Line data Source code
1 : //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file contains routines that help analyze properties that chains of
11 : // computations have.
12 : //
13 : //===----------------------------------------------------------------------===//
14 :
15 : #include "llvm/Analysis/ValueTracking.h"
16 : #include "llvm/ADT/APFloat.h"
17 : #include "llvm/ADT/APInt.h"
18 : #include "llvm/ADT/ArrayRef.h"
19 : #include "llvm/ADT/None.h"
20 : #include "llvm/ADT/Optional.h"
21 : #include "llvm/ADT/STLExtras.h"
22 : #include "llvm/ADT/SmallPtrSet.h"
23 : #include "llvm/ADT/SmallSet.h"
24 : #include "llvm/ADT/SmallVector.h"
25 : #include "llvm/ADT/StringRef.h"
26 : #include "llvm/ADT/iterator_range.h"
27 : #include "llvm/Analysis/AliasAnalysis.h"
28 : #include "llvm/Analysis/AssumptionCache.h"
29 : #include "llvm/Analysis/GuardUtils.h"
30 : #include "llvm/Analysis/InstructionSimplify.h"
31 : #include "llvm/Analysis/Loads.h"
32 : #include "llvm/Analysis/LoopInfo.h"
33 : #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 : #include "llvm/Analysis/TargetLibraryInfo.h"
35 : #include "llvm/IR/Argument.h"
36 : #include "llvm/IR/Attributes.h"
37 : #include "llvm/IR/BasicBlock.h"
38 : #include "llvm/IR/CallSite.h"
39 : #include "llvm/IR/Constant.h"
40 : #include "llvm/IR/ConstantRange.h"
41 : #include "llvm/IR/Constants.h"
42 : #include "llvm/IR/DataLayout.h"
43 : #include "llvm/IR/DerivedTypes.h"
44 : #include "llvm/IR/DiagnosticInfo.h"
45 : #include "llvm/IR/Dominators.h"
46 : #include "llvm/IR/Function.h"
47 : #include "llvm/IR/GetElementPtrTypeIterator.h"
48 : #include "llvm/IR/GlobalAlias.h"
49 : #include "llvm/IR/GlobalValue.h"
50 : #include "llvm/IR/GlobalVariable.h"
51 : #include "llvm/IR/InstrTypes.h"
52 : #include "llvm/IR/Instruction.h"
53 : #include "llvm/IR/Instructions.h"
54 : #include "llvm/IR/IntrinsicInst.h"
55 : #include "llvm/IR/Intrinsics.h"
56 : #include "llvm/IR/LLVMContext.h"
57 : #include "llvm/IR/Metadata.h"
58 : #include "llvm/IR/Module.h"
59 : #include "llvm/IR/Operator.h"
60 : #include "llvm/IR/PatternMatch.h"
61 : #include "llvm/IR/Type.h"
62 : #include "llvm/IR/User.h"
63 : #include "llvm/IR/Value.h"
64 : #include "llvm/Support/Casting.h"
65 : #include "llvm/Support/CommandLine.h"
66 : #include "llvm/Support/Compiler.h"
67 : #include "llvm/Support/ErrorHandling.h"
68 : #include "llvm/Support/KnownBits.h"
69 : #include "llvm/Support/MathExtras.h"
70 : #include <algorithm>
71 : #include <array>
72 : #include <cassert>
73 : #include <cstdint>
74 : #include <iterator>
75 : #include <utility>
76 :
77 : using namespace llvm;
78 : using namespace llvm::PatternMatch;
79 :
80 : const unsigned MaxDepth = 6;
81 :
82 : // Controls the number of uses of the value searched for possible
83 : // dominating comparisons.
84 : static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85 : cl::Hidden, cl::init(20));
86 :
87 : /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88 : /// returns the element type's bitwidth.
89 41623858 : static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90 41623858 : if (unsigned BitWidth = Ty->getScalarSizeInBits())
91 : return BitWidth;
92 :
93 14738789 : return DL.getIndexTypeSizeInBits(Ty);
94 : }
95 :
96 : namespace {
97 :
98 : // Simplifying using an assume can only be done in a particular control-flow
99 : // context (the context instruction provides that context). If an assume and
100 : // the context instruction are not in the same block then the DT helps in
101 : // figuring out if we can use it.
102 : struct Query {
103 : const DataLayout &DL;
104 : AssumptionCache *AC;
105 : const Instruction *CxtI;
106 : const DominatorTree *DT;
107 :
108 : // Unlike the other analyses, this may be a nullptr because not all clients
109 : // provide it currently.
110 : OptimizationRemarkEmitter *ORE;
111 :
112 : /// Set of assumptions that should be excluded from further queries.
113 : /// This is because of the potential for mutual recursion to cause
114 : /// computeKnownBits to repeatedly visit the same assume intrinsic. The
115 : /// classic case of this is assume(x = y), which will attempt to determine
116 : /// bits in x from bits in y, which will attempt to determine bits in y from
117 : /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
118 : /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
119 : /// (all of which can call computeKnownBits), and so on.
120 : std::array<const Value *, MaxDepth> Excluded;
121 :
122 : /// If true, it is safe to use metadata during simplification.
123 : InstrInfoQuery IIQ;
124 :
125 : unsigned NumExcluded = 0;
126 :
127 : Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
128 : const DominatorTree *DT, bool UseInstrInfo,
129 : OptimizationRemarkEmitter *ORE = nullptr)
130 62506756 : : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
131 :
132 : Query(const Query &Q, const Value *NewExcl)
133 2080 : : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
134 2080 : NumExcluded(Q.NumExcluded) {
135 416 : Excluded = Q.Excluded;
136 416 : Excluded[NumExcluded++] = NewExcl;
137 : assert(NumExcluded <= Excluded.size());
138 : }
139 :
140 1769 : bool isExcluded(const Value *Value) const {
141 1769 : if (NumExcluded == 0)
142 : return false;
143 26 : auto End = Excluded.begin() + NumExcluded;
144 26 : return std::find(Excluded.begin(), End, Value) != End;
145 : }
146 : };
147 :
148 : } // end anonymous namespace
149 :
150 : // Given the provided Value and, potentially, a context instruction, return
151 : // the preferred context instruction (if any).
152 : static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
153 : // If we've been provided with a context instruction, then use that (provided
154 : // it has been inserted).
155 58098135 : if (CxtI && CxtI->getParent())
156 : return CxtI;
157 :
158 : // If the value is really an already-inserted instruction, then use that.
159 : CxtI = dyn_cast<Instruction>(V);
160 5604304 : if (CxtI && CxtI->getParent())
161 : return CxtI;
162 :
163 : return nullptr;
164 : }
165 :
166 : static void computeKnownBits(const Value *V, KnownBits &Known,
167 : unsigned Depth, const Query &Q);
168 :
169 14853746 : void llvm::computeKnownBits(const Value *V, KnownBits &Known,
170 : const DataLayout &DL, unsigned Depth,
171 : AssumptionCache *AC, const Instruction *CxtI,
172 : const DominatorTree *DT,
173 : OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
174 14853746 : ::computeKnownBits(V, Known, Depth,
175 14853746 : Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
176 14853746 : }
177 :
178 : static KnownBits computeKnownBits(const Value *V, unsigned Depth,
179 : const Query &Q);
180 :
181 37887108 : KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
182 : unsigned Depth, AssumptionCache *AC,
183 : const Instruction *CxtI,
184 : const DominatorTree *DT,
185 : OptimizationRemarkEmitter *ORE,
186 : bool UseInstrInfo) {
187 : return ::computeKnownBits(
188 37887108 : V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
189 : }
190 :
191 5067456 : bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
192 : const DataLayout &DL, AssumptionCache *AC,
193 : const Instruction *CxtI, const DominatorTree *DT,
194 : bool UseInstrInfo) {
195 : assert(LHS->getType() == RHS->getType() &&
196 : "LHS and RHS should have the same type");
197 : assert(LHS->getType()->isIntOrIntVectorTy() &&
198 : "LHS and RHS should be integers");
199 : // Look for an inverted mask: (X & ~M) op (Y & M).
200 : Value *M;
201 5067456 : if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
202 5067456 : match(RHS, m_c_And(m_Specific(M), m_Value())))
203 4 : return true;
204 5067452 : if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
205 8 : match(LHS, m_c_And(m_Specific(M), m_Value())))
206 7 : return true;
207 5067445 : IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
208 10134890 : KnownBits LHSKnown(IT->getBitWidth());
209 5067445 : KnownBits RHSKnown(IT->getBitWidth());
210 5067445 : computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211 5067445 : computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
212 5067445 : return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
213 : }
214 :
215 4070 : bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
216 4912 : for (const User *U : CxtI->users()) {
217 : if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
218 1121 : if (IC->isEquality())
219 : if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
220 842 : if (C->isNullValue())
221 : continue;
222 : return false;
223 : }
224 : return true;
225 : }
226 :
227 : static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
228 : const Query &Q);
229 :
230 5440 : bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
231 : bool OrZero, unsigned Depth,
232 : AssumptionCache *AC, const Instruction *CxtI,
233 : const DominatorTree *DT, bool UseInstrInfo) {
234 5440 : return ::isKnownToBeAPowerOfTwo(
235 5440 : V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
236 : }
237 :
238 : static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
239 :
240 3219127 : bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
241 : AssumptionCache *AC, const Instruction *CxtI,
242 : const DominatorTree *DT, bool UseInstrInfo) {
243 3219127 : return ::isKnownNonZero(V, Depth,
244 3219127 : Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
245 : }
246 :
247 1326 : bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
248 : unsigned Depth, AssumptionCache *AC,
249 : const Instruction *CxtI, const DominatorTree *DT,
250 : bool UseInstrInfo) {
251 : KnownBits Known =
252 2652 : computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
253 1326 : return Known.isNonNegative();
254 : }
255 :
256 11 : bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
257 : AssumptionCache *AC, const Instruction *CxtI,
258 : const DominatorTree *DT, bool UseInstrInfo) {
259 : if (auto *CI = dyn_cast<ConstantInt>(V))
260 1 : return CI->getValue().isStrictlyPositive();
261 :
262 : // TODO: We'd doing two recursive queries here. We should factor this such
263 : // that only a single query is needed.
264 17 : return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
265 7 : isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
266 : }
267 :
268 0 : bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
269 : AssumptionCache *AC, const Instruction *CxtI,
270 : const DominatorTree *DT, bool UseInstrInfo) {
271 : KnownBits Known =
272 0 : computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
273 0 : return Known.isNegative();
274 : }
275 :
276 : static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
277 :
278 1054514 : bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
279 : const DataLayout &DL, AssumptionCache *AC,
280 : const Instruction *CxtI, const DominatorTree *DT,
281 : bool UseInstrInfo) {
282 1054514 : return ::isKnownNonEqual(V1, V2,
283 1054514 : Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
284 1054514 : UseInstrInfo, /*ORE=*/nullptr));
285 : }
286 :
287 : static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
288 : const Query &Q);
289 :
290 98725 : bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
291 : const DataLayout &DL, unsigned Depth,
292 : AssumptionCache *AC, const Instruction *CxtI,
293 : const DominatorTree *DT, bool UseInstrInfo) {
294 98725 : return ::MaskedValueIsZero(
295 98725 : V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
296 : }
297 :
298 : static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
299 : const Query &Q);
300 :
301 5388096 : unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
302 : unsigned Depth, AssumptionCache *AC,
303 : const Instruction *CxtI,
304 : const DominatorTree *DT, bool UseInstrInfo) {
305 : return ::ComputeNumSignBits(
306 5388096 : V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
307 : }
308 :
309 4308021 : static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
310 : bool NSW,
311 : KnownBits &KnownOut, KnownBits &Known2,
312 : unsigned Depth, const Query &Q) {
313 : unsigned BitWidth = KnownOut.getBitWidth();
314 :
315 : // If an initial sequence of bits in the result is not needed, the
316 : // corresponding bits in the operands are not needed.
317 4308021 : KnownBits LHSKnown(BitWidth);
318 4308021 : computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
319 4308021 : computeKnownBits(Op1, Known2, Depth + 1, Q);
320 :
321 4308021 : KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
322 4308021 : }
323 :
324 229520 : static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
325 : KnownBits &Known, KnownBits &Known2,
326 : unsigned Depth, const Query &Q) {
327 229520 : unsigned BitWidth = Known.getBitWidth();
328 229520 : computeKnownBits(Op1, Known, Depth + 1, Q);
329 229520 : computeKnownBits(Op0, Known2, Depth + 1, Q);
330 :
331 : bool isKnownNegative = false;
332 : bool isKnownNonNegative = false;
333 : // If the multiplication is known not to overflow, compute the sign bit.
334 229520 : if (NSW) {
335 36051 : if (Op0 == Op1) {
336 : // The product of a number with itself is non-negative.
337 : isKnownNonNegative = true;
338 : } else {
339 : bool isKnownNonNegativeOp1 = Known.isNonNegative();
340 : bool isKnownNonNegativeOp0 = Known2.isNonNegative();
341 : bool isKnownNegativeOp1 = Known.isNegative();
342 : bool isKnownNegativeOp0 = Known2.isNegative();
343 : // The product of two numbers with the same sign is non-negative.
344 33333 : isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
345 33316 : (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
346 : // The product of a negative number and a non-negative number is either
347 : // negative or zero.
348 : if (!isKnownNonNegative)
349 99 : isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
350 22632 : isKnownNonZero(Op0, Depth, Q)) ||
351 22650 : (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
352 18 : isKnownNonZero(Op1, Depth, Q));
353 : }
354 : }
355 :
356 : assert(!Known.hasConflict() && !Known2.hasConflict());
357 : // Compute a conservative estimate for high known-0 bits.
358 229520 : unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
359 : Known2.countMinLeadingZeros(),
360 229520 : BitWidth) - BitWidth;
361 229520 : LeadZ = std::min(LeadZ, BitWidth);
362 :
363 : // The result of the bottom bits of an integer multiply can be
364 : // inferred by looking at the bottom bits of both operands and
365 : // multiplying them together.
366 : // We can infer at least the minimum number of known trailing bits
367 : // of both operands. Depending on number of trailing zeros, we can
368 : // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
369 : // a and b are divisible by m and n respectively.
370 : // We then calculate how many of those bits are inferrable and set
371 : // the output. For example, the i8 mul:
372 : // a = XXXX1100 (12)
373 : // b = XXXX1110 (14)
374 : // We know the bottom 3 bits are zero since the first can be divided by
375 : // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
376 : // Applying the multiplication to the trimmed arguments gets:
377 : // XX11 (3)
378 : // X111 (7)
379 : // -------
380 : // XX11
381 : // XX11
382 : // XX11
383 : // XX11
384 : // -------
385 : // XXXXX01
386 : // Which allows us to infer the 2 LSBs. Since we're multiplying the result
387 : // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
388 : // The proof for this can be described as:
389 : // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
390 : // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
391 : // umin(countTrailingZeros(C2), C6) +
392 : // umin(C5 - umin(countTrailingZeros(C1), C5),
393 : // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
394 : // %aa = shl i8 %a, C5
395 : // %bb = shl i8 %b, C6
396 : // %aaa = or i8 %aa, C1
397 : // %bbb = or i8 %bb, C2
398 : // %mul = mul i8 %aaa, %bbb
399 : // %mask = and i8 %mul, C7
400 : // =>
401 : // %mask = i8 ((C1*C2)&C7)
402 : // Where C5, C6 describe the known bits of %a, %b
403 : // C1, C2 describe the known bottom bits of %a, %b.
404 : // C7 describes the mask of the known bits of the result.
405 229520 : APInt Bottom0 = Known.One;
406 229520 : APInt Bottom1 = Known2.One;
407 :
408 : // How many times we'd be able to divide each argument by 2 (shr by 1).
409 : // This gives us the number of trailing zeros on the multiplication result.
410 229520 : unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
411 229520 : unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
412 : unsigned TrailZero0 = Known.countMinTrailingZeros();
413 : unsigned TrailZero1 = Known2.countMinTrailingZeros();
414 229520 : unsigned TrailZ = TrailZero0 + TrailZero1;
415 :
416 : // Figure out the fewest known-bits operand.
417 459040 : unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
418 229520 : TrailBitsKnown1 - TrailZero1);
419 229520 : unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
420 :
421 459040 : APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
422 688560 : Bottom1.getLoBits(TrailBitsKnown1);
423 :
424 : Known.resetAll();
425 229520 : Known.Zero.setHighBits(LeadZ);
426 461517 : Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
427 229520 : Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
428 :
429 : // Only make use of no-wrap flags if we failed to compute the sign bit
430 : // directly. This matters if the multiplication always overflows, in
431 : // which case we prefer to follow the result of the direct computation,
432 : // though as the program is invoking undefined behaviour we can choose
433 : // whatever we like here.
434 242939 : if (isKnownNonNegative && !Known.isNegative())
435 : Known.makeNonNegative();
436 216119 : else if (isKnownNegative && !Known.isNonNegative())
437 : Known.makeNegative();
438 229520 : }
439 :
440 232979 : void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
441 : KnownBits &Known) {
442 : unsigned BitWidth = Known.getBitWidth();
443 232979 : unsigned NumRanges = Ranges.getNumOperands() / 2;
444 : assert(NumRanges >= 1);
445 :
446 232979 : Known.Zero.setAllBits();
447 232979 : Known.One.setAllBits();
448 :
449 465979 : for (unsigned i = 0; i < NumRanges; ++i) {
450 : ConstantInt *Lower =
451 233000 : mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
452 : ConstantInt *Upper =
453 233000 : mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
454 699000 : ConstantRange Range(Lower->getValue(), Upper->getValue());
455 :
456 : // The first CommonPrefixBits of all values in Range are equal.
457 : unsigned CommonPrefixBits =
458 466028 : (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
459 :
460 233000 : APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
461 466000 : Known.One &= Range.getUnsignedMax() & Mask;
462 466000 : Known.Zero &= ~Range.getUnsignedMax() & Mask;
463 : }
464 232979 : }
465 :
466 1180 : static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
467 1180 : SmallVector<const Value *, 16> WorkSet(1, I);
468 : SmallPtrSet<const Value *, 32> Visited;
469 : SmallPtrSet<const Value *, 16> EphValues;
470 :
471 : // The instruction defining an assumption's condition itself is always
472 : // considered ephemeral to that assumption (even if it has other
473 : // non-ephemeral users). See r246696's test case for an example.
474 2360 : if (is_contained(I->operands(), E))
475 : return true;
476 :
477 4225 : while (!WorkSet.empty()) {
478 : const Value *V = WorkSet.pop_back_val();
479 4144 : if (!Visited.insert(V).second)
480 : continue;
481 :
482 : // If all uses of this value are ephemeral, then so is this value.
483 8284 : if (llvm::all_of(V->users(), [&](const User *U) {
484 3699 : return EphValues.count(U);
485 : })) {
486 2511 : if (V == E)
487 : return true;
488 :
489 1915 : if (V == I || isSafeToSpeculativelyExecute(V)) {
490 1734 : EphValues.insert(V);
491 : if (const User *U = dyn_cast<User>(V))
492 3467 : for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
493 5201 : J != JE; ++J)
494 3467 : WorkSet.push_back(*J);
495 : }
496 : }
497 : }
498 :
499 : return false;
500 : }
501 :
502 : // Is this an intrinsic that cannot be speculated but also cannot trap?
503 331300 : bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
504 : if (const CallInst *CI = dyn_cast<CallInst>(I))
505 : if (Function *F = CI->getCalledFunction())
506 331136 : switch (F->getIntrinsicID()) {
507 : default: break;
508 : // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
509 331041 : case Intrinsic::assume:
510 : case Intrinsic::sideeffect:
511 : case Intrinsic::dbg_declare:
512 : case Intrinsic::dbg_value:
513 : case Intrinsic::dbg_label:
514 : case Intrinsic::invariant_start:
515 : case Intrinsic::invariant_end:
516 : case Intrinsic::lifetime_start:
517 : case Intrinsic::lifetime_end:
518 : case Intrinsic::objectsize:
519 : case Intrinsic::ptr_annotation:
520 : case Intrinsic::var_annotation:
521 331041 : return true;
522 : }
523 :
524 : return false;
525 : }
526 :
527 1968 : bool llvm::isValidAssumeForContext(const Instruction *Inv,
528 : const Instruction *CxtI,
529 : const DominatorTree *DT) {
530 : // There are two restrictions on the use of an assume:
531 : // 1. The assume must dominate the context (or the control flow must
532 : // reach the assume whenever it reaches the context).
533 : // 2. The context must not be in the assume's set of ephemeral values
534 : // (otherwise we will use the assume to prove that the condition
535 : // feeding the assume is trivially true, thus causing the removal of
536 : // the assume).
537 :
538 1968 : if (DT) {
539 1934 : if (DT->dominates(Inv, CxtI))
540 : return true;
541 34 : } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
542 : // We don't have a DT, but this trivially dominates.
543 : return true;
544 : }
545 :
546 : // With or without a DT, the only remaining case we will check is if the
547 : // instructions are in the same BB. Give up if that is not the case.
548 1606 : if (Inv->getParent() != CxtI->getParent())
549 : return false;
550 :
551 : // If we have a dom tree, then we now know that the assume doesn't dominate
552 : // the other instruction. If we don't have a dom tree then we can check if
553 : // the assume is first in the BB.
554 1375 : if (!DT) {
555 : // Search forward from the assume until we reach the context (or the end
556 : // of the block); the common case is that the assume will come first.
557 : for (auto I = std::next(BasicBlock::const_iterator(Inv)),
558 13 : IE = Inv->getParent()->end(); I != IE; ++I)
559 13 : if (&*I == CxtI)
560 : return true;
561 : }
562 :
563 : // The context comes first, but they're both in the same block. Make sure
564 : // there is nothing in between that might interrupt the control flow.
565 : for (BasicBlock::const_iterator I =
566 : std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
567 3152 : I != IE; ++I)
568 1972 : if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
569 : return false;
570 :
571 1180 : return !isEphemeralValueOf(Inv, CxtI);
572 : }
573 :
574 74392592 : static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
575 : unsigned Depth, const Query &Q) {
576 : // Use of assumptions is context-sensitive. If we don't have a context, we
577 : // cannot use them!
578 74392592 : if (!Q.AC || !Q.CxtI)
579 : return;
580 :
581 : unsigned BitWidth = Known.getBitWidth();
582 :
583 : // Note that the patterns below need to be kept in sync with the code
584 : // in AssumptionCache::updateAffectedValues.
585 :
586 62664635 : for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
587 1970 : if (!AssumeVH)
588 222 : continue;
589 : CallInst *I = cast<CallInst>(AssumeVH);
590 : assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
591 : "Got assumption for the wrong function!");
592 1769 : if (Q.isExcluded(I))
593 : continue;
594 :
595 : // Warning: This loop can end up being somewhat performance sensitive.
596 : // We're running this loop for once for each value queried resulting in a
597 : // runtime of ~O(#assumes * #values).
598 :
599 : assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
600 : "must be an assume intrinsic");
601 :
602 1748 : Value *Arg = I->getArgOperand(0);
603 :
604 1748 : if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605 : assert(BitWidth == 1 && "assume operand is not i1?");
606 : Known.setAllOnes();
607 8 : return;
608 : }
609 1771 : if (match(Arg, m_Not(m_Specific(V))) &&
610 29 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
611 : assert(BitWidth == 1 && "assume operand is not i1?");
612 : Known.setAllZero();
613 2 : return;
614 : }
615 :
616 : // The remaining tests are all recursive, so bail out if we hit the limit.
617 1740 : if (Depth == MaxDepth)
618 : continue;
619 :
620 : Value *A, *B;
621 : auto m_V = m_CombineOr(m_Specific(V),
622 : m_CombineOr(m_PtrToInt(m_Specific(V)),
623 : m_BitCast(m_Specific(V))));
624 :
625 : CmpInst::Predicate Pred;
626 : uint64_t C;
627 : // assume(v = a)
628 1704 : if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
629 1740 : Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
630 72 : KnownBits RHSKnown(BitWidth);
631 36 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
632 36 : Known.Zero |= RHSKnown.Zero;
633 36 : Known.One |= RHSKnown.One;
634 : // assume(v & b = a)
635 : } else if (match(Arg,
636 1645 : m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
637 2339 : Pred == ICmpInst::ICMP_EQ &&
638 635 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
639 118 : KnownBits RHSKnown(BitWidth);
640 59 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
641 59 : KnownBits MaskKnown(BitWidth);
642 59 : computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
643 :
644 : // For those bits in the mask that are known to be one, we can propagate
645 : // known bits from the RHS to V.
646 118 : Known.Zero |= RHSKnown.Zero & MaskKnown.One;
647 118 : Known.One |= RHSKnown.One & MaskKnown.One;
648 : // assume(~(v & b) = a)
649 1645 : } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
650 6 : m_Value(A))) &&
651 1651 : Pred == ICmpInst::ICMP_EQ &&
652 6 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
653 0 : KnownBits RHSKnown(BitWidth);
654 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
655 0 : KnownBits MaskKnown(BitWidth);
656 0 : computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
657 :
658 : // For those bits in the mask that are known to be one, we can propagate
659 : // inverted known bits from the RHS to V.
