LCOV - code coverage report
Current view: top level - lib/CodeGen - ImplicitNullChecks.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 102 175 58.3 %
Date: 2018-10-20 13:21:21 Functions: 12 22 54.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This pass turns explicit null checks of the form
      11             : //
      12             : //   test %r10, %r10
      13             : //   je throw_npe
      14             : //   movl (%r10), %esi
      15             : //   ...
      16             : //
      17             : // to
      18             : //
      19             : //   faulting_load_op("movl (%r10), %esi", throw_npe)
      20             : //   ...
      21             : //
      22             : // With the help of a runtime that understands the .fault_maps section,
      23             : // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
      24             : // a page fault.
      25             : // Store and LoadStore are also supported.
      26             : //
      27             : //===----------------------------------------------------------------------===//
      28             : 
      29             : #include "llvm/ADT/ArrayRef.h"
      30             : #include "llvm/ADT/None.h"
      31             : #include "llvm/ADT/Optional.h"
      32             : #include "llvm/ADT/STLExtras.h"
      33             : #include "llvm/ADT/SmallVector.h"
      34             : #include "llvm/ADT/Statistic.h"
      35             : #include "llvm/Analysis/AliasAnalysis.h"
      36             : #include "llvm/Analysis/MemoryLocation.h"
      37             : #include "llvm/CodeGen/FaultMaps.h"
      38             : #include "llvm/CodeGen/MachineBasicBlock.h"
      39             : #include "llvm/CodeGen/MachineFunction.h"
      40             : #include "llvm/CodeGen/MachineFunctionPass.h"
      41             : #include "llvm/CodeGen/MachineInstr.h"
      42             : #include "llvm/CodeGen/MachineInstrBuilder.h"
      43             : #include "llvm/CodeGen/MachineMemOperand.h"
      44             : #include "llvm/CodeGen/MachineOperand.h"
      45             : #include "llvm/CodeGen/MachineRegisterInfo.h"
      46             : #include "llvm/CodeGen/PseudoSourceValue.h"
      47             : #include "llvm/CodeGen/TargetInstrInfo.h"
      48             : #include "llvm/CodeGen/TargetOpcodes.h"
      49             : #include "llvm/CodeGen/TargetRegisterInfo.h"
      50             : #include "llvm/CodeGen/TargetSubtargetInfo.h"
      51             : #include "llvm/IR/BasicBlock.h"
      52             : #include "llvm/IR/DebugLoc.h"
      53             : #include "llvm/IR/LLVMContext.h"
      54             : #include "llvm/MC/MCInstrDesc.h"
      55             : #include "llvm/MC/MCRegisterInfo.h"
      56             : #include "llvm/Pass.h"
      57             : #include "llvm/Support/CommandLine.h"
      58             : #include <cassert>
      59             : #include <cstdint>
      60             : #include <iterator>
      61             : 
      62             : using namespace llvm;
      63             : 
      64             : static cl::opt<int> PageSize("imp-null-check-page-size",
      65             :                              cl::desc("The page size of the target in bytes"),
      66             :                              cl::init(4096), cl::Hidden);
      67             : 
      68             : static cl::opt<unsigned> MaxInstsToConsider(
      69             :     "imp-null-max-insts-to-consider",
      70             :     cl::desc("The max number of instructions to consider hoisting loads over "
      71             :              "(the algorithm is quadratic over this number)"),
      72             :     cl::Hidden, cl::init(8));
      73             : 
      74             : #define DEBUG_TYPE "implicit-null-checks"
      75             : 
      76             : STATISTIC(NumImplicitNullChecks,
      77             :           "Number of explicit null checks made implicit");
      78             : 
      79             : namespace {
      80             : 
      81             : class ImplicitNullChecks : public MachineFunctionPass {
      82             :   /// Return true if \c computeDependence can process \p MI.
      83             :   static bool canHandle(const MachineInstr *MI);
      84             : 
      85             :   /// Helper function for \c computeDependence.  Return true if \p A
      86             :   /// and \p B do not have any dependences between them, and can be
      87             :   /// re-ordered without changing program semantics.
      88             :   bool canReorder(const MachineInstr *A, const MachineInstr *B);
      89             : 
      90             :   /// A data type for representing the result computed by \c
      91             :   /// computeDependence.  States whether it is okay to reorder the
      92             :   /// instruction passed to \c computeDependence with at most one
      93             :   /// dependency.
