions. This occurs in LoopRotate when cloning instructions
451 : // from the old header to the old preheader. The cloned instruction may
452 : // also be a simplified Value, not an Instruction (see LoopRotate).
453 : if (Instruction *NewInsn =
454 0 : dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
455 0 : MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
456 0 : NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD);
457 0 : MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
458 0 : }
459 : }
460 0 : }
461 : }
462 0 :
463 : void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
464 0 : ArrayRef<BasicBlock *> ExitBlocks,
465 0 : const ValueToValueMapTy &VMap,
466 0 : bool IgnoreIncomingWithNoClones) {
467 0 : PhiToDefMap MPhiMap;
468 :
469 0 : auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
470 : assert(Phi && NewPhi && "Invalid Phi nodes.");
471 0 : BasicBlock *NewPhiBB = NewPhi->getBlock();
472 : SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
473 : pred_end(NewPhiBB));
474 0 : for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
475 0 : MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
476 : BasicBlock *IncBB = Phi->getIncomingBlock(It);
477 0 :
478 : if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
479 279 : IncBB = NewIncBB;
480 : else if (IgnoreIncomingWithNoClones)
481 : continue;
482 :
483 : // Now we have IncBB, and will need to add incoming from it to NewPhi.
484 :
485 : // If IncBB is not a predecessor of NewPhiBB, then do not add it.
486 : // NewPhiBB was cloned without that edge.
487 : if (!NewPhiBBPreds.count(IncBB))
488 : continue;
489 :
490 : // Determine incoming value and add it as incoming from IncBB.
491 : if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
492 : if (!MSSA->isLiveOnEntryDef(IncMUD)) {
493 : Instruction *IncI = IncMUD->getMemoryInst();
494 : assert(IncI && "Found MemoryUseOrDef with no Instruction.");
495 : if (Instruction *NewIncI =
496 : cast_or_null<Instruction>(VMap.lookup(IncI))) {
497 : IncMUD = MSSA->getMemoryAccess(NewIncI);
498 : assert(IncMUD &&
499 279 : "MemoryUseOrDef cannot be null, all preds processed.");
500 : }
501 279 : }
502 41 : NewPhi->addIncoming(IncMUD, IncBB);
503 238 : } else {
504 101 : MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
505 : if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
506 33 : NewPhi->addIncoming(NewDefPhi, IncBB);
507 : else
508 : NewPhi->addIncoming(IncPhi, IncBB);
509 : }
510 : }
511 33 : };
512 66 :
513 66 : auto ProcessBlock = [&](BasicBlock *BB) {
514 : BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
515 33 : if (!NewBlock)
516 : return;
517 :
518 : assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
519 : "Cloned block should have no accesses");
520 :
521 38 : // Add MemoryPhi.
522 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
523 : MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
524 : MPhiMap[MPhi] = NewPhi;
525 : }
526 : // Update Uses and Defs.
527 : cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
528 : };
529 :
530 : for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
531 : ProcessBlock(BB);
532 :
533 : for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
534 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
535 : if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
536 : FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
537 : }
538 :
539 : void MemorySSAUpdater::updateForClonedBlockIntoPred(
540 : BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
541 : // All defs/phis from outside BB that are used in BB, are valid uses in P1.
542 : // Since those defs/phis must have dominated BB, and also dominate P1.
543 : // Defs from BB being used in BB will be replaced with the cloned defs from
544 : // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
545 : // incoming def into the Phi from P1.
546 : PhiToDefMap MPhiMap;
547 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
548 : MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
549 : cloneUsesAndDefs(BB, P1, VM, MPhiMap);
550 : }
551 :
552 : template <typename Iter>
553 : void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
554 : ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
555 : DominatorTree &DT) {
556 : SmallVector<CFGUpdate, 4> Updates;
557 : // Update/insert phis in all successors of exit blocks.