660 0 : Known.Zero |= RHSKnown.One & MaskKnown.One;
661 0 : Known.One |= RHSKnown.Zero & MaskKnown.One;
662 : // assume(v | b = a)
663 : } else if (match(Arg,
664 1643 : m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
665 1663 : Pred == ICmpInst::ICMP_EQ &&
666 18 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667 4 : KnownBits RHSKnown(BitWidth);
668 2 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
669 2 : KnownBits BKnown(BitWidth);
670 2 : computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
671 :
672 : // For those bits in B that are known to be zero, we can propagate known
673 : // bits from the RHS to V.
674 4 : Known.Zero |= RHSKnown.Zero & BKnown.Zero;
675 4 : Known.One |= RHSKnown.One & BKnown.Zero;
676 : // assume(~(v | b) = a)
677 1643 : } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
678 7 : m_Value(A))) &&
679 1650 : Pred == ICmpInst::ICMP_EQ &&
680 7 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
681 0 : KnownBits RHSKnown(BitWidth);
682 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
683 0 : KnownBits BKnown(BitWidth);
684 0 : computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
685 :
686 : // For those bits in B that are known to be zero, we can propagate
687 : // inverted known bits from the RHS to V.
688 0 : Known.Zero |= RHSKnown.One & BKnown.Zero;
689 0 : Known.One |= RHSKnown.Zero & BKnown.Zero;
690 : // assume(v ^ b = a)
691 : } else if (match(Arg,
692 1643 : m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
693 1653 : Pred == ICmpInst::ICMP_EQ &&
694 10 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695 0 : KnownBits RHSKnown(BitWidth);
696 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
697 0 : KnownBits BKnown(BitWidth);
698 0 : computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
699 :
700 : // For those bits in B that are known to be zero, we can propagate known
701 : // bits from the RHS to V. For those bits in B that are known to be one,
702 : // we can propagate inverted known bits from the RHS to V.
703 0 : Known.Zero |= RHSKnown.Zero & BKnown.Zero;
704 0 : Known.One |= RHSKnown.One & BKnown.Zero;
705 0 : Known.Zero |= RHSKnown.One & BKnown.One;
706 0 : Known.One |= RHSKnown.Zero & BKnown.One;
707 : // assume(~(v ^ b) = a)
708 1643 : } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
709 0 : m_Value(A))) &&
710 1643 : Pred == ICmpInst::ICMP_EQ &&
711 0 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
712 0 : KnownBits RHSKnown(BitWidth);
713 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
714 0 : KnownBits BKnown(BitWidth);
715 0 : computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
716 :
717 : // For those bits in B that are known to be zero, we can propagate
718 : // inverted known bits from the RHS to V. For those bits in B that are
719 : // known to be one, we can propagate known bits from the RHS to V.
720 0 : Known.Zero |= RHSKnown.One & BKnown.Zero;
721 0 : Known.One |= RHSKnown.Zero & BKnown.Zero;
722 0 : Known.Zero |= RHSKnown.Zero & BKnown.One;
723 0 : Known.One |= RHSKnown.One & BKnown.One;
724 : // assume(v << c = a)
725 1637 : } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
726 12 : m_Value(A))) &&
727 24 : Pred == ICmpInst::ICMP_EQ &&
728 1655 : isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
729 6 : C < BitWidth) {
730 12 : KnownBits RHSKnown(BitWidth);
731 6 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
732 : // For those bits in RHS that are known, we can propagate them to known
733 : // bits in V shifted to the right by C.
734 6 : RHSKnown.Zero.lshrInPlace(C);
735 6 : Known.Zero |= RHSKnown.Zero;
736 6 : RHSKnown.One.lshrInPlace(C);
737 6 : Known.One |= RHSKnown.One;
738 : // assume(~(v << c) = a)
739 1637 : } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
740 0 : m_Value(A))) &&
741 0 : Pred == ICmpInst::ICMP_EQ &&
742 1637 : isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
743 0 : C < BitWidth) {
744 0 : KnownBits RHSKnown(BitWidth);
745 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746 : // For those bits in RHS that are known, we can propagate them inverted
747 : // to known bits in V shifted to the right by C.
748 0 : RHSKnown.One.lshrInPlace(C);
749 0 : Known.Zero |= RHSKnown.One;
750 0 : RHSKnown.Zero.lshrInPlace(C);
751 0 : Known.One |= RHSKnown.Zero;
752 : // assume(v >> c = a)
753 : } else if (match(Arg,
754 1637 : m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
755 12 : m_Value(A))) &&
756 24 : Pred == ICmpInst::ICMP_EQ &&
757 1649 : isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
758 1 : C < BitWidth) {
759 0 : KnownBits RHSKnown(BitWidth);
760 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
761 : // For those bits in RHS that are known, we can propagate them to known
762 : // bits in V shifted to the right by C.
763 0 : Known.Zero |= RHSKnown.Zero << C;
764 0 : Known.One |= RHSKnown.One << C;
765 : // assume(~(v >> c) = a)
766 1637 : } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
767 0 : m_Value(A))) &&
768 0 : Pred == ICmpInst::ICMP_EQ &&
769 1637 : isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
770 0 : C < BitWidth) {
771 0 : KnownBits RHSKnown(BitWidth);
772 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
773 : // For those bits in RHS that are known, we can propagate them inverted
774 : // to known bits in V shifted to the right by C.
775 0 : Known.Zero |= RHSKnown.One << C;
776 0 : Known.One |= RHSKnown.Zero << C;
777 : // assume(v >=_s c) where c is non-negative
778 1636 : } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
779 1639 : Pred == ICmpInst::ICMP_SGE &&
780 2 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
781 2 : KnownBits RHSKnown(BitWidth);
782 1 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
783 :
784 1 : if (RHSKnown.isNonNegative()) {
785 : // We know that the sign bit is zero.
786 : Known.makeNonNegative();
787 : }
788 : // assume(v >_s c) where c is at least -1.
789 1605 : } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
790 1771 : Pred == ICmpInst::ICMP_SGT &&
791 135 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
792 62 : KnownBits RHSKnown(BitWidth);
793 31 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
794 :
795 35 : if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
796 : // We know that the sign bit is zero.
797 : Known.makeNonNegative();
798 : }
799 : // assume(v <=_s c) where c is negative
800 1605 : } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
801 1605 : Pred == ICmpInst::ICMP_SLE &&
802 0 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803 0 : KnownBits RHSKnown(BitWidth);
804 0 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
805 :
806 0 : if (RHSKnown.isNegative()) {
807 : // We know that the sign bit is one.
808 : Known.makeNegative();
809 : }
810 : // assume(v <_s c) where c is non-positive
811 1602 : } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
812 1611 : Pred == ICmpInst::ICMP_SLT &&
813 6 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814 6 : KnownBits RHSKnown(BitWidth);
815 3 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
816 :
817 6 : if (RHSKnown.isZero() || RHSKnown.isNegative()) {
818 : // We know that the sign bit is one.
819 : Known.makeNegative();
820 : }
821 : // assume(v <=_u c)
822 1592 : } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
823 1612 : Pred == ICmpInst::ICMP_ULE &&
824 10 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
825 20 : KnownBits RHSKnown(BitWidth);
826 10 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
827 :
828 : // Whatever high bits in c are zero are known to be zero.
829 10 : Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
830 : // assume(v <_u c)
831 1487 : } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
832 1702 : Pred == ICmpInst::ICMP_ULT &&
833 110 : isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
834 207 : KnownBits RHSKnown(BitWidth);
835 105 : computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
836 :
837 : // If the RHS is known zero, then this assumption must be wrong (nothing
838 : // is unsigned less than zero). Signal a conflict and get out of here.
839 105 : if (RHSKnown.isZero()) {
840 3 : Known.Zero.setAllBits();
841 3 : Known.One.setAllBits();
842 3 : break;
843 : }
844 :
845 : // Whatever high bits in c are zero are known to be zero (if c is a power
846 : // of 2, then one more).
847 102 : if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
848 4 : Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
849 : else
850 100 : Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
851 : }
852 : }
853 :
854 : // If assumptions conflict with each other or previous known bits, then we
855 : // have a logical fallacy. It's possible that the assumption is not reachable,
856 : // so this isn't a real bug. On the other hand, the program may have undefined
857 : // behavior, or we might have a bug in the compiler. We can't assert/crash, so
858 : // clear out the known bits, try to warn the user, and hope for the best.
859 125325336 : if (Known.Zero.intersects(Known.One)) {
860 : Known.resetAll();
861 :
862 9 : if (Q.ORE)
863 4 : Q.ORE->emit([&]() {
864 : auto *CxtI = const_cast<Instruction *>(Q.CxtI);
865 : return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
866 : CxtI)
867 : << "Detected conflicting code assumptions. Program may "
868 : "have undefined behavior, or compiler may have "
869 : "internal error.";
870 : });
871 : }
872 : }
873 :
874 : /// Compute known bits from a shift operator, including those with a
875 : /// non-constant shift amount. Known is the output of this function. Known2 is a
876 : /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
877 : /// operator-specific functions that, given the known-zero or known-one bits
878 : /// respectively, and a shift amount, compute the implied known-zero or
879 : /// known-one bits of the shift operator's result respectively for that shift
880 : /// amount. The results from calling KZF and KOF are conservatively combined for
881 : /// all permitted shift amounts.
882 680631 : static void computeKnownBitsFromShiftOperator(
883 : const Operator *I, KnownBits &Known, KnownBits &Known2,
884 : unsigned Depth, const Query &Q,
885 : function_ref<APInt(const APInt &, unsigned)> KZF,
886 : function_ref<APInt(const APInt &, unsigned)> KOF) {
887 : unsigned BitWidth = Known.getBitWidth();
888 :
889 680631 : if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
890 579103 : unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
891 :
892 1158206 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
893 579103 : Known.Zero = KZF(Known.Zero, ShiftAmt);
894 1158206 : Known.One = KOF(Known.One, ShiftAmt);
895 : // If the known bits conflict, this must be an overflowing left shift, so
896 : // the shift result is poison. We can return anything we want. Choose 0 for
897 : // the best folding opportunity.
898 579103 : if (Known.hasConflict())
899 : Known.setAllZero();
900 :
901 579103 : return;
902 : }
903 :
904 101528 : computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
905 :
906 : // If the shift amount could be greater than or equal to the bit-width of the
907 : // LHS, the value could be poison, but bail out because the check below is
908 : // expensive. TODO: Should we just carry on?
909 203246 : if ((~Known.Zero).uge(BitWidth)) {
910 : Known.resetAll();
911 77176 : return;
912 : }
913 :
914 : // Note: We cannot use Known.Zero.getLimitedValue() here, because if
915 : // BitWidth > 64 and any upper bits are known, we'll end up returning the
916 : // limit value (which implies all bits are known).
917 24352 : uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
918 48704 : uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
919 :
920 : // It would be more-clearly correct to use the two temporaries for this
921 : // calculation. Reusing the APInts here to prevent unnecessary allocations.
922 : Known.resetAll();
923 :
924 : // If we know the shifter operand is nonzero, we can sometimes infer more
925 : // known bits. However this is expensive to compute, so be lazy about it and
926 : // only compute it when absolutely necessary.
927 : Optional<bool> ShifterOperandIsNonZero;
928 :
929 : // Early exit if we can't constrain any well-defined shift amount.
930 24352 : if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
931 15661 : !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
932 14603 : ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
933 14603 : if (!*ShifterOperandIsNonZero)
934 : return;
935 : }
936 :
937 9770 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
938 :
939 9770 : Known.Zero.setAllBits();
940 9770 : Known.One.setAllBits();
941 364819 : for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
942 : // Combine the shifted known input bits only for those shift amounts
943 : // compatible with its known constraints.
944 355049 : if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
945 : continue;
946 93215 : if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
947 : continue;
948 : // If we know the shifter is nonzero, we may be able to infer more known
949 : // bits. This check is sunk down as far as possible to avoid the expensive
950 : // call to isKnownNonZero if the cheaper checks above fail.
951 54065 : if (ShiftAmt == 0) {
952 4419 : if (!ShifterOperandIsNonZero.hasValue())
953 : ShifterOperandIsNonZero =
954 4398 : isKnownNonZero(I->getOperand(1), Depth + 1, Q);
955 4419 : if (*ShifterOperandIsNonZero)
956 : continue;
957 : }
958 :
959 53932 : Known.Zero &= KZF(Known2.Zero, ShiftAmt);
960 107864 : Known.One &= KOF(Known2.One, ShiftAmt);
961 : }
962 :
963 : // If the known bits conflict, the result is poison. Return a 0 and hope the
964 : // caller can further optimize that.
965 9770 : if (Known.hasConflict())
966 : Known.setAllZero();
967 : }
968 :
969 59497110 : static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
970 : unsigned Depth, const Query &Q) {
971 59497110 : unsigned BitWidth = Known.getBitWidth();
972 :
973 118994220 : KnownBits Known2(Known);
974 59497110 : switch (I->getOpcode()) {
975 : default: break;
976 30844208 : case Instruction::Load:
977 27900738 : if (MDNode *MD =
978 30844208 : Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
979 138544 : computeKnownBitsFromRangeMetadata(*MD, Known);
980 : break;
981 627046 : case Instruction::And: {
982 : // If either the LHS or the RHS are Zero, the result is zero.
983 1254092 : computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
984 627046 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
985 :
986 : // Output known-1 bits are only known if set in both the LHS & RHS.
987 627046 : Known.One &= Known2.One;
988 : // Output known-0 are known to be clear if zero in either the LHS | RHS.
989 627046 : Known.Zero |= Known2.Zero;
990 :
991 : // and(x, add (x, -1)) is a common idiom that always clears the low bit;
992 : // here we handle the more general case of adding any odd number by
993 : // matching the form add(x, add(x, y)) where y is odd.
994 : // TODO: This could be generalized to clearing any bit set in y where the
995 : // following bit is known to be unset in y.
996 627046 : Value *X = nullptr, *Y = nullptr;
997 1672959 : if (!Known.Zero[0] && !Known.One[0] &&
998 627046 : match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
999 : Known2.resetAll();
1000 4886 : computeKnownBits(Y, Known2, Depth + 1, Q);
1001 4886 : if (Known2.countMinTrailingOnes() > 0)
1002 : Known.Zero.setBit(0);
1003 : }
1004 : break;
1005 : }
1006 124379 : case Instruction::Or:
1007 248758 : computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1008 124379 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1009 :
1010 : // Output known-0 bits are only known if clear in both the LHS & RHS.
1011 124379 : Known.Zero &= Known2.Zero;
1012 : // Output known-1 are known to be set if set in either the LHS | RHS.
1013 124379 : Known.One |= Known2.One;
1014 : break;
1015 199365 : case Instruction::Xor: {
1016 398730 : computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017 199365 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1018 :
1019 : // Output known-0 bits are known if clear or set in both the LHS & RHS.
1020 598095 : APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1021 : // Output known-1 are known to be set if set in only one of the LHS, RHS.
1022 199365 : Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1023 : Known.Zero = std::move(KnownZeroOut);
1024 : break;
1025 : }
1026 229427 : case Instruction::Mul: {
1027 229427 : bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1028 458854 : computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1029 : Known2, Depth, Q);
1030 229427 : break;
1031 : }
1032 39256 : case Instruction::UDiv: {
1033 : // For the purposes of computing leading zeros we can conservatively
1034 : // treat a udiv as a logical right shift by the power of 2 known to
1035 : // be less than the denominator.
1036 78512 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1037 : unsigned LeadZ = Known2.countMinLeadingZeros();
1038 :
1039 : Known2.resetAll();
1040 39256 : computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1041 : unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1042 39256 : if (RHSMaxLeadingZeros != BitWidth)
1043 31335 : LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1044 :
1045 39256 : Known.Zero.setHighBits(LeadZ);
1046 : break;
1047 : }
1048 161709 : case Instruction::Select: {
1049 : const Value *LHS, *RHS;
1050 161709 : SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1051 : if (SelectPatternResult::isMinOrMax(SPF)) {
1052 40330 : computeKnownBits(RHS, Known, Depth + 1, Q);
1053 40330 : computeKnownBits(LHS, Known2, Depth + 1, Q);
1054 : } else {
1055 242758 : computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1056 121379 : computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1057 : }
1058 :
1059 : unsigned MaxHighOnes = 0;
1060 : unsigned MaxHighZeros = 0;
1061 161709 : if (SPF == SPF_SMAX) {
1062 : // If both sides are negative, the result is negative.
1063 7061 : if (Known.isNegative() && Known2.isNegative())
1064 : // We can derive a lower bound on the result by taking the max of the
1065 : // leading one bits.
1066 3 : MaxHighOnes =
1067 6 : std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1068 : // If either side is non-negative, the result is non-negative.
1069 9499 : else if (Known.isNonNegative() || Known2.isNonNegative())
1070 : MaxHighZeros = 1;
1071 155008 : } else if (SPF == SPF_SMIN) {
1072 : // If both sides are non-negative, the result is non-negative.
1073 7620 : if (Known.isNonNegative() && Known2.isNonNegative())
1074 : // We can derive an upper bound on the result by taking the max of the
1075 : // leading zero bits.
1076 58 : MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1077 60 : Known2.countMinLeadingZeros());
1078 : // If either side is negative, the result is negative.
1079 11234 : else if (Known.isNegative() || Known2.isNegative())
1080 : MaxHighOnes = 1;
1081 149307 : } else if (SPF == SPF_UMAX) {
1082 : // We can derive a lower bound on the result by taking the max of the
1083 : // leading one bits.
1084 11961 : MaxHighOnes =
1085 23926 : std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1086 137346 : } else if (SPF == SPF_UMIN) {
1087 : // We can derive an upper bound on the result by taking the max of the
1088 : // leading zero bits.
1089 15967 : MaxHighZeros =
1090 32901 : std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1091 121379 : } else if (SPF == SPF_ABS) {
1092 : // RHS from matchSelectPattern returns the negation part of abs pattern.
1093 : // If the negate has an NSW flag we can assume the sign bit of the result
1094 : // will be 0 because that makes abs(INT_MIN) undefined.
1095 2842 : if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1096 : MaxHighZeros = 1;
1097 : }
1098 :
1099 : // Only known if known in both the LHS and RHS.
1100 161709 : Known.One &= Known2.One;
1101 161709 : Known.Zero &= Known2.Zero;
1102 161709 : if (MaxHighOnes > 0)
1103 : Known.One.setHighBits(MaxHighOnes);
1104 161709 : if (MaxHighZeros > 0)
1105 : Known.Zero.setHighBits(MaxHighZeros);
1106 : break;
1107 : }
1108 : case Instruction::FPTrunc:
1109 : case Instruction::FPExt:
1110 : case Instruction::FPToUI:
1111 : case Instruction::FPToSI:
1112 : case Instruction::SIToFP:
1113 : case Instruction::UIToFP:
1114 : break; // Can't work with floating point.
1115 1721820 : case Instruction::PtrToInt:
1116 : case Instruction::IntToPtr:
1117 : // Fall through and handle them the same as zext/trunc.
1118 : LLVM_FALLTHROUGH;
1119 : case Instruction::ZExt:
1120 : case Instruction::Trunc: {
1121 3443640 : Type *SrcTy = I->getOperand(0)->getType();
1122 :
1123 : unsigned SrcBitWidth;
1124 : // Note that we handle pointer operands here because of inttoptr/ptrtoint
1125 : // which fall through here.
1126 : Type *ScalarTy = SrcTy->getScalarType();
1127 2611403 : SrcBitWidth = ScalarTy->isPointerTy() ?
1128 832237 : Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1129 889583 : Q.DL.getTypeSizeInBits(ScalarTy);
1130 :
1131 : assert(SrcBitWidth && "SrcBitWidth can't be zero");
1132 1721820 : Known = Known.zextOrTrunc(SrcBitWidth);
1133 3443640 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1134 1721820 : Known = Known.zextOrTrunc(BitWidth);
1135 : // Any top bits are known to be zero.
1136 1721820 : if (BitWidth > SrcBitWidth)
1137 665856 : Known.Zero.setBitsFrom(SrcBitWidth);
1138 : break;
1139 : }
1140 1420804 : case Instruction::BitCast: {
1141 2841608 : Type *SrcTy = I->getOperand(0)->getType();
1142 1376636 : if (SrcTy->isIntOrPtrTy() &&
1143 : // TODO: For now, not handling conversions like:
1144 : // (bitcast i64 %x to <2 x i32>)
1145 1376636 : !I->getType()->isVectorTy()) {
1146 1372502 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147 1372502 : break;
1148 : }
1149 : break;
1150 : }
1151 138462 : case Instruction::SExt: {
1152 : // Compute the bits in the result that are not present in the input.
1153 138462 : unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1154 :
1155 138462 : Known = Known.trunc(SrcBitWidth);
1156 276924 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1157 : // If the sign bit of the input is known set or clear, then we know the
1158 : // top bits of the result.
1159 138462 : Known = Known.sext(BitWidth);
1160 138462 : break;
1161 : }
1162 254094 : case Instruction::Shl: {
1163 : // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1164 254094 : bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1165 : auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1166 : APInt KZResult = KnownZero << ShiftAmt;
1167 : KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1168 : // If this shift has "nsw" keyword, then the result is either a poison
1169 : // value or has the same sign bit as the first operand.
1170 : if (NSW && KnownZero.isSignBitSet())
1171 : KZResult.setSignBit();
1172 : return KZResult;
1173 254094 : };
1174 :
1175 : auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1176 : APInt KOResult = KnownOne << ShiftAmt;
1177 : if (NSW && KnownOne.isSignBitSet())
1178 : KOResult.setSignBit();
1179 : return KOResult;
1180 254094 : };
1181 :
1182 254094 : computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1183 : break;
1184 : }
1185 : case Instruction::LShr: {
1186 : // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1187 : auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1188 : APInt KZResult = KnownZero.lshr(ShiftAmt);
1189 : // High bits known zero.
1190 : KZResult.setHighBits(ShiftAmt);
1191 : return KZResult;
1192 : };
1193 :
1194 : auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1195 272034 : return KnownOne.lshr(ShiftAmt);
1196 : };
1197 :
1198 292580 : computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1199 : break;
1200 : }
1201 : case Instruction::AShr: {
1202 : // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1203 : auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1204 134721 : return KnownZero.ashr(ShiftAmt);
1205 : };
1206 :
1207 : auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1208 134721 : return KnownOne.ashr(ShiftAmt);
1209 : };
1210 :
1211 133957 : computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1212 : break;
1213 : }
1214 563376 : case Instruction::Sub: {
1215 563376 : bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1216 1126752 : computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1217 : Known, Known2, Depth, Q);
1218 563376 : break;
1219 : }
1220 3742859 : case Instruction::Add: {
1221 3742859 : bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1222 7485718 : computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1223 : Known, Known2, Depth, Q);
1224 3742859 : break;
1225 : }
1226 6247 : case Instruction::SRem:
1227 6247 : if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1228 4132 : APInt RA = Rem->getValue().abs();
1229 4132 : if (RA.isPowerOf2()) {
1230 3333 : APInt LowBits = RA - 1;
1231 6666 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1232 :
1233 : // The low bits of the first operand are unchanged by the srem.
1234 6666 : Known.Zero = Known2.Zero & LowBits;
1235 6666 : Known.One = Known2.One & LowBits;
1236 :
1237 : // If the first operand is non-negative or has all low bits zero, then
1238 : // the upper bits are all zero.
1239 6503 : if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1240 172 : Known.Zero |= ~LowBits;
1241 :
1242 : // If the first operand is negative and not all low bits are zero, then
1243 : // the upper bits are all one.
1244 3349 : if (Known2.isNegative() && LowBits.intersects(Known2.One))
1245 14 : Known.One |= ~LowBits;
1246 :
1247 : assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1248 : break;
1249 : }
1250 : }
1251 :
1252 : // The sign bit is the LHS's sign bit, except when the result of the
1253 : // remainder is zero.
1254 5828 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1255 : // If it's known zero, our sign bit is also zero.
1256 2914 : if (Known2.isNonNegative())
1257 : Known.makeNonNegative();
1258 :
1259 : break;
1260 39917 : case Instruction::URem: {
1261 39917 : if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1262 : const APInt &RA = Rem->getValue();
1263 19805 : if (RA.isPowerOf2()) {
1264 7826 : APInt LowBits = (RA - 1);
1265 15652 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1266 15652 : Known.Zero |= ~LowBits;
1267 7826 : Known.One &= LowBits;
1268 : break;
1269 : }
1270 : }
1271 :
1272 : // Since the result is less than or equal to either operand, any leading
1273 : // zero bits in either operand must also exist in the result.