      94             :   struct DependenceResult {
      95             :     /// Can we actually re-order \p MI with \p Insts (see \c
      96             :     /// computeDependence).
      97             :     bool CanReorder;
      98             : 
      99             :     /// If non-None, then an instruction in \p Insts that also must be
     100             :     /// hoisted.
     101             :     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
     102             : 
     103             :     /*implicit*/ DependenceResult(
     104             :         bool CanReorder,
     105             :         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
     106          53 :         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
     107             :       assert((!PotentialDependence || CanReorder) &&
     108             :              "!CanReorder && PotentialDependence.hasValue() not allowed!");
     109             :     }
     110             :   };
     111             : 
     112             :   /// Compute a result for the following question: can \p MI be
     113             :   /// re-ordered from after \p Insts to before it.
     114             :   ///
     115             :   /// \c canHandle should return true for all instructions in \p
     116             :   /// Insts.
     117             :   DependenceResult computeDependence(const MachineInstr *MI,
     118             :                                      ArrayRef<MachineInstr *> Block);
     119             : 
     120             :   /// Represents one null check that can be made implicit.
     121             :   class NullCheck {
     122             :     // The memory operation the null check can be folded into.
     123             :     MachineInstr *MemOperation;
     124             : 
     125             :     // The instruction actually doing the null check (Ptr != 0).
     126             :     MachineInstr *CheckOperation;
     127             : 
     128             :     // The block the check resides in.
     129             :     MachineBasicBlock *CheckBlock;
     130             : 
     131             :     // The block branched to if the pointer is non-null.
     132             :     MachineBasicBlock *NotNullSucc;
     133             : 
     134             :     // The block branched to if the pointer is null.
     135             :     MachineBasicBlock *NullSucc;
     136             : 
     137             :     // If this is non-null, then MemOperation has a dependency on this
     138             :     // instruction; and it needs to be hoisted to execute before MemOperation.
     139             :     MachineInstr *OnlyDependency;
     140             : 
     141             :   public:
     142             :     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
     143             :                        MachineBasicBlock *checkBlock,
     144             :                        MachineBasicBlock *notNullSucc,
     145             :                        MachineBasicBlock *nullSucc,
     146             :                        MachineInstr *onlyDependency)
     147          37 :         : MemOperation(memOperation), CheckOperation(checkOperation),
     148             :           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
     149          37 :           OnlyDependency(onlyDependency) {}
     150             : 
     151           0 :     MachineInstr *getMemOperation() const { return MemOperation; }
     152             : 
     153           0 :     MachineInstr *getCheckOperation() const { return CheckOperation; }
     154             : 
     155           0 :     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
     156             : 
     157           0 :     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
     158             : 
     159           0 :     MachineBasicBlock *getNullSucc() const { return NullSucc; }
     160             : 
     161           0 :     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
     162             :   };
     163             : 
     164             :   const TargetInstrInfo *TII = nullptr;
     165             :   const TargetRegisterInfo *TRI = nullptr;
     166             :   AliasAnalysis *AA = nullptr;
     167             :   MachineFrameInfo *MFI = nullptr;
     168             : 
     169             :   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
     170             :                                  SmallVectorImpl<NullCheck> &NullCheckList);
     171             :   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
     172             :                                     MachineBasicBlock *HandlerMBB);
     173             :   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
     174             : 
     175             :   enum AliasResult {
     176             :     AR_NoAlias,
     177             :     AR_MayAlias,
     178             :     AR_WillAliasEverything
     179             :   };
     180             : 
     181             :   /// Returns AR_NoAlias if \p MI memory operation does not alias with
     182             :   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
     183             :   /// they may alias and any further memory operation may alias with \p PrevMI.
     184             :   AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI);
     185             : 
     186             :   enum SuitabilityResult {
     187             :     SR_Suitable,
     188             :     SR_Unsuitable,
     189             :     SR_Impossible
     190             :   };
     191             : 
     192             :   /// Return SR_Suitable if \p MI a memory operation that can be used to
     193             :   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
     194             :   /// \p MI cannot be used to null check and SR_Impossible if there is
     195             :   /// no sense to continue lookup due to any other instruction will not be able
     196             :   /// to be used. \p PrevInsts is the set of instruction seen since
     197             :   /// the explicit null check on \p PointerReg.
