Line data Source code
1 : //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements the PHITransAddr class.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #include "llvm/Analysis/PHITransAddr.h"
15 : #include "llvm/Analysis/InstructionSimplify.h"
16 : #include "llvm/Analysis/ValueTracking.h"
17 : #include "llvm/Config/llvm-config.h"
18 : #include "llvm/IR/Constants.h"
19 : #include "llvm/IR/Dominators.h"
20 : #include "llvm/IR/Instructions.h"
21 : #include "llvm/Support/Debug.h"
22 : #include "llvm/Support/ErrorHandling.h"
23 : #include "llvm/Support/raw_ostream.h"
24 : using namespace llvm;
25 :
26 215176 : static bool CanPHITrans(Instruction *Inst) {
27 215176 : if (isa<PHINode>(Inst) ||
28 : isa<GetElementPtrInst>(Inst))
29 : return true;
30 :
31 64497 : if (isa<CastInst>(Inst) &&
32 25655 : isSafeToSpeculativelyExecute(Inst))
33 : return true;
34 :
35 13651 : if (Inst->getOpcode() == Instruction::Add &&
36 464 : isa<ConstantInt>(Inst->getOperand(1)))
37 464 : return true;
38 :
39 : // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
40 : // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
41 : // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
42 : return false;
43 : }
44 :
45 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
46 : LLVM_DUMP_METHOD void PHITransAddr::dump() const {
47 : if (!Addr) {
48 : dbgs() << "PHITransAddr: null\n";
49 : return;
50 : }
51 : dbgs() << "PHITransAddr: " << *Addr << "\n";
52 : for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
53 : dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n";
54 : }
55 : #endif
56 :
57 :
58 0 : static bool VerifySubExpr(Value *Expr,
59 : SmallVectorImpl<Instruction*> &InstInputs) {
60 : // If this is a non-instruction value, there is nothing to do.
61 0 : Instruction *I = dyn_cast<Instruction>(Expr);
62 0 : if (!I) return true;
63 :
64 : // If it's an instruction, it is either in Tmp or its operands recursively
65 : // are.
66 : SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
67 0 : if (Entry != InstInputs.end()) {
68 0 : InstInputs.erase(Entry);
69 0 : return true;
70 : }
71 :
72 : // If it isn't in the InstInputs list it is a subexpr incorporated into the
73 : // address. Sanity check that it is phi translatable.
74 0 : if (!CanPHITrans(I)) {
75 0 : errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
76 0 : errs() << *I << '\n';
77 0 : llvm_unreachable("Either something is missing from InstInputs or "
78 : "CanPHITrans is wrong.");
79 : }
80 :
81 : // Validate the operands of the instruction.
82 0 : for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
83 0 : if (!VerifySubExpr(I->getOperand(i), InstInputs))
84 : return false;
85 :
86 : return true;
87 : }
88 :
89 : /// Verify - Check internal consistency of this data structure. If the
90 : /// structure is valid, it returns true. If invalid, it prints errors and
91 : /// returns false.
92 0 : bool PHITransAddr::Verify() const {
93 0 : if (!Addr) return true;
94 :
95 : SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
96 :
97 0 : if (!VerifySubExpr(Addr, Tmp))
98 : return false;
99 :
100 0 : if (!Tmp.empty()) {
101 0 : errs() << "PHITransAddr contains extra instructions:\n";
102 0 : for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
103 0 : errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n";
104 0 : llvm_unreachable("This is unexpected.");
105 : }
106 :
107 : // a-ok.
108 : return true;
109 : }
110 :
111 :
112 : /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
113 : /// if we have some hope of doing it. This should be used as a filter to
114 : /// avoid calling PHITranslateValue in hopeless situations.
115 128559 : bool PHITransAddr::IsPotentiallyPHITranslatable() const {
116 : // If the input value is not an instruction, or if it is not defined in CurBB,
117 : // then we don't need to phi translate it.