1274 64182 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275 32091 : computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276 :
1277 : unsigned Leaders =
1278 75744 : std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1279 : Known.resetAll();
1280 : Known.Zero.setHighBits(Leaders);
1281 : break;
1282 : }
1283 :
1284 : case Instruction::Alloca: {
1285 : const AllocaInst *AI = cast<AllocaInst>(I);
1286 : unsigned Align = AI->getAlignment();
1287 674203 : if (Align == 0)
1288 1349 : Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1289 :
1290 674203 : if (Align > 0)
1291 1348406 : Known.Zero.setLowBits(countTrailingZeros(Align));
1292 : break;
1293 : }
1294 11612233 : case Instruction::GetElementPtr: {
1295 : // Analyze all of the subscripts of this getelementptr instruction
1296 : // to determine if we can prove known low zero bits.
1297 23224466 : KnownBits LocalKnown(BitWidth);
1298 23224466 : computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1299 11612233 : unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1300 :
1301 11612233 : gep_type_iterator GTI = gep_type_begin(I);
1302 35245631 : for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1303 : Value *Index = I->getOperand(i);
1304 1993466 : if (StructType *STy = GTI.getStructTypeOrNull()) {
1305 : // Handle struct member offset arithmetic.
1306 :
1307 : // Handle case when index is vector zeroinitializer
1308 : Constant *CIndex = cast<Constant>(Index);
1309 1993466 : if (CIndex->isZeroValue())
1310 : continue;
1311 :
1312 1071394 : if (CIndex->getType()->isVectorTy())
1313 3 : Index = CIndex->getSplatValue();
1314 :
1315 535697 : unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1316 535697 : const StructLayout *SL = Q.DL.getStructLayout(STy);
1317 : uint64_t Offset = SL->getElementOffset(Idx);
1318 535697 : TrailZ = std::min<unsigned>(TrailZ,
1319 560130 : countTrailingZeros(Offset));
1320 : } else {
1321 : // Handle array index arithmetic.
1322 21639932 : Type *IndexedTy = GTI.getIndexedType();
1323 21639932 : if (!IndexedTy->isSized()) {
1324 0 : TrailZ = 0;
1325 0 : break;
1326 : }
1327 21639932 : unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1328 21639932 : uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1329 21639932 : LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1330 21639932 : computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1331 21639932 : TrailZ = std::min(TrailZ,
1332 46102735 : unsigned(countTrailingZeros(TypeSize) +
1333 : LocalKnown.countMinTrailingZeros()));
1334 : }
1335 : }
1336 :
1337 11612233 : Known.Zero.setLowBits(TrailZ);
1338 : break;
1339 : }
1340 : case Instruction::PHI: {
1341 : const PHINode *P = cast<PHINode>(I);
1342 : // Handle the case of a simple two-predecessor recurrence PHI.
1343 : // There's a lot more that could theoretically be done here, but
1344 : // this is sufficient to catch some interesting cases.
1345 3880498 : if (P->getNumIncomingValues() == 2) {
1346 8702305 : for (unsigned i = 0; i != 2; ++i) {
1347 : Value *L = P->getIncomingValue(i);
1348 6273997 : Value *R = P->getIncomingValue(!i);
1349 : Operator *LU = dyn_cast<Operator>(L);
1350 : if (!LU)
1351 : continue;
1352 : unsigned Opcode = LU->getOpcode();
1353 : // Check for operations that have the property that if
1354 : // both their operands have low zero bits, the result
1355 : // will have low zero bits.
1356 10403672 : if (Opcode == Instruction::Add ||
1357 5201836 : Opcode == Instruction::Sub ||
1358 4279071 : Opcode == Instruction::And ||
1359 4235990 : Opcode == Instruction::Or ||
1360 : Opcode == Instruction::Mul) {
1361 976881 : Value *LL = LU->getOperand(0);
1362 : Value *LR = LU->getOperand(1);
1363 : // Find a recurrence.
1364 976881 : if (LL == I)
1365 : L = LR;
1366 408368 : else if (LR == I)
1367 : L = LL;
1368 : else
1369 : break;
1370 : // Ok, we have a PHI of the form L op= R. Check for low
1371 : // zero bits.
1372 582108 : computeKnownBits(R, Known2, Depth + 1, Q);
1373 :
1374 : // We need to take the minimum number of known bits
1375 1164216 : KnownBits Known3(Known);
1376 582108 : computeKnownBits(L, Known3, Depth + 1, Q);
1377 :
1378 1515450 : Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1379 1164216 : Known3.countMinTrailingZeros()));
1380 :
1381 : auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1382 578222 : if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1383 : // If initial value of recurrence is nonnegative, and we are adding
1384 : // a nonnegative number with nsw, the result can only be nonnegative
1385 : // or poison value regardless of the number of times we execute the
1386 : // add in phi recurrence. If initial value is negative and we are
1387 : // adding a negative number with nsw, the result can only be
1388 : // negative or poison value. Similar arguments apply to sub and mul.
1389 : //
1390 : // (add non-negative, non-negative) --> non-negative
1391 : // (add negative, negative) --> negative
1392 185101 : if (Opcode == Instruction::Add) {
1393 351437 : if (Known2.isNonNegative() && Known3.isNonNegative())
1394 : Known.makeNonNegative();
1395 31593 : else if (Known2.isNegative() && Known3.isNegative())
1396 : Known.makeNegative();
1397 : }
1398 :
1399 : // (sub nsw non-negative, negative) --> non-negative
1400 : // (sub nsw negative, non-negative) --> negative
1401 877 : else if (Opcode == Instruction::Sub && LL == I) {
1402 742 : if (Known2.isNonNegative() && Known3.isNegative())
1403 : Known.makeNonNegative();
1404 685 : else if (Known2.isNegative() && Known3.isNonNegative())
1405 : Known.makeNegative();
1406 : }
1407 :
1408 : // (mul nsw non-negative, non-negative) --> non-negative
1409 402 : else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1410 : Known3.isNonNegative())
1411 : Known.makeNonNegative();
1412 : }
1413 :
1414 : break;
1415 : }
1416 : }
1417 : }
1418 :
1419 : // Unreachable blocks may have zero-operand PHI nodes.
1420 3880498 : if (P->getNumIncomingValues() == 0)
1421 : break;
1422 :
1423 : // Otherwise take the unions of the known bit sets of the operands,
1424 : // taking conservative care to avoid excessive recursion.
1425 10387646 : if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1426 : // Skip if every incoming value references to ourself.
1427 3153634 : if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1428 : break;
1429 :
1430 3153631 : Known.Zero.setAllBits();
1431 3153631 : Known.One.setAllBits();
1432 4035335 : for (Value *IncValue : P->incoming_values()) {
1433 : // Skip direct self references.
1434 3838171 : if (IncValue == P) continue;
1435 :
1436 3838111 : Known2 = KnownBits(BitWidth);
1437 : // Recurse, but cap the recursion to one level, because we don't
1438 : // want to waste time spinning around in loops.
1439 3838111 : computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1440 : Known.Zero &= Known2.Zero;
1441 : Known.One &= Known2.One;
1442 : // If all bits have been ruled out, there's no need to check
1443 : // more operands.
1444 6834567 : if (!Known.Zero && !Known.One)
1445 : break;
1446 : }
1447 : }
1448 : break;
1449 : }
1450 1071985 : case Instruction::Call:
1451 : case Instruction::Invoke:
1452 : // If range metadata is attached to this call, set known bits from that,
1453 : // and then intersect with known bits based on other properties of the
1454 : // function.
1455 730744 : if (MDNode *MD =
1456 1071985 : Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1457 92074 : computeKnownBitsFromRangeMetadata(*MD, Known);
1458 1071985 : if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1459 232 : computeKnownBits(RV, Known2, Depth + 1, Q);
1460 232 : Known.Zero |= Known2.Zero;
1461 232 : Known.One |= Known2.One;
1462 : }
1463 : if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1464 : switch (II->getIntrinsicID()) {
1465 : default: break;
1466 415 : case Intrinsic::bitreverse:
1467 830 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1468 415 : Known.Zero |= Known2.Zero.reverseBits();
1469 415 : Known.One |= Known2.One.reverseBits();
1470 415 : break;
1471 2874 : case Intrinsic::bswap:
1472 5748 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1473 2874 : Known.Zero |= Known2.Zero.byteSwap();
1474 2874 : Known.One |= Known2.One.byteSwap();
1475 2874 : break;
1476 29160 : case Intrinsic::ctlz: {
1477 58320 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1478 : // If we have a known 1, its position is our upper bound.
1479 29160 : unsigned PossibleLZ = Known2.One.countLeadingZeros();
1480 : // If this call is undefined for 0, the result will be less than 2^n.
1481 29160 : if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1482 54661 : PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1483 29160 : unsigned LowBits = Log2_32(PossibleLZ)+1;
1484 29160 : Known.Zero.setBitsFrom(LowBits);
1485 : break;
1486 : }
1487 24505 : case Intrinsic::cttz: {
1488 49010 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1489 : // If we have a known 1, its position is our upper bound.
1490 24505 : unsigned PossibleTZ = Known2.One.countTrailingZeros();
1491 : // If this call is undefined for 0, the result will be less than 2^n.
1492 24505 : if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1493 48169 : PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1494 24505 : unsigned LowBits = Log2_32(PossibleTZ)+1;
1495 24505 : Known.Zero.setBitsFrom(LowBits);
1496 : break;
1497 : }
1498 2345 : case Intrinsic::ctpop: {
1499 4690 : computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1500 : // We can bound the space the count needs. Also, bits known to be zero
1501 : // can't contribute to the population.
1502 : unsigned BitsPossiblySet = Known2.countMaxPopulation();
1503 2345 : unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1504 2345 : Known.Zero.setBitsFrom(LowBits);
1505 : // TODO: we could bound KnownOne using the lower bound on the number
1506 : // of bits which might be set provided by popcnt KnownOne2.
1507 : break;
1508 : }
1509 8 : case Intrinsic::x86_sse42_crc32_64_64:
1510 8 : Known.Zero.setBitsFrom(32);
1511 : break;
1512 : }
1513 : }
1514 : break;
1515 64145 : case Instruction::ExtractElement:
1516 : // Look through extract element. At the moment we keep this simple and skip
1517 : // tracking the specific element. But at least we might find information
1518 : // valid for all elements of the vector (for example if vector is sign
1519 : // extended, shifted, etc).
1520 128290 : computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1521 64145 : break;
1522 601687 : case Instruction::ExtractValue:
1523 601687 : if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1524 : const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1525 31463 : if (EVI->getNumIndices() != 1) break;
1526 31463 : if (EVI->getIndices()[0] == 0) {
1527 : switch (II->getIntrinsicID()) {
1528 : default: break;
1529 905 : case Intrinsic::uadd_with_overflow:
1530 : case Intrinsic::sadd_with_overflow:
1531 905 : computeKnownBitsAddSub(true, II->getArgOperand(0),
1532 905 : II->getArgOperand(1), false, Known, Known2,
1533 : Depth, Q);
1534 905 : break;
1535 881 : case Intrinsic::usub_with_overflow:
1536 : case Intrinsic::ssub_with_overflow:
1537 881 : computeKnownBitsAddSub(false, II->getArgOperand(0),
1538 881 : II->getArgOperand(1), false, Known, Known2,
1539 : Depth, Q);
1540 881 : break;
1541 93 : case Intrinsic::umul_with_overflow:
1542 : case Intrinsic::smul_with_overflow:
1543 186 : computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1544 : Known, Known2, Depth, Q);
1545 93 : break;
1546 : }
1547 : }
1548 : }
1549 : }
1550 59497110 : }
1551 :
1552 : /// Determine which bits of V are known to be either zero or one and return
1553 : /// them.
1554 38998236 : KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1555 38998236 : KnownBits Known(getBitWidth(V->getType(), Q.DL));
1556 38998237 : computeKnownBits(V, Known, Depth, Q);
1557 38998237 : return Known;
1558 : }
1559 :
1560 : /// Determine which bits of V are known to be either zero or one and return
1561 : /// them in the Known bit set.
1562 : ///
1563 : /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1564 : /// we cannot optimize based on the assumption that it is zero without changing
1565 : /// it to be an explicit zero. If we don't change it to zero, other code could
1566 : /// optimized based on the contradictory assumption that it is non-zero.
1567 : /// Because instcombine aggressively folds operations with undef args anyway,
1568 : /// this won't lose us code quality.
1569 : ///
1570 : /// This function is defined on values with integer type, values with pointer
1571 : /// type, and vectors of integers. In the case
1572 : /// where V is a vector, known zero, and known one values are the
1573 : /// same width as the vector element, and the bit is set only if it is true
1574 : /// for all of the elements in the vector.
1575 116048421 : void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1576 : const Query &Q) {
1577 : assert(V && "No Value?");
1578 : assert(Depth <= MaxDepth && "Limit Search Depth");
1579 : unsigned BitWidth = Known.getBitWidth();
1580 :
1581 : assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1582 : V->getType()->isPtrOrPtrVectorTy()) &&
1583 : "Not integer or pointer type!");
1584 :
1585 116048421 : Type *ScalarTy = V->getType()->getScalarType();
1586 : unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1587 116048421 : Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1588 : assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1589 : (void)BitWidth;
1590 : (void)ExpectedWidth;
1591 :
1592 : const APInt *C;
1593 116048421 : if (match(V, m_APInt(C))) {
1594 : // We know all of the bits for a scalar constant or a splat vector constant!
1595 38836301 : Known.One = *C;
1596 38836301 : Known.Zero = ~Known.One;
1597 41655829 : return;
1598 : }
1599 : // Null and aggregate-zero are all-zeros.
1600 77212120 : if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1601 : Known.setAllZero();
1602 228170 : return;
1603 : }
1604 : // Handle a constant vector by taking the intersection of the known bits of
1605 : // each element.
1606 : if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1607 : // We know that CDS must be a vector of integers. Take the intersection of
1608 : // each element.
1609 16563 : Known.Zero.setAllBits(); Known.One.setAllBits();
1610 70455 : for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1611 53892 : APInt Elt = CDS->getElementAsAPInt(i);
1612 53892 : Known.Zero &= ~Elt;
1613 : Known.One &= Elt;
1614 : }
1615 : return;
1616 : }
1617 :
1618 : if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1619 : // We know that CV must be a vector of integers. Take the intersection of
1620 : // each element.
1621 2004 : Known.Zero.setAllBits(); Known.One.setAllBits();
1622 4035 : for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1623 3813 : Constant *Element = CV->getAggregateElement(i);
1624 : auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1625 : if (!ElementCI) {
1626 : Known.resetAll();
1627 1782 : return;
1628 : }
1629 : const APInt &Elt = ElementCI->getValue();
1630 2031 : Known.Zero &= ~Elt;
1631 : Known.One &= Elt;
1632 : }
1633 : return;
1634 : }
1635 :
1636 : // Start out not knowing anything.
1637 : Known.resetAll();
1638 :
1639 : // We can't imply anything about undefs.
1640 76965383 : if (isa<UndefValue>(V))
1641 : return;
1642 :
1643 : // There's no point in looking through other users of ConstantData for
1644 : // assumptions. Confirm that we've handled them all.
1645 : assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1646 :
1647 : // Limit search depth.
1648 : // All recursive calls that increase depth must come after this.
1649 76959527 : if (Depth == MaxDepth)
1650 : return;
1651 :
1652 : // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1653 : // the bits of its aliasee.
1654 : if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1655 : if (!GA->isInterposable())
1656 16 : computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1657 19 : return;
1658 : }
1659 :
1660 : if (const Operator *I = dyn_cast<Operator>(V))
1661 59497110 : computeKnownBitsFromOperator(I, Known, Depth, Q);
1662 :
1663 : // Aligned pointers have trailing zeros - refine Known.Zero set
1664 148785184 : if (V->getType()->isPointerTy()) {
1665 31971006 : unsigned Align = V->getPointerAlignment(Q.DL);
1666 31971006 : if (Align)
1667 13529931 : Known.Zero.setLowBits(countTrailingZeros(Align));
1668 : }
1669 :
1670 : // computeKnownBitsFromAssume strictly refines Known.
1671 : // Therefore, we run them after computeKnownBitsFromOperator.
1672 :
1673 : // Check whether a nearby assume intrinsic can determine some known bits.
1674 74392592 : computeKnownBitsFromAssume(V, Known, Depth, Q);
1675 :
1676 : assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1677 : }
1678 :
1679 : /// Return true if the given value is known to have exactly one
1680 : /// bit set when defined. For vectors return true if every element is known to
1681 : /// be a power of two when defined. Supports values with integer or pointer
1682 : /// types and vectors of integers.
1683 10380 : bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1684 : const Query &Q) {
1685 : assert(Depth <= MaxDepth && "Limit Search Depth");
1686 :
1687 : // Attempt to match against constants.
1688 15445 : if (OrZero && match(V, m_Power2OrZero()))
1689 590 : return true;
1690 9790 : if (match(V, m_Power2()))
1691 : return true;
1692 :
1693 : // 1 << X is clearly a power of two if the one is not shifted off the end. If
1694 : // it is shifted off the end then the result is undefined.
1695 9680 : if (match(V, m_Shl(m_One(), m_Value())))
1696 : return true;
1697 :
1698 : // (signmask) >>l X is clearly a power of two if the one is not shifted off
1699 : // the bottom. If it is shifted off the bottom then the result is undefined.
1700 9665 : if (match(V, m_LShr(m_SignMask(), m_Value())))
1701 : return true;
1702 :
1703 : // The remaining tests are all recursive, so bail out if we hit the limit.
1704 9661 : if (Depth++ == MaxDepth)
1705 : return false;
1706 :
1707 9653 : Value *X = nullptr, *Y = nullptr;
1708 : // A shift left or a logical shift right of a power of two is a power of two
1709 : // or zero.
1710 14106 : if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1711 14050 : match(V, m_LShr(m_Value(X), m_Value()))))
1712 56 : return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1713 :
1714 : if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1715 23 : return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1716 :
1717 : if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1718 72 : return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1719 4 : isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1720 :
1721 9540 : if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1722 : // A power of two and'd with anything is a power of two or zero.
1723 2 : if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1724 1 : isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1725 0 : return true;
1726 : // X & (-X) is always a power of two or zero.
1727 1 : if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1728 1 : return true;
1729 0 : return false;
1730 : }
1731 :
1732 : // Adding a power-of-two or zero to the same power-of-two or zero yields
1733 : // either the original power-of-two, a larger power-of-two or zero.
1734 9539 : if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1735 : const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1736 407 : if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1737 : Q.IIQ.hasNoSignedWrap(VOBO)) {
1738 464 : if (match(X, m_And(m_Specific(Y), m_Value())) ||
1739 231 : match(X, m_And(m_Value(), m_Specific(Y))))
1740 3 : if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1741 5 : return true;
1742 458 : if (match(Y, m_And(m_Specific(X), m_Value())) ||
1743 228 : match(Y, m_And(m_Value(), m_Specific(X))))
1744 2 : if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1745 : return true;
1746 :
1747 227 : unsigned BitWidth = V->getType()->getScalarSizeInBits();
1748 454 : KnownBits LHSBits(BitWidth);
1749 227 : computeKnownBits(X, LHSBits, Depth, Q);
1750 :
1751 454 : KnownBits RHSBits(BitWidth);
1752 227 : computeKnownBits(Y, RHSBits, Depth, Q);
1753 : // If i8 V is a power of two or zero:
1754 : // ZeroBits: 1 1 1 0 1 1 1 1
1755 : // ~ZeroBits: 0 0 0 1 0 0 0 0
1756 228 : if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1757 : // If OrZero isn't set, we cannot give back a zero result.
1758 : // Make sure either the LHS or RHS has a bit set.
1759 0 : if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1760 0 : return true;
1761 : }
1762 : }
1763 :
1764 : // An exact divide or right shift can only shift off zero bits, so the result
1765 : // is a power of two only if the first operand is a power of two and not
1766 : // copying a sign bit (sdiv int_min, 2).
1767 9534 : if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1768 : match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1769 0 : return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1770 0 : Depth, Q);
1771 : }
1772 :
1773 : return false;
1774 : }
1775 :
1776 : /// Test whether a GEP's result is known to be non-null.
1777 : ///
1778 : /// Uses properties inherent in a GEP to try to determine whether it is known
1779 : /// to be non-null.
1780 : ///
1781 : /// Currently this routine does not support vector GEPs.
1782 265768 : static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1783 : const Query &Q) {
1784 : const Function *F = nullptr;
1785 : if (const Instruction *I = dyn_cast<Instruction>(GEP))
1786 265768 : F = I->getFunction();
1787 :
1788 529413 : if (!GEP->isInBounds() ||
1789 263645 : NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1790 2764 : return false;
1791 :
1792 : // FIXME: Support vector-GEPs.
1793 : assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1794 :
1795 : // If the base pointer is non-null, we cannot walk to a null address with an
1796 : // inbounds GEP in address space zero.
1797 263004 : if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1798 : return true;
1799 :
1800 : // Walk the GEP operands and see if any operand introduces a non-zero offset.
1801 : // If so, then the GEP cannot produce a null pointer, as doing so would
1802 : // inherently violate the inbounds contract within address space zero.
1803 473115 : for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1804 741835 : GTI != GTE; ++GTI) {
1805 : // Struct types are easy -- they must always be indexed by a constant.
1806 170532 : if (StructType *STy = GTI.getStructTypeOrNull()) {
1807 : ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1808 170532 : unsigned ElementIdx = OpC->getZExtValue();
1809 170532 : const StructLayout *SL = Q.DL.getStructLayout(STy);
1810 : uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1811 170532 : if (ElementOffset > 0)
1812 110595 : return true;
1813 : continue;
1814 : }
1815 :
1816 : // If we have a zero-sized type, the index doesn't matter. Keep looping.
1817 208783 : if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1818 : continue;
1819 :
1820 : // Fast path the constant operand case both for efficiency and so we don't
1821 : // increment Depth when just zipping down an all-constant GEP.
1822 208783 : if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1823 176579 : if (!OpC->isZero())
1824 : return true;
1825 : continue;
1826 : }
1827 :
1828 : // We post-increment Depth here because while isKnownNonZero increments it
1829 : // as well, when we pop back up that increment won't persist. We don't want
1830 : // to recurse 10k times just because we have 10k GEP operands. We don't
1831 : // bail completely out because we want to handle constant GEPs regardless
1832 : // of depth.
1833 32204 : if (Depth++ >= MaxDepth)
1834 : continue;
1835 :
1836 32204 : if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1837 : return true;
1838 : }
1839 :
1840 93800 : return false;
1841 : }
1842 :
1843 2363609 : static bool isKnownNonNullFromDominatingCondition(const Value *V,
1844 : const Instruction *CtxI,
1845 : const DominatorTree *DT) {
1846 : assert(V->getType()->isPointerTy() && "V must be pointer type");
1847 : assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1848 :
1849 2363609 : if (!CtxI || !DT)
1850 : return false;
1851 :
1852 : unsigned NumUsesExplored = 0;
1853 3541553 : for (auto *U : V->users()) {
1854 : // Avoid massive lists
1855 2485542 : if (NumUsesExplored >= DomConditionsMaxUses)
1856 : break;
1857 2470537 : NumUsesExplored++;
1858 :
1859 : // If the value is used as an argument to a call or invoke, then argument
1860 : // attributes may provide an answer about null-ness.
1861 2470537 : if (auto CS = ImmutableCallSite(U))
1862 : if (auto *CalledFunc = CS.getCalledFunction())
1863 4737843 : for (const Argument &Arg : CalledFunc->args())
1864 1430150 : if (CS.getArgOperand(Arg.getArgNo()) == V &&
1865 3358694 : Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1866 1472 : return true;
1867 :
1868 : // Consider only compare instructions uniquely controlling a branch
1869 : CmpInst::Predicate Pred;
1870 : if (!match(const_cast<User *>(U),
1871 2762063 : m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1872 292998 : (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1873 2176067 : continue;
1874 :
1875 : SmallVector<const User *, 4> WorkList;
1876 : SmallPtrSet<const User *, 4> Visited;
1877 589348 : for (auto *CmpU : U->users()) {
1878 : assert(WorkList.empty() && "Should be!");
1879 298305 : if (Visited.insert(CmpU).second)
1880 298305 : WorkList.push_back(CmpU);
1881 :
1882 595417 : while (!WorkList.empty()) {
1883 : auto *Curr = WorkList.pop_back_val();
1884 :
1885 : // If a user is an AND, add all its users to the work list. We only
1886 : // propagate "pred != null" condition through AND because it is only
1887 : // correct to assume that all conditions of AND are met in true branch.
1888 : // TODO: Support similar logic of OR and EQ predicate?
