Line data Source code
1 : //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements the LiveDebugVariables analysis.
11 : //
12 : // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 : // them with a data structure tracking where live user variables are kept - in a
14 : // virtual register or in a stack slot.
15 : //
16 : // Allow the data structure to be updated during register allocation when values
17 : // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 : // instructions after register allocation is complete.
19 : //
20 : //===----------------------------------------------------------------------===//
21 :
22 : #include "LiveDebugVariables.h"
23 : #include "llvm/ADT/ArrayRef.h"
24 : #include "llvm/ADT/DenseMap.h"
25 : #include "llvm/ADT/IntervalMap.h"
26 : #include "llvm/ADT/STLExtras.h"
27 : #include "llvm/ADT/SmallSet.h"
28 : #include "llvm/ADT/SmallVector.h"
29 : #include "llvm/ADT/Statistic.h"
30 : #include "llvm/ADT/StringRef.h"
31 : #include "llvm/CodeGen/LexicalScopes.h"
32 : #include "llvm/CodeGen/LiveInterval.h"
33 : #include "llvm/CodeGen/LiveIntervals.h"
34 : #include "llvm/CodeGen/MachineBasicBlock.h"
35 : #include "llvm/CodeGen/MachineDominators.h"
36 : #include "llvm/CodeGen/MachineFunction.h"
37 : #include "llvm/CodeGen/MachineInstr.h"
38 : #include "llvm/CodeGen/MachineInstrBuilder.h"
39 : #include "llvm/CodeGen/MachineOperand.h"
40 : #include "llvm/CodeGen/MachineRegisterInfo.h"
41 : #include "llvm/CodeGen/SlotIndexes.h"
42 : #include "llvm/CodeGen/TargetInstrInfo.h"
43 : #include "llvm/CodeGen/TargetOpcodes.h"
44 : #include "llvm/CodeGen/TargetRegisterInfo.h"
45 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 : #include "llvm/CodeGen/VirtRegMap.h"
47 : #include "llvm/Config/llvm-config.h"
48 : #include "llvm/IR/DebugInfoMetadata.h"
49 : #include "llvm/IR/DebugLoc.h"
50 : #include "llvm/IR/Function.h"
51 : #include "llvm/IR/Metadata.h"
52 : #include "llvm/MC/MCRegisterInfo.h"
53 : #include "llvm/Pass.h"
54 : #include "llvm/Support/Casting.h"
55 : #include "llvm/Support/CommandLine.h"
56 : #include "llvm/Support/Compiler.h"
57 : #include "llvm/Support/Debug.h"
58 : #include "llvm/Support/raw_ostream.h"
59 : #include <algorithm>
60 : #include <cassert>
61 : #include <iterator>
62 : #include <memory>
63 : #include <utility>
64 :
65 : using namespace llvm;
66 :
67 : #define DEBUG_TYPE "livedebugvars"
68 :
69 : static cl::opt<bool>
70 : EnableLDV("live-debug-variables", cl::init(true),
71 : cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 :
73 : STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 :
75 : char LiveDebugVariables::ID = 0;
76 :
77 31780 : INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
78 : "Debug Variable Analysis", false, false)
79 31780 : INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
80 31780 : INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
81 200028 : INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
82 : "Debug Variable Analysis", false, false)
83 :
84 19541 : void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
85 : AU.addRequired<MachineDominatorTree>();
86 : AU.addRequiredTransitive<LiveIntervals>();
87 : AU.setPreservesAll();
88 19541 : MachineFunctionPass::getAnalysisUsage(AU);
89 19541 : }
90 :
91 19541 : LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
92 19541 : initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
93 19541 : }
94 :
95 : enum : unsigned { UndefLocNo = ~0U };
96 :
97 : /// Describes a location by number along with some flags about the original
98 : /// usage of the location.