     198             :   SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
     199             :                                        ArrayRef<MachineInstr *> PrevInsts);
     200             : 
     201             :   /// Return true if \p FaultingMI can be hoisted from after the
     202             :   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
     203             :   /// non-null value if we also need to (and legally can) hoist a depedency.
     204             :   bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
     205             :                     ArrayRef<MachineInstr *> InstsSeenSoFar,
     206             :                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
     207             : 
     208             : public:
     209             :   static char ID;
     210             : 
     211           7 :   ImplicitNullChecks() : MachineFunctionPass(ID) {
     212           7 :     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
     213           7 :   }
     214             : 
     215             :   bool runOnMachineFunction(MachineFunction &MF) override;
     216             : 
     217           7 :   void getAnalysisUsage(AnalysisUsage &AU) const override {
     218             :     AU.addRequired<AAResultsWrapperPass>();
     219           7 :     MachineFunctionPass::getAnalysisUsage(AU);
     220           7 :   }
     221             : 
     222           7 :   MachineFunctionProperties getRequiredProperties() const override {
     223           7 :     return MachineFunctionProperties().set(
     224           7 :         MachineFunctionProperties::Property::NoVRegs);
     225             :   }
     226             : };
     227             : 
     228             : } // end anonymous namespace
     229             : 
     230         112 : bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
     231         112 :   if (MI->isCall() || MI->hasUnmodeledSideEffects())
     232           8 :     return false;
     233             :   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
     234             :   (void)IsRegMask;
     235             : 
     236             :   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
     237             :          "Calls were filtered out above!");
     238             : 
     239             :   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
     240         104 :   return llvm::all_of(MI->memoperands(), IsUnordered);
     241             : }
     242             : 
     243             : ImplicitNullChecks::DependenceResult
     244          53 : ImplicitNullChecks::computeDependence(const MachineInstr *MI,
     245             :                                       ArrayRef<MachineInstr *> Block) {
     246             :   assert(llvm::all_of(Block, canHandle) && "Check this first!");
     247             :   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
     248             : 
     249             :   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
     250             : 
     251          83 :   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
     252          33 :     if (canReorder(*I, MI))
     253             :       continue;
     254             : 
     255          19 :     if (Dep == None) {
     256             :       // Found one possible dependency, keep track of it.
     257             :       Dep = I;
     258             :     } else {
     259             :       // We found two dependencies, so bail out.
     260             :       return {false, None};
     261             :     }
     262             :   }
     263             : 
     264             :   return {true, Dep};
     265             : }
     266             : 
     267           0 : bool ImplicitNullChecks::canReorder(const MachineInstr *A,
     268             :                                     const MachineInstr *B) {
     269             :   assert(canHandle(A) && canHandle(B) && "Precondition!");
     270             : 
     271             :   // canHandle makes sure that we _can_ correctly analyze the dependencies
     272             :   // between A and B here -- for instance, we should not be dealing with heap
     273             :   // load-store dependencies here.
     274             : 
     275           0 :   for (auto MOA : A->operands()) {
     276           0 :     if (!(MOA.isReg() && MOA.getReg()))
     277           0 :       continue;
     278             : 
     279             :     unsigned RegA = MOA.getReg();
     280           0 :     for (auto MOB : B->operands()) {
     281           0 :       if (!(MOB.isReg() && MOB.getReg()))
     282           0 :         continue;
     283             : 
     284             :       unsigned RegB = MOB.getReg();
     285             : 
     286           0 :       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
     287           0 :         return false;
     288             :     }
     289             :   }
     290             : 
     291           0 :   return true;
     292             : }
     293             : 
     294          55 : bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
     295          55 :   TII = MF.getSubtarget().getInstrInfo();
     296          55 :   TRI = MF.getRegInfo().getTargetRegisterInfo();
     297          55 :   MFI = &MF.getFrameInfo();
     298          55 :   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
     299             : 
     300          55 :   SmallVector<NullCheck, 16> NullCheckList;
     301             : 
     302         251 :   for (auto &MBB : MF)
     303         196 :     analyzeBlockForNullChecks(MBB, NullCheckList);
     304             : 
     305          55 :   if (!NullCheckList.empty())
     306          36 :     rewriteNullChecks(NullCheckList);
     307             : 
     308          55 :   return !NullCheckList.empty();
     309             : }
     310             : 
     311             : // Return true if any register aliasing \p Reg is live-in into \p MBB.
