LCOV - code coverage report
Current view: top level - lib/Bitcode/Writer - ValueEnumerator.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 392 427 91.8 %
Date: 2018-10-20 13:21:21 Functions: 33 36 91.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file implements the ValueEnumerator class.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "ValueEnumerator.h"
      15             : #include "llvm/ADT/DenseMap.h"
      16             : #include "llvm/ADT/SmallVector.h"
      17             : #include "llvm/Config/llvm-config.h"
      18             : #include "llvm/IR/Argument.h"
      19             : #include "llvm/IR/Attributes.h"
      20             : #include "llvm/IR/BasicBlock.h"
      21             : #include "llvm/IR/Constant.h"
      22             : #include "llvm/IR/DebugInfoMetadata.h"
      23             : #include "llvm/IR/DerivedTypes.h"
      24             : #include "llvm/IR/Function.h"
      25             : #include "llvm/IR/GlobalAlias.h"
      26             : #include "llvm/IR/GlobalIFunc.h"
      27             : #include "llvm/IR/GlobalObject.h"
      28             : #include "llvm/IR/GlobalValue.h"
      29             : #include "llvm/IR/GlobalVariable.h"
      30             : #include "llvm/IR/Instruction.h"
      31             : #include "llvm/IR/Instructions.h"
      32             : #include "llvm/IR/Metadata.h"
      33             : #include "llvm/IR/Module.h"
      34             : #include "llvm/IR/Type.h"
      35             : #include "llvm/IR/Use.h"
      36             : #include "llvm/IR/UseListOrder.h"
      37             : #include "llvm/IR/User.h"
      38             : #include "llvm/IR/Value.h"
      39             : #include "llvm/IR/ValueSymbolTable.h"
      40             : #include "llvm/Support/Casting.h"
      41             : #include "llvm/Support/Compiler.h"
      42             : #include "llvm/Support/Debug.h"
      43             : #include "llvm/Support/MathExtras.h"
      44             : #include "llvm/Support/raw_ostream.h"
      45             : #include <algorithm>
      46             : #include <cassert>
      47             : #include <cstddef>
      48             : #include <iterator>
      49             : #include <tuple>
      50             : #include <utility>
      51             : #include <vector>
      52             : 
      53             : using namespace llvm;
      54             : 
      55             : namespace {
      56             : 
      57             : struct OrderMap {
      58             :   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
      59             :   unsigned LastGlobalConstantID = 0;
      60             :   unsigned LastGlobalValueID = 0;
      61             : 
      62        2787 :   OrderMap() = default;
      63             : 
      64           0 :   bool isGlobalConstant(unsigned ID) const {
      65           0 :     return ID <= LastGlobalConstantID;
      66             :   }
      67             : 
      68             :   bool isGlobalValue(unsigned ID) const {
      69        1047 :     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
      70             :   }
      71             : 
      72             :   unsigned size() const { return IDs.size(); }
      73       77048 :   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
      74             : 
      75             :   std::pair<unsigned, bool> lookup(const Value *V) const {
      76       96072 :     return IDs.lookup(V);
      77             :   }
      78             : 
      79             :   void index(const Value *V) {
      80             :     // Explicitly sequence get-size and insert-value operations to avoid UB.
      81       60035 :     unsigned ID = IDs.size() + 1;
      82       60035 :     IDs[V].first = ID;
      83             :   }
      84             : };
      85             : 
      86             : } // end anonymous namespace
      87             : 
      88       66942 : static void orderValue(const Value *V, OrderMap &OM) {
      89       66942 :   if (OM.lookup(V).first)
      90             :     return;
      91             : 
      92             :   if (const Constant *C = dyn_cast<Constant>(V))
      93       19509 :     if (C->getNumOperands() && !isa<GlobalValue>(C))
      94        5711 :       for (const Value *Op : C->operands())
      95        2981 :         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
      96        2061 :           orderValue(Op, OM);
      97             : 
      98             :   // Note: we cannot cache this lookup above, since inserting into the map
      99             :   // changes the map's size, and thus affects the other IDs.
     100       60035 :   OM.index(V);
     101             : }
     102             : 
     103        2787 : static OrderMap orderModule(const Module &M) {
     104             :   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
     105             :   // and ValueEnumerator::incorporateFunction().
     106             :   OrderMap OM;
     107             : 
     108             :   // In the reader, initializers of GlobalValues are set *after* all the
     109             :   // globals have been read.  Rather than awkwardly modeling this behaviour
     110             :   // directly in predictValueUseListOrderImpl(), just assign IDs to
     111             :   // initializers of GlobalValues before GlobalValues themselves to model this
     112             :   // implicitly.
     113        5138 :   for (const GlobalVariable &G : M.globals())
     114        2351 :     if (G.hasInitializer())
     115             :       if (!isa<GlobalValue>(G.getInitializer()))
     116        1724 :         orderValue(G.getInitializer(), OM);
     117        3360 :   for (const GlobalAlias &A : M.aliases())
     118             :     if (!isa<GlobalValue>(A.getAliasee()))
     119         274 :       orderValue(A.getAliasee(), OM);
     120        2818 :   for (const GlobalIFunc &I : M.ifuncs())
     121             :     if (!isa<GlobalValue>(I.getResolver()))
     122           0 :       orderValue(I.getResolver(), OM);
     123        9333 :   for (const Function &F : M) {
     124       13428 :     for (const Use &U : F.operands())
     125         336 :       if (!isa<GlobalValue>(U.get()))
     126         287 :         orderValue(U.get(), OM);
     127             :   }
     128        2787 :   OM.LastGlobalConstantID = OM.size();
     129             : 
     130             :   // Initializers of GlobalValues are processed in
     131             :   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
     132             :   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
     133             :   // by giving IDs in reverse order.