1889 299067 : if (Pred == ICmpInst::ICMP_NE)
1890 : if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1891 3617 : if (BO->getOpcode() == Instruction::And) {
1892 1523 : for (auto *BOU : BO->users())
1893 762 : if (Visited.insert(BOU).second)
1894 762 : WorkList.push_back(BOU);
1895 761 : continue;
1896 : }
1897 :
1898 : if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1899 : assert(BI->isConditional() && "uses a comparison!");
1900 :
1901 : BasicBlock *NonNullSuccessor =
1902 289291 : BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1903 289291 : BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1904 289291 : if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1905 1951 : return true;
1906 9021 : } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1907 6 : DT->dominates(cast<Instruction>(Curr), CtxI)) {
1908 : return true;
1909 : }
1910 : }
1911 : }
1912 : }
1913 :
1914 : return false;
1915 : }
1916 :
1917 : /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1918 : /// ensure that the value it's attached to is never Value? 'RangeType' is
1919 : /// is the type of the value described by the range.
1920 50537 : static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1921 50537 : const unsigned NumRanges = Ranges->getNumOperands() / 2;
1922 : assert(NumRanges >= 1);
1923 50550 : for (unsigned i = 0; i < NumRanges; ++i) {
1924 : ConstantInt *Lower =
1925 50538 : mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1926 : ConstantInt *Upper =
1927 50538 : mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1928 101089 : ConstantRange Range(Lower->getValue(), Upper->getValue());
1929 50538 : if (Range.contains(Value))
1930 50525 : return false;
1931 : }
1932 : return true;
1933 : }
1934 :
1935 : /// Return true if the given value is known to be non-zero when defined. For
1936 : /// vectors, return true if every element is known to be non-zero when
1937 : /// defined. For pointers, if the context instruction and dominator tree are
1938 : /// specified, perform context-sensitive analysis and return true if the
1939 : /// pointer couldn't possibly be null at the specified instruction.
1940 : /// Supports values with integer or pointer type and vectors of integers.
1941 3567900 : bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1942 : if (auto *C = dyn_cast<Constant>(V)) {
1943 534113 : if (C->isNullValue())
1944 : return false;
1945 437366 : if (isa<ConstantInt>(C))
1946 : // Must be non-zero due to null test above.
1947 : return true;
1948 :
1949 : // For constant vectors, check that all elements are undefined or known
1950 : // non-zero to determine that the whole vector is known non-zero.
1951 433368 : if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1952 585 : for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1953 462 : Constant *Elt = C->getAggregateElement(i);
1954 462 : if (!Elt || Elt->isNullValue())
1955 99 : return false;
1956 363 : if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1957 : return false;
1958 : }
1959 : return true;
1960 : }
1961 :
1962 : // A global variable in address space 0 is non null unless extern weak
1963 : // or an absolute symbol reference. Other address spaces may have null as a
1964 : // valid address for a global, so we can't assume anything.
1965 : if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1966 9024 : if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1967 : GV->getType()->getAddressSpace() == 0)
1968 : return true;
1969 : } else
1970 : return false;
1971 : }
1972 :
1973 : if (auto *I = dyn_cast<Instruction>(V)) {
1974 4681260 : if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
1975 : // If the possible ranges don't contain zero, then the value is
1976 : // definitely non-zero.
1977 50537 : if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1978 : const APInt ZeroValue(Ty->getBitWidth(), 0);
1979 50537 : if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1980 : return true;
1981 : }
1982 : }
1983 : }
1984 :
1985 : // Some of the tests below are recursive, so bail out if we hit the limit.
1986 3033793 : if (Depth++ >= MaxDepth)
1987 : return false;
1988 :
1989 : // Check for pointer simplifications.
1990 6067242 : if (V->getType()->isPointerTy()) {
1991 : // Alloca never returns null, malloc might.
1992 183320 : if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1993 : return true;
1994 :
1995 : // A byval, inalloca, or nonnull argument is never null.
1996 : if (const Argument *A = dyn_cast<Argument>(V))
1997 387910 : if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1998 39467 : return true;
1999 :
2000 : // A Load tagged with nonnull metadata is never null.
2001 : if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2002 1748829 : if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2003 : return true;
2004 :
2005 2376316 : if (auto CS = ImmutableCallSite(V)) {
2006 127821 : if (CS.isReturnNonNull())
2007 12708 : return true;
2008 115183 : if (const auto *RP = getArgumentAliasingToReturnedPointer(CS))
2009 70 : return isKnownNonZero(RP, Depth, Q);
2010 : }
2011 : }
2012 :
2013 :
2014 : // Check for recursive pointer simplifications.
2015 5596504 : if (V->getType()->isPointerTy()) {
2016 2363608 : if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2017 : return true;
2018 :
2019 : if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2020 265768 : if (isGEPKnownNonNull(GEP, Depth, Q))
2021 : return true;
2022 : }
2023 :
2024 2626755 : unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2025 :
2026 : // X | Y != 0 if X != 0 or Y != 0.
2027 2625622 : Value *X = nullptr, *Y = nullptr;
2028 2625622 : if (match(V, m_Or(m_Value(X), m_Value(Y))))
2029 686 : return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2030 :
2031 : // ext X != 0 if X != 0.
2032 : if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2033 24766 : return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2034 :
2035 : // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2036 : // if the lowest bit is shifted off the end.
2037 2612553 : if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2038 : // shl nuw can't remove any non-zero bits.
2039 : const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2040 837 : if (Q.IIQ.hasNoUnsignedWrap(BO))
2041 59 : return isKnownNonZero(X, Depth, Q);
2042 :
2043 1575 : KnownBits Known(BitWidth);
2044 797 : computeKnownBits(X, Known, Depth, Q);
2045 797 : if (Known.One[0])
2046 19 : return true;
2047 : }
2048 : // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2049 : // defined if the sign bit is shifted off the end.
2050 2611716 : else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2051 : // shr exact can only shift out zero bits.
2052 : const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2053 9669 : if (BO->isExact())
2054 2851 : return isKnownNonZero(X, Depth, Q);
2055 :
2056 13642 : KnownBits Known = computeKnownBits(X, Depth, Q);
2057 6824 : if (Known.isNegative())
2058 6 : return true;
2059 :
2060 : // If the shifter operand is a constant, and all of the bits shifted
2061 : // out are known to be zero, and X is known non-zero then at least one
2062 : // non-zero bit must remain.
2063 6819 : if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2064 6354 : auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2065 : // Is there a known one in the portion not shifted out?
2066 6354 : if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2067 : return true;
2068 : // Are all the bits to be shifted out known zero?
2069 6353 : if (Known.countMinTrailingZeros() >= ShiftVal)
2070 0 : return isKnownNonZero(X, Depth, Q);
2071 : }
2072 : }
2073 : // div exact can only produce a zero if the dividend is zero.
2074 2602047 : else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2075 1352 : return isKnownNonZero(X, Depth, Q);
2076 : }
2077 : // X + Y.
2078 2600695 : else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2079 25650 : KnownBits XKnown = computeKnownBits(X, Depth, Q);
2080 25650 : KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2081 :
2082 : // If X and Y are both non-negative (as signed values) then their sum is not
2083 : // zero unless both X and Y are zero.
2084 13921 : if (XKnown.isNonNegative() && YKnown.isNonNegative())
2085 623 : if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2086 608 : return true;
2087 :
2088 : // If X and Y are both negative (as signed values) then their sum is not
2089 : // zero unless both X and Y equal INT_MIN.
2090 12524 : if (XKnown.isNegative() && YKnown.isNegative()) {
2091 1 : APInt Mask = APInt::getSignedMaxValue(BitWidth);
2092 : // The sign bit of X is set. If some other bit is set then X is not equal
2093 : // to INT_MIN.
2094 1 : if (XKnown.One.intersects(Mask))
2095 : return true;
2096 : // The sign bit of Y is set. If some other bit is set then Y is not equal
2097 : // to INT_MIN.
2098 1 : if (YKnown.One.intersects(Mask))
2099 : return true;
2100 : }
2101 :
2102 : // The sum of a non-negative number and a power of two is not zero.
2103 12708 : if (XKnown.isNonNegative() &&
2104 186 : isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2105 : return true;
2106 17049 : if (YKnown.isNonNegative() &&
2107 4528 : isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2108 : return true;
2109 : }
2110 : // X * Y.
2111 2587566 : else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2112 : const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2113 : // If X and Y are non-zero then so is X * Y as long as the multiplication
2114 : // does not overflow.
2115 224 : if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2116 115 : isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2117 : return true;
2118 : }
2119 : // (C ? X : Y) != 0 if X != 0 and Y != 0.
2120 : else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2121 15026 : if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2122 4151 : isKnownNonZero(SI->getFalseValue(), Depth, Q))
2123 : return true;
2124 : }
2125 : // PHI
2126 : else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2127 : // Try and detect a recurrence that monotonically increases from a
2128 : // starting value, as these are common as induction variables.
2129 164971 : if (PN->getNumIncomingValues() == 2) {
2130 : Value *Start = PN->getIncomingValue(0);
2131 : Value *Induction = PN->getIncomingValue(1);
2132 146060 : if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2133 : std::swap(Start, Induction);
2134 : if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2135 23984 : if (!C->isZero() && !C->isNegative()) {
2136 : ConstantInt *X;
2137 4132 : if (Q.IIQ.UseInstrInfo &&
2138 7720 : (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2139 11852 : match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2140 556 : !X->isNegative())
2141 310 : return true;
2142 : }
2143 : }
2144 : }
2145 : // Check if all incoming values are non-zero constant.
2146 164661 : bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2147 : return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2148 : });
2149 164661 : if (AllNonZeroConstants)
2150 : return true;
2151 : }
2152 :
2153 5213802 : KnownBits Known(BitWidth);
2154 2606901 : computeKnownBits(V, Known, Depth, Q);
2155 : return Known.One != 0;
2156 : }
2157 :
2158 : /// Return true if V2 == V1 + X, where X is known non-zero.
2159 2109012 : static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2160 : const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2161 207115 : if (!BO || BO->getOpcode() != Instruction::Add)
2162 : return false;
2163 : Value *Op = nullptr;
2164 28380 : if (V2 == BO->getOperand(0))
2165 : Op = BO->getOperand(1);
2166 28366 : else if (V2 == BO->getOperand(1))
2167 : Op = BO->getOperand(0);
2168 : else
2169 : return false;
2170 187 : return isKnownNonZero(Op, 0, Q);
2171 : }
2172 :
2173 : /// Return true if it is known that V1 != V2.
2174 1054514 : static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2175 1054514 : if (V1 == V2)
2176 : return false;
2177 1054509 : if (V1->getType() != V2->getType())
2178 : // We can't look through casts yet.
2179 : return false;
2180 1054509 : if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2181 12 : return true;
2182 :
2183 1056002 : if (V1->getType()->isIntOrIntVectorTy()) {
2184 : // Are any known bits in V1 contradictory to known bits in V2? If V1
2185 : // has a known zero where V2 has a known one, they must not be equal.
2186 1077297 : KnownBits Known1 = computeKnownBits(V1, 0, Q);
2187 1077297 : KnownBits Known2 = computeKnownBits(V2, 0, Q);
2188 :
2189 1077481 : if (Known1.Zero.intersects(Known2.One) ||
2190 : Known2.Zero.intersects(Known1.One))
2191 749 : return true;
2192 : }
2193 : return false;
2194 : }
2195 :
2196 : /// Return true if 'V & Mask' is known to be zero. We use this predicate to
2197 : /// simplify operations downstream. Mask is known to be zero for bits that V
2198 : /// cannot have.
2199 : ///
2200 : /// This function is defined on values with integer type, values with pointer
2201 : /// type, and vectors of integers. In the case
2202 : /// where V is a vector, the mask, known zero, and known one values are the
2203 : /// same width as the vector element, and the bit is set only if it is true
2204 : /// for all of the elements in the vector.
2205 98725 : bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2206 : const Query &Q) {
2207 197450 : KnownBits Known(Mask.getBitWidth());
2208 98725 : computeKnownBits(V, Known, Depth, Q);
2209 98725 : return Mask.isSubsetOf(Known.Zero);
2210 : }
2211 :
2212 : // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2213 : // Returns the input and lower/upper bounds.
2214 11032 : static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2215 : const APInt *&CLow, const APInt *&CHigh) {
2216 : assert(isa<Operator>(Select) &&
2217 : cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2218 : "Input should be a Select!");
2219 :
2220 : const Value *LHS, *RHS, *LHS2, *RHS2;
2221 11032 : SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2222 11032 : if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2223 : return false;
2224 :
2225 349 : if (!match(RHS, m_APInt(CLow)))
2226 : return false;
2227 :
2228 205 : SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2229 205 : if (getInverseMinMaxFlavor(SPF) != SPF2)
2230 : return false;
2231 :
2232 10 : if (!match(RHS2, m_APInt(CHigh)))
2233 : return false;
2234 :
2235 10 : if (SPF == SPF_SMIN)
2236 : std::swap(CLow, CHigh);
2237 :
2238 10 : In = LHS2;
2239 20 : return CLow->sle(*CHigh);
2240 : }
2241 :
2242 : /// For vector constants, loop over the elements and find the constant with the
2243 : /// minimum number of sign bits. Return 0 if the value is not a vector constant
2244 : /// or if any element was not analyzed; otherwise, return the count for the
2245 : /// element with the minimum number of sign bits.
2246 5729407 : static unsigned computeNumSignBitsVectorConstant(const Value *V,
2247 : unsigned TyBits) {
2248 : const auto *CV = dyn_cast<Constant>(V);
2249 250092 : if (!CV || !CV->getType()->isVectorTy())
2250 : return 0;
2251 :
2252 3413 : unsigned MinSignBits = TyBits;
2253 : unsigned NumElts = CV->getType()->getVectorNumElements();
2254 13849 : for (unsigned i = 0; i != NumElts; ++i) {
2255 : // If we find a non-ConstantInt, bail out.
2256 10508 : auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2257 : if (!Elt)
2258 : return 0;
2259 :
2260 14351 : MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2261 : }
2262 :
2263 3341 : return MinSignBits;
2264 : }
2265 :
2266 : static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2267 : const Query &Q);
2268 :
2269 655295 : static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2270 : const Query &Q) {
2271 6043391 : unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2272 : assert(Result > 0 && "At least one sign bit needs to be present!");
2273 655295 : return Result;
2274 : }
2275 :
2276 : /// Return the number of times the sign bit of the register is replicated into
2277 : /// the other bits. We know that at least 1 bit is always equal to the sign bit
2278 : /// (itself), but other cases can give us information. For example, immediately
2279 : /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2280 : /// other, so we return 3. For vectors, return the number of sign bits for the
2281 : /// vector element with the minimum number of known sign bits.
2282 6043391 : static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2283 : const Query &Q) {
2284 : assert(Depth <= MaxDepth && "Limit Search Depth");
2285 :
2286 : // We return the minimum number of sign bits that are guaranteed to be present
2287 : // in V, so for undef we have to conservatively return 1. We don't have the
2288 : // same behavior for poison though -- that's a FIXME today.
2289 :
2290 6043391 : Type *ScalarTy = V->getType()->getScalarType();
2291 : unsigned TyBits = ScalarTy->isPointerTy() ?
2292 122456 : Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2293 6043391 : Q.DL.getTypeSizeInBits(ScalarTy);
2294 :
2295 : unsigned Tmp, Tmp2;
2296 6043391 : unsigned FirstAnswer = 1;
2297 :
2298 : // Note that ConstantInt is handled by the general computeKnownBits case
2299 : // below.
2300 :
2301 6043391 : if (Depth == MaxDepth)
2302 : return 1; // Limit search depth.
2303 :
2304 : const Operator *U = dyn_cast<Operator>(V);
2305 5802127 : switch (Operator::getOpcode(V)) {
2306 : default: break;
2307 3342 : case Instruction::SExt:
2308 3342 : Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2309 3342 : return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2310 :
2311 : case Instruction::SDiv: {
2312 : const APInt *Denominator;
2313 : // sdiv X, C -> adds log(C) sign bits.
2314 3872 : if (match(U->getOperand(1), m_APInt(Denominator))) {
2315 :
2316 : // Ignore non-positive denominator.
2317 1896 : if (!Denominator->isStrictlyPositive())
2318 : break;
2319 :
2320 : // Calculate the incoming numerator bits.
2321 3576 : unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2322 :
2323 : // Add floor(log(C)) bits to the numerator bits.
2324 5354 : return std::min(TyBits, NumBits + Denominator->logBase2());
2325 : }
2326 : break;
2327 : }
2328 :
2329 : case Instruction::SRem: {
2330 : const APInt *Denominator;
2331 : // srem X, C -> we know that the result is within [-C+1,C) when C is a
2332 : // positive constant. This let us put a lower bound on the number of sign
2333 : // bits.
2334 456 : if (match(U->getOperand(1), m_APInt(Denominator))) {
2335 :
2336 : // Ignore non-positive denominator.
2337 105 : if (!Denominator->isStrictlyPositive())
2338 : break;
2339 :
2340 : // Calculate the incoming numerator bits. SRem by a positive constant
2341 : // can't lower the number of sign bits.
2342 : unsigned NumrBits =
2343 186 : ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2344 :
2345 : // Calculate the leading sign bit constraints by examining the
2346 : // denominator. Given that the denominator is positive, there are two
2347 : // cases:
2348 : //
2349 : // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2350 : // (1 << ceilLogBase2(C)).
2351 : //
2352 : // 2. the numerator is negative. Then the result range is (-C,0] and
2353 : // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2354 : //
2355 : // Thus a lower bound on the number of sign bits is `TyBits -
2356 : // ceilLogBase2(C)`.
2357 :
2358 93 : unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2359 93 : return std::max(NumrBits, ResBits);
2360 : }
2361 : break;
2362 : }
2363 :
2364 4901 : case Instruction::AShr: {
2365 9802 : Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2366 : // ashr X, C -> adds C sign bits. Vectors too.
2367 : const APInt *ShAmt;
2368 9802 : if (match(U->getOperand(1), m_APInt(ShAmt))) {
2369 9778 : if (ShAmt->uge(TyBits))
2370 : break; // Bad shift.
2371 4878 : unsigned ShAmtLimited = ShAmt->getZExtValue();
2372 4878 : Tmp += ShAmtLimited;
2373 4878 : if (Tmp > TyBits) Tmp = TyBits;
2374 : }
2375 4890 : return Tmp;
2376 : }
2377 : case Instruction::Shl: {
2378 : const APInt *ShAmt;
2379 33342 : if (match(U->getOperand(1), m_APInt(ShAmt))) {
2380 : // shl destroys sign bits.
2381 30526 : Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2382 30526 : if (ShAmt->uge(TyBits) || // Bad shift.
2383 15257 : ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2384 864 : Tmp2 = ShAmt->getZExtValue();
2385 864 : return Tmp - Tmp2;
2386 : }
2387 : break;
2388 : }
2389 25947 : case Instruction::And:
2390 : case Instruction::Or:
2391 : case Instruction::Xor: // NOT is handled here.
2392 : // Logical binary ops preserve the number of sign bits at the worst.
2393 51894 : Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2394 25947 : if (Tmp != 1) {
2395 7036 : Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2396 7036 : FirstAnswer = std::min(Tmp, Tmp2);
2397 : // We computed what we know about the sign bits as our first
2398 : // answer. Now proceed to the generic code that uses
2399 : // computeKnownBits, and pick whichever answer is better.
2400 : }
2401 : break;
2402 :
2403 11032 : case Instruction::Select: {
2404 : // If we have a clamp pattern, we know that the number of sign bits will be
2405 : // the minimum of the clamp min/max range.
2406 : const Value *X;
2407 : const APInt *CLow, *CHigh;
2408 11032 : if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2409 14 : return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2410 :
2411 22044 : Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2412 11022 : if (Tmp == 1) break;
2413 4430 : Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2414 4430 : return std::min(Tmp, Tmp2);
2415 : }
2416 :
2417 179447 : case Instruction::Add:
2418 : // Add can have at most one carry bit. Thus we know that the output
2419 : // is, at worst, one more bit than the inputs.
2420 358894 : Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2421 179447 : if (Tmp == 1) break;
2422 :
2423 : // Special case decrementing a value (ADD X, -1):
2424 : if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2425 6177 : if (CRHS->isAllOnesValue()) {
2426 46 : KnownBits Known(TyBits);
2427 36 : computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2428 :
2429 : // If the input is known to be 0 or 1, the output is 0/-1, which is all
2430 : // sign bits set.
2431 72 : if ((Known.Zero | 1).isAllOnesValue())
2432 26 : return TyBits;
2433 :
2434 : // If we are subtracting one from a positive number, there is no carry
2435 : // out of the result.
2436 34 : if (Known.isNonNegative())
2437 : return Tmp;
2438 : }
2439 :
2440 8689 : Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2441 8689 : if (Tmp2 == 1) break;
2442 6790 : return std::min(Tmp, Tmp2)-1;
2443 :
2444 78337 : case Instruction::Sub:
2445 156674 : Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2446 78337 : if (Tmp2 == 1) break;
2447 :
2448 : // Handle NEG.
2449 : if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2450 458 : if (CLHS->isNullValue()) {
2451 47 : KnownBits Known(TyBits);
2452 43 : computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2453 : // If the input is known to be 0 or 1, the output is 0/-1, which is all
2454 : // sign bits set.
2455 86 : if ((Known.Zero | 1).isAllOnesValue())
2456 39 : return TyBits;
2457 :
2458 : // If the input is known to be positive (the sign bit is known clear),
2459 : // the output of the NEG has the same number of sign bits as the input.
2460 43 : if (Known.isNonNegative())
2461 : return Tmp2;
2462 :
2463 : // Otherwise, we treat this like a SUB.
2464 : }
2465 :
2466 : // Sub can have at most one carry bit. Thus we know that the output
2467 : // is, at worst, one more bit than the inputs.
2468 4034 : Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2469 4034 : if (Tmp == 1) break;
2470 1808 : return std::min(Tmp, Tmp2)-1;
2471 :
2472 15769 : case Instruction::Mul: {
2473 : // The output of the Mul can be at most twice the valid bits in the inputs.
2474 31538 : unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2475 15769 : if (SignBitsOp0 == 1) break;
2476 4110 : unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2477 4110 : if (SignBitsOp1 == 1) break;
2478 3374 : unsigned OutValidBits =
2479 3374 : (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2480 3374 : return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2481 : }
2482 :
2483 : case Instruction::PHI: {
2484 : const PHINode *PN = cast<PHINode>(U);
2485 : unsigned NumIncomingValues = PN->getNumIncomingValues();
2486 : // Don't analyze large in-degree PHIs.
2487 233034 : if (NumIncomingValues > 4) break;
2488 : // Unreachable blocks may have zero-operand PHI nodes.
2489 230630 : if (NumIncomingValues == 0) break;
2490 :
2491 : // Take the minimum of all incoming values. This can't infinitely loop
2492 : // because of our depth threshold.
2493 461260 : Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2494 288417 : for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2495 229675 : if (Tmp == 1) return Tmp;
2496 57787 : Tmp = std::min(
2497 113726 : Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2498 : }
2499 58742 : return Tmp;
2500 : }
2501 :
2502 : case Instruction::Trunc:
2503 : // FIXME: it's tricky to do anything useful for this, but it is an important
2504 : // case for targets like X86.
2505 : break;
2506 :
2507 2670 : case Instruction::ExtractElement:
2508 : // Look through extract element. At the moment we keep this simple and skip
2509 : // tracking the specific element. But at least we might find information
2510 : // valid for all elements of the vector (for example if vector is sign
2511 : // extended, shifted, etc).
2512 5340 : return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2513 : }
2514 :
2515 : // Finally, if we can prove that the top bits of the result are 0's or 1's,
2516 : // use this information.
2517 :
2518 : // If we can examine all elements of a vector constant successfully, we're
2519 : // done (we can't do any better than that). If not, keep trying.
2520 5729407 : if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2521 : return VecSignBits;
2522 :
2523 5726066 : KnownBits Known(TyBits);
2524 5726066 : computeKnownBits(V, Known, Depth, Q);
2525 :
2526 : // If we know that the sign bit is either zero or one, determine the number of
2527 : // identical bits in the top of the input value.
2528 5861367 : return std::max(FirstAnswer, Known.countMinSignBits());
2529 : }
2530 :
2531 : /// This function computes the integer multiple of Base that equals V.
2532 : /// If successful, it returns true and returns the multiple in
2533 : /// Multiple. If unsuccessful, it returns false. It looks
2534 : /// through SExt instructions only if LookThroughSExt is true.
2535 50 : bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2536 : bool LookThroughSExt, unsigned Depth) {
2537 : const unsigned MaxDepth = 6;
2538 :
2539 : assert(V && "No Value?");
2540 : assert(Depth <= MaxDepth && "Limit Search Depth");
2541 : assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2542 :
2543 50 : Type *T = V->getType();
2544 :
2545 : ConstantInt *CI = dyn_cast<ConstantInt>(V);
2546 :
2547 50 : if (Base == 0)
2548 : return false;
2549 :
2550 50 : if (Base == 1) {
2551 0 : Multiple = V;
2552 0 : return true;
2553 : }
2554 :
2555 : ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2556 50 : Constant *BaseVal = ConstantInt::get(T, Base);
2557 50 : if (CO && CO == BaseVal) {
2558 : // Multiple is 1.