99 : class DbgValueLocation {
100 : public:
101 : DbgValueLocation(unsigned LocNo, bool WasIndirect)
102 173 : : LocNo(LocNo), WasIndirect(WasIndirect) {
103 : static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
104 : assert(locNo() == LocNo && "location truncation");
105 : }
106 :
107 329348 : DbgValueLocation() : LocNo(0), WasIndirect(0) {}
108 :
109 : unsigned locNo() const {
110 : // Fix up the undef location number, which gets truncated.
111 146990 : return LocNo == INT_MAX ? UndefLocNo : LocNo;
112 : }
113 119536 : bool wasIndirect() const { return WasIndirect; }
114 : bool isUndef() const { return locNo() == UndefLocNo; }
115 :
116 0 : DbgValueLocation changeLocNo(unsigned NewLocNo) const {
117 115331 : return DbgValueLocation(NewLocNo, WasIndirect);
118 : }
119 :
120 0 : friend inline bool operator==(const DbgValueLocation &LHS,
121 : const DbgValueLocation &RHS) {
122 212157 : return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
123 : }
124 :
125 0 : friend inline bool operator!=(const DbgValueLocation &LHS,
126 : const DbgValueLocation &RHS) {
127 132 : return !(LHS == RHS);
128 : }
129 :
130 : private:
131 : unsigned LocNo : 31;
132 : unsigned WasIndirect : 1;
133 : };
134 :
135 : /// LocMap - Map of where a user value is live, and its location.
136 : using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
137 :
138 : /// SpillOffsetMap - Map of stack slot offsets for spilled locations.
139 : /// Non-spilled locations are not added to the map.
140 : using SpillOffsetMap = DenseMap<unsigned, unsigned>;
141 :
142 : namespace {
143 :
144 : class LDVImpl;
145 :
146 : /// UserValue - A user value is a part of a debug info user variable.
147 : ///
148 : /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
149 : /// holds part of a user variable. The part is identified by a byte offset.
150 : ///
151 : /// UserValues are grouped into equivalence classes for easier searching. Two
152 : /// user values are related if they refer to the same variable, or if they are
153 : /// held by the same virtual register. The equivalence class is the transitive
154 : /// closure of that relation.
155 : class UserValue {
156 : const DILocalVariable *Variable; ///< The debug info variable we are part of.
157 : const DIExpression *Expression; ///< Any complex address expression.
158 : DebugLoc dl; ///< The debug location for the variable. This is
159 : ///< used by dwarf writer to find lexical scope.
160 : UserValue *leader; ///< Equivalence class leader.
161 : UserValue *next = nullptr; ///< Next value in equivalence class, or null.
162 :
163 : /// Numbered locations referenced by locmap.
164 : SmallVector<MachineOperand, 4> locations;
165 :
166 : /// Map of slot indices where this value is live.
167 : LocMap locInts;
168 :
169 : /// Set of interval start indexes that have been trimmed to the
170 : /// lexical scope.
171 : SmallSet<SlotIndex, 2> trimmedDefs;
172 :
173 : /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
174 : void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
175 : SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
176 : unsigned SpillOffset, LiveIntervals &LIS,
177 : const TargetInstrInfo &TII,
178 : const TargetRegisterInfo &TRI);
179 :
180 : /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
181 : /// is live. Returns true if any changes were made.
182 : bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
183 : LiveIntervals &LIS);
184 :
185 : public:
186 : /// UserValue - Create a new UserValue.
187 81258 : UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
188 : LocMap::Allocator &alloc)
189 81258 : : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
190 162516 : locInts(alloc) {}
191 :
192 : /// getLeader - Get the leader of this value's equivalence class.
193 0 : UserValue *getLeader() {
194 153794 : UserValue *l = leader;
195 298219 : while (l != l->leader)
196 : l = l->leader;
197 298219 : return leader = l;
198 : }
199 :
200 : /// getNext - Return the next UserValue in the equivalence class.
201 0 : UserValue *getNext() const { return next; }
202 :
203 : /// match - Does this UserValue match the parameters?