     134             :   //
     135             :   // Since GlobalValues never reference each other directly (just through
     136             :   // initializers), their relative IDs only matter for determining order of
     137             :   // uses in their initializers.
     138        9333 :   for (const Function &F : M)
     139        6546 :     orderValue(&F, OM);
     140        3360 :   for (const GlobalAlias &A : M.aliases())
     141         573 :     orderValue(&A, OM);
     142        2818 :   for (const GlobalIFunc &I : M.ifuncs())
     143          31 :     orderValue(&I, OM);
     144        5138 :   for (const GlobalVariable &G : M.globals())
     145        2351 :     orderValue(&G, OM);
     146        2787 :   OM.LastGlobalValueID = OM.size();
     147             : 
     148        9333 :   for (const Function &F : M) {
     149        6546 :     if (F.isDeclaration())
     150             :       continue;
     151             :     // Here we need to match the union of ValueEnumerator::incorporateFunction()
     152             :     // and WriteFunction().  Basic blocks are implicitly declared before
     153             :     // anything else (by declaring their size).
     154       13265 :     for (const BasicBlock &BB : F)
     155        8553 :       orderValue(&BB, OM);
     156        7877 :     for (const Argument &A : F.args())
     157        3165 :       orderValue(&A, OM);
     158       13265 :     for (const BasicBlock &BB : F)
     159       37308 :       for (const Instruction &I : BB)
     160      104225 :         for (const Value *Op : I.operands())
     161       52491 :           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
     162             :               isa<InlineAsm>(*Op))
     163       12622 :             orderValue(Op, OM);
     164       13265 :     for (const BasicBlock &BB : F)
     165       37308 :       for (const Instruction &I : BB)
     166       28755 :         orderValue(&I, OM);
     167             :   }
     168        2787 :   return OM;
     169             : }
     170             : 
     171        7114 : static void predictValueUseListOrderImpl(const Value *V, const Function *F,
     172             :                                          unsigned ID, const OrderMap &OM,
     173             :                                          UseListOrderStack &Stack) {
     174             :   // Predict use-list order for this one.
     175             :   using Entry = std::pair<const Use *, unsigned>;
     176             :   SmallVector<Entry, 64> List;
     177       36244 :   for (const Use &U : V->uses())
     178             :     // Check if this user will be serialized.
     179       29130 :     if (OM.lookup(U.getUser()).first)
     180       57488 :       List.push_back(std::make_pair(&U, List.size()));
     181             : 
     182       14228 :   if (List.size() < 2)
     183             :     // We may have lost some users.
     184             :     return;
     185             : 
     186        7884 :   bool IsGlobalValue = OM.isGlobalValue(ID);
     187             :   llvm::sort(List, [&](const Entry &L, const Entry &R) {
     188             :     const Use *LU = L.first;
     189             :     const Use *RU = R.first;
     190             :     if (LU == RU)
     191             :       return false;
     192             : 
     193             :     auto LID = OM.lookup(LU->getUser()).first;
     194             :     auto RID = OM.lookup(RU->getUser()).first;
     195             : 
     196             :     // Global values are processed in reverse order.
     197             :     //
     198             :     // Moreover, initializers of GlobalValues are set *after* all the globals
     199             :     // have been read (despite having earlier IDs).  Rather than awkwardly
     200             :     // modeling this behaviour here, orderModule() has assigned IDs to
     201             :     // initializers of GlobalValues before GlobalValues themselves.
     202             :     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
     203             :       return LID < RID;
     204             : 
     205             :     // If ID is 4, then expect: 7 6 5 1 2 3.
     206             :     if (LID < RID) {
     207             :       if (RID <= ID)
     208             :         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
     209             :           return true;
     210             :       return false;
     211             :     }
     212             :     if (RID < LID) {
     213             :       if (LID <= ID)
     214             :         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
     215             :           return false;
     216             :       return true;
     217             :     }
     218             : 
     219             :     // LID and RID are equal, so we have different operands of the same user.
     220             :     // Assume operands are added in order for all instructions.
     221             :     if (LID <= ID)
     222             :       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
     223             :         return LU->getOperandNo() < RU->getOperandNo();
     224             :     return LU->getOperandNo() > RU->getOperandNo();
     225             :   });
     226             : 
     227        6837 :   if (std::is_sorted(
     228             :           List.begin(), List.end(),
     229           0 :           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
     230             :     // Order is already correct.
     231             :     return;
     232             : 
     233             :   // Store the shuffle.
     234        1552 :   Stack.emplace_back(V, F, List.size());
     235             :   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
     236       11415 :   for (size_t I = 0, E = List.size(); I != E; ++I)
     237       19726 :     Stack.back().Shuffle[I] = List[I].second;
     238             : }
     239             : 
     240       77048 : static void predictValueUseListOrder(const Value *V, const Function *F,
     241             :                                      OrderMap &OM, UseListOrderStack &Stack) {
     242       77048 :   auto &IDPair = OM[V];
     243             :   assert(IDPair.first && "Unmapped value");
     244       77048 :   if (IDPair.second)
     245             :     // Already predicted.
     246             :     return;
     247             : 
     248             :   // Do the actual prediction.
     249       60035 :   IDPair.second = true;
     250       90537 :   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
     251        7114 :     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
     252             : 
     253             :   // Recursive descent into constants.
     254             :   if (const Constant *C = dyn_cast<Constant>(V))
     255       19509 :     if (C->getNumOperands()) // Visit GlobalValues.
     256       13873 :       for (const Value *Op : C->operands())
     257        5851 :         if (isa<Constant>(Op)) // Visit GlobalValues.