2559 0 : Multiple = ConstantInt::get(T, 1);
2560 0 : return true;
2561 : }
2562 :
2563 70 : if (CI && CI->getZExtValue() % Base == 0) {
2564 18 : Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2565 18 : return true;
2566 : }
2567 :
2568 32 : if (Depth == MaxDepth) return false; // Limit search depth.
2569 :
2570 : Operator *I = dyn_cast<Operator>(V);
2571 : if (!I) return false;
2572 :
2573 24 : switch (I->getOpcode()) {
2574 : default: break;
2575 1 : case Instruction::SExt:
2576 1 : if (!LookThroughSExt) return false;
2577 : // otherwise fall through to ZExt
2578 : LLVM_FALLTHROUGH;
2579 : case Instruction::ZExt:
2580 2 : return ComputeMultiple(I->getOperand(0), Base, Multiple,
2581 1 : LookThroughSExt, Depth+1);
2582 13 : case Instruction::Shl:
2583 : case Instruction::Mul: {
2584 13 : Value *Op0 = I->getOperand(0);
2585 : Value *Op1 = I->getOperand(1);
2586 :
2587 13 : if (I->getOpcode() == Instruction::Shl) {
2588 : ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2589 0 : if (!Op1CI) return false;
2590 : // Turn Op0 << Op1 into Op0 * 2^Op1
2591 : APInt Op1Int = Op1CI->getValue();
2592 6 : uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2593 : APInt API(Op1Int.getBitWidth(), 0);
2594 6 : API.setBit(BitToSet);
2595 6 : Op1 = ConstantInt::get(V->getContext(), API);
2596 : }
2597 :
2598 13 : Value *Mul0 = nullptr;
2599 13 : if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2600 : if (Constant *Op1C = dyn_cast<Constant>(Op1))
2601 1 : if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2602 2 : if (Op1C->getType()->getPrimitiveSizeInBits() <
2603 1 : MulC->getType()->getPrimitiveSizeInBits())
2604 0 : Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2605 2 : if (Op1C->getType()->getPrimitiveSizeInBits() >
2606 1 : MulC->getType()->getPrimitiveSizeInBits())
2607 1 : MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2608 :
2609 : // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2610 1 : Multiple = ConstantExpr::getMul(MulC, Op1C);
2611 1 : return true;
2612 : }
2613 :
2614 2 : if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2615 2 : if (Mul0CI->getValue() == 1) {
2616 : // V == Base * Op1, so return Op1
2617 2 : Multiple = Op1;
2618 2 : return true;
2619 : }
2620 : }
2621 :
2622 10 : Value *Mul1 = nullptr;
2623 10 : if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2624 : if (Constant *Op0C = dyn_cast<Constant>(Op0))
2625 0 : if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2626 0 : if (Op0C->getType()->getPrimitiveSizeInBits() <
2627 0 : MulC->getType()->getPrimitiveSizeInBits())
2628 0 : Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2629 0 : if (Op0C->getType()->getPrimitiveSizeInBits() >
2630 0 : MulC->getType()->getPrimitiveSizeInBits())
2631 0 : MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2632 :
2633 : // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2634 0 : Multiple = ConstantExpr::getMul(MulC, Op0C);
2635 0 : return true;
2636 : }
2637 :
2638 8 : if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2639 8 : if (Mul1CI->getValue() == 1) {
2640 : // V == Base * Op0, so return Op0
2641 8 : Multiple = Op0;
2642 8 : return true;
2643 : }
2644 13 : }
2645 : }
2646 : }
2647 :
2648 : // We could not determine if V is a multiple of Base.
2649 : return false;
2650 : }
2651 :
2652 14742 : Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2653 : const TargetLibraryInfo *TLI) {
2654 : const Function *F = ICS.getCalledFunction();
2655 : if (!F)
2656 : return Intrinsic::not_intrinsic;
2657 :
2658 14655 : if (F->isIntrinsic())
2659 13600 : return F->getIntrinsicID();
2660 :
2661 1055 : if (!TLI)
2662 : return Intrinsic::not_intrinsic;
2663 :
2664 : LibFunc Func;
2665 : // We're going to make assumptions on the semantics of the functions, check
2666 : // that the target knows that it's available in this environment and it does
2667 : // not have local linkage.
2668 1046 : if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2669 441 : return Intrinsic::not_intrinsic;
2670 :
2671 614 : if (!ICS.onlyReadsMemory())
2672 : return Intrinsic::not_intrinsic;
2673 :
2674 : // Otherwise check if we have a call to a function that can be turned into a
2675 : // vector intrinsic.
2676 495 : switch (Func) {
2677 : default:
2678 : break;
2679 : case LibFunc_sin:
2680 : case LibFunc_sinf:
2681 : case LibFunc_sinl:
2682 : return Intrinsic::sin;
2683 : case LibFunc_cos:
2684 : case LibFunc_cosf:
2685 : case LibFunc_cosl:
2686 : return Intrinsic::cos;
2687 : case LibFunc_exp:
2688 : case LibFunc_expf:
2689 : case LibFunc_expl:
2690 : return Intrinsic::exp;
2691 : case LibFunc_exp2:
2692 : case LibFunc_exp2f:
2693 : case LibFunc_exp2l:
2694 : return Intrinsic::exp2;
2695 : case LibFunc_log:
2696 : case LibFunc_logf:
2697 : case LibFunc_logl:
2698 : return Intrinsic::log;
2699 : case LibFunc_log10:
2700 : case LibFunc_log10f:
2701 : case LibFunc_log10l:
2702 : return Intrinsic::log10;
2703 : case LibFunc_log2:
2704 : case LibFunc_log2f:
2705 : case LibFunc_log2l:
2706 : return Intrinsic::log2;
2707 : case LibFunc_fabs:
2708 : case LibFunc_fabsf:
2709 : case LibFunc_fabsl:
2710 : return Intrinsic::fabs;
2711 : case LibFunc_fmin:
2712 : case LibFunc_fminf:
2713 : case LibFunc_fminl:
2714 : return Intrinsic::minnum;
2715 : case LibFunc_fmax:
2716 : case LibFunc_fmaxf:
2717 : case LibFunc_fmaxl:
2718 : return Intrinsic::maxnum;
2719 : case LibFunc_copysign:
2720 : case LibFunc_copysignf:
2721 : case LibFunc_copysignl:
2722 : return Intrinsic::copysign;
2723 : case LibFunc_floor:
2724 : case LibFunc_floorf:
2725 : case LibFunc_floorl:
2726 : return Intrinsic::floor;
2727 : case LibFunc_ceil:
2728 : case LibFunc_ceilf:
2729 : case LibFunc_ceill:
2730 : return Intrinsic::ceil;
2731 : case LibFunc_trunc:
2732 : case LibFunc_truncf:
2733 : case LibFunc_truncl:
2734 : return Intrinsic::trunc;
2735 : case LibFunc_rint:
2736 : case LibFunc_rintf:
2737 : case LibFunc_rintl:
2738 : return Intrinsic::rint;
2739 : case LibFunc_nearbyint:
2740 : case LibFunc_nearbyintf:
2741 : case LibFunc_nearbyintl:
2742 : return Intrinsic::nearbyint;
2743 : case LibFunc_round:
2744 : case LibFunc_roundf:
2745 : case LibFunc_roundl:
2746 : return Intrinsic::round;
2747 : case LibFunc_pow:
2748 : case LibFunc_powf:
2749 : case LibFunc_powl:
2750 : return Intrinsic::pow;
2751 : case LibFunc_sqrt:
2752 : case LibFunc_sqrtf:
2753 : case LibFunc_sqrtl:
2754 : return Intrinsic::sqrt;
2755 : }
2756 :
2757 : return Intrinsic::not_intrinsic;
2758 : }
2759 :
2760 : /// Return true if we can prove that the specified FP value is never equal to
2761 : /// -0.0.
2762 : ///
2763 : /// NOTE: this function will need to be revisited when we support non-default
2764 : /// rounding modes!
2765 2337 : bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2766 : unsigned Depth) {
2767 : if (auto *CFP = dyn_cast<ConstantFP>(V))
2768 386 : return !CFP->getValueAPF().isNegZero();
2769 :
2770 : // Limit search depth.
2771 1951 : if (Depth == MaxDepth)
2772 : return false;
2773 :
2774 : auto *Op = dyn_cast<Operator>(V);
2775 : if (!Op)
2776 : return false;
2777 :
2778 : // Check if the nsz fast-math flag is set.
2779 : if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2780 936 : if (FPO->hasNoSignedZeros())
2781 : return true;
2782 :
2783 : // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2784 1178 : if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2785 : return true;
2786 :
2787 : // sitofp and uitofp turn into +0.0 for zero.
2788 : if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2789 : return true;
2790 :
2791 : if (auto *Call = dyn_cast<CallInst>(Op)) {
2792 11 : Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2793 11 : switch (IID) {
2794 : default:
2795 : break;
2796 : // sqrt(-0.0) = -0.0, no other negative results are possible.
2797 3 : case Intrinsic::sqrt:
2798 : case Intrinsic::canonicalize:
2799 3 : return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2800 : // fabs(x) != -0.0
2801 4 : case Intrinsic::fabs:
2802 4 : return true;
2803 : }
2804 : }
2805 :
2806 : return false;
2807 : }
2808 :
2809 : /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2810 : /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2811 : /// bit despite comparing equal.
2812 5408 : static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2813 : const TargetLibraryInfo *TLI,
2814 : bool SignBitOnly,
2815 : unsigned Depth) {
2816 : // TODO: This function does not do the right thing when SignBitOnly is true
2817 : // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2818 : // which flips the sign bits of NaNs. See
2819 : // https://llvm.org/bugs/show_bug.cgi?id=31702.
2820 :
2821 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2822 35 : return !CFP->getValueAPF().isNegative() ||
2823 3 : (!SignBitOnly && CFP->getValueAPF().isZero());
2824 : }
2825 :
2826 : // Handle vector of constants.
2827 : if (auto *CV = dyn_cast<Constant>(V)) {
2828 32 : if (CV->getType()->isVectorTy()) {
2829 : unsigned NumElts = CV->getType()->getVectorNumElements();
2830 27 : for (unsigned i = 0; i != NumElts; ++i) {
2831 20 : auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2832 : if (!CFP)
2833 : return false;
2834 20 : if (CFP->getValueAPF().isNegative() &&
2835 0 : (SignBitOnly || !CFP->getValueAPF().isZero()))
2836 : return false;
2837 : }
2838 :
2839 : // All non-negative ConstantFPs.
2840 : return true;
2841 : }
2842 : }
2843 :
2844 5360 : if (Depth == MaxDepth)
2845 : return false; // Limit search depth.
2846 :
2847 : const Operator *I = dyn_cast<Operator>(V);
2848 : if (!I)
2849 : return false;
2850 :
2851 3972 : switch (I->getOpcode()) {
2852 : default:
2853 : break;
2854 : // Unsigned integers are always nonnegative.
2855 : case Instruction::UIToFP:
2856 : return true;
2857 80 : case Instruction::FMul:
2858 : // x*x is always non-negative or a NaN.
2859 160 : if (I->getOperand(0) == I->getOperand(1) &&
2860 12 : (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2861 : return true;
2862 :
2863 : LLVM_FALLTHROUGH;
2864 : case Instruction::FAdd:
2865 : case Instruction::FDiv:
2866 : case Instruction::FRem:
2867 456 : return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2868 237 : Depth + 1) &&
2869 9 : cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2870 : Depth + 1);
2871 34 : case Instruction::Select:
2872 68 : return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2873 46 : Depth + 1) &&
2874 12 : cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2875 : Depth + 1);
2876 179 : case Instruction::FPExt:
2877 : case Instruction::FPTrunc:
2878 : // Widening/narrowing never change sign.
2879 358 : return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2880 179 : Depth + 1);
2881 54 : case Instruction::ExtractElement:
2882 : // Look through extract element. At the moment we keep this simple and skip
2883 : // tracking the specific element. But at least we might find information
2884 : // valid for all elements of the vector.
2885 108 : return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2886 54 : Depth + 1);
2887 : case Instruction::Call:
2888 : const auto *CI = cast<CallInst>(I);
2889 382 : Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2890 : switch (IID) {
2891 : default:
2892 : break;
2893 1 : case Intrinsic::maxnum:
2894 2 : return (isKnownNeverNaN(I->getOperand(0), TLI) &&
2895 0 : cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2896 2 : SignBitOnly, Depth + 1)) ||
2897 1 : (isKnownNeverNaN(I->getOperand(1), TLI) &&
2898 0 : cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2899 : SignBitOnly, Depth + 1));
2900 :
2901 1 : case Intrinsic::minnum:
2902 2 : return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2903 2 : Depth + 1) &&
2904 1 : cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2905 : Depth + 1);
2906 : case Intrinsic::exp:
2907 : case Intrinsic::exp2:
2908 : case Intrinsic::fabs:
2909 : return true;
2910 :
2911 41 : case Intrinsic::sqrt:
2912 : // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2913 41 : if (!SignBitOnly)
2914 : return true;
2915 41 : return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2916 2 : CannotBeNegativeZero(CI->getOperand(0), TLI));
2917 :
2918 1 : case Intrinsic::powi:
2919 1 : if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2920 : // powi(x,n) is non-negative if n is even.
2921 1 : if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2922 : return true;
2923 : }
2924 : // TODO: This is not correct. Given that exp is an integer, here are the
2925 : // ways that pow can return a negative value:
2926 : //
2927 : // pow(x, exp) --> negative if exp is odd and x is negative.
2928 : // pow(-0, exp) --> -inf if exp is negative odd.
2929 : // pow(-0, exp) --> -0 if exp is positive odd.
2930 : // pow(-inf, exp) --> -0 if exp is negative odd.
2931 : // pow(-inf, exp) --> -inf if exp is positive odd.
2932 : //
2933 : // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2934 : // but we must return false if x == -0. Unfortunately we do not currently
2935 : // have a way of expressing this constraint. See details in
2936 : // https://llvm.org/bugs/show_bug.cgi?id=31702.
2937 2 : return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2938 1 : Depth + 1);
2939 :
2940 11 : case Intrinsic::fma:
2941 : case Intrinsic::fmuladd:
2942 : // x*x+y is non-negative if y is non-negative.
2943 16 : return I->getOperand(0) == I->getOperand(1) &&
2944 18 : (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2945 6 : cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2946 : Depth + 1);
2947 : }
2948 : break;
2949 : }
2950 : return false;
2951 : }
2952 :
2953 326 : bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2954 : const TargetLibraryInfo *TLI) {
2955 326 : return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2956 : }
2957 :
2958 4560 : bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2959 4560 : return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2960 : }
2961 :
2962 2707 : bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
2963 : unsigned Depth) {
2964 : assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2965 :
2966 : // If we're told that NaNs won't happen, assume they won't.
2967 1764 : if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2968 1764 : if (FPMathOp->hasNoNaNs())
2969 : return true;
2970 :
2971 : // Handle scalar constants.
2972 : if (auto *CFP = dyn_cast<ConstantFP>(V))
2973 27 : return !CFP->isNaN();
2974 :
2975 2666 : if (Depth == MaxDepth)
2976 : return false;
2977 :
2978 : if (auto *Inst = dyn_cast<Instruction>(V)) {
2979 1704 : switch (Inst->getOpcode()) {
2980 : case Instruction::FAdd:
2981 : case Instruction::FMul:
2982 : case Instruction::FSub:
2983 : case Instruction::FDiv:
2984 : case Instruction::FRem: {
2985 : // TODO: Need isKnownNeverInfinity
2986 : return false;
2987 : }
2988 16 : case Instruction::Select: {
2989 42 : return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
2990 10 : isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
2991 : }
2992 4 : case Instruction::SIToFP:
2993 : case Instruction::UIToFP:
2994 4 : return true;
2995 18 : case Instruction::FPTrunc:
2996 : case Instruction::FPExt:
2997 36 : return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
2998 : default:
2999 : break;
3000 : }
3001 : }
3002 :
3003 : if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3004 39 : switch (II->getIntrinsicID()) {
3005 31 : case Intrinsic::canonicalize:
3006 : case Intrinsic::fabs:
3007 : case Intrinsic::copysign:
3008 : case Intrinsic::exp:
3009 : case Intrinsic::exp2:
3010 : case Intrinsic::floor:
3011 : case Intrinsic::ceil:
3012 : case Intrinsic::trunc:
3013 : case Intrinsic::rint:
3014 : case Intrinsic::nearbyint:
3015 : case Intrinsic::round:
3016 31 : return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3017 8 : case Intrinsic::sqrt:
3018 10 : return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3019 2 : CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3020 : default:
3021 : return false;
3022 : }
3023 : }
3024 :
3025 : // Bail out for constant expressions, but try to handle vector constants.
3026 2798 : if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3027 : return false;
3028 :
3029 : // For vectors, verify that each element is not NaN.
3030 : unsigned NumElts = V->getType()->getVectorNumElements();
3031 116 : for (unsigned i = 0; i != NumElts; ++i) {
3032 86 : Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3033 86 : if (!Elt)
3034 : return false;
3035 86 : if (isa<UndefValue>(Elt))
3036 : continue;
3037 : auto *CElt = dyn_cast<ConstantFP>(Elt);
3038 81 : if (!CElt || CElt->isNaN())
3039 : return false;
3040 : }
3041 : // All elements were confirmed not-NaN or undefined.
3042 : return true;
3043 : }
3044 :
3045 883196 : Value *llvm::isBytewiseValue(Value *V) {
3046 :
3047 : // All byte-wide stores are splatable, even of arbitrary variables.
3048 883196 : if (V->getType()->isIntegerTy(8))
3049 : return V;
3050 :
3051 863382 : LLVMContext &Ctx = V->getContext();
3052 :
3053 : // Undef don't care.
3054 863382 : auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3055 863382 : if (isa<UndefValue>(V))
3056 : return UndefInt8;
3057 :
3058 : Constant *C = dyn_cast<Constant>(V);
3059 : if (!C) {
3060 : // Conceptually, we could handle things like:
3061 : // %a = zext i8 %X to i16
3062 : // %b = shl i16 %a, 8
3063 : // %c = or i16 %a, %b
3064 : // but until there is an example that actually needs this, it doesn't seem
3065 : // worth worrying about.
3066 : return nullptr;
3067 : }
3068 :
3069 : // Handle 'null' ConstantArrayZero etc.
3070 251034 : if (C->isNullValue())
3071 233461 : return Constant::getNullValue(Type::getInt8Ty(Ctx));
3072 :
3073 : // Constant floating-point values can be handled as integer values if the
3074 : // corresponding integer value is "byteable". An important case is 0.0.
3075 : if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3076 : Type *Ty = nullptr;
3077 172 : if (CFP->getType()->isHalfTy())
3078 0 : Ty = Type::getInt16Ty(Ctx);
3079 86 : else if (CFP->getType()->isFloatTy())
3080 49 : Ty = Type::getInt32Ty(Ctx);
3081 37 : else if (CFP->getType()->isDoubleTy())
3082 35 : Ty = Type::getInt64Ty(Ctx);
3083 : // Don't handle long double formats, which have strange constraints.
3084 84 : return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3085 : }
3086 :
3087 : // We can handle constant integers that are multiple of 8 bits.
3088 : if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3089 6026 : if (CI->getBitWidth() % 8 == 0) {
3090 : assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3091 6012 : if (!CI->getValue().isSplat(8))
3092 : return nullptr;
3093 1400 : return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3094 : }
3095 : }
3096 :
3097 : auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3098 3262 : if (LHS == RHS)
3099 : return LHS;
3100 3018 : if (!LHS || !RHS)
3101 : return nullptr;
3102 937 : if (LHS == UndefInt8)
3103 : return RHS;
3104 224 : if (RHS == UndefInt8)
3105 : return LHS;
3106 : return nullptr;
3107 : };
3108 :
3109 : if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3110 : Value *Val = UndefInt8;
3111 3104 : for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3112 3943 : if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3113 : return nullptr;
3114 20 : return Val;
3115 : }
3116 :
3117 9230 : if (isa<ConstantVector>(C)) {
3118 1 : Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3119 1 : return Splat ? isBytewiseValue(Splat) : nullptr;
3120 : }
3121 :
3122 9229 : if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3123 : Value *Val = UndefInt8;
3124 212 : for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3125 474 : if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3126 : return nullptr;
3127 34 : return Val;
3128 : }
3129 :
3130 : // Don't try to handle the handful of other constants.
3131 : return nullptr;
3132 : }
3133 :
3134 : // This is the recursive version of BuildSubAggregate. It takes a few different
3135 : // arguments. Idxs is the index within the nested struct From that we are
3136 : // looking at now (which is of type IndexedType). IdxSkip is the number of
3137 : // indices from Idxs that should be left out when inserting into the resulting
3138 : // struct. To is the result struct built so far, new insertvalue instructions
3139 : // build on that.
3140 0 : static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3141 : SmallVectorImpl<unsigned> &Idxs,
3142 : unsigned IdxSkip,
3143 : Instruction *InsertBefore) {
3144 : StructType *STy = dyn_cast<StructType>(IndexedType);
3145 : if (STy) {
3146 : // Save the original To argument so we can modify it
3147 : Value *OrigTo = To;
3148 : // General case, the type indexed by Idxs is a struct
3149 0 : for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3150 : // Process each struct element recursively
3151 0 : Idxs.push_back(i);
3152 : Value *PrevTo = To;
3153 0 : To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3154 : InsertBefore);
3155 : Idxs.pop_back();
3156 0 : if (!To) {
3157 : // Couldn't find any inserted value for this index? Cleanup
3158 0 : while (PrevTo != OrigTo) {
3159 : InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3160 : PrevTo = Del->getAggregateOperand();
3161 0 : Del->eraseFromParent();
3162 : }
3163 : // Stop processing elements
3164 : break;
3165 : }
3166 : }
3167 : // If we successfully found a value for each of our subaggregates
3168 0 : if (To)
3169 : return To;
3170 : }
3171 : // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3172 : // the struct's elements had a value that was inserted directly. In the latter
3173 : // case, perhaps we can't determine each of the subelements individually, but
3174 : // we might be able to find the complete struct somewhere.
3175 :
3176 : // Find the value that is at that particular spot
3177 0 : Value *V = FindInsertedValue(From, Idxs);
3178 :
3179 0 : if (!V)
3180 : return nullptr;
3181 :
3182 : // Insert the value in the new (sub) aggregate
3183 0 : return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3184 : "tmp", InsertBefore);
3185 : }
3186 :
3187 : // This helper takes a nested struct and extracts a part of it (which is again a
3188 : // struct) into a new value. For example, given the struct:
3189 : // { a, { b, { c, d }, e } }
3190 : // and the indices "1, 1" this returns
3191 : // { c, d }.
3192 : //
3193 : // It does this by inserting an insertvalue for each element in the resulting
3194 : // struct, as opposed to just inserting a single struct. This will only work if
3195 : // each of the elements of the substruct are known (ie, inserted into From by an
3196 : // insertvalue instruction somewhere).
3197 : //
3198 : // All inserted insertvalue instructions are inserted before InsertBefore
3199 0 : static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3200 : Instruction *InsertBefore) {
3201 : assert(InsertBefore && "Must have someplace to insert!");
3202 0 : Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3203 : idx_range);
3204 0 : Value *To = UndefValue::get(IndexedType);
3205 0 : SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3206 0 : unsigned IdxSkip = Idxs.size();
3207 :
3208 0 : return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3209 : }
3210 :
3211 : /// Given an aggregate and a sequence of indices, see if the scalar value
3212 : /// indexed is already around as a register, for example if it was inserted
3213 : /// directly into the aggregate.
3214 : ///
3215 : /// If InsertBefore is not null, this function will duplicate (modified)
3216 : /// insertvalues when a part of a nested struct is extracted.
3217 27 : Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3218 : Instruction *InsertBefore) {
3219 : // Nothing to index? Just return V then (this is useful at the end of our
3220 : // recursion).
3221 27 : if (idx_range.empty())
3222 : return V;
3223 : // We have indices, so V should have an indexable type.
3224 : assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3225 : "Not looking at a struct or array?");
3226 : assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3227 : "Invalid indices for type?");
3228 :
3229 : if (Constant *C = dyn_cast<Constant>(V)) {
3230 0 : C = C->getAggregateElement(idx_range[0]);
3231 0 : if (!C) return nullptr;
3232 0 : return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3233 : }
3234 :
3235 : if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3236 : // Loop the indices for the insertvalue instruction in parallel with the
3237 : // requested indices
3238 : const unsigned *req_idx = idx_range.begin();
3239 10 : for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3240 25 : i != e; ++i, ++req_idx) {
3241 15 : if (req_idx == idx_range.end()) {
3242 : // We can't handle this without inserting insertvalues
3243 0 : if (!InsertBefore)
3244 : return nullptr;
3245 :
3246 : // The requested index identifies a part of a nested aggregate. Handle
3247 : // this specially. For example,
3248 : // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3249 : // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3250 : // %C = extractvalue {i32, { i32, i32 } } %B, 1
3251 : // This can be changed into
3252 : // %A = insertvalue {i32, i32 } undef, i32 10, 0
3253 : // %C = insertvalue {i32, i32 } %A, i32 11, 1
3254 : // which allows the unused 0,0 element from the nested struct to be
3255 : // removed.