204 292309 : bool match(const DILocalVariable *Var, const DIExpression *Expr,
205 : const DILocation *IA) const {
206 : // FIXME: The fragment should be part of the equivalence class, but not
207 : // other things in the expression like stack values.
208 525466 : return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
209 : }
210 :
211 : /// merge - Merge equivalence classes.
212 144425 : static UserValue *merge(UserValue *L1, UserValue *L2) {
213 : L2 = L2->getLeader();
214 144425 : if (!L1)
215 : return L2;
216 : L1 = L1->getLeader();
217 75953 : if (L1 == L2)
218 : return L1;
219 : // Splice L2 before L1's members.
220 : UserValue *End = L2;
221 99508 : while (End->next) {
222 42862 : End->leader = L1;
223 : End = End->next;
224 : }
225 56646 : End->leader = L1;
226 56646 : End->next = L1->next;
227 56646 : L1->next = L2;
228 56646 : return L1;
229 : }
230 :
231 : /// Return the location number that matches Loc.
232 : ///
233 : /// For undef values we always return location number UndefLocNo without
234 : /// inserting anything in locations. Since locations is a vector and the
235 : /// location number is the position in the vector and UndefLocNo is ~0,
236 : /// we would need a very big vector to put the value at the right position.
237 128860 : unsigned getLocationNo(const MachineOperand &LocMO) {
238 128860 : if (LocMO.isReg()) {
239 115232 : if (LocMO.getReg() == 0)
240 : return UndefLocNo;
241 : // For register locations we dont care about use/def and other flags.
242 142028 : for (unsigned i = 0, e = locations.size(); i != e; ++i)
243 53071 : if (locations[i].isReg() &&
244 53071 : locations[i].getReg() == LocMO.getReg() &&
245 : locations[i].getSubReg() == LocMO.getSubReg())
246 8734 : return i;
247 : } else
248 17771 : for (unsigned i = 0, e = locations.size(); i != e; ++i)
249 11216 : if (LocMO.isIdenticalTo(locations[i]))
250 1465 : return i;
251 101120 : locations.push_back(LocMO);
252 : // We are storing a MachineOperand outside a MachineInstr.
253 : locations.back().clearParent();
254 : // Don't store def operands.
255 101120 : if (locations.back().isReg()) {
256 88957 : if (locations.back().isDef())
257 : locations.back().setIsDead(false);
258 : locations.back().setIsUse();
259 : }
260 101120 : return locations.size() - 1;
261 : }
262 :
263 : /// mapVirtRegs - Ensure that all virtual register locations are mapped.
264 : void mapVirtRegs(LDVImpl *LDV);
265 :
266 : /// addDef - Add a definition point to this value.
267 122987 : void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
268 122987 : DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
269 : // Add a singular (Idx,Idx) -> Loc mapping.
270 122987 : LocMap::iterator I = locInts.find(Idx);
271 6547 : if (!I.valid() || I.start() != Idx)
272 116440 : I.insert(Idx, Idx.getNextSlot(), Loc);
273 : else
274 : // A later DBG_VALUE at the same SlotIndex overrides the old location.
275 6547 : I.setValue(Loc);
276 122987 : }
277 :
278 : /// extendDef - Extend the current definition as far as possible down.
279 : /// Stop when meeting an existing def or when leaving the live
280 : /// range of VNI.
281 : /// End points where VNI is no longer live are added to Kills.
282 : /// @param Idx Starting point for the definition.
283 : /// @param Loc Location number to propagate.
284 : /// @param LR Restrict liveness to where LR has the value VNI. May be null.
285 : /// @param VNI When LR is not null, this is the value to restrict to.
286 : /// @param Kills Append end points of VNI's live range to Kills.
287 : /// @param LIS Live intervals analysis.