     258        5806 :           predictValueUseListOrder(Op, F, OM, Stack);
     259             : }
     260             : 
     261        2787 : static UseListOrderStack predictUseListOrder(const Module &M) {
     262        2787 :   OrderMap OM = orderModule(M);
     263             : 
     264             :   // Use-list orders need to be serialized after all the users have been added
     265             :   // to a value, or else the shuffles will be incomplete.  Store them per
     266             :   // function in a stack.
     267             :   //
     268             :   // Aside from function order, the order of values doesn't matter much here.
     269             :   UseListOrderStack Stack;
     270             : 
     271             :   // We want to visit the functions backward now so we can list function-local
     272             :   // constants in the last Function they're used in.  Module-level constants
     273             :   // have already been visited above.
     274        9333 :   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
     275             :     const Function &F = *I;
     276        6546 :     if (F.isDeclaration())
     277             :       continue;
     278       13265 :     for (const BasicBlock &BB : F)
     279        8553 :       predictValueUseListOrder(&BB, &F, OM, Stack);
     280        7877 :     for (const Argument &A : F.args())
     281        3165 :       predictValueUseListOrder(&A, &F, OM, Stack);
     282       13265 :     for (const BasicBlock &BB : F)
     283       37308 :       for (const Instruction &I : BB)
     284      104225 :         for (const Value *Op : I.operands())
     285       46715 :           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
     286       18398 :             predictValueUseListOrder(Op, &F, OM, Stack);
     287       13265 :     for (const BasicBlock &BB : F)
     288       37308 :       for (const Instruction &I : BB)
     289       28755 :         predictValueUseListOrder(&I, &F, OM, Stack);
     290             :   }
     291             : 
     292             :   // Visit globals last, since the module-level use-list block will be seen
     293             :   // before the function bodies are processed.
     294        5138 :   for (const GlobalVariable &G : M.globals())
     295        2351 :     predictValueUseListOrder(&G, nullptr, OM, Stack);
     296        9333 :   for (const Function &F : M)
     297        6546 :     predictValueUseListOrder(&F, nullptr, OM, Stack);
     298        3360 :   for (const GlobalAlias &A : M.aliases())
     299         573 :     predictValueUseListOrder(&A, nullptr, OM, Stack);
     300        2818 :   for (const GlobalIFunc &I : M.ifuncs())
     301          31 :     predictValueUseListOrder(&I, nullptr, OM, Stack);
     302        5138 :   for (const GlobalVariable &G : M.globals())
     303        2351 :     if (G.hasInitializer())
     304        1930 :       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
     305        3360 :   for (const GlobalAlias &A : M.aliases())
     306         573 :     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
     307        2818 :   for (const GlobalIFunc &I : M.ifuncs())
     308          31 :     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
     309        9333 :   for (const Function &F : M) {
     310       13428 :     for (const Use &U : F.operands())
     311         336 :       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
     312             :   }
     313             : 
     314        2787 :   return Stack;
     315             : }
     316             : 
     317       19944 : static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
     318       19944 :   return V.first->getType()->isIntOrIntVectorTy();
     319             : }
     320             : 
     321        4717 : ValueEnumerator::ValueEnumerator(const Module &M,
     322        4717 :                                  bool ShouldPreserveUseListOrder)
     323        9434 :     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
     324        4717 :   if (ShouldPreserveUseListOrder)
     325        5574 :     UseListOrders = predictUseListOrder(M);
     326             : 
     327             :   // Enumerate the global variables.
     328       14760 :   for (const GlobalVariable &GV : M.globals())
     329       10043 :     EnumerateValue(&GV);
     330             : 
     331             :   // Enumerate the functions.
     332       21330 :   for (const Function & F : M) {
     333       16613 :     EnumerateValue(&F);
     334       16613 :     EnumerateAttributes(F.getAttributes());
     335             :   }
     336             : 
     337             :   // Enumerate the aliases.
     338        5502 :   for (const GlobalAlias &GA : M.aliases())
     339         785 :     EnumerateValue(&GA);
     340             : 
     341             :   // Enumerate the ifuncs.
     342        4748 :   for (const GlobalIFunc &GIF : M.ifuncs())
     343          31 :     EnumerateValue(&GIF);
     344             : 
     345             :   // Remember what is the cutoff between globalvalue's and other constants.
     346        9434 :   unsigned FirstConstant = Values.size();
     347             : 
     348             :   // Enumerate the global variable initializers and attributes.
     349       14760 :   for (const GlobalVariable &GV : M.globals()) {
     350       10043 :     if (GV.hasInitializer())
     351        8431 :       EnumerateValue(GV.getInitializer());
     352       10043 :     if (GV.hasAttributes())
     353          12 :       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
     354             :   }
     355             : 
     356             :   // Enumerate the aliasees.
     357        5502 :   for (const GlobalAlias &GA : M.aliases())
     358         785 :     EnumerateValue(GA.getAliasee());
     359             : 
     360             :   // Enumerate the ifunc resolvers.
     361        4748 :   for (const GlobalIFunc &GIF : M.ifuncs())
     362          31 :     EnumerateValue(GIF.getResolver());
     363             : 
     364             :   // Enumerate any optional Function data.
     365       21330 :   for (const Function &F : M)
     366       33661 :     for (const Use &U : F.operands())
     367         435 :       EnumerateValue(U.get());
     368             : 
     369             :   // Enumerate the metadata type.
     370             :   //
     371             :   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
     372             :   // only encodes the metadata type when it's used as a value.