558 : for (auto *Exit : ExitBlocks)
559 : for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
560 : if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
561 : BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
562 : Updates.push_back({DT.Insert, NewExit, ExitSucc});
563 : }
564 : applyInsertUpdates(Updates, DT);
565 : }
566 :
567 : void MemorySSAUpdater::updateExitBlocksForClonedLoop(
568 : ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
569 38 : DominatorTree &DT) {
570 : const ValueToValueMapTy *const Arr[] = {&VMap};
571 : privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
572 : std::end(Arr), DT);
573 : }
574 :
575 : void MemorySSAUpdater::updateExitBlocksForClonedLoop(
576 : ArrayRef<BasicBlock *> ExitBlocks,
577 : ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
578 : auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
579 : return I.get();
580 : };
581 : using MappedIteratorType =
582 : mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
583 : decltype(GetPtr)>;
584 : auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
585 : auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
586 38 : privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
587 : }
588 279 :
589 279 : void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
590 : DominatorTree &DT) {
591 279 : SmallVector<CFGUpdate, 4> RevDeleteUpdates;
592 279 : SmallVector<CFGUpdate, 4> InsertUpdates;
593 27 : for (auto &Update : Updates) {
594 27 : if (Update.getKind() == DT.Insert)
595 38 : InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
596 : else
597 0 : RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
598 : }
599 :
600 : if (!RevDeleteUpdates.empty()) {
601 : // Update for inserted edges: use newDT and snapshot CFG as if deletes had
602 : // not occured.
603 : // FIXME: This creates a new DT, so it's more expensive to do mix
604 : // delete/inserts vs just inserts. We can do an incremental update on the DT
605 0 : // to revert deletes, than re-delete the edges. Teaching DT to do this, is
606 0 : // part of a pending cleanup.
607 0 : DominatorTree NewDT(DT, RevDeleteUpdates);
608 0 : GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
609 : applyInsertUpdates(InsertUpdates, NewDT, &GD);
610 : } else {
611 38 : GraphDiff<BasicBlock *> GD;
612 : applyInsertUpdates(InsertUpdates, DT, &GD);
613 : }
614 :
615 : // Update for deleted edges
616 125 : for (auto &Update : RevDeleteUpdates)
617 174 : removeEdge(Update.getFrom(), Update.getTo());
618 174 : }
619 87 :
620 87 : void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
621 : DominatorTree &DT) {
622 38 : GraphDiff<BasicBlock *> GD;
623 38 : applyInsertUpdates(Updates, DT, &GD);
624 0 : }
625 :
626 : void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
627 : DominatorTree &DT,
628 : const GraphDiff<BasicBlock *> *GD) {
629 0 : // Get recursive last Def, assuming well formed MSSA and updated DT.
630 0 : auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
631 0 : while (true) {
632 0 : MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
633 0 : // Return last Def or Phi in BB, if it exists.
634 : if (Defs)
635 0 : return &*(--Defs->end());
636 0 :
637 38 : // Check number of predecessors, we only care if there's more than one.
638 : unsigned Count = 0;
639 : BasicBlock *Pred = nullptr;
640 : for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
641 : Pred = Pair.second;
642 125 : Count++;
643 174 : if (Count == 2)
644 174 : break;
645 87 : }
646 87 :
647 : // If BB has multiple predecessors, get last definition from IDom.
648 38 : if (Count != 1) {
649 38 : // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
650 : // DT is invalidated. Return LoE as its last def. This will be added to
651 38 : // MemoryPhi node, and later deleted when the block is deleted.
652 : if (!DT.getNode(BB))
653 : return MSSA->getLiveOnEntryDef();
654 38 : if (auto *IDom = DT.getNode(BB)->getIDom())
655 38 : if (IDom->getBlock() != BB) {
656 : BB = IDom->getBlock();
657 38 : continue;
658 : }
659 0 : return MSSA->getLiveOnEntryDef();
660 : } else {
661 : // Single predecessor, BB cannot be dead. GetLastDef of Pred.
662 : assert(Count == 1 && Pred && "Single predecessor expected.");
663 : BB = Pred;
664 : }
665 : };
666 : llvm_unreachable("Unable to get last definition.");
667 : };
668 :
669 0 : // Get nearest IDom given a set of blocks.