288 : void extendDef(SlotIndex Idx, DbgValueLocation Loc,
289 : LiveRange *LR, const VNInfo *VNI,
290 : SmallVectorImpl<SlotIndex> *Kills,
291 : LiveIntervals &LIS);
292 :
293 : /// addDefsFromCopies - The value in LI/LocNo may be copies to other
294 : /// registers. Determine if any of the copies are available at the kill
295 : /// points, and add defs if possible.
296 : /// @param LI Scan for copies of the value in LI->reg.
297 : /// @param LocNo Location number of LI->reg.
298 : /// @param WasIndirect Indicates if the original use of LI->reg was indirect
299 : /// @param Kills Points where the range of LocNo could be extended.
300 : /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
301 : void addDefsFromCopies(
302 : LiveInterval *LI, unsigned LocNo, bool WasIndirect,
303 : const SmallVectorImpl<SlotIndex> &Kills,
304 : SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
305 : MachineRegisterInfo &MRI, LiveIntervals &LIS);
306 :
307 : /// computeIntervals - Compute the live intervals of all locations after
308 : /// collecting all their def points.
309 : void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
310 : LiveIntervals &LIS, LexicalScopes &LS);
311 :
312 : /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
313 : /// live. Returns true if any changes were made.
314 : bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
315 : LiveIntervals &LIS);
316 :
317 : /// rewriteLocations - Rewrite virtual register locations according to the
318 : /// provided virtual register map. Record the stack slot offsets for the
319 : /// locations that were spilled.
320 : void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
321 : const TargetInstrInfo &TII,
322 : const TargetRegisterInfo &TRI,
323 : SpillOffsetMap &SpillOffsets);
324 :
325 : /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
326 : void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
327 : const TargetInstrInfo &TII,
328 : const TargetRegisterInfo &TRI,
329 : const SpillOffsetMap &SpillOffsets);
330 :
331 : /// getDebugLoc - Return DebugLoc of this UserValue.
332 : DebugLoc getDebugLoc() { return dl;}
333 :
334 : void print(raw_ostream &, const TargetRegisterInfo *);
335 : };
336 :
337 : /// LDVImpl - Implementation of the LiveDebugVariables pass.
338 : class LDVImpl {
339 : LiveDebugVariables &pass;
340 : LocMap::Allocator allocator;
341 : MachineFunction *MF = nullptr;
342 : LiveIntervals *LIS;
343 : const TargetRegisterInfo *TRI;
344 :
345 : /// Whether emitDebugValues is called.
346 : bool EmitDone = false;
347 :
348 : /// Whether the machine function is modified during the pass.
349 : bool ModifiedMF = false;
350 :
351 : /// userValues - All allocated UserValue instances.
352 : SmallVector<std::unique_ptr<UserValue>, 8> userValues;
353 :
354 : /// Map virtual register to eq class leader.
355 : using VRMap = DenseMap<unsigned, UserValue *>;
356 : VRMap virtRegToEqClass;
357 :
358 : /// Map user variable to eq class leader.
359 : using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
360 : UVMap userVarMap;
361 :
362 : /// getUserValue - Find or create a UserValue.
363 : UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
364 : const DebugLoc &DL);
365 :
366 : /// lookupVirtReg - Find the EC leader for VirtReg or null.
367 : UserValue *lookupVirtReg(unsigned VirtReg);
368 :
369 : /// handleDebugValue - Add DBG_VALUE instruction to our maps.
370 : /// @param MI DBG_VALUE instruction
371 : /// @param Idx Last valid SLotIndex before instruction.
372 : /// @return True if the DBG_VALUE instruction should be deleted.
373 : bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
374 :
375 : /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
376 : /// a UserValue def for each instruction.
377 : /// @param mf MachineFunction to be scanned.
378 : /// @return True if any debug values were found.
379 : bool collectDebugValues(MachineFunction &mf);
380 :
381 : /// computeIntervals - Compute the live intervals of all user values after
382 : /// collecting all their def points.
383 : void computeIntervals();
384 :
385 : public:
386 2109 : LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
387 :
388 : bool runOnMachineFunction(MachineFunction &mf);
389 :
390 : /// clear - Release all memory.