     312          21 : static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
     313             :                            MachineBasicBlock *MBB, unsigned Reg) {
     314         193 :   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
     315         172 :        ++AR)
     316         348 :     if (MBB->isLiveIn(*AR))
     317           2 :       return true;
     318          19 :   return false;
     319             : }
     320             : 
     321             : ImplicitNullChecks::AliasResult
     322           0 : ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI,
     323             :                                         MachineInstr *PrevMI) {
     324             :   // If it is not memory access, skip the check.
     325           0 :   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
     326           0 :     return AR_NoAlias;
     327             :   // Load-Load may alias
     328           0 :   if (!(MI.mayStore() || PrevMI->mayStore()))
     329           0 :     return AR_NoAlias;
     330             :   // We lost info, conservatively alias. If it was store then no sense to
     331             :   // continue because we won't be able to check against it further.
     332           0 :   if (MI.memoperands_empty())
     333           0 :     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
     334           0 :   if (PrevMI->memoperands_empty())
     335           0 :     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
     336             : 
     337           0 :   for (MachineMemOperand *MMO1 : MI.memoperands()) {
     338             :     // MMO1 should have a value due it comes from operation we'd like to use
     339             :     // as implicit null check.
     340             :     assert(MMO1->getValue() && "MMO1 should have a Value!");
     341           0 :     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
     342           0 :       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
     343           0 :         if (PSV->mayAlias(MFI))
     344           0 :           return AR_MayAlias;
     345           0 :         continue;
     346             :       }
     347             :       llvm::AliasResult AAResult =
     348           0 :           AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
     349             :                                    MMO1->getAAInfo()),
     350           0 :                     MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
     351             :                                    MMO2->getAAInfo()));
     352           0 :       if (AAResult != NoAlias)
     353           0 :         return AR_MayAlias;
     354             :     }
     355             :   }
     356             :   return AR_NoAlias;
     357             : }
     358             : 
     359             : ImplicitNullChecks::SuitabilityResult
     360         103 : ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
     361             :                                        ArrayRef<MachineInstr *> PrevInsts) {
     362             :   int64_t Offset;
     363             :   unsigned BaseReg;
     364             : 
     365         103 :   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
     366          66 :       BaseReg != PointerReg)
     367             :     return SR_Unsuitable;
     368             : 
     369             :   // We want the mem access to be issued at a sane offset from PointerReg,
     370             :   // so that if PointerReg is null then the access reliably page faults.
     371         100 :   if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
     372          50 :         -PageSize < Offset && Offset < PageSize))
     373           0 :     return SR_Unsuitable;
     374             : 
     375             :   // Finally, check whether the current memory access aliases with previous one.
     376          81 :   for (auto *PrevMI : PrevInsts) {
     377          35 :     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
     378          35 :     if (AR == AR_WillAliasEverything)
     379             :       return SR_Impossible;
     380          33 :     if (AR == AR_MayAlias)
     381             :       return SR_Unsuitable;
     382             :   }
     383             :   return SR_Suitable;
     384             : }
     385             : 
     386           0 : bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
     387             :                                       unsigned PointerReg,
     388             :                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
     389             :                                       MachineBasicBlock *NullSucc,
     390             :                                       MachineInstr *&Dependence) {
     391           0 :   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
     392           0 :   if (!DepResult.CanReorder)
     393           0 :     return false;
     394             : 
     395           0 :   if (!DepResult.PotentialDependence) {
     396           0 :     Dependence = nullptr;
     397           0 :     return true;
     398             :   }
     399             : 
     400           0 :   auto DependenceItr = *DepResult.PotentialDependence;
     401           0 :   auto *DependenceMI = *DependenceItr;
     402             : 
     403             :   // We don't want to reason about speculating loads.  Note -- at this point
     404             :   // we should have already filtered out all of the other non-speculatable
     405             :   // things, like calls and stores.