     373        4717 :   EnumerateType(Type::getMetadataTy(M.getContext()));
     374             : 
     375             :   // Insert constants and metadata that are named at module level into the slot
     376             :   // pool so that the module symbol table can refer to them...
     377        4717 :   EnumerateValueSymbolTable(M.getValueSymbolTable());
     378        4717 :   EnumerateNamedMetadata(M);
     379             : 
     380             :   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
     381       14760 :   for (const GlobalVariable &GV : M.globals()) {
     382             :     MDs.clear();
     383       10043 :     GV.getAllMetadata(MDs);
     384       10203 :     for (const auto &I : MDs)
     385             :       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
     386             :       // to write metadata to the global variable's own metadata block
     387             :       // (PR28134).
     388         160 :       EnumerateMetadata(nullptr, I.second);
     389             :   }
     390             : 
     391             :   // Enumerate types used by function bodies and argument lists.
     392       21330 :   for (const Function &F : M) {
     393       36110 :     for (const Argument &A : F.args())
     394       19497 :       EnumerateType(A.getType());
     395             : 
     396             :     // Enumerate metadata attached to this function.
     397             :     MDs.clear();
     398       16613 :     F.getAllMetadata(MDs);
     399       17087 :     for (const auto &I : MDs)
     400         935 :       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
     401             : 
     402       46719 :     for (const BasicBlock &BB : F)
     403      207142 :       for (const Instruction &I : BB) {
     404      649169 :         for (const Use &Op : I.operands()) {
     405             :           auto *MD = dyn_cast<MetadataAsValue>(&Op);
     406             :           if (!MD) {
     407      294165 :             EnumerateOperandType(Op);
     408      294165 :             continue;
     409             :           }
     410             : 
     411             :           // Local metadata is enumerated during function-incorporation.
     412        1864 :           if (isa<LocalAsMetadata>(MD->getMetadata()))
     413             :             continue;
     414             : 
     415         678 :           EnumerateMetadata(&F, MD->getMetadata());
     416             :         }
     417      177036 :         EnumerateType(I.getType());
     418             :         if (const CallInst *CI = dyn_cast<CallInst>(&I))
     419       16315 :           EnumerateAttributes(CI->getAttributes());
     420             :         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
     421         159 :           EnumerateAttributes(II->getAttributes());
     422             : 
     423             :         // Enumerate metadata attached with this instruction.
     424             :         MDs.clear();
     425             :         I.getAllMetadataOtherThanDebugLoc(MDs);
     426      183246 :         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
     427       12420 :           EnumerateMetadata(&F, MDs[i].second);
     428             : 
     429             :         // Don't enumerate the location directly -- it has a special record
     430             :         // type -- but enumerate its operands.
     431      177036 :         if (DILocation *L = I.getDebugLoc())
     432        4320 :           for (const Metadata *Op : L->operands())
     433        2172 :             EnumerateMetadata(&F, Op);
     434             :       }
     435             :   }
     436             : 
     437             :   // Optimize constant ordering.
     438        9434 :   OptimizeConstants(FirstConstant, Values.size());
     439             : 
     440             :   // Organize metadata ordering.
     441        4717 :   organizeMetadata();
     442        4717 : }
     443             : 
     444        6110 : unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
     445        6110 :   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
     446             :   assert(I != InstructionMap.end() && "Instruction is not mapped!");
     447        6110 :   return I->second;
     448             : }
     449             : 
     450        2662 : unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
     451             :   unsigned ComdatID = Comdats.idFor(C);
     452             :   assert(ComdatID && "Comdat not found!");
     453        2662 :   return ComdatID;
     454             : }
     455             : 
     456      177019 : void ValueEnumerator::setInstructionID(const Instruction *I) {
     457      177019 :   InstructionMap[I] = InstructionCount++;
     458      177019 : }
     459             : 
     460      468391 : unsigned ValueEnumerator::getValueID(const Value *V) const {
     461             :   if (auto *MD = dyn_cast<MetadataAsValue>(V))
     462         932 :     return getMetadataID(MD->getMetadata());
     463             : 
     464      467459 :   ValueMapType::const_iterator I = ValueMap.find(V);
     465             :   assert(I != ValueMap.end() && "Value not in slotcalculator!");
     466      467459 :   return I->second-1;
     467             : }
     468             : 
     469             : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     470             : LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
     471             :   print(dbgs(), ValueMap, "Default");
     472             :   dbgs() << '\n';
     473             :   print(dbgs(), MetadataMap, "MetaData");
     474             :   dbgs() << '\n';
     475             : }
     476             : #endif
     477             : 
     478           0 : void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
     479             :                             const char *Name) const {
     480           0 :   OS << "Map Name: " << Name << "\n";
     481           0 :   OS << "Size: " << Map.size() << "\n";
     482           0 :   for (ValueMapType::const_iterator I = Map.begin(),
     483           0 :          E = Map.end(); I != E; ++I) {
     484           0 :     const Value *V = I->first;
     485           0 :     if (V->hasName())
     486           0 :       OS << "Value: " << V->getName();
     487             :     else
     488           0 :       OS << "Value: [null]\n";
     489           0 :     V->print(errs());
     490           0 :     errs() << '\n';
     491             : 
     492           0 :     OS << " Uses(" << V->getNumUses() << "):";
     493           0 :     for (const Use &U : V->uses()) {
     494           0 :       if (&U != &*V->use_begin())
     495           0 :         OS << ",";
     496           0 :       if(U->hasName())
     497           0 :         OS << " " << U->getName();
     498             :       else
     499           0 :         OS << " [null]";
     500             : 
     501             :     }
     502           0 :     OS <<  "\n\n";
     503             :   }
     504           0 : }
     505             : 
     506           0 : void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
     507             :                             const char *Name) const {
     508           0 :   OS << "Map Name: " << Name << "\n";
     509           0 :   OS << "Size: " << Map.size() << "\n";
     510           0 :   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
     511           0 :     const Metadata *MD = I->first;
     512           0 :     OS << "Metadata: slot = " << I->second.ID << "\n";
     513           0 :     OS << "Metadata: function = " << I->second.F << "\n";
     514           0 :     MD->print(OS);
     515           0 :     OS << "\n";
     516             :   }
     517           0 : }
     518             : 
     519             : /// OptimizeConstants - Reorder constant pool for denser encoding.