118 128559 : Instruction *Inst = dyn_cast<Instruction>(Addr);
119 128559 : return !Inst || CanPHITrans(Inst);
120 : }
121 :
122 :
123 3943 : static void RemoveInstInputs(Value *V,
124 : SmallVectorImpl<Instruction*> &InstInputs) {
125 3943 : Instruction *I = dyn_cast<Instruction>(V);
126 4193 : if (!I) return;
127 :
128 : // If the instruction is in the InstInputs list, remove it.
129 : SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
130 250 : if (Entry != InstInputs.end()) {
131 250 : InstInputs.erase(Entry);
132 250 : return;
133 : }
134 :
135 : assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
136 :
137 : // Otherwise, it must have instruction inputs itself. Zap them recursively.
138 0 : for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
139 0 : if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
140 0 : RemoveInstInputs(Op, InstInputs);
141 : }
142 : }
143 :
144 550592 : Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
145 : BasicBlock *PredBB,
146 : const DominatorTree *DT) {
147 : // If this is a non-instruction value, it can't require PHI translation.
148 550592 : Instruction *Inst = dyn_cast<Instruction>(V);
149 550592 : if (!Inst) return V;
150 :
151 : // Determine whether 'Inst' is an input to our PHI translatable expression.
152 : bool isInput = is_contained(InstInputs, Inst);
153 :
154 : // Handle inputs instructions if needed.
155 352411 : if (isInput) {
156 318137 : if (Inst->getParent() != CurBB) {
157 : // If it is an input defined in a different block, then it remains an
158 : // input.
159 : return Inst;
160 : }
161 :
162 : // If 'Inst' is defined in this block and is an input that needs to be phi
163 : // translated, we need to incorporate the value into the expression or fail.
164 :
165 : // In either case, the instruction itself isn't an input any longer.
166 557212 : InstInputs.erase(find(InstInputs, Inst));
167 :
168 : // If this is a PHI, go ahead and translate it.
169 278606 : if (PHINode *PN = dyn_cast<PHINode>(Inst))
170 211410 : return AddAsInput(PN->getIncomingValueForBlock(PredBB));
171 :
172 : // If this is a non-phi value, and it is analyzable, we can incorporate it
173 : // into the expression by making all instruction operands be inputs.
174 86617 : if (!CanPHITrans(Inst))
175 : return nullptr;
176 :
177 : // All instruction operands are now inputs (and of course, they may also be
178 : // defined in this block, so they may need to be phi translated themselves.
179 303032 : for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
180 456592 : if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
181 66173 : InstInputs.push_back(Op);
182 : }
183 :
184 : // Ok, it must be an intermediate result (either because it started that way
185 : // or because we just incorporated it into the expression). See if its
186 : // operands need to be phi translated, and if so, reconstruct it.
187 :
188 109010 : if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
189 19472 : if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
190 19472 : Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
191 19472 : if (!PHIIn) return nullptr;
192 13863 : if (PHIIn == Cast->getOperand(0))
193 : return Cast;
194 :
195 : // Find an available version of this cast.
196 :
197 : // Constants are trivial to find.
198 : if (Constant *C = dyn_cast<Constant>(PHIIn))
199 306 : return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
200 153 : C, Cast->getType()));
201 :
202 : // Otherwise we have to see if a casted version of the incoming pointer
203 : // is available. If so, we can use it, otherwise we have to fail.
204 8866 : for (User *U : PHIIn->users()) {
205 : if (CastInst *CastI = dyn_cast<CastInst>(U))
206 703 : if (CastI->getOpcode() == Cast->getOpcode() &&
207 795 : CastI->getType() == Cast->getType() &&
208 0 : (!DT || DT->dominates(CastI->getParent(), PredBB)))
209 : return CastI;
210 : }
211 : return nullptr;
212 : }
213 :
214 : // Handle getelementptr with at least one PHI translatable operand.