391 18731 : void clear() {
392 18731 : MF = nullptr;
393 : userValues.clear();
394 18731 : virtRegToEqClass.clear();
395 18731 : userVarMap.clear();
396 : // Make sure we call emitDebugValues if the machine function was modified.
397 : assert((!ModifiedMF || EmitDone) &&
398 : "Dbg values are not emitted in LDV");
399 18731 : EmitDone = false;
400 18731 : ModifiedMF = false;
401 18731 : }
402 :
403 : /// mapVirtReg - Map virtual register to an equivalence class.
404 : void mapVirtReg(unsigned VirtReg, UserValue *EC);
405 :
406 : /// splitRegister - Replace all references to OldReg with NewRegs.
407 : void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
408 :
409 : /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
410 : void emitDebugValues(VirtRegMap *VRM);
411 :
412 : void print(raw_ostream&);
413 : };
414 :
415 : } // end anonymous namespace
416 :
417 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
418 : static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
419 : const LLVMContext &Ctx) {
420 : if (!DL)
421 : return;
422 :
423 : auto *Scope = cast<DIScope>(DL.getScope());
424 : // Omit the directory, because it's likely to be long and uninteresting.
425 : CommentOS << Scope->getFilename();
426 : CommentOS << ':' << DL.getLine();
427 : if (DL.getCol() != 0)
428 : CommentOS << ':' << DL.getCol();
429 :
430 : DebugLoc InlinedAtDL = DL.getInlinedAt();
431 : if (!InlinedAtDL)
432 : return;
433 :
434 : CommentOS << " @[ ";
435 : printDebugLoc(InlinedAtDL, CommentOS, Ctx);
436 : CommentOS << " ]";
437 : }
438 :
439 : static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
440 : const DILocation *DL) {
441 : const LLVMContext &Ctx = V->getContext();
442 : StringRef Res = V->getName();
443 : if (!Res.empty())
444 : OS << Res << "," << V->getLine();
445 : if (auto *InlinedAt = DL->getInlinedAt()) {
446 : if (DebugLoc InlinedAtDL = InlinedAt) {
447 : OS << " @[";
448 : printDebugLoc(InlinedAtDL, OS, Ctx);
449 : OS << "]";
450 : }
451 : }
452 : }
453 :
454 : void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
455 : auto *DV = cast<DILocalVariable>(Variable);
456 : OS << "!\"";
457 : printExtendedName(OS, DV, dl);
458 :
459 : OS << "\"\t";
460 : for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
461 : OS << " [" << I.start() << ';' << I.stop() << "):";
462 : if (I.value().isUndef())
463 : OS << "undef";
464 : else {
465 : OS << I.value().locNo();
466 : if (I.value().wasIndirect())
467 : OS << " ind";
468 : }
469 : }
470 : for (unsigned i = 0, e = locations.size(); i != e; ++i) {
471 : OS << " Loc" << i << '=';
472 : locations[i].print(OS, TRI);
473 : }
474 : OS << '\n';
475 : }
476 :
477 : void LDVImpl::print(raw_ostream &OS) {
478 : OS << "********** DEBUG VARIABLES **********\n";
479 : for (unsigned i = 0, e = userValues.size(); i != e; ++i)
480 : userValues[i]->print(OS, TRI);
481 : }
482 : #endif
483 :
484 81258 : void UserValue::mapVirtRegs(LDVImpl *LDV) {
485 176678 : for (unsigned i = 0, e = locations.size(); i != e; ++i)
486 190840 : if (locations[i].isReg() &&
487 83257 : TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
488 60652 : LDV->mapVirtReg(locations[i].getReg(), this);
489 81258 : }
490 :
491 122987 : UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
492 : const DIExpression *Expr, const DebugLoc &DL) {
493 122987 : UserValue *&Leader = userVarMap[Var];
494 122987 : if (Leader) {
495 : UserValue *UV = Leader->getLeader();
496 75982 : Leader = UV;
497 326562 : for (; UV; UV = UV->getNext())
498 292309 : if (UV->match(Var, Expr, DL->getInlinedAt()))
499 41729 : return UV;
500 : }
501 :
502 81258 : userValues.push_back(
503 162516 : llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
504 : UserValue *UV = userValues.back().get();