3256 0 : return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3257 0 : InsertBefore);
3258 : }
3259 :
3260 : // This insert value inserts something else than what we are looking for.
3261 : // See if the (aggregate) value inserted into has the value we are
3262 : // looking for, then.
3263 15 : if (*req_idx != *i)
3264 5 : return FindInsertedValue(I->getAggregateOperand(), idx_range,
3265 5 : InsertBefore);
3266 : }
3267 : // If we end up here, the indices of the insertvalue match with those
3268 : // requested (though possibly only partially). Now we recursively look at
3269 : // the inserted value, passing any remaining indices.
3270 10 : return FindInsertedValue(I->getInsertedValueOperand(),
3271 : makeArrayRef(req_idx, idx_range.end()),
3272 10 : InsertBefore);
3273 : }
3274 :
3275 : if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3276 : // If we're extracting a value from an aggregate that was extracted from
3277 : // something else, we can extract from that something else directly instead.
3278 : // However, we will need to chain I's indices with the requested indices.
3279 :
3280 : // Calculate the number of indices required
3281 0 : unsigned size = I->getNumIndices() + idx_range.size();
3282 : // Allocate some space to put the new indices in
3283 : SmallVector<unsigned, 5> Idxs;
3284 0 : Idxs.reserve(size);
3285 : // Add indices from the extract value instruction
3286 0 : Idxs.append(I->idx_begin(), I->idx_end());
3287 :
3288 : // Add requested indices
3289 0 : Idxs.append(idx_range.begin(), idx_range.end());
3290 :
3291 : assert(Idxs.size() == size
3292 : && "Number of indices added not correct?");
3293 :
3294 0 : return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3295 : }
3296 : // Otherwise, we don't know (such as, extracting from a function return value
3297 : // or load instruction)
3298 : return nullptr;
3299 : }
3300 :
3301 : /// Analyze the specified pointer to see if it can be expressed as a base
3302 : /// pointer plus a constant offset. Return the base and offset to the caller.
3303 355662 : Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3304 : const DataLayout &DL) {
3305 355662 : unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3306 : APInt ByteOffset(BitWidth, 0);
3307 :
3308 : // We walk up the defs but use a visited set to handle unreachable code. In
3309 : // that case, we stop after accumulating the cycle once (not that it
3310 : // matters).
3311 : SmallPtrSet<Value *, 16> Visited;
3312 665986 : while (Visited.insert(Ptr).second) {
3313 1331972 : if (Ptr->getType()->isVectorTy())
3314 : break;
3315 :
3316 : if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3317 : // If one of the values we have visited is an addrspacecast, then
3318 : // the pointer type of this GEP may be different from the type
3319 : // of the Ptr parameter which was passed to this function. This
3320 : // means when we construct GEPOffset, we need to use the size
3321 : // of GEP's pointer type rather than the size of the original
3322 : // pointer type.
3323 283781 : APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3324 283781 : if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3325 : break;
3326 :
3327 240848 : ByteOffset += GEPOffset.getSExtValue();
3328 :
3329 : Ptr = GEP->getPointerOperand();
3330 343141 : } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3331 : Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3332 69455 : Ptr = cast<Operator>(Ptr)->getOperand(0);
3333 : } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3334 : if (GA->isInterposable())
3335 : break;
3336 : Ptr = GA->getAliasee();
3337 : } else {
3338 : break;
3339 : }
3340 : }
3341 355662 : Offset = ByteOffset.getSExtValue();
3342 355662 : return Ptr;
3343 : }
3344 :
3345 7552847 : bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3346 : unsigned CharSize) {
3347 : // Make sure the GEP has exactly three arguments.
3348 7552847 : if (GEP->getNumOperands() != 3)
3349 : return false;
3350 :
3351 : // Make sure the index-ee is a pointer to array of \p CharSize integers.
3352 : // CharSize.
3353 7550340 : ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3354 7528380 : if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3355 7547843 : return false;
3356 :
3357 : // Check to make sure that the first operand of the GEP is an integer and
3358 : // has value 0 so that we are sure we're indexing into the initializer.
3359 2497 : const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3360 2497 : if (!FirstIdx || !FirstIdx->isZero())
3361 0 : return false;
3362 :
3363 : return true;
3364 : }
3365 :
3366 11685898 : bool llvm::getConstantDataArrayInfo(const Value *V,
3367 : ConstantDataArraySlice &Slice,
3368 : unsigned ElementSize, uint64_t Offset) {
3369 : assert(V);
3370 :
3371 : // Look through bitcast instructions and geps.
3372 11686015 : V = V->stripPointerCasts();
3373 :
3374 : // If the value is a GEP instruction or constant expression, treat it as an
3375 : // offset.
3376 : if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3377 : // The GEP operator should be based on a pointer to string constant, and is
3378 : // indexing into the string constant.
3379 7550424 : if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3380 : return false;
3381 :
3382 : // If the second index isn't a ConstantInt, then this is a variable index
3383 : // into the array. If this occurs, we can't say anything meaningful about
3384 : // the string.
3385 : uint64_t StartIdx = 0;
3386 147 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3387 : StartIdx = CI->getZExtValue();
3388 : else
3389 : return false;
3390 117 : return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3391 117 : StartIdx + Offset);
3392 : }
3393 :
3394 : // The GEP instruction, constant or instruction, must reference a global
3395 : // variable that is a constant and is initialized. The referenced constant
3396 : // initializer is the array that we'll use for optimization.
3397 : const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3398 4124409 : if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3399 4128019 : return false;
3400 :
3401 : const ConstantDataArray *Array;
3402 : ArrayType *ArrayTy;
3403 7572 : if (GV->getInitializer()->isNullValue()) {
3404 75 : Type *GVTy = GV->getValueType();
3405 : if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3406 : // A zeroinitializer for the array; there is no ConstantDataArray.
3407 : Array = nullptr;
3408 : } else {
3409 6 : const DataLayout &DL = GV->getParent()->getDataLayout();
3410 : uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3411 6 : uint64_t Length = SizeInBytes / (ElementSize / 8);
3412 6 : if (Length <= Offset)
3413 : return false;
3414 :
3415 5 : Slice.Array = nullptr;
3416 5 : Slice.Offset = 0;
3417 5 : Slice.Length = Length - Offset;
3418 5 : return true;
3419 : }
3420 : } else {
3421 : // This must be a ConstantDataArray.
3422 : Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3423 : if (!Array)
3424 : return false;
3425 : ArrayTy = Array->getType();
3426 : }
3427 7046 : if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3428 : return false;
3429 :
3430 : uint64_t NumElts = ArrayTy->getArrayNumElements();
3431 6030 : if (Offset > NumElts)
3432 : return false;
3433 :
3434 6030 : Slice.Array = Array;
3435 6030 : Slice.Offset = Offset;
3436 6030 : Slice.Length = NumElts - Offset;
3437 6030 : return true;
3438 : }
3439 :
3440 : /// This function computes the length of a null-terminated C string pointed to
3441 : /// by V. If successful, it returns true and returns the string in Str.
3442 : /// If unsuccessful, it returns false.
3443 11672140 : bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3444 : uint64_t Offset, bool TrimAtNul) {
3445 : ConstantDataArraySlice Slice;
3446 11672140 : if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3447 : return false;
3448 :
3449 3103 : if (Slice.Array == nullptr) {
3450 32 : if (TrimAtNul) {
3451 30 : Str = StringRef();
3452 30 : return true;
3453 : }
3454 2 : if (Slice.Length == 1) {
3455 2 : Str = StringRef("", 1);
3456 2 : return true;
3457 : }
3458 : // We cannot instantiate a StringRef as we do not have an appropriate string
3459 : // of 0s at hand.
3460 : return false;
3461 : }
3462 :
3463 : // Start out with the entire array in the StringRef.
3464 3071 : Str = Slice.Array->getAsString();
3465 : // Skip over 'offset' bytes.
3466 3071 : Str = Str.substr(Slice.Offset);
3467 :
3468 3071 : if (TrimAtNul) {
3469 : // Trim off the \0 and anything after it. If the array is not nul
3470 : // terminated, we just return the whole end of string. The client may know
3471 : // some other way that the string is length-bound.
3472 3055 : Str = Str.substr(0, Str.find('\0'));
3473 : }
3474 : return true;
3475 : }
3476 :
3477 : // These next two are very similar to the above, but also look through PHI
3478 : // nodes.
3479 : // TODO: See if we can integrate these two together.
3480 :
3481 : /// If we can compute the length of the string pointed to by
3482 : /// the specified pointer, return 'len+1'. If we can't, return 0.
3483 9260 : static uint64_t GetStringLengthH(const Value *V,
3484 : SmallPtrSetImpl<const PHINode*> &PHIs,
3485 : unsigned CharSize) {
3486 : // Look through noop bitcast instructions.
3487 9260 : V = V->stripPointerCasts();
3488 :
3489 : // If this is a PHI node, there are two cases: either we have already seen it
3490 : // or we haven't.
3491 : if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3492 139 : if (!PHIs.insert(PN).second)
3493 : return ~0ULL; // already in the set.
3494 :
3495 : // If it was new, see if all the input strings are the same length.
3496 : uint64_t LenSoFar = ~0ULL;
3497 163 : for (Value *IncValue : PN->incoming_values()) {
3498 161 : uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3499 161 : if (Len == 0) return 0; // Unknown length -> unknown.
3500 :
3501 24 : if (Len == ~0ULL) continue;
3502 :
3503 24 : if (Len != LenSoFar && LenSoFar != ~0ULL)
3504 : return 0; // Disagree -> unknown.
3505 : LenSoFar = Len;
3506 : }
3507 :
3508 : // Success, all agree.
3509 2 : return LenSoFar;
3510 : }
3511 :
3512 : // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3513 : if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3514 55 : uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3515 55 : if (Len1 == 0) return 0;
3516 39 : uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3517 39 : if (Len2 == 0) return 0;
3518 39 : if (Len1 == ~0ULL) return Len2;
3519 39 : if (Len2 == ~0ULL) return Len1;
3520 39 : if (Len1 != Len2) return 0;
3521 5 : return Len1;
3522 : }
3523 :
3524 : // Otherwise, see if we can read the string.
3525 : ConstantDataArraySlice Slice;
3526 9066 : if (!getConstantDataArrayInfo(V, Slice, CharSize))
3527 : return 0;
3528 :
3529 2186 : if (Slice.Array == nullptr)
3530 : return 1;
3531 :
3532 : // Search for nul characters
3533 : unsigned NullIndex = 0;
3534 24010 : for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3535 24010 : if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3536 : break;
3537 : }
3538 :
3539 2150 : return NullIndex + 1;
3540 : }
3541 :
3542 : /// If we can compute the length of the string pointed to by
3543 : /// the specified pointer, return 'len+1'. If we can't, return 0.
3544 9005 : uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3545 18010 : if (!V->getType()->isPointerTy())
3546 : return 0;
3547 :
3548 : SmallPtrSet<const PHINode*, 32> PHIs;
3549 9005 : uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3550 : // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3551 : // an empty string as a length.
3552 9005 : return Len == ~0ULL ? 1 : Len;
3553 : }
3554 :
3555 827406 : const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) {
3556 : assert(CS &&
3557 : "getArgumentAliasingToReturnedPointer only works on nonnull CallSite");
3558 827406 : if (const Value *RV = CS.getReturnedArgOperand())
3559 : return RV;
3560 : // This can be used only as a aliasing property.
3561 827216 : if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS))
3562 399 : return CS.getArgOperand(0);
3563 : return nullptr;
3564 : }
3565 :
3566 5896645 : bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3567 : ImmutableCallSite CS) {
3568 11754229 : return CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
3569 5896645 : CS.getIntrinsicID() == Intrinsic::strip_invariant_group;
3570 : }
3571 :
3572 : /// \p PN defines a loop-variant pointer to an object. Check if the
3573 : /// previous iteration of the loop was referring to the same object as \p PN.
3574 648 : static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3575 : const LoopInfo *LI) {
3576 : // Find the loop-defined value.
3577 648 : Loop *L = LI->getLoopFor(PN->getParent());
3578 648 : if (PN->getNumIncomingValues() != 2)
3579 : return true;
3580 :
3581 : // Find the value from previous iteration.
3582 : auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3583 1156 : if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3584 : PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3585 1296 : if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3586 0 : return true;
3587 :
3588 : // If a new pointer is loaded in the loop, the pointer references a different
3589 : // object in every iteration. E.g.:
3590 : // for (i)
3591 : // int *p = a[i];
3592 : // ...
3593 : if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3594 5 : if (!L->isLoopInvariant(Load->getPointerOperand()))
3595 4 : return false;
3596 : return true;
3597 : }
3598 :
3599 129736798 : Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3600 : unsigned MaxLookup) {
3601 259473596 : if (!V->getType()->isPointerTy())
3602 : return V;
3603 210634952 : for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3604 : if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3605 : V = GEP->getPointerOperand();
3606 52368301 : } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3607 : Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3608 7762732 : V = cast<Operator>(V)->getOperand(0);
3609 : } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3610 : if (GA->isInterposable())
3611 0 : return V;
3612 : V = GA->getAliasee();
3613 : } else if (isa<AllocaInst>(V)) {
3614 : // An alloca can't be further simplified.
3615 9810824 : return V;
3616 : } else {
3617 119922935 : if (auto CS = CallSite(V)) {
3618 : // CaptureTracking can know about special capturing properties of some
3619 : // intrinsics like launder.invariant.group, that can't be expressed with
3620 : // the attributes, but have properties like returning aliasing pointer.
3621 : // Because some analysis may assume that nocaptured pointer is not
3622 : // returned from some special intrinsic (because function would have to
3623 : // be marked with returns attribute), it is crucial to use this function
3624 : // because it should be in sync with CaptureTracking. Not using it may
3625 : // cause weird miscompilations where 2 aliasing pointers are assumed to
3626 : // noalias.
3627 614042 : if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
3628 : V = RP;
3629 : continue;
3630 : }
3631 : }
3632 :
3633 : // See if InstructionSimplify knows any relevant tricks.
3634 : if (Instruction *I = dyn_cast<Instruction>(V))
3635 : // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3636 12453546 : if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3637 : V = Simplified;
3638 : continue;
3639 : }
3640 :
3641 119895136 : return V;
3642 : }
3643 : assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3644 : }
3645 : return V;
3646 : }
3647 :
3648 3438629 : void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3649 : const DataLayout &DL, LoopInfo *LI,
3650 : unsigned MaxLookup) {
3651 : SmallPtrSet<Value *, 4> Visited;
3652 : SmallVector<Value *, 4> Worklist;
3653 3438629 : Worklist.push_back(V);
3654 : do {
3655 4548384 : Value *P = Worklist.pop_back_val();
3656 4548384 : P = GetUnderlyingObject(P, DL, MaxLookup);
3657 :
3658 4548384 : if (!Visited.insert(P).second)
3659 1053551 : continue;
3660 :
3661 3959069 : if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3662 20025 : Worklist.push_back(SI->getTrueValue());
3663 20025 : Worklist.push_back(SI->getFalseValue());
3664 20025 : continue;
3665 : }
3666 :
3667 : if (PHINode *PN = dyn_cast<PHINode>(P)) {
3668 : // If this PHI changes the underlying object in every iteration of the
3669 : // loop, don't look through it. Consider:
3670 : // int **A;
3671 : // for (i) {
3672 : // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3673 : // Curr = A[i];
3674 : // *Prev, *Curr;
3675 : //
3676 : // Prev is tracking Curr one iteration behind so they refer to different
3677 : // underlying objects.
3678 444859 : if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3679 648 : isSameUnderlyingObjectInLoop(PN, LI))
3680 1513912 : for (Value *IncValue : PN->incoming_values())
3681 1069705 : Worklist.push_back(IncValue);
3682 444211 : continue;
3683 : }
3684 :
3685 3494833 : Objects.push_back(P);
3686 4548384 : } while (!Worklist.empty());
3687 3438629 : }
3688 :
3689 : /// This is the function that does the work of looking through basic
3690 : /// ptrtoint+arithmetic+inttoptr sequences.
3691 39901 : static const Value *getUnderlyingObjectFromInt(const Value *V) {
3692 : do {
3693 : if (const Operator *U = dyn_cast<Operator>(V)) {
3694 : // If we find a ptrtoint, we can transfer control back to the
3695 : // regular getUnderlyingObjectFromInt.
3696 40180 : if (U->getOpcode() == Instruction::PtrToInt)
3697 276 : return U->getOperand(0);
3698 : // If we find an add of a constant, a multiplied value, or a phi, it's
3699 : // likely that the other operand will lead us to the base
3700 : // object. We don't have to worry about the case where the
3701 : // object address is somehow being computed by the multiply,
3702 : // because our callers only care when the result is an
3703 : // identifiable object.
3704 41174 : if (U->getOpcode() != Instruction::Add ||
3705 1331 : (!isa<ConstantInt>(U->getOperand(1)) &&
3706 : Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3707 : !isa<PHINode>(U->getOperand(1))))
3708 39326 : return V;
3709 : V = U->getOperand(0);
3710 : } else {
3711 437 : return V;
3712 : }
3713 716 : assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3714 : } while (true);
3715 : }
3716 :
3717 : /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3718 : /// ptrtoint+arithmetic+inttoptr sequences.
3719 : /// It returns false if unidentified object is found in GetUnderlyingObjects.
3720 1864657 : bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3721 : SmallVectorImpl<Value *> &Objects,
3722 : const DataLayout &DL) {
3723 : SmallPtrSet<const Value *, 16> Visited;
3724 : SmallVector<const Value *, 4> Working(1, V);
3725 : do {
3726 1864795 : V = Working.pop_back_val();
3727 :
3728 : SmallVector<Value *, 4> Objs;
3729 1864795 : GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3730 :
3731 3500253 : for (Value *V : Objs) {
3732 1866163 : if (!Visited.insert(V).second)
3733 : continue;
3734 221897 : if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3735 : const Value *O =
3736 39901 : getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3737 79802 : if (O->getType()->isPointerTy()) {
3738 138 : Working.push_back(O);
3739 138 : continue;
3740 : }
3741 : }
3742 : // If GetUnderlyingObjects fails to find an identifiable object,
3743 : // getUnderlyingObjectsForCodeGen also fails for safety.
3744 1866025 : if (!isIdentifiedObject(V)) {
3745 : Objects.clear();
3746 : return false;
3747 : }
3748 1635320 : Objects.push_back(const_cast<Value *>(V));
3749 : }
3750 1634090 : } while (!Working.empty());
3751 : return true;
3752 : }
3753 :
3754 : /// Return true if the only users of this pointer are lifetime markers.
3755 3439 : bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3756 3661 : for (const User *U : V->users()) {
3757 : const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3758 : if (!II) return false;
3759 :
3760 3211 : if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3761 : II->getIntrinsicID() != Intrinsic::lifetime_end)
3762 : return false;
3763 : }
3764 : return true;
3765 : }
3766 :
3767 2624712 : bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3768 : const Instruction *CtxI,
3769 : const DominatorTree *DT) {
3770 : const Operator *Inst = dyn_cast<Operator>(V);
3771 : if (!Inst)
3772 : return false;
3773 :
3774 7827955 : for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3775 5203500 : if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3776 2269027 : if (C->canTrap())
3777 : return false;
3778 :
3779 2624455 : switch (Inst->getOpcode()) {
3780 : default:
3781 : return true;
3782 : case Instruction::UDiv:
3783 : case Instruction::URem: {
3784 : // x / y is undefined if y == 0.
3785 : const APInt *V;
3786 3636 : if (match(Inst->getOperand(1), m_APInt(V)))
3787 1174 : return *V != 0;
3788 : return false;
3789 : }
3790 : case Instruction::SDiv:
3791 : case Instruction::SRem: {
3792 : // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3793 : const APInt *Numerator, *Denominator;
3794 2092 : if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3795 : return false;
3796 : // We cannot hoist this division if the denominator is 0.
3797 754 : if (*Denominator == 0)
3798 : return false;
3799 : // It's safe to hoist if the denominator is not 0 or -1.
3800 746 : if (*Denominator != -1)
3801 : return true;
3802 : // At this point we know that the denominator is -1. It is safe to hoist as
3803 : // long we know that the numerator is not INT_MIN.
3804 2 : if (match(Inst->getOperand(0), m_APInt(Numerator)))
3805 0 : return !Numerator->isMinSignedValue();
3806 : // The numerator *might* be MinSignedValue.
3807 : return false;
3808 : }
3809 : case Instruction::Load: {
3810 : const LoadInst *LI = cast<LoadInst>(Inst);
3811 328347 : if (!LI->isUnordered() ||
3812 : // Speculative load may create a race that did not exist in the source.
3813 656662 : LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3814 : // Speculative load may load data from dirty regions.
3815 656612 : LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3816 328297 : LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3817 1263 : return false;
3818 328279 : const DataLayout &DL = LI->getModule()->getDataLayout();
3819 328279 : return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3820 328279 : LI->getAlignment(), DL, CtxI, DT);
3821 : }
3822 : case Instruction::Call: {
3823 : auto *CI = cast<const CallInst>(Inst);
3824 : const Function *Callee = CI->getCalledFunction();
3825 :
3826 : // The called function could have undefined behavior or side-effects, even
3827 : // if marked readnone nounwind.
3828 239744 : return Callee && Callee->isSpeculatable();
3829 : }
3830 418712 : case Instruction::VAArg:
3831 : case Instruction::Alloca:
3832 : case Instruction::Invoke:
3833 : case Instruction::PHI:
3834 : case Instruction::Store:
3835 : case Instruction::Ret:
3836 : case Instruction::Br:
3837 : case Instruction::IndirectBr:
3838 : case Instruction::Switch:
3839 : case Instruction::Unreachable:
3840 : case Instruction::Fence:
3841 : case Instruction::AtomicRMW:
3842 : case Instruction::AtomicCmpXchg:
3843 : case Instruction::LandingPad:
3844 : case Instruction::Resume:
3845 : case Instruction::CatchSwitch:
3846 : case Instruction::CatchPad:
3847 : case Instruction::CatchRet:
3848 : case Instruction::CleanupPad:
3849 : case Instruction::CleanupRet:
3850 418712 : return false; // Misc instructions which have effects
3851 : }
3852 : }
3853 :
3854 3209337 : bool llvm::mayBeMemoryDependent(const Instruction &I) {
3855 3209337 : return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3856 : }
3857 :
3858 10920 : OverflowResult llvm::computeOverflowForUnsignedMul(
3859 : const Value *LHS, const Value *RHS, const DataLayout &DL,
3860 : AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3861 : bool UseInstrInfo) {
3862 : // Multiplying n * m significant bits yields a result of n + m significant
3863 : // bits. If the total number of significant bits does not exceed the
3864 : // result bit width (minus 1), there is no overflow.
3865 : // This means if we have enough leading zero bits in the operands
3866 : // we can guarantee that the result does not overflow.
3867 : // Ref: "Hacker's Delight" by Henry Warren
3868 10920 : unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3869 21840 : KnownBits LHSKnown(BitWidth);
3870 21840 : KnownBits RHSKnown(BitWidth);
3871 10920 : computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3872 : UseInstrInfo);
3873 10920 : computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3874 : UseInstrInfo);
3875 : // Note that underestimating the number of zero bits gives a more
3876 : // conservative answer.
3877 : unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3878 10920 : RHSKnown.countMinLeadingZeros();
3879 : // First handle the easy case: if we have enough zero bits there's
3880 : // definitely no overflow.
3881 10920 : if (ZeroBits >= BitWidth)
3882 : return OverflowResult::NeverOverflows;
3883 :
3884 : // Get the largest possible values for each operand.
3885 10861 : APInt LHSMax = ~LHSKnown.Zero;
3886 10861 : APInt RHSMax = ~RHSKnown.Zero;
3887 :
3888 : // We know the multiply operation doesn't overflow if the maximum values for
3889 : // each operand will not overflow after we multiply them together.
3890 : bool MaxOverflow;
3891 10861 : (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
3892 10861 : if (!MaxOverflow)
3893 : return OverflowResult::NeverOverflows;
3894 :
3895 : // We know it always overflows if multiplying the smallest possible values for
3896 : // the operands also results in overflow.