215 : if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
216 : SmallVector<Value*, 8> GEPOps;
217 : bool AnyChanged = false;
218 349679 : for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
219 273476 : Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
220 273476 : if (!GEPOp) return nullptr;
221 :
222 260747 : AnyChanged |= GEPOp != GEP->getOperand(i);
223 260747 : GEPOps.push_back(GEPOp);
224 : }
225 :
226 76203 : if (!AnyChanged)
227 : return GEP;
228 :
229 : // Simplify the GEP to handle 'gep x, 0' -> x etc.
230 26936 : if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
231 : GEPOps, {DL, TLI, DT, AC})) {
232 4685 : for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
233 7208 : RemoveInstInputs(GEPOps[i], InstInputs);
234 :
235 1081 : return AddAsInput(V);
236 : }
237 :
238 : // Scan to see if we have this GEP available.
239 12387 : Value *APHIOp = GEPOps[0];
240 71114 : for (User *U : APHIOp->users()) {
241 : if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
242 17171 : if (GEPI->getType() == GEP->getType() &&
243 17171 : GEPI->getNumOperands() == GEPOps.size() &&
244 47490 : GEPI->getParent()->getParent() == CurBB->getParent() &&
245 1078 : (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
246 9440 : if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
247 : return GEPI;
248 : }
249 : }
250 : return nullptr;
251 : }
252 :
253 : // Handle add with a constant RHS.
254 1212 : if (Inst->getOpcode() == Instruction::Add &&
255 606 : isa<ConstantInt>(Inst->getOperand(1))) {
256 : // PHI translate the LHS.
257 : Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
258 606 : bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
259 606 : bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
260 :
261 1212 : Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
262 606 : if (!LHS) return nullptr;
263 :
264 : // If the PHI translated LHS is an add of a constant, fold the immediates.
265 436 : if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
266 173 : if (BOp->getOpcode() == Instruction::Add)
267 : if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
268 : LHS = BOp->getOperand(0);
269 166 : RHS = ConstantExpr::getAdd(RHS, CI);
270 : isNSW = isNUW = false;
271 :
272 : // If the old 'LHS' was an input, add the new 'LHS' as an input.
273 166 : if (is_contained(InstInputs, BOp)) {
274 166 : RemoveInstInputs(BOp, InstInputs);
275 : AddAsInput(LHS);
276 : }
277 : }
278 :
279 : // See if the add simplifies away.
280 872 : if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
281 : // If we simplified the operands, the LHS is no longer an input, but Res
282 : // is.
283 173 : RemoveInstInputs(LHS, InstInputs);
284 173 : return AddAsInput(Res);
285 : }
286 :
287 : // If we didn't modify the add, just return it.
288 526 : if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
289 : return Inst;
290 :
291 : // Otherwise, see if we have this add available somewhere.
292 569 : for (User *U : LHS->users()) {
293 : if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
294 249 : if (BO->getOpcode() == Instruction::Add &&
295 249 : BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
296 253 : BO->getParent()->getParent() == CurBB->getParent() &&
297 0 : (!DT || DT->dominates(BO->getParent(), PredBB)))
298 : return BO;
299 : }
300 :
301 : return nullptr;
302 : }
303 :
304 : // Otherwise, we failed.
305 : return nullptr;
306 : }
307 :
308 :
309 : /// PHITranslateValue - PHI translate the current address up the CFG from
310 : /// CurBB to Pred, updating our state to reflect any needed changes. If
311 : /// 'MustDominate' is true, the translated value must dominate
312 : /// PredBB. This returns true on failure and sets Addr to null.
313 860172 : bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
314 : const DominatorTree *DT,
315 : bool MustDominate) {
316 : assert(DT || !MustDominate);
317 : assert(Verify() && "Invalid PHITransAddr!");
318 860172 : if (DT && DT->isReachableFromEntry(PredBB))
319 257038 : Addr =
320 507539 : PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
321 : else
322 603134 : Addr = nullptr;
323 : assert(Verify() && "Invalid PHITransAddr!");
324 :
325 860172 : if (MustDominate)
326 : // Make sure the value is live in the predecessor.