670 0 : // TODO: this can be optimized by starting the search at the node with the
671 0 : // lowest level (highest in the tree).
672 : auto FindNearestCommonDominator =
673 87 : [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
674 : BasicBlock *PrevIDom = *BBSet.begin();
675 : for (auto *BB : BBSet)
676 : PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
677 174 : return PrevIDom;
678 87 : };
679 174 :
680 : // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
681 0 : // include CurrIDom.
682 : auto GetNoLongerDomBlocks =
683 : [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
684 87 : SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
685 : if (PrevIDom == CurrIDom)
686 : return;
687 : BlocksPrevDom.push_back(PrevIDom);
688 : BasicBlock *NextIDom = PrevIDom;
689 : while (BasicBlock *UpIDom =
690 : DT.getNode(NextIDom)->getIDom()->getBlock()) {
691 0 : if (UpIDom == CurrIDom)
692 0 : break;
693 0 : BlocksPrevDom.push_back(UpIDom);
694 : NextIDom = UpIDom;
695 87 : }
696 87 : };
697 :
698 : // Map a BB to its predecessors: added + previously existing. To get a
699 : // deterministic order, store predecessors as SetVectors. The order in each
700 87 : // will be defined by teh order in Updates (fixed) and the order given by
701 0 : // children<> (also fixed). Since we further iterate over these ordered sets,
702 87 : // we lose the information of multiple edges possibly existing between two
703 : // blocks, so we'll keep and EdgeCount map for that.
704 41 : // An alternate implementation could keep unordered set for the predecessors,
705 : // traverse either Updates or children<> each time to get the deterministic
706 82 : // order, and drop the usage of EdgeCount. This alternate approach would still
707 41 : // require querying the maps for each predecessor, and children<> call has
708 41 : // additional computation inside for creating the snapshot-graph predecessors.
709 : // As such, we favor using a little additional storage and less compute time.
710 128 : // This decision can be revisited if we find the alternative more favorable.
711 :
712 : struct PredInfo {
713 : SmallSetVector<BasicBlock *, 2> Added;
714 : SmallSetVector<BasicBlock *, 2> Prev;
715 : };
716 : SmallDenseMap<BasicBlock *, PredInfo> PredMap;
717 :
718 : for (auto &Edge : Updates) {
719 : BasicBlock *BB = Edge.getTo();
720 : auto &AddedBlockSet = PredMap[BB].Added;
721 : AddedBlockSet.insert(Edge.getFrom());
722 : }
723 :
724 : // Store all existing predecessor for each BB, at least one must exist.
725 : SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
726 : SmallPtrSet<BasicBlock *, 2> NewBlocks;
727 : for (auto &BBPredPair : PredMap) {
728 : auto *BB = BBPredPair.first;
729 : const auto &AddedBlockSet = BBPredPair.second.Added;
730 : auto &PrevBlockSet = BBPredPair.second.Prev;
731 : for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
732 : BasicBlock *Pi = Pair.second;
733 : if (!AddedBlockSet.count(Pi))
734 : PrevBlockSet.insert(Pi);
735 : EdgeCountMap[{Pi, BB}]++;
736 : }
737 :
738 : if (PrevBlockSet.empty()) {
739 : assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
740 : LLVM_DEBUG(
741 : dbgs()
742 : << "Adding a predecessor to a block with no predecessors. "
743 : "This must be an edge added to a new, likely cloned, block. "
744 : "Its memory accesses must be already correct, assuming completed "
745 : "via the updateExitBlocksForClonedLoop API. "
746 : "Assert a single such edge is added so no phi addition or "
747 : "additional processing is required.\n");
748 : assert(AddedBlockSet.size() == 1 &&
749 : "Can only handle adding one predecessor to a new block.");
750 : // Need to remove new blocks from PredMap. Remove below to not invalidate
751 128 : // iterator here.
752 : NewBlocks.insert(BB);
753 : }
754 : }
755 : // Nothing to process for new/cloned blocks.