     406             :   // We also do not want to hoist stores because it might change the memory
     407             :   // while the FaultingMI may result in faulting.
     408             :   assert(canHandle(DependenceMI) && "Should never have reached here!");
     409           0 :   if (DependenceMI->mayLoadOrStore())
     410           0 :     return false;
     411             : 
     412           0 :   for (auto &DependenceMO : DependenceMI->operands()) {
     413           0 :     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
     414           0 :       continue;
     415             : 
     416             :     // Make sure that we won't clobber any live ins to the sibling block by
     417             :     // hoisting Dependency.  For instance, we can't hoist INST to before the
     418             :     // null check (even if it safe, and does not violate any dependencies in
     419             :     // the non_null_block) if %rdx is live in to _null_block.
     420             :     //
     421             :     //    test %rcx, %rcx
     422             :     //    je _null_block
     423             :     //  _non_null_block:
     424             :     //    %rdx = INST
     425             :     //    ...
     426             :     //
     427             :     // This restriction does not apply to the faulting load inst because in
     428             :     // case the pointer loaded from is in the null page, the load will not
     429             :     // semantically execute, and affect machine state.  That is, if the load
     430             :     // was loading into %rax and it faults, the value of %rax should stay the
     431             :     // same as it would have been had the load not have executed and we'd have
     432             :     // branched to NullSucc directly.
     433           0 :     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
     434           0 :       return false;
     435             : 
     436             :     // The Dependency can't be re-defining the base register -- then we won't
     437             :     // get the memory operation on the address we want.  This is already
     438             :     // checked in \c IsSuitableMemoryOp.
     439             :     assert(!(DependenceMO.isDef() &&
     440             :              TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
     441             :            "Should have been checked before!");
     442             :   }
     443             : 
     444             :   auto DepDepResult =
     445           0 :       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
     446             : 
     447           0 :   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
     448           0 :     return false;
     449             : 
     450           0 :   Dependence = DependenceMI;
     451           0 :   return true;
     452             : }
     453             : 
     454             : /// Analyze MBB to check if its terminating branch can be turned into an
     455             : /// implicit null check.  If yes, append a description of the said null check to
     456             : /// NullCheckList and return true, else return false.
     457         196 : bool ImplicitNullChecks::analyzeBlockForNullChecks(
     458             :     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
     459             :   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
     460             : 
     461             :   MDNode *BranchMD = nullptr;
     462         196 :   if (auto *BB = MBB.getBasicBlock())
     463         195 :     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
     464             : 
     465          57 :   if (!BranchMD)
     466         139 :     return false;
     467             : 
     468             :   MachineBranchPredicate MBP;
     469             : 
     470          57 :   if (TII->analyzeBranchPredicate(MBB, MBP, true))
     471             :     return false;
     472             : 
     473             :   // Is the predicate comparing an integer to zero?
     474          57 :   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
     475          57 :         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
     476             :          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
     477             :     return false;
     478             : 
     479             :   // If we cannot erase the test instruction itself, then making the null check
     480             :   // implicit does not buy us much.
     481          57 :   if (!MBP.SingleUseCondition)
     482             :     return false;
     483             : 
     484             :   MachineBasicBlock *NotNullSucc, *NullSucc;
     485             : 
     486          57 :   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
     487          22 :     NotNullSucc = MBP.TrueDest;
     488          22 :     NullSucc = MBP.FalseDest;
     489             :   } else {
     490          35 :     NotNullSucc = MBP.FalseDest;
     491          35 :     NullSucc = MBP.TrueDest;
     492             :   }
     493             : 
     494             :   // We handle the simplest case for now.  We can potentially do better by using
     495             :   // the machine dominator tree.
     496         114 :   if (NotNullSucc->pred_size() != 1)
     497             :     return false;
     498             : 
     499             :   // To prevent the invalid transformation of the following code:
     500             :   //
     501             :   //   mov %rax, %rcx
     502             :   //   test %rax, %rax
     503             :   //   %rax = ...
     504             :   //   je throw_npe
     505             :   //   mov(%rcx), %r9
     506             :   //   mov(%rax), %r10
     507             :   //
     508             :   // into:
     509             :   //
     510             :   //   mov %rax, %rcx
     511             :   //   %rax = ....