     520       16895 : void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
     521       16895 :   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
     522             : 
     523        4612 :   if (ShouldPreserveUseListOrder)
     524             :     // Optimizing constants makes the use-list order difficult to predict.
     525             :     // Disable it for now when trying to preserve the order.
     526             :     return;
     527             : 
     528        2786 :   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
     529             :                    [this](const std::pair<const Value *, unsigned> &LHS,
     530             :                           const std::pair<const Value *, unsigned> &RHS) {
     531             :     // Sort by plane.
     532             :     if (LHS.first->getType() != RHS.first->getType())
     533             :       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
     534             :     // Then by frequency.
     535             :     return LHS.second > RHS.second;
     536             :   });
     537             : 
     538             :   // Ensure that integer and vector of integer constants are at the start of the
     539             :   // constant pool.  This is important so that GEP structure indices come before
     540             :   // gep constant exprs.
     541             :   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
     542        2786 :                         isIntOrIntVectorValue);
     543             : 
     544             :   // Rebuild the modified portion of ValueMap.
     545       22730 :   for (; CstStart != CstEnd; ++CstStart)
     546       39888 :     ValueMap[Values[CstStart].first] = CstStart+1;
     547             : }
     548             : 
     549             : /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
     550             : /// table into the values table.
     551        4717 : void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
     552             :   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
     553       31661 :        VI != VE; ++VI)
     554       26944 :     EnumerateValue(VI->getValue());
     555        4717 : }
     556             : 
     557             : /// Insert all of the values referenced by named metadata in the specified
     558             : /// module.
     559        4717 : void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
     560        7233 :   for (const auto &I : M.named_metadata())
     561        2516 :     EnumerateNamedMDNode(&I);
     562        4717 : }
     563             : 
     564        2516 : void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
     565        8151 :   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
     566        5635 :     EnumerateMetadata(nullptr, MD->getOperand(i));
     567        2516 : }
     568             : 
     569       15583 : unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
     570       15583 :   return F ? getValueID(F) + 1 : 0;
     571             : }
     572             : 
     573       15329 : void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
     574       15329 :   EnumerateMetadata(getMetadataFunctionID(F), MD);
     575       15329 : }
     576             : 
     577         254 : void ValueEnumerator::EnumerateFunctionLocalMetadata(
     578             :     const Function &F, const LocalAsMetadata *Local) {
     579         254 :   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
     580         254 : }
     581             : 
     582         275 : void ValueEnumerator::dropFunctionFromMetadata(
     583             :     MetadataMapType::value_type &FirstMD) {
     584             :   SmallVector<const MDNode *, 64> Worklist;
     585             :   auto push = [&Worklist](MetadataMapType::value_type &MD) {
     586             :     auto &Entry = MD.second;
     587             : 
     588             :     // Nothing to do if this metadata isn't tagged.
     589             :     if (!Entry.F)
     590             :       return;
     591             : 
     592             :     // Drop the function tag.
     593             :     Entry.F = 0;
     594             : 
     595             :     // If this is has an ID and is an MDNode, then its operands have entries as
     596             :     // well.  We need to drop the function from them too.
     597             :     if (Entry.ID)
     598             :       if (auto *N = dyn_cast<MDNode>(MD.first))
     599             :         Worklist.push_back(N);
     600         275 :   };
     601         275 :   push(FirstMD);
     602         568 :   while (!Worklist.empty())
     603        1150 :     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
     604         857 :       if (!Op)
     605         319 :         continue;
     606         538 :       auto MD = MetadataMap.find(Op);
     607         538 :       if (MD != MetadataMap.end())
     608         538 :         push(*MD);
     609             :     }
     610         275 : }
     611             : 
     612       15329 : void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
     613             :   // It's vital for reader efficiency that uniqued subgraphs are done in
     614             :   // post-order; it's expensive when their operands have forward references.
     615             :   // If a distinct node is referenced from a uniqued node, it'll be delayed
     616             :   // until the uniqued subgraph has been completely traversed.
     617             :   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
     618             : 
     619             :   // Start by enumerating MD, and then work through its transitive operands in
     620             :   // post-order.  This requires a depth-first search.
     621             :   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
     622       15329 :   if (const MDNode *N = enumerateMetadataImpl(F, MD))
     623        7642 :     Worklist.push_back(std::make_pair(N, N->op_begin()));
     624             : 
     625       33673 :   while (!Worklist.empty()) {
     626       18344 :     const MDNode *N = Worklist.back().first;
     627             : 
     628             :     // Enumerate operands until we hit a new node.  We need to traverse these
     629             :     // nodes' operands before visiting the rest of N's operands.
     630       18344 :     MDNode::op_iterator I = std::find_if(
     631             :         Worklist.back().second, N->op_end(),
     632           0 :         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
     633       18344 :     if (I != N->op_end()) {
     634             :       auto *Op = cast<MDNode>(*I);
     635       10702 :       Worklist.back().second = ++I;
     636             : 
     637             :       // Delay traversing Op if it's a distinct node and N is uniqued.