756 : for (auto *BB : NewBlocks)
757 : PredMap.erase(BB);
758 :
759 : SmallVector<BasicBlock *, 8> BlocksToProcess;
760 : SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
761 :
762 128 : // First create MemoryPhis in all blocks that don't have one. Create in the
763 : // order found in Updates, not in PredMap, to get deterministic numbering.
764 : for (auto &Edge : Updates) {
765 : BasicBlock *BB = Edge.getTo();
766 : if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
767 : MSSA->createMemoryPhi(BB);
768 : }
769 :
770 : // Now we'll fill in the MemoryPhis with the right incoming values.
771 : for (auto &BBPredPair : PredMap) {
772 : auto *BB = BBPredPair.first;
773 : const auto &PrevBlockSet = BBPredPair.second.Prev;
774 : const auto &AddedBlockSet = BBPredPair.second.Added;
775 : assert(!PrevBlockSet.empty() &&
776 : "At least one previous predecessor must exist.");
777 :
778 : // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
779 : // keeping this map before the loop. We can reuse already populated entries
780 128 : // if an edge is added from the same predecessor to two different blocks,
781 : // and this does happen in rotate. Note that the map needs to be updated
782 : // when deleting non-necessary phis below, if the phi is in the map by
783 : // replacing the value with DefP1.
784 : SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
785 : for (auto *AddedPred : AddedBlockSet) {
786 : auto *DefPn = GetLastDef(AddedPred);
787 : assert(DefPn != nullptr && "Unable to find last definition.");
788 : LastDefAddedPred[AddedPred] = DefPn;
789 : }
790 :
791 : MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
792 : // If Phi is not empty, add an incoming edge from each added pred. Must
793 : // still compute blocks with defs to replace for this block below.
794 : if (NewPhi->getNumOperands()) {
795 : for (auto *Pred : AddedBlockSet) {
796 265 : auto *LastDefForPred = LastDefAddedPred[Pred];
797 : for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
798 : NewPhi->addIncoming(LastDefForPred, Pred);
799 : }
800 128 : } else {
801 : // Pick any existing predecessor and get its definition. All other
802 305 : // existing predecessors should have the same one, since no phi existed.
803 177 : auto *P1 = *PrevBlockSet.begin();
804 : MemoryAccess *DefP1 = GetLastDef(P1);
805 177 :
806 : // Check DefP1 against all Defs in LastDefPredPair. If all the same,
807 : // nothing to add.
808 : bool InsertPhi = false;
809 : for (auto LastDefPredPair : LastDefAddedPred)
810 : if (DefP1 != LastDefPredPair.second) {
811 433 : InsertPhi = true;
812 177 : break;
813 : }
814 : if (!InsertPhi) {
815 177 : // Since NewPhi may be used in other newly added Phis, replace all uses
816 318 : // of NewPhi with the definition coming from all predecessors (DefP1),
817 318 : // before deleting it.
818 141 : NewPhi->replaceAllUsesWith(DefP1);
819 318 : removeMemoryAccess(NewPhi);
820 : continue;
821 : }
822 177 :
823 : // Update Phi with new values for new predecessors and old value for all
824 : // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
825 : // sets, the order of entries in NewPhi is deterministic.
826 : for (auto *Pred : AddedBlockSet) {
827 : auto *LastDefForPred = LastDefAddedPred[Pred];
828 : for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
829 : NewPhi->addIncoming(LastDefForPred, Pred);
830 : }
831 : for (auto *Pred : PrevBlockSet)
832 : for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
833 : NewPhi->addIncoming(DefP1, Pred);
834 :
835 : // Insert BB in the set of blocks that now have definition. We'll use this
836 38 : // to compute IDF and add Phis there next.
837 : BlocksToProcess.push_back(BB);
838 : }
839 :
840 166 : // Get all blocks that used to dominate BB and no longer do after adding
841 38 : // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
842 : assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
843 : BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
844 : assert(PrevIDom && "Previous IDom should exists");
845 : BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
846 : assert(NewIDom && "BB should have a new valid idom");
847 : assert(DT.dominates(NewIDom, PrevIDom) &&
848 305 : "New idom should dominate old idom");
849 : GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
850 177 : }
851 137 :
852 : // Compute IDF and add Phis in all IDF blocks that do not have one.