     512             :   //   faulting_load_op("movl (%rax), %r10", throw_npe)
     513             :   //   mov(%rcx), %r9
     514             :   //
     515             :   // we must ensure that there are no instructions between the 'test' and
     516             :   // conditional jump that modify %rax.
     517          57 :   const unsigned PointerReg = MBP.LHS.getReg();
     518             : 
     519             :   assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
     520             : 
     521         114 :   for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
     522          58 :     if (I->modifiesRegister(PointerReg, TRI))
     523             :       return false;
     524             : 
     525             :   // Starting with a code fragment like:
     526             :   //
     527             :   //   test %rax, %rax
     528             :   //   jne LblNotNull
     529             :   //
     530             :   //  LblNull:
     531             :   //   callq throw_NullPointerException
     532             :   //
     533             :   //  LblNotNull:
     534             :   //   Inst0
     535             :   //   Inst1
     536             :   //   ...
     537             :   //   Def = Load (%rax + <offset>)
     538             :   //   ...
     539             :   //
     540             :   //
     541             :   // we want to end up with
     542             :   //
     543             :   //   Def = FaultingLoad (%rax + <offset>), LblNull
     544             :   //   jmp LblNotNull ;; explicit or fallthrough
     545             :   //
     546             :   //  LblNotNull:
     547             :   //   Inst0
     548             :   //   Inst1
     549             :   //   ...
     550             :   //
     551             :   //  LblNull:
     552             :   //   callq throw_NullPointerException
     553             :   //
     554             :   //
     555             :   // To see why this is legal, consider the two possibilities:
     556             :   //
     557             :   //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
     558             :   //     load instruction dereferences the null page, causing a segmentation
     559             :   //     fault.
     560             :   //
     561             :   //  2. %rax is not null: in this case we know that the load cannot fault, as
     562             :   //     otherwise the load would've faulted in the original program too and the
     563             :   //     original program would've been undefined.
     564             :   //
     565             :   // This reasoning cannot be extended to justify hoisting through arbitrary
     566             :   // control flow.  For instance, in the example below (in pseudo-C)
     567             :   //
     568             :   //    if (ptr == null) { throw_npe(); unreachable; }
     569             :   //    if (some_cond) { return 42; }
     570             :   //    v = ptr->field;  // LD
     571             :   //    ...
     572             :   //
     573             :   // we cannot (without code duplication) use the load marked "LD" to null check
     574             :   // ptr -- clause (2) above does not apply in this case.  In the above program
     575             :   // the safety of ptr->field can be dependent on some_cond; and, for instance,
     576             :   // ptr could be some non-null invalid reference that never gets loaded from
     577             :   // because some_cond is always true.
     578             : 
     579             :   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
     580             : 
     581         115 :   for (auto &MI : *NotNullSucc) {
     582         112 :     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
     583          53 :       return false;
     584             : 
     585             :     MachineInstr *Dependence;
     586         103 :     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
     587         103 :     if (SR == SR_Impossible)
     588             :       return false;
     589         147 :     if (SR == SR_Suitable &&
     590         156 :         canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
     591          37 :       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
     592             :                                  NullSucc, Dependence);
     593          37 :       return true;
     594             :     }
     595             : 
     596             :     // If MI re-defines the PointerReg then we cannot move further.
     597          64 :     if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
     598             :           return MO.isReg() && MO.getReg() && MO.isDef() &&
     599             :                  TRI->regsOverlap(MO.getReg(), PointerReg);
     600             :         }))
     601             :       return false;
     602          59 :     InstsSeenSoFar.push_back(&MI);
     603             :   }
     604             : 
     605             :   return false;
     606             : }
     607             : 
     608             : /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
     609             : /// The FAULTING instruction does the same load/store as MI
     610             : /// (defining the same register), and branches to HandlerMBB if the mem access
     611             : /// faults.  The FAULTING instruction is inserted at the end of MBB.
     612           0 : MachineInstr *ImplicitNullChecks::insertFaultingInstr(
     613             :     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
     614             :   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
     615             :                                  // all targets.