     638        5351 :       if (Op->isDistinct() && !N->isDistinct())
     639         544 :         DelayedDistinctNodes.push_back(Op);
     640             :       else
     641        4807 :         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
     642             :       continue;
     643             :     }
     644             : 
     645             :     // All the operands have been visited.  Now assign an ID.
     646             :     Worklist.pop_back();
     647       12993 :     MDs.push_back(N);
     648       25986 :     MetadataMap[N].ID = MDs.size();
     649             : 
     650             :     // Flush out any delayed distinct nodes; these are all the distinct nodes
     651             :     // that are leaves in last uniqued subgraph.
     652       12993 :     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
     653       10422 :       for (const MDNode *N : DelayedDistinctNodes)
     654         544 :         Worklist.push_back(std::make_pair(N, N->op_begin()));
     655             :       DelayedDistinctNodes.clear();
     656             :     }
     657             :   }
     658       15329 : }
     659             : 
     660       63593 : const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
     661       63593 :   if (!MD)
     662             :     return nullptr;
     663             : 
     664             :   assert(
     665             :       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
     666             :       "Invalid metadata kind");
     667             : 
     668       50378 :   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
     669             :   MDIndex &Entry = Insertion.first->second;
     670       50378 :   if (!Insertion.second) {
     671             :     // Already mapped.  If F doesn't match the function tag, drop it.
     672       22235 :     if (Entry.hasDifferentFunction(F))
     673         275 :       dropFunctionFromMetadata(*Insertion.first);
     674       22235 :     return nullptr;
     675             :   }
     676             : 
     677             :   // Don't assign IDs to metadata nodes.
     678       28143 :   if (auto *N = dyn_cast<MDNode>(MD))
     679             :     return N;
     680             : 
     681             :   // Save the metadata.
     682       15150 :   MDs.push_back(MD);
     683       15150 :   Entry.ID = MDs.size();
     684             : 
     685             :   // Enumerate the constant, if any.
     686       15150 :   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
     687        7021 :     EnumerateValue(C->getValue());
     688             : 
     689             :   return nullptr;
     690             : }
     691             : 
     692             : /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
     693             : /// information reachable from the metadata.
     694         254 : void ValueEnumerator::EnumerateFunctionLocalMetadata(
     695             :     unsigned F, const LocalAsMetadata *Local) {
     696             :   assert(F && "Expected a function");
     697             : 
     698             :   // Check to see if it's already in!
     699         254 :   MDIndex &Index = MetadataMap[Local];
     700         254 :   if (Index.ID) {
     701             :     assert(Index.F == F && "Expected the same function");
     702             :     return;
     703             :   }
     704             : 
     705         251 :   MDs.push_back(Local);
     706         251 :   Index.F = F;
     707         251 :   Index.ID = MDs.size();
     708             : 
     709         251 :   EnumerateValue(Local->getValue());
     710             : }
     711             : 
     712             : static unsigned getMetadataTypeOrder(const Metadata *MD) {
     713             :   // Strings are emitted in bulk and must come first.
     714             :   if (isa<MDString>(MD))
     715             :     return 0;
     716             : 
     717             :   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
     718             :   // to the front since we can detect it.
     719             :   auto *N = dyn_cast<MDNode>(MD);
     720             :   if (!N)
     721             :     return 1;
     722             : 
     723             :   // The reader is fast forward references for distinct node operands, but slow
     724             :   // when uniqued operands are unresolved.
     725             :   return N->isDistinct() ? 2 : 3;
     726             : }
     727             : 
     728        4717 : void ValueEnumerator::organizeMetadata() {
     729             :   assert(MetadataMap.size() == MDs.size() &&
     730             :          "Metadata map and vector out of sync");
     731             : 
     732        4717 :   if (MDs.empty())
     733        4100 :     return;
     734             : 
     735             :   // Copy out the index information from MetadataMap in order to choose a new
     736             :   // order.
     737             :   SmallVector<MDIndex, 64> Order;
     738        1364 :   Order.reserve(MetadataMap.size());
     739       29507 :   for (const Metadata *MD : MDs)
     740       28143 :     Order.push_back(MetadataMap.lookup(MD));
     741             : 
     742             :   // Partition:
     743             :   //   - by function, then
     744             :   //   - by isa<MDString>
     745             :   // and then sort by the original/current ID.  Since the IDs are guaranteed to
     746             :   // be unique, the result of std::sort will be deterministic.  There's no need
     747             :   // for std::stable_sort.
     748             :   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
     749             :     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
     750             :            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
     751             :   });
     752             : 
     753             :   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
     754             :   // and fix up MetadataMap.
     755        1364 :   std::vector<const Metadata *> OldMDs = std::move(MDs);
     756        1364 :   MDs.reserve(OldMDs.size());
     757       22614 :   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
     758       21250 :     auto *MD = Order[I].get(OldMDs);
     759       21250 :     MDs.push_back(MD);
     760       21250 :     MetadataMap[MD].ID = I + 1;
     761       42500 :     if (isa<MDString>(MD))
     762        5918 :       ++NumMDStrings;
     763             :   }
     764             : 
     765             :   // Return early if there's nothing for the functions.
     766        4092 :   if (MDs.size() == Order.size())
     767             :     return;
     768             : 
     769             :   // Build the function metadata ranges.