505 81258 : Leader = UserValue::merge(Leader, UV);
506 81258 : return UV;
507 : }
508 :
509 63167 : void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
510 : assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
511 63167 : UserValue *&Leader = virtRegToEqClass[VirtReg];
512 63167 : Leader = UserValue::merge(Leader, EC);
513 63167 : }
514 :
515 18099 : UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
516 19958 : if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
517 1859 : return UV->getLeader();
518 : return nullptr;
519 : }
520 :
521 122987 : bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
522 : // DBG_VALUE loc, offset, variable
523 122987 : if (MI.getNumOperands() != 4 ||
524 122987 : !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
525 : !MI.getOperand(2).isMetadata()) {
526 : LLVM_DEBUG(dbgs() << "Can't handle " << MI);
527 : return false;
528 : }
529 :
530 : // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
531 : // register that hasn't been defined yet. If we do not remove those here, then
532 : // the re-insertion of the DBG_VALUE instruction after register allocation
533 : // will be incorrect.
534 : // TODO: If earlier passes are corrected to generate sane debug information
535 : // (and if the machine verifier is improved to catch this), then these checks
536 : // could be removed or replaced by asserts.
537 : bool Discard = false;
538 122987 : if (MI.getOperand(0).isReg() &&
539 109359 : TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
540 : const unsigned Reg = MI.getOperand(0).getReg();
541 68535 : if (!LIS->hasInterval(Reg)) {
542 : // The DBG_VALUE is described by a virtual register that does not have a
543 : // live interval. Discard the DBG_VALUE.
544 : Discard = true;
545 : LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
546 : << " " << MI);
547 : } else {
548 : // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
549 : // is defined dead at Idx (where Idx is the slot index for the instruction
550 : // preceeding the DBG_VALUE).
551 68386 : const LiveInterval &LI = LIS->getInterval(Reg);
552 68386 : LiveQueryResult LRQ = LI.Query(Idx);
553 68386 : if (!LRQ.valueOutOrDead()) {
554 : // We have found a DBG_VALUE with the value in a virtual register that
555 : // is not live. Discard the DBG_VALUE.
556 : Discard = true;
557 : LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
558 : << " " << MI);
559 : }
560 : }
561 : }
562 :
563 : // Get or create the UserValue for (variable,offset) here.
564 122987 : bool IsIndirect = MI.getOperand(1).isImm();
565 : if (IsIndirect)
566 : assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
567 122987 : const DILocalVariable *Var = MI.getDebugVariable();
568 122987 : const DIExpression *Expr = MI.getDebugExpression();
569 : UserValue *UV =
570 122987 : getUserValue(Var, Expr, MI.getDebugLoc());
571 122987 : if (!Discard)
572 122439 : UV->addDef(Idx, MI.getOperand(0), IsIndirect);
573 : else {
574 : MachineOperand MO = MachineOperand::CreateReg(0U, false);
575 : MO.setIsDebug();
576 548 : UV->addDef(Idx, MO, false);
577 : }
578 : return true;
579 : }
580 :
581 9221 : bool LDVImpl::collectDebugValues(MachineFunction &mf) {
582 : bool Changed = false;
583 241976 : for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
584 : ++MFI) {
585 : MachineBasicBlock *MBB = &*MFI;
586 : for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
587 2272541 : MBBI != MBBE;) {
588 : // Use the first debug instruction in the sequence to get a SlotIndex
589 : // for following consecutive debug instructions.
590 : if (!MBBI->isDebugInstr()) {
591 : ++MBBI;
592 2001968 : continue;
593 : }
594 : // Debug instructions has no slot index. Use the previous
595 : // non-debug instruction's SlotIndex as its SlotIndex.