3897 : bool MinOverflow;
3898 10842 : (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
3899 10842 : if (MinOverflow)
3900 15 : return OverflowResult::AlwaysOverflows;
3901 :
3902 : return OverflowResult::MayOverflow;
3903 : }
3904 :
3905 : OverflowResult
3906 11268 : llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3907 : const DataLayout &DL, AssumptionCache *AC,
3908 : const Instruction *CxtI,
3909 : const DominatorTree *DT, bool UseInstrInfo) {
3910 : // Multiplying n * m significant bits yields a result of n + m significant
3911 : // bits. If the total number of significant bits does not exceed the
3912 : // result bit width (minus 1), there is no overflow.
3913 : // This means if we have enough leading sign bits in the operands
3914 : // we can guarantee that the result does not overflow.
3915 : // Ref: "Hacker's Delight" by Henry Warren
3916 11268 : unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3917 :
3918 : // Note that underestimating the number of sign bits gives a more
3919 : // conservative answer.
3920 11268 : unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3921 11268 : ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3922 :
3923 : // First handle the easy case: if we have enough sign bits there's
3924 : // definitely no overflow.
3925 11268 : if (SignBits > BitWidth + 1)
3926 : return OverflowResult::NeverOverflows;
3927 :
3928 : // There are two ambiguous cases where there can be no overflow:
3929 : // SignBits == BitWidth + 1 and
3930 : // SignBits == BitWidth
3931 : // The second case is difficult to check, therefore we only handle the
3932 : // first case.
3933 11204 : if (SignBits == BitWidth + 1) {
3934 : // It overflows only when both arguments are negative and the true
3935 : // product is exactly the minimum negative number.
3936 : // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
3937 : // For simplicity we just check if at least one side is not negative.
3938 : KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3939 14 : nullptr, UseInstrInfo);
3940 : KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3941 14 : nullptr, UseInstrInfo);
3942 16 : if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
3943 8 : return OverflowResult::NeverOverflows;
3944 : }
3945 : return OverflowResult::MayOverflow;
3946 : }
3947 :
3948 5046983 : OverflowResult llvm::computeOverflowForUnsignedAdd(
3949 : const Value *LHS, const Value *RHS, const DataLayout &DL,
3950 : AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3951 : bool UseInstrInfo) {
3952 : KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3953 10093966 : nullptr, UseInstrInfo);
3954 10087347 : if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3955 : KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3956 12414 : nullptr, UseInstrInfo);
3957 :
3958 7117 : if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
3959 : // The sign bit is set in both cases: this MUST overflow.
3960 : // Create a simple add instruction, and insert it into the struct.
3961 1322 : return OverflowResult::AlwaysOverflows;
3962 : }
3963 :
3964 13467 : if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
3965 : // The sign bit is clear in both cases: this CANNOT overflow.
3966 : // Create a simple add instruction, and insert it into the struct.
3967 : return OverflowResult::NeverOverflows;
3968 : }
3969 : }
3970 :
3971 : return OverflowResult::MayOverflow;
3972 : }
3973 :
3974 : /// Return true if we can prove that adding the two values of the
3975 : /// knownbits will not overflow.
3976 : /// Otherwise return false.
3977 5026616 : static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3978 : const KnownBits &RHSKnown) {
3979 : // Addition of two 2's complement numbers having opposite signs will never
3980 : // overflow.
3981 10053452 : if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3982 1479 : (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3983 : return true;
3984 :
3985 : // If either of the values is known to be non-negative, adding them can only
3986 : // overflow if the second is also non-negative, so we can assume that.
3987 : // Two non-negative numbers will only overflow if there is a carry to the
3988 : // sign bit, so we can check if even when the values are as big as possible
3989 : // there is no overflow to the sign bit.
3990 10051697 : if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3991 9974522 : APInt MaxLHS = ~LHSKnown.Zero;
3992 : MaxLHS.clearSignBit();
3993 9974522 : APInt MaxRHS = ~RHSKnown.Zero;
3994 : MaxRHS.clearSignBit();
3995 : APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3996 : return Result.isSignBitClear();
3997 : }
3998 :
3999 : // If either of the values is known to be negative, adding them can only
4000 : // overflow if the second is also negative, so we can assume that.
4001 : // Two negative number will only overflow if there is no carry to the sign
4002 : // bit, so we can check if even when the values are as small as possible
4003 : // there is overflow to the sign bit.
4004 78384 : if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4005 16654 : APInt MinLHS = LHSKnown.One;
4006 16654 : MinLHS.clearSignBit();
4007 16654 : APInt MinRHS = RHSKnown.One;
4008 16654 : MinRHS.clearSignBit();
4009 : APInt Result = std::move(MinLHS) + std::move(MinRHS);
4010 : return Result.isSignBitSet();
4011 : }
4012 :
4013 : // If we reached here it means that we know nothing about the sign bits.
4014 : // In this case we can't know if there will be an overflow, since by
4015 : // changing the sign bits any two values can be made to overflow.
4016 : return false;
4017 : }
4018 :
4019 5027937 : static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4020 : const Value *RHS,
4021 : const AddOperator *Add,
4022 : const DataLayout &DL,
4023 : AssumptionCache *AC,
4024 : const Instruction *CxtI,
4025 : const DominatorTree *DT) {
4026 5027937 : if (Add && Add->hasNoSignedWrap()) {
4027 : return OverflowResult::NeverOverflows;
4028 : }
4029 :
4030 : // If LHS and RHS each have at least two sign bits, the addition will look
4031 : // like
4032 : //
4033 : // XX..... +
4034 : // YY.....
4035 : //
4036 : // If the carry into the most significant position is 0, X and Y can't both
4037 : // be 1 and therefore the carry out of the addition is also 0.
4038 : //
4039 : // If the carry into the most significant position is 1, X and Y can't both
4040 : // be 0 and therefore the carry out of the addition is also 1.
4041 : //
4042 : // Since the carry into the most significant position is always equal to
4043 : // the carry out of the addition, there is no signed overflow.
4044 5030304 : if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4045 2391 : ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4046 : return OverflowResult::NeverOverflows;
4047 :
4048 10053232 : KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4049 10053232 : KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4050 :
4051 5026616 : if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
4052 : return OverflowResult::NeverOverflows;
4053 :
4054 : // The remaining code needs Add to be available. Early returns if not so.
4055 5026549 : if (!Add)
4056 : return OverflowResult::MayOverflow;
4057 :
4058 : // If the sign of Add is the same as at least one of the operands, this add
4059 : // CANNOT overflow. This is particularly useful when the sum is
4060 : // @llvm.assume'ed non-negative rather than proved so from analyzing its
4061 : // operands.
4062 : bool LHSOrRHSKnownNonNegative =
4063 20 : (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4064 : bool LHSOrRHSKnownNegative =
4065 22 : (LHSKnown.isNegative() || RHSKnown.isNegative());
4066 11 : if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4067 10 : KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4068 10 : if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4069 0 : (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
4070 2 : return OverflowResult::NeverOverflows;
4071 : }
4072 : }
4073 :
4074 : return OverflowResult::MayOverflow;
4075 : }
4076 :
4077 55665 : OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4078 : const Value *RHS,
4079 : const DataLayout &DL,
4080 : AssumptionCache *AC,
4081 : const Instruction *CxtI,
4082 : const DominatorTree *DT) {
4083 : // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4084 111330 : KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4085 111330 : KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4086 55934 : if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4087 16 : return OverflowResult::NeverOverflows;
4088 :
4089 : return OverflowResult::MayOverflow;
4090 : }
4091 :
4092 50695 : OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4093 : const Value *RHS,
4094 : const DataLayout &DL,
4095 : AssumptionCache *AC,
4096 : const Instruction *CxtI,
4097 : const DominatorTree *DT) {
4098 : // If LHS and RHS each have at least two sign bits, the subtraction
4099 : // cannot overflow.
4100 54705 : if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4101 4010 : ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4102 : return OverflowResult::NeverOverflows;
4103 :
4104 100410 : KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4105 :
4106 100410 : KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4107 :
4108 : // Subtraction of two 2's complement numbers having identical signs will
4109 : // never overflow.
4110 100672 : if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4111 3178 : (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4112 55 : return OverflowResult::NeverOverflows;
4113 :
4114 : // TODO: implement logic similar to checkRippleForAdd
4115 : return OverflowResult::MayOverflow;
4116 : }
4117 :
4118 154 : bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4119 : const DominatorTree &DT) {
4120 : #ifndef NDEBUG
4121 : auto IID = II->getIntrinsicID();
4122 : assert((IID == Intrinsic::sadd_with_overflow ||
4123 : IID == Intrinsic::uadd_with_overflow ||
4124 : IID == Intrinsic::ssub_with_overflow ||
4125 : IID == Intrinsic::usub_with_overflow ||
4126 : IID == Intrinsic::smul_with_overflow ||
4127 : IID == Intrinsic::umul_with_overflow) &&
4128 : "Not an overflow intrinsic!");
4129 : #endif
4130 :
4131 : SmallVector<const BranchInst *, 2> GuardingBranches;
4132 : SmallVector<const ExtractValueInst *, 2> Results;
4133 :
4134 462 : for (const User *U : II->users()) {
4135 308 : if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4136 : assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4137 :
4138 308 : if (EVI->getIndices()[0] == 0)
4139 154 : Results.push_back(EVI);
4140 : else {
4141 : assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4142 :
4143 308 : for (const auto *U : EVI->users())
4144 154 : if (const auto *B = dyn_cast<BranchInst>(U)) {
4145 : assert(B->isConditional() && "How else is it using an i1?");
4146 122 : GuardingBranches.push_back(B);
4147 : }
4148 : }
4149 : } else {
4150 : // We are using the aggregate directly in a way we don't want to analyze
4151 : // here (storing it to a global, say).
4152 0 : return false;
4153 : }
4154 : }
4155 :
4156 : auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4157 : BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4158 : if (!NoWrapEdge.isSingleEdge())
4159 : return false;
4160 :
4161 : // Check if all users of the add are provably no-wrap.
4162 : for (const auto *Result : Results) {
4163 : // If the extractvalue itself is not executed on overflow, the we don't
4164 : // need to check each use separately, since domination is transitive.
4165 : if (DT.dominates(NoWrapEdge, Result->getParent()))
4166 : continue;
4167 :
4168 : for (auto &RU : Result->uses())
4169 : if (!DT.dominates(NoWrapEdge, RU))
4170 : return false;
4171 : }
4172 :
4173 : return true;
4174 : };
4175 :
4176 154 : return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4177 : }
4178 :
4179 :
4180 41 : OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4181 : const DataLayout &DL,
4182 : AssumptionCache *AC,
4183 : const Instruction *CxtI,
4184 : const DominatorTree *DT) {
4185 82 : return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4186 41 : Add, DL, AC, CxtI, DT);
4187 : }
4188 :
4189 5027896 : OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4190 : const Value *RHS,
4191 : const DataLayout &DL,
4192 : AssumptionCache *AC,
4193 : const Instruction *CxtI,
4194 : const DominatorTree *DT) {
4195 5027896 : return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4196 : }
4197 :
4198 2469969 : bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4199 : // A memory operation returns normally if it isn't volatile. A volatile
4200 : // operation is allowed to trap.
4201 : //
4202 : // An atomic operation isn't guaranteed to return in a reasonable amount of
4203 : // time because it's possible for another thread to interfere with it for an
4204 : // arbitrary length of time, but programs aren't allowed to rely on that.
4205 : if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4206 361075 : return !LI->isVolatile();
4207 : if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4208 331244 : return !SI->isVolatile();
4209 : if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4210 26 : return !CXI->isVolatile();
4211 : if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4212 76 : return !RMWI->isVolatile();
4213 : if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4214 2215 : return !MII->isVolatile();
4215 :
4216 : // If there is no successor, then execution can't transfer to it.
4217 : if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4218 0 : return !CRI->unwindsToCaller();
4219 : if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4220 0 : return !CatchSwitch->unwindsToCaller();
4221 1775333 : if (isa<ResumeInst>(I))
4222 : return false;
4223 1775316 : if (isa<ReturnInst>(I))
4224 : return false;
4225 1772986 : if (isa<UnreachableInst>(I))
4226 : return false;
4227 :
4228 : // Calls can throw, or contain an infinite loop, or kill the process.
4229 1772967 : if (auto CS = ImmutableCallSite(I)) {
4230 : // Call sites that throw have implicit non-local control flow.
4231 274136 : if (!CS.doesNotThrow())
4232 274136 : return false;
4233 :
4234 : // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4235 : // etc. and thus not return. However, LLVM already assumes that
4236 : //
4237 : // - Thread exiting actions are modeled as writes to memory invisible to
4238 : // the program.
4239 : //
4240 : // - Loops that don't have side effects (side effects are volatile/atomic
4241 : // stores and IO) always terminate (see http://llvm.org/PR965).
4242 : // Furthermore IO itself is also modeled as writes to memory invisible to
4243 : // the program.
4244 : //
4245 : // We rely on those assumptions here, and use the memory effects of the call
4246 : // target as a proxy for checking that it always returns.
4247 :
4248 : // FIXME: This isn't aggressive enough; a call which only writes to a global
4249 : // is guaranteed to return.
4250 280578 : return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4251 263136 : match(I, m_Intrinsic<Intrinsic::assume>()) ||
4252 : match(I, m_Intrinsic<Intrinsic::sideeffect>());
4253 : }
4254 :
4255 : // Other instructions return normally.
4256 1498831 : return true;
4257 : }
4258 :
4259 56360 : bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4260 : // TODO: This is slightly consdervative for invoke instruction since exiting
4261 : // via an exception *is* normal control for them.
4262 784142 : for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4263 743230 : if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4264 : return false;
4265 : return true;
4266 : }
4267 :
4268 6959 : bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4269 : const Loop *L) {
4270 : // The loop header is guaranteed to be executed for every iteration.
4271 : //
4272 : // FIXME: Relax this constraint to cover all basic blocks that are
4273 : // guaranteed to be executed at every iteration.
4274 13918 : if (I->getParent() != L->getHeader()) return false;
4275 :
4276 789251 : for (const Instruction &LI : *L->getHeader()) {
4277 789251 : if (&LI == I) return true;
4278 782732 : if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4279 : }
4280 0 : llvm_unreachable("Instruction not contained in its own parent basic block.");
4281 : }
4282 :
4283 384307 : bool llvm::propagatesFullPoison(const Instruction *I) {
4284 : switch (I->getOpcode()) {
4285 : case Instruction::Add:
4286 : case Instruction::Sub:
4287 : case Instruction::Xor:
4288 : case Instruction::Trunc:
4289 : case Instruction::BitCast:
4290 : case Instruction::AddrSpaceCast:
4291 : case Instruction::Mul:
4292 : case Instruction::Shl:
4293 : case Instruction::GetElementPtr:
4294 : // These operations all propagate poison unconditionally. Note that poison
4295 : // is not any particular value, so xor or subtraction of poison with
4296 : // itself still yields poison, not zero.
4297 : return true;
4298 :
4299 : case Instruction::AShr:
4300 : case Instruction::SExt:
4301 : // For these operations, one bit of the input is replicated across
4302 : // multiple output bits. A replicated poison bit is still poison.
4303 : return true;
4304 :
4305 : case Instruction::ICmp:
4306 : // Comparing poison with any value yields poison. This is why, for
4307 : // instance, x s< (x +nsw 1) can be folded to true.
4308 : return true;
4309 :
4310 : default:
4311 : return false;
4312 : }
4313 : }
4314 :
4315 421346 : const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4316 421346 : switch (I->getOpcode()) {
4317 : case Instruction::Store:
4318 : return cast<StoreInst>(I)->getPointerOperand();
4319 :
4320 : case Instruction::Load:
4321 : return cast<LoadInst>(I)->getPointerOperand();
4322 :
4323 : case Instruction::AtomicCmpXchg:
4324 : return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4325 :
4326 : case Instruction::AtomicRMW:
4327 : return cast<AtomicRMWInst>(I)->getPointerOperand();
4328 :
4329 875 : case Instruction::UDiv:
4330 : case Instruction::SDiv:
4331 : case Instruction::URem:
4332 : case Instruction::SRem:
4333 1750 : return I->getOperand(1);
4334 :
4335 : default:
4336 : return nullptr;
4337 : }
4338 : }
4339 :
4340 56061 : bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4341 : // We currently only look for uses of poison values within the same basic
4342 : // block, as that makes it easier to guarantee that the uses will be
4343 : // executed given that PoisonI is executed.
4344 : //
4345 : // FIXME: Expand this to consider uses beyond the same basic block. To do
4346 : // this, look out for the distinction between post-dominance and strong
4347 : // post-dominance.
4348 56061 : const BasicBlock *BB = PoisonI->getParent();
4349 :
4350 : // Set of instructions that we have proved will yield poison if PoisonI
4351 : // does.
4352 : SmallSet<const Value *, 16> YieldsPoison;
4353 : SmallSet<const BasicBlock *, 4> Visited;
4354 56061 : YieldsPoison.insert(PoisonI);
4355 56061 : Visited.insert(PoisonI->getParent());
4356 :
4357 56061 : BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4358 :
4359 : unsigned Iter = 0;
4360 57853 : while (Iter++ < MaxDepth) {
4361 521677 : for (auto &I : make_range(Begin, End)) {
4362 477407 : if (&I != PoisonI) {
4363 421346 : const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4364 421346 : if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4365 : return true;
4366 409927 : if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4367 : return false;
4368 : }
4369 :
4370 : // Mark poison that propagates from I through uses of I.
4371 463824 : if (YieldsPoison.count(&I)) {
4372 527983 : for (const User *User : I.users()) {
4373 : const Instruction *UserI = cast<Instruction>(User);
4374 299884 : if (propagatesFullPoison(UserI))
4375 200494 : YieldsPoison.insert(User);
4376 : }
4377 : }
4378 : }
4379 :
4380 44270 : if (auto *NextBB = BB->getSingleSuccessor()) {
4381 1914 : if (Visited.insert(NextBB).second) {
4382 : BB = NextBB;
4383 1792 : Begin = BB->getFirstNonPHI()->getIterator();
4384 : End = BB->end();
4385 : continue;
4386 : }
4387 : }
4388 :
4389 : break;
4390 : }
4391 : return false;
4392 : }
4393 :
4394 18334 : static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4395 36668 : if (FMF.noNaNs())
4396 : return true;
4397 :
4398 : if (auto *C = dyn_cast<ConstantFP>(V))
4399 2699 : return !C->isNaN();
4400 :
4401 : if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4402 167 : if (!C->getElementType()->isFloatingPointTy())
4403 : return false;
4404 568 : for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4405 804 : if (C->getElementAsAPFloat(I).isNaN())
4406 : return false;
4407 : }
4408 : return true;
4409 : }
4410 :
4411 : return false;
4412 : }
4413 :
4414 3989 : static bool isKnownNonZero(const Value *V) {
4415 : if (auto *C = dyn_cast<ConstantFP>(V))
4416 1023 : return !C->isZero();
4417 :
4418 : if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4419 69 : if (!C->getElementType()->isFloatingPointTy())
4420 : return false;
4421 274 : for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4422 414 : if (C->getElementAsAPFloat(I).isZero())
4423 : return false;
4424 : }
4425 : return true;
4426 : }
4427 :
4428 : return false;
4429 : }
4430 :
4431 : /// Match clamp pattern for float types without care about NaNs or signed zeros.
4432 : /// Given non-min/max outer cmp/select from the clamp pattern this
4433 : /// function recognizes if it can be substitued by a "canonical" min/max
4434 : /// pattern.
4435 1449 : static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4436 : Value *CmpLHS, Value *CmpRHS,
4437 : Value *TrueVal, Value *FalseVal,
4438 : Value *&LHS, Value *&RHS) {
4439 : // Try to match
4440 : // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4441 : // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4442 : // and return description of the outer Max/Min.
4443 :
4444 : // First, check if select has inverse order:
4445 1449 : if (CmpRHS == FalseVal) {
4446 : std::swap(TrueVal, FalseVal);
4447 10 : Pred = CmpInst::getInversePredicate(Pred);
4448 : }
4449 :
4450 : // Assume success now. If there's no match, callers should not use these anyway.
4451 1449 : LHS = TrueVal;
4452 1449 : RHS = FalseVal;
4453 :
4454 : const APFloat *FC1;
4455 1475 : if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4456 1423 : return {SPF_UNKNOWN, SPNB_NA, false};
4457 :
4458 : const APFloat *FC2;
4459 : switch (Pred) {
4460 : case CmpInst::FCMP_OLT:
4461 : case CmpInst::FCMP_OLE:
4462 : case CmpInst::FCMP_ULT:
4463 : case CmpInst::FCMP_ULE:
4464 : if (match(FalseVal,
4465 4 : m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4466 28 : m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4467 14 : FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4468 10 : return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4469 : break;
4470 : case CmpInst::FCMP_OGT:
4471 : case CmpInst::FCMP_OGE:
4472 : case CmpInst::FCMP_UGT:
4473 : case CmpInst::FCMP_UGE:
4474 : if (match(FalseVal,
4475 4 : m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4476 20 : m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4477 8 : FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4478 8 : return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4479 : break;
4480 : default:
4481 : break;
4482 : }
4483 :
4484 8 : return {SPF_UNKNOWN, SPNB_NA, false};
4485 : }
4486 :
4487 : /// Recognize variations of:
4488 : /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4489 56866 : static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4490 : Value *CmpLHS, Value *CmpRHS,
4491 : Value *TrueVal, Value *FalseVal) {
4492 : // Swap the select operands and predicate to match the patterns below.
4493 56866 : if (CmpRHS != TrueVal) {
4494 56186 : Pred = ICmpInst::getSwappedPredicate(Pred);
4495 : std::swap(TrueVal, FalseVal);
4496 : }
4497 : const APInt *C1;
4498 56866 : if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4499 : const APInt *C2;
4500 : // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4501 861 : if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4502 838 : C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4503 47 : return {SPF_SMAX, SPNB_NA, false};
4504 :
4505 : // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4506 825 : if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4507 815 : C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4508 10 : return {SPF_SMIN, SPNB_NA, false};
4509 :
4510 : // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4511 812 : if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4512 805 : C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4513 7 : return {SPF_UMAX, SPNB_NA, false};
4514 :
4515 : // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4516 1596 : if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4517 798 : C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4518 7 : return {SPF_UMIN, SPNB_NA, false};
4519 : }
4520 56819 : return {SPF_UNKNOWN, SPNB_NA, false};
4521 : }
4522 :
4523 : /// Recognize variations of:
4524 : /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4525 56819 : static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4526 : Value *CmpLHS, Value *CmpRHS,
4527 : Value *TVal, Value *FVal,
4528 : unsigned Depth) {
4529 : // TODO: Allow FP min/max with nnan/nsz.
4530 : assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4531 :
4532 : Value *A, *B;
4533 56819 : SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4534 : if (!SelectPatternResult::isMinOrMax(L.Flavor))
4535 56662 : return {SPF_UNKNOWN, SPNB_NA, false};
4536 :
4537 : Value *C, *D;
4538 157 : SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4539 157 : if (L.Flavor != R.Flavor)
4540 11 : return {SPF_UNKNOWN, SPNB_NA, false};
4541 :
4542 : // We have something like: x Pred y ? min(a, b) : min(c, d).
4543 : // Try to match the compare to the min/max operations of the select operands.
4544 : // First, make sure we have the right compare predicate.
4545 146 : switch (L.Flavor) {
4546 32 : case SPF_SMIN:
4547 32 : if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4548 16 : Pred = ICmpInst::getSwappedPredicate(Pred);
4549 : std::swap(CmpLHS, CmpRHS);
4550 : }
4551 32 : if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4552 : break;
4553 0 : return {SPF_UNKNOWN, SPNB_NA, false};
4554 32 : case SPF_SMAX:
4555 32 : if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4556 16 : Pred = ICmpInst::getSwappedPredicate(Pred);
4557 : std::swap(CmpLHS, CmpRHS);
4558 : }
4559 32 : if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4560 : break;
4561 0 : return {SPF_UNKNOWN, SPNB_NA, false};
4562 36 : case SPF_UMIN:
4563 36 : if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4564 16 : Pred = ICmpInst::getSwappedPredicate(Pred);
4565 : std::swap(CmpLHS, CmpRHS);
4566 : }
4567 36 : if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4568 : break;
4569 0 : return {SPF_UNKNOWN, SPNB_NA, false};
4570 38 : case SPF_UMAX:
4571 38 : if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4572 22 : Pred = ICmpInst::getSwappedPredicate(Pred);
4573 : std::swap(CmpLHS, CmpRHS);
4574 : }
4575 38 : if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4576 : break;
4577 0 : return {SPF_UNKNOWN, SPNB_NA, false};
4578 8 : default:
4579 8 : return {SPF_UNKNOWN, SPNB_NA, false};
4580 : }
4581 :
4582 : // If there is a common operand in the already matched min/max and the other
4583 : // min/max operands match the compare operands (either directly or inverted),
4584 : // then this is min/max of the same flavor.