853 : SmallVector<BasicBlock *, 32> IDFBlocks;
854 : if (!BlocksToProcess.empty()) {
855 395 : ForwardIDFCalculator IDFs(DT);
856 139 : SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
857 139 : BlocksToProcess.end());
858 : IDFs.setDefiningBlocks(DefiningBlocks);
859 : IDFs.calculate(IDFBlocks);
860 : for (auto *BBIDF : IDFBlocks) {
861 : if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) {
862 : // Update existing Phi.
863 : // FIXME: some updates may be redundant, try to optimize and skip some.
864 : for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
865 : IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
866 : } else {
867 : IDFPhi = MSSA->createMemoryPhi(BBIDF);
868 : for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
869 278 : BasicBlock *Pi = Pair.second;
870 139 : IDFPhi->addIncoming(GetLastDef(Pi), Pi);
871 : }
872 139 : }
873 : }
874 : }
875 139 :
876 : // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
877 : // longer dominate, replace those with the closest dominating def.
878 139 : // This will also update optimized accesses, as they're also uses.
879 4 : for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
880 2 : if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
881 4 : for (auto &DefToReplaceUses : *DefsList) {
882 2 : BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
883 : Value::use_iterator UI = DefToReplaceUses.use_begin(),
884 : E = DefToReplaceUses.use_end();
885 : for (; UI != E;) {
886 : Use &U = *UI;
887 137 : ++UI;
888 137 : MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
889 : if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
890 : BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
891 : if (!DT.dominates(DominatingBlock, DominatedBlock))
892 : U.set(GetLastDef(DominatedBlock));
893 378 : } else {
894 137 : BasicBlock *DominatedBlock = Usr->getBlock();
895 : if (!DT.dominates(DominatingBlock, DominatedBlock)) {
896 : if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
897 : U.set(DomBlPhi);
898 137 : else {
899 : auto *IDom = DT.getNode(DominatedBlock)->getIDom();
900 : assert(IDom && "Block must have a valid IDom.");
901 : U.set(GetLastDef(IDom->getBlock()));
902 104 : }
903 104 : cast<MemoryUseOrDef>(Usr)->resetOptimized();
904 : }
905 : }
906 : }
907 : }
908 : }
909 : }
910 66 : }
911 33 :
912 66 : // Move What before Where in the MemorySSA IR.
913 33 : template <class WhereType>
914 : void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
915 66 : WhereType Where) {
916 66 : // Mark MemoryPhi users of What not to be optimized.
917 33 : for (auto *U : What->users())
918 : if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
919 : NonOptPhis.insert(PhiUser);
920 :
921 33 : // Replace all our users with our defining access.
922 : What->replaceAllUsesWith(What->getDefiningAccess());
923 :
924 : // Let MemorySSA take care of moving it around in the lists.
925 : MSSA->moveTo(What, BB, Where);
926 :
927 35 : // Now reinsert it into the IR and do whatever fixups needed.
928 : if (auto *MD = dyn_cast<MemoryDef>(What))
929 35 : insertDef(MD);
930 : else
931 : insertUse(cast<MemoryUse>(What));
932 :
933 35 : // Clear dangling pointers. We added all MemoryPhi users, but not all
934 : // of them are removed by fixupDefs().
935 : NonOptPhis.clear();
936 : }
937 :
938 128 : // Move What before Where in the MemorySSA IR.
939 22 : void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
940 : moveTo(What, Where->getBlock(), Where->getIterator());
941 22 : }
942 :
943 22 : // Move What after Where in the MemorySSA IR.
944 41 : void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
945 19 : moveTo(What, Where->getBlock(), ++Where->getIterator());
946 : }
947 :
948 54 : void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
949 36 : MemorySSA::InsertionPlace Where) {
950 : return moveTo(What, BB, Where);
951 1 : }
952 1 :
953 2 : // All accesses in To used to be in From. Move to end and update access lists.