596 : SlotIndex Idx =
597 : MBBI == MBB->begin()
598 21524 : ? LIS->getMBBStartIdx(MBB)
599 37818 : : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
600 : // Handle consecutive debug instructions with the same slot index.
601 : do {
602 : // Only handle DBG_VALUE in handleDebugValue(). Skip all other
603 : // kinds of debug instructions.
604 122989 : if (MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) {
605 122987 : MBBI = MBB->erase(MBBI);
606 : Changed = true;
607 : } else
608 : ++MBBI;
609 122989 : } while (MBBI != MBBE && MBBI->isDebugInstr());
610 : }
611 : }
612 9221 : return Changed;
613 : }
614 :
615 : /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
616 : /// data-flow analysis to propagate them beyond basic block boundaries.
617 76833 : void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
618 : const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
619 : LiveIntervals &LIS) {
620 76833 : SlotIndex Start = Idx;
621 76833 : MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
622 76833 : SlotIndex Stop = LIS.getMBBEndIdx(MBB);
623 76833 : LocMap::iterator I = locInts.find(Start);
624 :
625 : // Limit to VNI's live range.
626 : bool ToEnd = true;
627 76833 : if (LR && VNI) {
628 0 : LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
629 63905 : if (!Segment || Segment->valno != VNI) {
630 0 : if (Kills)
631 0 : Kills->push_back(Start);
632 0 : return;
633 : }
634 63905 : if (Segment->end < Stop) {
635 16114 : Stop = Segment->end;
636 : ToEnd = false;
637 : }
638 : }
639 :
640 : // There could already be a short def at Start.
641 76833 : if (I.valid() && I.start() <= Start) {
642 : // Stop when meeting a different location or an already extended interval.
643 76833 : Start = Start.getNextSlot();
644 153666 : if (I.value() != Loc || I.stop() != Start)
645 0 : return;
646 : // This is a one-slot placeholder. Just skip it.
647 : ++I;
648 : }
649 :
650 : // Limited by the next def.
651 8337 : if (I.valid() && I.start() < Stop) {
652 465 : Stop = I.start();
653 : ToEnd = false;
654 : }
655 : // Limited by VNI's live range.
656 76368 : else if (!ToEnd && Kills)
657 15951 : Kills->push_back(Stop);
658 :
659 76833 : if (Start < Stop)
660 76806 : I.insert(Start, Stop, Loc);
661 : }
662 :
663 63171 : void UserValue::addDefsFromCopies(
664 : LiveInterval *LI, unsigned LocNo, bool WasIndirect,
665 : const SmallVectorImpl<SlotIndex> &Kills,
666 : SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
667 : MachineRegisterInfo &MRI, LiveIntervals &LIS) {
668 63171 : if (Kills.empty())
669 62335 : return;
670 : // Don't track copies from physregs, there are too many uses.
671 31424 : if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
672 : return;
673 :
674 : // Collect all the (vreg, valno) pairs that are copies of LI.
675 : SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
676 67361 : for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
677 51649 : MachineInstr *MI = MO.getParent();
678 : // Copies of the full value.
679 51649 : if (MO.getSubReg() || !MI->isCopy())
680 50610 : continue;
681 11981 : unsigned DstReg = MI->getOperand(0).getReg();
682 :
683 : // Don't follow copies to physregs. These are usually setting up call
684 : // arguments, and the argument registers are always call clobbered. We are
685 : // better off in the source register which could be a callee-saved register,
686 : // or it could be spilled.
687 11981 : if (!TargetRegisterInfo::isVirtualRegister(DstReg))
688 : continue;
689 :
690 : // Is LocNo extended to reach this copy? If not, another def may be blocking
691 : // it, or we are looking at a wrong value of LI.