     770             :   MDRange R;
     771         617 :   FunctionMDs.reserve(OldMDs.size());
     772         617 :   unsigned PrevF = 0;
     773        8127 :   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
     774             :        ++I) {
     775        6893 :     unsigned F = Order[I].F;
     776        6893 :     if (!PrevF) {
     777         617 :       PrevF = F;
     778        6276 :     } else if (PrevF != F) {
     779         797 :       R.Last = FunctionMDs.size();
     780         797 :       std::swap(R, FunctionMDInfo[PrevF]);
     781         797 :       R.First = FunctionMDs.size();
     782             : 
     783         797 :       ID = MDs.size();
     784         797 :       PrevF = F;
     785             :     }
     786             : 
     787        6893 :     auto *MD = Order[I].get(OldMDs);
     788        6893 :     FunctionMDs.push_back(MD);
     789        6893 :     MetadataMap[MD].ID = ++ID;
     790       13786 :     if (isa<MDString>(MD))
     791        2211 :       ++R.NumStrings;
     792             :   }
     793         617 :   R.Last = FunctionMDs.size();
     794         617 :   FunctionMDInfo[PrevF] = R;
     795             : }
     796             : 
     797       12178 : void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
     798       12178 :   NumModuleMDs = MDs.size();
     799             : 
     800       12178 :   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
     801       12178 :   NumMDStrings = R.NumStrings;
     802       12178 :   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
     803       24356 :              FunctionMDs.begin() + R.Last);
     804       12178 : }
     805             : 
     806      294377 : void ValueEnumerator::EnumerateValue(const Value *V) {
     807             :   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
     808             :   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
     809             : 
     810             :   // Check to see if it's already in!
     811      294377 :   unsigned &ValueID = ValueMap[V];
     812      294377 :   if (ValueID) {
     813             :     // Increment use count.
     814      117082 :     Values[ValueID-1].second++;
     815      117082 :     return;
     816             :   }
     817             : 
     818      177295 :   if (auto *GO = dyn_cast<GlobalObject>(V))
     819       26656 :     if (const Comdat *C = GO->getComdat())
     820        2662 :       Comdats.insert(C);
     821             : 
     822             :   // Enumerate the type of this value.
     823      177295 :   EnumerateType(V->getType());
     824             : 
     825      177295 :   if (const Constant *C = dyn_cast<Constant>(V)) {
     826             :     if (isa<GlobalValue>(C)) {
     827             :       // Initializers for globals are handled explicitly elsewhere.
     828       35258 :     } else if (C->getNumOperands()) {
     829             :       // If a constant has operands, enumerate them.  This makes sure that if a
     830             :       // constant has uses (for example an array of const ints), that they are
     831             :       // inserted also.
     832             : 
     833             :       // We prefer to enumerate them with values before we enumerate the user
     834             :       // itself.  This makes it more likely that we can avoid forward references
     835             :       // in the reader.  We know that there can be no cycles in the constants
     836             :       // graph that don't go through a global variable.
     837       33955 :       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
     838       33955 :            I != E; ++I)
     839       24187 :         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
     840       24103 :           EnumerateValue(*I);
     841             : 
     842             :       // Finally, add the value.  Doing this could make the ValueID reference be
     843             :       // dangling, don't reuse it.
     844        9768 :       Values.push_back(std::make_pair(V, 1U));
     845        9768 :       ValueMap[V] = Values.size();
     846             :       return;
     847             :     }
     848             :   }
     849             : 
     850             :   // Add the value.
     851      167527 :   Values.push_back(std::make_pair(V, 1U));
     852      335054 :   ValueID = Values.size();
     853             : }
     854             : 
     855             : 
     856      745279 : void ValueEnumerator::EnumerateType(Type *Ty) {
     857      745279 :   unsigned *TypeID = &TypeMap[Ty];
     858             : 
     859             :   // We've already seen this type.
     860      745279 :   if (*TypeID)
     861             :     return;
     862             : 
     863             :   // If it is a non-anonymous struct, mark the type as being visited so that we
     864             :   // don't recursively visit it.  This is safe because we allow forward
     865             :   // references of these in the bitcode reader.
     866       56105 :   if (StructType *STy = dyn_cast<StructType>(Ty))
     867        3631 :     if (!STy->isLiteral())
     868        2952 :       *TypeID = ~0U;
     869             : 
     870             :   // Enumerate all of the subtypes before we enumerate this type.  This ensures
     871             :   // that the type will be enumerated in an order that can be directly built.
     872      119895 :   for (Type *SubTy : Ty->subtypes())
     873       63790 :     EnumerateType(SubTy);
     874             : 
     875             :   // Refresh the TypeID pointer in case the table rehashed.
     876             :   TypeID = &TypeMap[Ty];
     877             : 
     878             :   // Check to see if we got the pointer another way.  This can happen when
     879             :   // enumerating recursive types that hit the base case deeper than they start.
     880             :   //
     881             :   // If this is actually a struct that we are treating as forward ref'able,
     882             :   // then emit the definition now that all of its contents are available.
     883       56105 :   if (*TypeID && *TypeID != ~0U)
     884             :     return;
     885             : 
     886             :   // Add this type now that its contents are all happily enumerated.
     887       55913 :   Types.push_back(Ty);
     888             : 
     889      111826 :   *TypeID = Types.size();
     890             : }
     891             : 
     892             : // Enumerate the types for the specified value.  If the value is a constant,
     893             : // walk through it, enumerating the types of the constant.
     894      302944 : void ValueEnumerator::EnumerateOperandType(const Value *V) {
     895      302944 :   EnumerateType(V->getType());
     896             : 
     897             :   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
     898             : 
     899             :   const Constant *C = dyn_cast<Constant>(V);
     900             :   if (!C)
     901             :     return;
     902             : 
     903             :   // If this constant is already enumerated, ignore it, we know its type must
     904             :   // be enumerated.
     905      118789 :   if (ValueMap.count(C))
     906       91894 :     return;
     907             : 
     908             :   // This constant may have operands, make sure to enumerate the types in
     909             :   // them.