954 2 : void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
955 : Instruction *Start) {
956 :
957 : MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
958 : if (!Accs)
959 : return;
960 :
961 : MemoryAccess *FirstInNew = nullptr;
962 : for (Instruction &I : make_range(Start->getIterator(), To->end()))
963 276 : if ((FirstInNew = MSSA->getMemoryAccess(&I)))
964 195 : break;
965 114 : if (!FirstInNew)
966 67 : return;
967 :
968 : auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
969 213 : do {
970 : auto NextIt = ++MUD->getIterator();
971 : MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
972 146 : ? nullptr
973 : : cast<MemoryUseOrDef>(&*NextIt);
974 : MSSA->moveTo(MUD, To, MemorySSA::End);
975 92 : // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
976 0 : // retrieve it again.
977 : Accs = MSSA->getWritableBlockAccesses(From);
978 54 : MUD = NextMUD;
979 54 : } while (MUD);
980 2 : }
981 2 :
982 : void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
983 0 : BasicBlock *To,
984 : Instruction *Start) {
985 0 : assert(MSSA->getBlockAccesses(To) == nullptr &&
986 : "To block is expected to be free of MemoryAccesses.");
987 : moveAllAccesses(From, To, Start);
988 : for (BasicBlock *Succ : successors(To))
989 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
990 : MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
991 : }
992 :
993 : void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
994 128 : Instruction *Start) {
995 : assert(From->getSinglePredecessor() == To &&
996 : "From block is expected to have a single predecessor (To).");
997 : moveAllAccesses(From, To, Start);
998 64 : for (BasicBlock *Succ : successors(From))
999 : if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1000 : MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1001 85 : }
1002 :
1003 28 : /// If all arguments of a MemoryPHI are defined by the same incoming
1004 : /// argument, return that argument.
1005 : static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1006 128 : MemoryAccess *MA = nullptr;
1007 :
1008 : for (auto &Arg : MP->operands()) {
1009 64 : if (!MA)
1010 : MA = cast<MemoryAccess>(Arg);
1011 : else if (MA != Arg)
1012 : return nullptr;
1013 21 : }
1014 : return MA;
1015 43 : }
1016 :
1017 : void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1018 : BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1019 : bool IdenticalEdgesWereMerged) {
1020 64 : assert(!MSSA->getWritableBlockAccesses(New) &&
1021 60 : "Access list should be null for a new block.");
1022 : MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1023 : if (!Phi)
1024 76 : return;
1025 : if (pred_size(Old) == 1) {
1026 22 : assert(pred_size(New) == Preds.size() &&
1027 : "Should have moved all predecessors.");
1028 : MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1029 120 : } else {
1030 : assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1031 : "new immediate predecessor.");
1032 60 : MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1033 : SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1034 : // Currently only support the case of removing a single incoming edge when
1035 : // identical edges were not merged.
1036 17 : if (!IdenticalEdgesWereMerged)
1037 : assert(PredsSet.size() == Preds.size() &&
1038 43 : "If identical edges were not merged, we cannot have duplicate "
1039 : "blocks in the predecessors");
1040 : Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1041 : if (PredsSet.count(B)) {
1042 : NewPhi->addIncoming(MA, B);
1043 60 : if (!IdenticalEdgesWereMerged)
1044 4 : PredsSet.erase(B);
1045 : return true;
1046 : }
1047 9 : return false;
1048 : });
1049 6 : Phi->addIncoming(NewPhi, New);
1050 : if (onlySingleValue(NewPhi))
1051 : removeMemoryAccess(NewPhi);
1052 8 : }
1053 : }
1054 :
1055 4 : void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
1056 : assert(!MSSA->isLiveOnEntryDef(MA) &&
1057 : "Trying to remove the live on entry def");
1058 : // We can only delete phi nodes if they have no uses, or we can replace all
1059 4 : // uses with a single definition.