     616             : 
     617           0 :   DebugLoc DL;
     618           0 :   unsigned NumDefs = MI->getDesc().getNumDefs();
     619             :   assert(NumDefs <= 1 && "other cases unhandled!");
     620             : 
     621             :   unsigned DefReg = NoRegister;
     622           0 :   if (NumDefs != 0) {
     623           0 :     DefReg = MI->getOperand(0).getReg();
     624             :     assert(NumDefs == 1 && "expected exactly one def!");
     625             :   }
     626             : 
     627             :   FaultMaps::FaultKind FK;
     628           0 :   if (MI->mayLoad())
     629             :     FK =
     630           0 :         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
     631             :   else
     632             :     FK = FaultMaps::FaultingStore;
     633             : 
     634           0 :   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
     635           0 :                  .addImm(FK)
     636             :                  .addMBB(HandlerMBB)
     637           0 :                  .addImm(MI->getOpcode());
     638             : 
     639           0 :   for (auto &MO : MI->uses()) {
     640           0 :     if (MO.isReg()) {
     641           0 :       MachineOperand NewMO = MO;
     642           0 :       if (MO.isUse()) {
     643             :         NewMO.setIsKill(false);
     644             :       } else {
     645             :         assert(MO.isDef() && "Expected def or use");
     646             :         NewMO.setIsDead(false);
     647             :       }
     648             :       MIB.add(NewMO);
     649             :     } else {
     650             :       MIB.add(MO);
     651             :     }
     652             :   }
     653             : 
     654           0 :   MIB.setMemRefs(MI->memoperands());
     655             : 
     656           0 :   return MIB;
     657             : }
     658             : 
     659             : /// Rewrite the null checks in NullCheckList into implicit null checks.
     660          36 : void ImplicitNullChecks::rewriteNullChecks(
     661             :     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
     662          36 :   DebugLoc DL;
     663             : 
     664          73 :   for (auto &NC : NullCheckList) {
     665             :     // Remove the conditional branch dependent on the null check.
     666          37 :     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
     667             :     (void)BranchesRemoved;
     668             :     assert(BranchesRemoved > 0 && "expected at least one branch!");
     669             : 
     670          37 :     if (auto *DepMI = NC.getOnlyDependency()) {
     671           5 :       DepMI->removeFromParent();
     672           5 :       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
     673             :     }
     674             : 
     675             :     // Insert a faulting instruction where the conditional branch was
     676             :     // originally. We check earlier ensures that this bit of code motion
     677             :     // is legal.  We do not touch the successors list for any basic block
     678             :     // since we haven't changed control flow, we've just made it implicit.
     679          37 :     MachineInstr *FaultingInstr = insertFaultingInstr(
     680             :         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
     681             :     // Now the values defined by MemOperation, if any, are live-in of
     682             :     // the block of MemOperation.
     683             :     // The original operation may define implicit-defs alongside
     684             :     // the value.
     685          37 :     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
     686         403 :     for (const MachineOperand &MO : FaultingInstr->operands()) {
     687         366 :       if (!MO.isReg() || !MO.isDef())
     688             :         continue;
     689          52 :       unsigned Reg = MO.getReg();
     690          52 :       if (!Reg || MBB->isLiveIn(Reg))
     691          15 :         continue;
     692             :       MBB->addLiveIn(Reg);
     693             :     }
     694             : 
     695          37 :     if (auto *DepMI = NC.getOnlyDependency()) {
     696          21 :       for (auto &MO : DepMI->operands()) {
     697          16 :         if (!MO.isReg() || !MO.getReg() || !MO.isDef())
     698             :           continue;
     699           8 :         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
     700           3 :           NC.getNotNullSucc()->addLiveIn(MO.getReg());
     701             :       }
     702             :     }
     703             : 
     704          37 :     NC.getMemOperation()->eraseFromParent();
     705          37 :     NC.getCheckOperation()->eraseFromParent();
     706             : 
     707             :     // Insert an *unconditional* branch to not-null successor.
     708          37 :     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
     709          37 :                       /*Cond=*/None, DL);
     710             : 
     711             :     NumImplicitNullChecks++;
     712             :   }
     713          36 : }
     714             : 
     715             : char ImplicitNullChecks::ID = 0;
     716             : 
     717             : char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
     718             : 
     719       31780 : INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
     720             :                       "Implicit null checks", false, false)
     721       31780 : INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
     722       85154 : INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
     723             :                     "Implicit null checks", false, false)

Generated by: LCOV version 1.13