327 6539 : if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
328 1299 : if (!DT->dominates(Inst->getParent(), PredBB))
329 160 : Addr = nullptr;
330 :
331 860172 : return Addr == nullptr;
332 : }
333 :
334 : /// PHITranslateWithInsertion - PHI translate this value into the specified
335 : /// predecessor block, inserting a computation of the value if it is
336 : /// unavailable.
337 : ///
338 : /// All newly created instructions are added to the NewInsts list. This
339 : /// returns null on failure.
340 : ///
341 5325 : Value *PHITransAddr::
342 : PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
343 : const DominatorTree &DT,
344 : SmallVectorImpl<Instruction*> &NewInsts) {
345 5325 : unsigned NISize = NewInsts.size();
346 :
347 : // Attempt to PHI translate with insertion.
348 5325 : Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
349 :
350 : // If successful, return the new value.
351 5325 : if (Addr) return Addr;
352 :
353 : // If not, destroy any intermediate instructions inserted.
354 110 : while (NewInsts.size() != NISize)
355 0 : NewInsts.pop_back_val()->eraseFromParent();
356 : return nullptr;
357 : }
358 :
359 :
360 : /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
361 : /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
362 : /// block. All newly created instructions are added to the NewInsts list.
363 : /// This returns null on failure.
364 : ///
365 6539 : Value *PHITransAddr::
366 : InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
367 : BasicBlock *PredBB, const DominatorTree &DT,
368 : SmallVectorImpl<Instruction*> &NewInsts) {
369 : // See if we have a version of this value already available and dominating
370 : // PredBB. If so, there is no need to insert a new instance of it.
371 6539 : PHITransAddr Tmp(InVal, DL, AC);
372 6539 : if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
373 5895 : return Tmp.getAddr();
374 :
375 : // We don't need to PHI translate values which aren't instructions.
376 : auto *Inst = dyn_cast<Instruction>(InVal);
377 : if (!Inst)
378 : return nullptr;
379 :
380 : // Handle cast of PHI translatable value.
381 : if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
382 186 : if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
383 186 : Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
384 : CurBB, PredBB, DT, NewInsts);
385 186 : if (!OpVal) return nullptr;
386 :
387 : // Otherwise insert a cast at the end of PredBB.
388 370 : CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
389 370 : InVal->getName() + ".phi.trans.insert",
390 : PredBB->getTerminator());
391 185 : New->setDebugLoc(Inst->getDebugLoc());
392 185 : NewInsts.push_back(New);
393 185 : return New;
394 : }
395 :
396 : // Handle getelementptr with at least one PHI operand.
397 : if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
398 : SmallVector<Value*, 8> GEPOps;
399 403 : BasicBlock *CurBB = GEP->getParent();
400 1377 : for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
401 1028 : Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
402 1028 : CurBB, PredBB, DT, NewInsts);
403 1028 : if (!OpVal) return nullptr;
404 974 : GEPOps.push_back(OpVal);
405 : }
406 :
407 349 : GetElementPtrInst *Result = GetElementPtrInst::Create(
408 : GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
409 698 : InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
410 349 : Result->setDebugLoc(Inst->getDebugLoc());
411 349 : Result->setIsInBounds(GEP->isInBounds());
412 349 : NewInsts.push_back(Result);
413 349 : return Result;
414 : }
415 :
416 : #if 0
417 : // FIXME: This code works, but it is unclear that we actually want to insert
418 : // a big chain of computation in order to make a value available in a block.
419 : // This needs to be evaluated carefully to consider its cost trade offs.
420 :
421 : // Handle add with a constant RHS.
422 : if (Inst->getOpcode() == Instruction::Add &&
423 : isa<ConstantInt>(Inst->getOperand(1))) {
424 : // PHI translate the LHS.
425 : Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
426 : CurBB, PredBB, DT, NewInsts);
427 : if (OpVal == 0) return 0;
428 :
429 : BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
430 : InVal->getName()+".phi.trans.insert",
431 : PredBB->getTerminator());
432 : Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
433 : Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
434 : NewInsts.push_back(Res);
435 : return Res;
436 : }
437 : #endif
438 :
439 : return nullptr;
440 : }
|