1060 : MemoryAccess *NewDefTarget = nullptr;
1061 0 : if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1062 : // Note that it is sufficient to know that all edges of the phi node have
1063 : // the same argument. If they do, by the definition of dominance frontiers
1064 : // (which we used to place this phi), that argument must dominate this phi,
1065 : // and thus, must dominate the phi's uses, and so we will not hit the assert
1066 4 : // below.
1067 : NewDefTarget = onlySingleValue(MP);
1068 : assert((NewDefTarget || MP->use_empty()) &&
1069 3 : "We can't delete this memory phi");
1070 3 : } else {
1071 3 : NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1072 : }
1073 :
1074 1 : // Re-point the uses at our defining access
1075 1 : if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1076 1 : // Reset optimized on users of this store, and reset the uses.
1077 : // A few notes:
1078 60 : // 1. This is a slightly modified version of RAUW to avoid walking the
1079 : // uses twice here.
1080 60 : // 2. If we wanted to be complete, we would have to reset the optimized
1081 : // flags on users of phi nodes if doing the below makes a phi node have all
1082 : // the same arguments. Instead, we prefer users to removeMemoryAccess those
1083 : // phi nodes, because doing it here would be N^3.
1084 144 : if (MA->hasValueHandle())
1085 : ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1086 : // Note: We assume MemorySSA is not used in metadata since it's not really
1087 144 : // part of the IR.
1088 5 :
1089 139 : while (!MA->use_empty()) {
1090 : Use &U = *MA->use_begin();
1091 : if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1092 9 : MUD->resetOptimized();
1093 5 : U.set(NewDefTarget);
1094 : }
1095 5 : }
1096 :
1097 : // The call below to erase will destroy MA, so we can't change the order we
1098 : // are doing things here
1099 : MSSA->removeFromLookups(MA);
1100 : MSSA->removeFromLists(MA);
1101 4 : }
1102 4 :
1103 : void MemorySSAUpdater::removeBlocks(
1104 4 : const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) {
1105 : // First delete all uses of BB in MemoryPhis.
1106 : for (BasicBlock *BB : DeadBlocks) {
1107 4 : Instruction *TI = BB->getTerminator();
1108 : assert(TI && "Basic block expected to have a terminator instruction");
1109 4 : for (BasicBlock *Succ : successors(TI))
1110 : if (!DeadBlocks.count(Succ))
1111 : if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1112 141 : MP->unorderedDeleteIncomingBlock(BB);
1113 : if (MP->getNumIncomingValues() == 1)
1114 : removeMemoryAccess(MP);
1115 : }
1116 : // Drop all references of all accesses in BB
1117 141 : if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1118 409 : for (MemoryAccess &MA : *Acc)
1119 127 : MA.dropAllReferences();
1120 23 : }
1121 141 :
1122 : // Next, delete all memory accesses in each block
1123 3 : for (BasicBlock *BB : DeadBlocks) {
1124 : MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1125 : if (!Acc)
1126 : continue;
1127 3 : for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1128 11 : MemoryAccess *MA = &*AB;
1129 5 : ++AB;
1130 0 : MSSA->removeFromLookups(MA);
1131 3 : MSSA->removeFromLists(MA);
1132 : }
1133 : }
1134 : }
1135 141 :
1136 : MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1137 : Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1138 343 : MemorySSA::InsertionPlace Point) {
1139 61 : MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1140 : MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1141 26 : return NewAccess;
1142 : }
1143 :
1144 : MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1145 : Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1146 : assert(I->getParent() == InsertPt->getBlock() &&
1147 226 : "New and old access must be in the same block");
1148 : MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1149 : MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1150 : InsertPt->getIterator());
1151 : return NewAccess;
1152 226 : }
1153 226 :
1154 : MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1155 7 : Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1156 : assert(I->getParent() == InsertPt->getBlock() &&
1157 : "New and old access must be in the same block");
1158 2 : MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1159 : MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1160 : ++InsertPt->getIterator());
1161 : return NewAccess;
1162 5 : }
|