4585 :
4586 : // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4587 : // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4588 138 : if (D == B) {
4589 56 : if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4590 20 : match(A, m_Not(m_Specific(CmpRHS)))))
4591 36 : return {L.Flavor, SPNB_NA, false};
4592 : }
4593 : // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4594 : // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4595 102 : if (C == B) {
4596 48 : if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4597 16 : match(A, m_Not(m_Specific(CmpRHS)))))
4598 32 : return {L.Flavor, SPNB_NA, false};
4599 : }
4600 : // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4601 : // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4602 70 : if (D == A) {
4603 48 : if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4604 16 : match(B, m_Not(m_Specific(CmpRHS)))))
4605 32 : return {L.Flavor, SPNB_NA, false};
4606 : }
4607 : // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4608 : // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4609 38 : if (C == A) {
4610 54 : if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4611 16 : match(B, m_Not(m_Specific(CmpRHS)))))
4612 38 : return {L.Flavor, SPNB_NA, false};
4613 : }
4614 :
4615 0 : return {SPF_UNKNOWN, SPNB_NA, false};
4616 : }
4617 :
4618 : /// Match non-obvious integer minimum and maximum sequences.
4619 56866 : static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4620 : Value *CmpLHS, Value *CmpRHS,
4621 : Value *TrueVal, Value *FalseVal,
4622 : Value *&LHS, Value *&RHS,
4623 : unsigned Depth) {
4624 : // Assume success. If there's no match, callers should not use these anyway.
4625 56866 : LHS = TrueVal;
4626 56866 : RHS = FalseVal;
4627 :
4628 56866 : SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4629 56866 : if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4630 47 : return SPR;
4631 :
4632 56819 : SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4633 56819 : if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4634 138 : return SPR;
4635 :
4636 56681 : if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4637 48333 : return {SPF_UNKNOWN, SPNB_NA, false};
4638 :
4639 : // Z = X -nsw Y
4640 : // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4641 : // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4642 8348 : if (match(TrueVal, m_Zero()) &&
4643 8348 : match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4644 59 : return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4645 :
4646 : // Z = X -nsw Y
4647 : // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4648 : // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4649 8318 : if (match(FalseVal, m_Zero()) &&
4650 932 : match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4651 322 : return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4652 :
4653 : const APInt *C1;
4654 7997 : if (!match(CmpRHS, m_APInt(C1)))
4655 1815 : return {SPF_UNKNOWN, SPNB_NA, false};
4656 :
4657 : // An unsigned min/max can be written with a signed compare.
4658 : const APInt *C2;
4659 6182 : if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4660 6086 : (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4661 : // Is the sign bit set?
4662 : // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4663 : // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4664 743 : if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4665 298 : C2->isMaxSignedValue())
4666 18 : return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4667 :
4668 : // Is the sign bit clear?
4669 : // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4670 : // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4671 434 : if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4672 33 : C2->isMinSignedValue())
4673 15 : return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4674 : }
4675 :
4676 : // Look through 'not' ops to find disguised signed min/max.
4677 : // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4678 : // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4679 6189 : if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4680 6276 : match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4681 39 : return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4682 :
4683 : // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4684 : // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4685 6145 : if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4686 6187 : match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4687 21 : return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4688 :
4689 6117 : return {SPF_UNKNOWN, SPNB_NA, false};
4690 : }
4691 :
4692 11356959 : bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4693 : assert(X && Y && "Invalid operand");
4694 :
4695 : // X = sub (0, Y) || X = sub nsw (0, Y)
4696 11356959 : if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4697 76231 : (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4698 2763 : return true;
4699 :
4700 : // Y = sub (0, X) || Y = sub nsw (0, X)
4701 11354196 : if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4702 76227 : (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4703 3117 : return true;
4704 :
4705 : // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4706 : Value *A, *B;
4707 11274853 : return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4708 22625932 : match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4709 76226 : (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4710 11351081 : match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4711 : }
4712 :
4713 160516 : static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4714 : FastMathFlags FMF,
4715 : Value *CmpLHS, Value *CmpRHS,
4716 : Value *TrueVal, Value *FalseVal,
4717 : Value *&LHS, Value *&RHS,
4718 : unsigned Depth) {
4719 160516 : LHS = CmpLHS;
4720 160516 : RHS = CmpRHS;
4721 :
4722 : // Signed zero may return inconsistent results between implementations.
4723 : // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4724 : // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4725 : // Therefore, we behave conservatively and only proceed if at least one of the
4726 : // operands is known to not be zero or if we don't care about signed zero.
4727 : switch (Pred) {
4728 : default: break;
4729 : // FIXME: Include OGT/OLT/UGT/ULT.
4730 3847 : case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4731 : case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4732 5659 : if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4733 1812 : !isKnownNonZero(CmpRHS))
4734 1292 : return {SPF_UNKNOWN, SPNB_NA, false};
4735 : }
4736 :
4737 : SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4738 : bool Ordered = false;
4739 :
4740 : // When given one NaN and one non-NaN input:
4741 : // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4742 : // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4743 : // ordered comparison fails), which could be NaN or non-NaN.
4744 : // so here we discover exactly what NaN behavior is required/accepted.
4745 159224 : if (CmpInst::isFPPredicate(Pred)) {
4746 9167 : bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4747 9167 : bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4748 :
4749 9167 : if (LHSSafe && RHSSafe) {
4750 : // Both operands are known non-NaN.
4751 : NaNBehavior = SPNB_RETURNS_ANY;
4752 6537 : } else if (CmpInst::isOrdered(Pred)) {
4753 : // An ordered comparison will return false when given a NaN, so it
4754 : // returns the RHS.
4755 : Ordered = true;
4756 4573 : if (LHSSafe)
4757 : // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4758 : NaNBehavior = SPNB_RETURNS_NAN;
4759 4331 : else if (RHSSafe)
4760 : NaNBehavior = SPNB_RETURNS_OTHER;
4761 : else
4762 : // Completely unsafe.
4763 3116 : return {SPF_UNKNOWN, SPNB_NA, false};
4764 : } else {
4765 : Ordered = false;
4766 : // An unordered comparison will return true when given a NaN, so it
4767 : // returns the LHS.
4768 1964 : if (LHSSafe)
4769 : // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4770 : NaNBehavior = SPNB_RETURNS_OTHER;
4771 1612 : else if (RHSSafe)
4772 : NaNBehavior = SPNB_RETURNS_NAN;
4773 : else
4774 : // Completely unsafe.
4775 632 : return {SPF_UNKNOWN, SPNB_NA, false};
4776 : }
4777 : }
4778 :
4779 155476 : if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4780 : std::swap(CmpLHS, CmpRHS);
4781 21190 : Pred = CmpInst::getSwappedPredicate(Pred);
4782 21190 : if (NaNBehavior == SPNB_RETURNS_NAN)
4783 : NaNBehavior = SPNB_RETURNS_OTHER;
4784 20956 : else if (NaNBehavior == SPNB_RETURNS_OTHER)
4785 : NaNBehavior = SPNB_RETURNS_NAN;
4786 21190 : Ordered = !Ordered;
4787 : }
4788 :
4789 : // ([if]cmp X, Y) ? X : Y
4790 155476 : if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4791 89655 : switch (Pred) {
4792 0 : default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4793 26607 : case ICmpInst::ICMP_UGT:
4794 26607 : case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4795 15022 : case ICmpInst::ICMP_SGT:
4796 15022 : case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4797 31576 : case ICmpInst::ICMP_ULT:
4798 31576 : case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4799 14363 : case ICmpInst::ICMP_SLT:
4800 14363 : case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4801 1092 : case FCmpInst::FCMP_UGT:
4802 : case FCmpInst::FCMP_UGE:
4803 : case FCmpInst::FCMP_OGT:
4804 1092 : case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4805 995 : case FCmpInst::FCMP_ULT:
4806 : case FCmpInst::FCMP_ULE:
4807 : case FCmpInst::FCMP_OLT:
4808 995 : case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4809 : }
4810 : }
4811 :
4812 65821 : if (isKnownNegation(TrueVal, FalseVal)) {
4813 : // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4814 : // match against either LHS or sext(LHS).
4815 : auto MaybeSExtCmpLHS =
4816 6056 : m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4817 : auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4818 : auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4819 : if (match(TrueVal, MaybeSExtCmpLHS)) {
4820 : // Set the return values. If the compare uses the negated value (-X >s 0),
4821 : // swap the return values because the negated value is always 'RHS'.
4822 3129 : LHS = TrueVal;
4823 3129 : RHS = FalseVal;
4824 3129 : if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4825 : std::swap(LHS, RHS);
4826 :
4827 : // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4828 : // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4829 4561 : if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4830 5623 : return {SPF_ABS, SPNB_NA, false};
4831 :
4832 : // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4833 : // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4834 3284 : if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4835 1587 : return {SPF_NABS, SPNB_NA, false};
4836 : }
4837 : else if (match(FalseVal, MaybeSExtCmpLHS)) {
4838 : // Set the return values. If the compare uses the negated value (-X >s 0),
4839 : // swap the return values because the negated value is always 'RHS'.
4840 2776 : LHS = FalseVal;
4841 2776 : RHS = TrueVal;
4842 2776 : if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4843 : std::swap(LHS, RHS);
4844 :
4845 : // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4846 : // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4847 3025 : if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4848 249 : return {SPF_NABS, SPNB_NA, false};
4849 :
4850 : // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4851 : // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4852 4882 : if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4853 2355 : return {SPF_ABS, SPNB_NA, false};
4854 : }
4855 : }
4856 :
4857 60198 : if (CmpInst::isIntPredicate(Pred))
4858 56866 : return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4859 :
4860 : // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4861 : // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4862 : // semantics than minNum. Be conservative in such case.
4863 3332 : if (NaNBehavior != SPNB_RETURNS_ANY ||
4864 51 : (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4865 9 : !isKnownNonZero(CmpRHS)))
4866 1883 : return {SPF_UNKNOWN, SPNB_NA, false};
4867 :
4868 1449 : return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4869 : }
4870 :
4871 : /// Helps to match a select pattern in case of a type mismatch.
4872 : ///
4873 : /// The function processes the case when type of true and false values of a
4874 : /// select instruction differs from type of the cmp instruction operands because
4875 : /// of a cast instruction. The function checks if it is legal to move the cast
4876 : /// operation after "select". If yes, it returns the new second value of
4877 : /// "select" (with the assumption that cast is moved):
4878 : /// 1. As operand of cast instruction when both values of "select" are same cast
4879 : /// instructions.
4880 : /// 2. As restored constant (by applying reverse cast operation) when the first
4881 : /// value of the "select" is a cast operation and the second value is a
4882 : /// constant.
4883 : /// NOTE: We return only the new second value because the first value could be
4884 : /// accessed as operand of cast instruction.
4885 2293 : static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4886 : Instruction::CastOps *CastOp) {
4887 : auto *Cast1 = dyn_cast<CastInst>(V1);
4888 : if (!Cast1)
4889 : return nullptr;
4890 :
4891 214 : *CastOp = Cast1->getOpcode();
4892 : Type *SrcTy = Cast1->getSrcTy();
4893 : if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4894 : // If V1 and V2 are both the same cast from the same type, look through V1.
4895 18 : if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4896 : return Cast2->getOperand(0);
4897 2 : return nullptr;
4898 : }
4899 :
4900 : auto *C = dyn_cast<Constant>(V2);
4901 : if (!C)
4902 : return nullptr;
4903 :
4904 : Constant *CastedTo = nullptr;
4905 122 : switch (*CastOp) {
4906 : case Instruction::ZExt:
4907 86 : if (CmpI->isUnsigned())
4908 86 : CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4909 : break;
4910 : case Instruction::SExt:
4911 1 : if (CmpI->isSigned())
4912 1 : CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4913 : break;
4914 : case Instruction::Trunc:
4915 : Constant *CmpConst;
4916 8 : if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4917 8 : CmpConst->getType() == SrcTy) {
4918 : // Here we have the following case:
4919 : //
4920 : // %cond = cmp iN %x, CmpConst
4921 : // %tr = trunc iN %x to iK
4922 : // %narrowsel = select i1 %cond, iK %t, iK C
4923 : //
4924 : // We can always move trunc after select operation:
4925 : //
4926 : // %cond = cmp iN %x, CmpConst
4927 : // %widesel = select i1 %cond, iN %x, iN CmpConst
4928 : // %tr = trunc iN %widesel to iK
4929 : //
4930 : // Note that C could be extended in any way because we don't care about
4931 : // upper bits after truncation. It can't be abs pattern, because it would
4932 : // look like:
4933 : //
4934 : // select i1 %cond, x, -x.
4935 : //
4936 : // So only min/max pattern could be matched. Such match requires widened C
4937 : // == CmpConst. That is why set widened C = CmpConst, condition trunc
4938 : // CmpConst == C is checked below.
4939 : CastedTo = CmpConst;
4940 : } else {
4941 0 : CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4942 : }
4943 : break;
4944 1 : case Instruction::FPTrunc:
4945 1 : CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4946 1 : break;
4947 4 : case Instruction::FPExt:
4948 4 : CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4949 4 : break;
4950 1 : case Instruction::FPToUI:
4951 1 : CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4952 1 : break;
4953 6 : case Instruction::FPToSI:
4954 6 : CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4955 6 : break;
4956 2 : case Instruction::UIToFP:
4957 2 : CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4958 2 : break;
4959 7 : case Instruction::SIToFP:
4960 7 : CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4961 7 : break;
4962 : default:
4963 : break;
4964 : }
4965 :
4966 116 : if (!CastedTo)
4967 6 : return nullptr;
4968 :
4969 : // Make sure the cast doesn't lose any information.
4970 : Constant *CastedBack =
4971 116 : ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4972 116 : if (CastedBack != C)
4973 90 : return nullptr;
4974 :
4975 : return CastedTo;
4976 : }
4977 :
4978 2733413 : SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4979 : Instruction::CastOps *CastOp,
4980 : unsigned Depth) {
4981 2733413 : if (Depth >= MaxDepth)
4982 11 : return {SPF_UNKNOWN, SPNB_NA, false};
4983 :
4984 : SelectInst *SI = dyn_cast<SelectInst>(V);
4985 2408483 : if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4986 :
4987 : CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4988 24908 : if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4989 :
4990 : CmpInst::Predicate Pred = CmpI->getPredicate();
4991 : Value *CmpLHS = CmpI->getOperand(0);
4992 : Value *CmpRHS = CmpI->getOperand(1);
4993 : Value *TrueVal = SI->getTrueValue();
4994 : Value *FalseVal = SI->getFalseValue();
4995 : FastMathFlags FMF;
4996 300011 : if (isa<FPMathOperator>(CmpI))
4997 12854 : FMF = CmpI->getFastMathFlags();
4998 :
4999 : // Bail out early.
5000 300011 : if (CmpI->isEquality())
5001 139495 : return {SPF_UNKNOWN, SPNB_NA, false};
5002 :
5003 : // Deal with type mismatches.
5004 160516 : if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5005 1160 : if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5006 : // If this is a potential fmin/fmax with a cast to integer, then ignore
5007 : // -0.0 because there is no corresponding integer value.
5008 27 : if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5009 : FMF.setNoSignedZeros();
5010 : return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5011 : cast<CastInst>(TrueVal)->getOperand(0), C,
5012 27 : LHS, RHS, Depth);
5013 : }
5014 1133 : if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5015 : // If this is a potential fmin/fmax with a cast to integer, then ignore
5016 : // -0.0 because there is no corresponding integer value.
5017 7 : if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5018 : FMF.setNoSignedZeros();
5019 : return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5020 : C, cast<CastInst>(FalseVal)->getOperand(0),
5021 7 : LHS, RHS, Depth);
5022 : }
5023 : }
5024 : return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5025 160482 : LHS, RHS, Depth);
5026 : }
5027 :
5028 2043 : CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5029 2043 : if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5030 1750 : if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5031 712 : if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5032 243 : if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5033 16 : if (SPF == SPF_FMINNUM)
5034 20 : return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5035 6 : if (SPF == SPF_FMAXNUM)
5036 11 : return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5037 0 : llvm_unreachable("unhandled!");
5038 : }
5039 :
5040 277 : SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5041 277 : if (SPF == SPF_SMIN) return SPF_SMAX;
5042 136 : if (SPF == SPF_UMIN) return SPF_UMAX;
5043 112 : if (SPF == SPF_SMAX) return SPF_SMIN;
5044 6 : if (SPF == SPF_UMAX) return SPF_UMIN;
5045 0 : llvm_unreachable("unhandled!");
5046 : }
5047 :
5048 17 : CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5049 17 : return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5050 : }
5051 :
5052 : /// Return true if "icmp Pred LHS RHS" is always true.
5053 9870 : static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5054 : const Value *RHS, const DataLayout &DL,
5055 : unsigned Depth) {
5056 : assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5057 9870 : if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5058 : return true;
5059 :
5060 8603 : switch (Pred) {
5061 : default:
5062 : return false;
5063 :
5064 : case CmpInst::ICMP_SLE: {
5065 : const APInt *C;
5066 :
5067 : // LHS s<= LHS +_{nsw} C if C >= 0
5068 3727 : if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5069 8 : return !C->isNegative();
5070 : return false;
5071 : }
5072 :
5073 : case CmpInst::ICMP_ULE: {
5074 : const APInt *C;
5075 :
5076 : // LHS u<= LHS +_{nuw} C for any C
5077 4876 : if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5078 : return true;
5079 :
5080 : // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5081 : auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5082 : const Value *&X,
5083 : const APInt *&CA, const APInt *&CB) {
5084 : if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5085 : match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5086 : return true;
5087 :
5088 : // If X & C == 0 then (X | C) == X +_{nuw} C
5089 : if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5090 : match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5091 : KnownBits Known(CA->getBitWidth());
5092 : computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5093 : /*CxtI*/ nullptr, /*DT*/ nullptr);
5094 : if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5095 : return true;
5096 : }
5097 :
5098 : return false;
5099 4870 : };
5100 :
5101 : const Value *X;
5102 : const APInt *CLHS, *CRHS;
5103 4870 : if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5104 8 : return CLHS->ule(*CRHS);
5105 :
5106 : return false;
5107 : }
5108 : }
5109 : }
5110 :
5111 : /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5112 : /// ALHS ARHS" is true. Otherwise, return None.
5113 : static Optional<bool>
5114 49227 : isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5115 : const Value *ARHS, const Value *BLHS, const Value *BRHS,
5116 : const DataLayout &DL, unsigned Depth) {
5117 49227 : switch (Pred) {
5118 : default:
5119 : return None;
5120 :
5121 3726 : case CmpInst::ICMP_SLT:
5122 : case CmpInst::ICMP_SLE:
5123 4454 : if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5124 728 : isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5125 : return true;
5126 : return None;
5127 :
5128 4875 : case CmpInst::ICMP_ULT:
5129 : case CmpInst::ICMP_ULE:
5130 5416 : if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5131 541 : isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5132 : return true;
5133 : return None;
5134 : }
5135 : }
5136 :
5137 : /// Return true if the operands of the two compares match. IsSwappedOps is true
5138 : /// when the operands match, but are swapped.
5139 : static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5140 : const Value *BLHS, const Value *BRHS,
5141 : bool &IsSwappedOps) {
5142 :
5143 220304 : bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5144 220304 : IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5145 220304 : return IsMatchingOps || IsSwappedOps;
5146 : }
5147 :
5148 : /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
5149 : /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
5150 : /// BRHS" is false. Otherwise, return None if we can't infer anything.
5151 2155 : static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5152 : const Value *ALHS,
5153 : const Value *ARHS,
5154 : CmpInst::Predicate BPred,
5155 : const Value *BLHS,
5156 : const Value *BRHS,
5157 : bool IsSwappedOps) {
5158 : // Canonicalize the operands so they're matching.
5159 2155 : if (IsSwappedOps) {
5160 : std::swap(BLHS, BRHS);
5161 90 : BPred = ICmpInst::getSwappedPredicate(BPred);
5162 : }
5163 2155 : if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5164 : return true;
5165 2106 : if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5166 : return false;
5167 :
5168 : return None;
5169 : }
5170 :
5171 : /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
5172 : /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
5173 : /// C2" is false. Otherwise, return None if we can't infer anything.
5174 : static Optional<bool>
5175 0 : isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
5176 : const ConstantInt *C1,
5177 : CmpInst::Predicate BPred,
5178 : const Value *BLHS, const ConstantInt *C2) {
5179 : assert(ALHS == BLHS && "LHS operands must match.");
5180 : ConstantRange DomCR =
5181 0 : ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5182 : ConstantRange CR =
5183 0 : ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5184 0 : ConstantRange Intersection = DomCR.intersectWith(CR);
5185 0 : ConstantRange Difference = DomCR.difference(CR);
5186 0 : if (Intersection.isEmptySet())
5187 : return false;
5188 0 : if (Difference.isEmptySet())
5189 : return true;
5190 : return None;
5191 : }
5192 :
5193 : /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5194 : /// false. Otherwise, return None if we can't infer anything.
5195 220304 : static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5196 : const ICmpInst *RHS,
5197 : const DataLayout &DL, bool LHSIsTrue,
5198 : unsigned Depth) {
5199 : Value *ALHS = LHS->getOperand(0);
5200 : Value *ARHS = LHS->getOperand(1);
5201 : // The rest of the logic assumes the LHS condition is true. If that's not the
5202 : // case, invert the predicate to make it so.
5203 : ICmpInst::Predicate APred =
5204 220304 : LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5205 :
5206 : Value *BLHS = RHS->getOperand(0);
5207 : Value *BRHS = RHS->getOperand(1);
5208 : ICmpInst::Predicate BPred = RHS->getPredicate();
5209 :
5210 : // Can we infer anything when the two compares have matching operands?
5211 : bool IsSwappedOps;
5212 : if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
5213 2155 : if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5214 2155 : APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
5215 : return Implication;
5216 : // No amount of additional analysis will infer the second condition, so
5217 : // early exit.
5218 : return None;
5219 : }
5220 :
5221 : // Can we infer anything when the LHS operands match and the RHS operands are
5222 : // constants (not necessarily matching)?
5223 218149 : if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5224 14267 : if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5225 : APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
5226 14267 : cast<ConstantInt>(BRHS)))
5227 : return Implication;
5228 : // No amount of additional analysis will infer the second condition, so
5229 : // early exit.
5230 : return None;
5231 : }
5232 :
5233 203882 : if (APred == BPred)
5234 49227 : return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5235 : return None;
5236 : }
5237 :
5238 : /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5239 : /// false. Otherwise, return None if we can't infer anything. We expect the
5240 : /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5241 5153 : static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5242 : const ICmpInst *RHS,
5243 : const DataLayout &DL, bool LHSIsTrue,
5244 : unsigned Depth) {
5245 : // The LHS must be an 'or' or an 'and' instruction.
5246 : assert((LHS->getOpcode() == Instruction::And ||
5247 : LHS->getOpcode() == Instruction::Or) &&
5248 : "Expected LHS to be 'and' or 'or'.");
5249 :
5250 : assert(Depth <= MaxDepth && "Hit recursion limit");
5251 :
5252 : // If the result of an 'or' is false, then we know both legs of the 'or' are
5253 : // false. Similarly, if the result of an 'and' is true, then we know both
5254 : // legs of the 'and' are true.
5255 : Value *ALHS, *ARHS;
5256 5153 : if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5257 3796 : (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5258 : // FIXME: Make this non-recursion.
5259 2734 : if (Optional<bool> Implication =
5260 2734 : isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5261 : return Implication;
5262 2723 : if (Optional<bool> Implication =
5263 2723 : isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5264 : return Implication;
5265 : return None;
5266 : }
5267 : return None;
5268 : }
5269 :
5270 317110 : Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5271 : const DataLayout &DL, bool LHSIsTrue,
5272 : unsigned Depth) {
5273 : // Bail out when we hit the limit.
5274 317110 : if (Depth == MaxDepth)
5275 : return None;
5276 :
5277 : // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5278 : // example.
5279 317094 : if (LHS->getType() != RHS->getType())
5280 : return None;
5281 :
5282 : Type *OpTy = LHS->getType();
5283 : assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5284 :
5285 : // LHS ==> RHS by definition
5286 317022 : if (LHS == RHS)
5287 : return LHSIsTrue;
5288 :
5289 : // FIXME: Extending the code below to handle vectors.
5290 316779 : if (OpTy->isVectorTy())
5291 : return None;
5292 :
5293 : assert(OpTy->isIntegerTy(1) && "implied by above");
5294 :
5295 : // Both LHS and RHS are icmps.
5296 : const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5297 : const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5298 316775 : if (LHSCmp && RHSCmp)
5299 220304 : return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5300 :
5301 : // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
5302 : // an icmp. FIXME: Add support for and/or on the RHS.
5303 : const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5304 96471 : if (LHSBO && RHSCmp) {
5305 5573 : if ((LHSBO->getOpcode() == Instruction::And ||
5306 : LHSBO->getOpcode() == Instruction::Or))
5307 5153 : return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5308 : }
5309 : return None;
5310 : }
|