     910       62623 :   for (const Value *Op : C->operands()) {
     911             :     // Don't enumerate basic blocks here, this happens as operands to
     912             :     // blockaddress.
     913        8833 :     if (isa<BasicBlock>(Op))
     914             :       continue;
     915             : 
     916        8779 :     EnumerateOperandType(Op);
     917             :   }
     918             : }
     919             : 
     920       45277 : void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
     921       45277 :   if (PAL.isEmpty()) return;  // null is always 0.
     922             : 
     923             :   // Do a lookup.
     924       19207 :   unsigned &Entry = AttributeListMap[PAL];
     925       19207 :   if (Entry == 0) {
     926             :     // Never saw this before, add it.
     927        3923 :     AttributeLists.push_back(PAL);
     928        7846 :     Entry = AttributeLists.size();
     929             :   }
     930             : 
     931             :   // Do lookups for all attribute groups.
     932       55303 :   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
     933       36096 :     AttributeSet AS = PAL.getAttributes(i);
     934       36096 :     if (!AS.hasAttributes())
     935        7546 :       continue;
     936             :     IndexAndAttrSet Pair = {i, AS};
     937       28550 :     unsigned &Entry = AttributeGroupMap[Pair];
     938       28550 :     if (Entry == 0) {
     939        4808 :       AttributeGroups.push_back(Pair);
     940        9616 :       Entry = AttributeGroups.size();
     941             :     }
     942             :   }
     943             : }
     944             : 
     945       12178 : void ValueEnumerator::incorporateFunction(const Function &F) {
     946       12178 :   InstructionCount = 0;
     947       12178 :   NumModuleValues = Values.size();
     948             : 
     949             :   // Add global metadata to the function block.  This doesn't include
     950             :   // LocalAsMetadata.
     951       12178 :   incorporateFunctionMetadata(F);
     952             : 
     953             :   // Adding function arguments to the value table.
     954       24296 :   for (const auto &I : F.args())
     955       12118 :     EnumerateValue(&I);
     956             : 
     957       24356 :   FirstFuncConstantID = Values.size();
     958             : 
     959             :   // Add all function-level constants to the value table.
     960       42274 :   for (const BasicBlock &BB : F) {
     961      207115 :     for (const Instruction &I : BB)
     962      649122 :       for (const Use &OI : I.operands()) {
     963      320753 :         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
     964       84403 :           EnumerateValue(OI);
     965             :       }
     966       30096 :     BasicBlocks.push_back(&BB);
     967       60192 :     ValueMap[&BB] = BasicBlocks.size();
     968             :   }
     969             : 
     970             :   // Optimize the constant layout.
     971       24356 :   OptimizeConstants(FirstFuncConstantID, Values.size());
     972             : 
     973             :   // Add the function's parameter attributes so they are available for use in
     974             :   // the function's instruction.
     975       12178 :   EnumerateAttributes(F.getAttributes());
     976             : 
     977       24356 :   FirstInstID = Values.size();
     978             : 
     979             :   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
     980             :   // Add all of the instructions.
     981       42274 :   for (const BasicBlock &BB : F) {
     982      207115 :     for (const Instruction &I : BB) {
     983      649122 :       for (const Use &OI : I.operands()) {
     984             :         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
     985        1610 :           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
     986             :             // Enumerate metadata after the instructions they might refer to.
     987         254 :             FnLocalMDVector.push_back(Local);
     988             :       }
     989             : 
     990      354038 :       if (!I.getType()->isVoidTy())
     991      102383 :         EnumerateValue(&I);
     992             :     }
     993             :   }
     994             : 
     995             :   // Add all of the function-local metadata.
     996       12432 :   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
     997             :     // At this point, every local values have been incorporated, we shouldn't
     998             :     // have a metadata operand that references a value that hasn't been seen.
     999             :     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
    1000             :            "Missing value for metadata operand");
    1001         508 :     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
    1002             :   }
    1003       12178 : }
    1004             : 
    1005       12178 : void ValueEnumerator::purgeFunction() {
    1006             :   /// Remove purged values from the ValueMap.
    1007      157326 :   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
    1008      265940 :     ValueMap.erase(Values[i].first);
    1009       31484 :   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
    1010       14256 :     MetadataMap.erase(MDs[i]);
    1011       54452 :   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
    1012       60192 :     ValueMap.erase(BasicBlocks[i]);
    1013             : 
    1014       12178 :   Values.resize(NumModuleValues);
    1015       12178 :   MDs.resize(NumModuleMDs);
    1016             :   BasicBlocks.clear();
    1017       12178 :   NumMDStrings = 0;
    1018       12178 : }
    1019             : 
    1020          58 : static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
    1021             :                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
    1022             :   unsigned Counter = 0;
    1023         260 :   for (const BasicBlock &BB : *F)
    1024         202 :     IDMap[&BB] = ++Counter;
    1025          58 : }
    1026             : 
    1027             : /// getGlobalBasicBlockID - This returns the function-specific ID for the
    1028             : /// specified basic block.  This is relatively expensive information, so it
    1029             : /// should only be used by rare constructs such as address-of-label.
    1030         142 : unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
    1031         142 :   unsigned &Idx = GlobalBasicBlockIDs[BB];
    1032         142 :   if (Idx != 0)
    1033          84 :     return Idx-1;
    1034             : 
    1035          58 :   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
    1036          58 :   return getGlobalBasicBlockID(BB);
    1037             : }
    1038             : 
    1039       23540 : uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
    1040       47080 :   return Log2_32_Ceil(getTypes().size() + 1);
    1041             : }

Generated by: LCOV version 1.13