692 1440 : SlotIndex Idx = LIS.getInstructionIndex(*MI);
693 1440 : LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
694 1175 : if (!I.valid() || I.value().locNo() != LocNo)
695 : continue;
696 :
697 : if (!LIS.hasInterval(DstReg))
698 : continue;
699 1039 : LiveInterval *DstLI = &LIS.getInterval(DstReg);
700 1039 : const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
701 : assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
702 1039 : CopyValues.push_back(std::make_pair(DstLI, DstVNI));
703 : }
704 :
705 15712 : if (CopyValues.empty())
706 : return;
707 :
708 : LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
709 : << '\n');
710 :
711 : // Try to add defs of the copied values for each kill point.
712 1672 : for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
713 836 : SlotIndex Idx = Kills[i];
714 1697 : for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
715 1034 : LiveInterval *DstLI = CopyValues[j].first;
716 1034 : const VNInfo *DstVNI = CopyValues[j].second;
717 2068 : if (DstLI->getVNInfoAt(Idx) != DstVNI)
718 861 : continue;
719 : // Check that there isn't already a def at Idx
720 173 : LocMap::iterator I = locInts.find(Idx);
721 43 : if (I.valid() && I.start() <= Idx)
722 : continue;
723 : LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
724 : << DstVNI->id << " in " << *DstLI << '\n');
725 : MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
726 : assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
727 173 : unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
728 : DbgValueLocation NewLoc(LocNo, WasIndirect);
729 173 : I.insert(Idx, Idx.getNextSlot(), NewLoc);
730 346 : NewDefs.push_back(std::make_pair(Idx, NewLoc));
731 : break;
732 : }
733 : }
734 : }
735 :
736 0 : void UserValue::computeIntervals(MachineRegisterInfo &MRI,
737 : const TargetRegisterInfo &TRI,
738 : LiveIntervals &LIS, LexicalScopes &LS) {
739 : SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
740 :
741 : // Collect all defs to be extended (Skipping undefs).
742 0 : for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
743 : if (!I.value().isUndef())
744 0 : Defs.push_back(std::make_pair(I.start(), I.value()));
745 :
746 : // Extend all defs, and possibly add new ones along the way.
747 0 : for (unsigned i = 0; i != Defs.size(); ++i) {
748 0 : SlotIndex Idx = Defs[i].first;
749 0 : DbgValueLocation Loc = Defs[i].second;
750 0 : const MachineOperand &LocMO = locations[Loc.locNo()];
751 :
752 0 : if (!LocMO.isReg()) {
753 0 : extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
754 0 : continue;
755 : }
756 :
757 : // Register locations are constrained to where the register value is live.
758 0 : if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
759 : LiveInterval *LI = nullptr;
760 : const VNInfo *VNI = nullptr;
761 : if (LIS.hasInterval(LocMO.getReg())) {
762 0 : LI = &LIS.getInterval(LocMO.getReg());
763 0 : VNI = LI->getVNInfoAt(Idx);
764 : }
765 : SmallVector<SlotIndex, 16> Kills;
766 0 : extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
767 : // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
768 : // if the original location for example is %vreg0:sub_hi, and we find a
769 : // full register copy in addDefsFromCopies (at the moment it only handles
770 : // full register copies), then we must add the sub1 sub-register index to
771 : // the new location. However, that is only possible if the new virtual
772 : // register is of the same regclass (or if there is an equivalent
773 : // sub-register in that regclass). For now, simply skip handling copies if
774 : // a sub-register is involved.
775 0 : if (LI && !LocMO.getSubReg())
776 0 : addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
777 : LIS);
778 : continue;
779 : }
780 :
781 : // For physregs, we only mark the start slot idx. DwarfDebug will see it
782 : // as if the DBG_VALUE is valid up until the end of the basic block, or
783 : // the next def of the physical register. So we do not need to extend the
784 : // range. It might actually happen that the DBG_VALUE is the last use of
785 : // the physical register (e.g. if this is an unused input argument to a
786 : // function).
787 : }
788 :
789 : // The computed intervals may extend beyond the range of the debug
790 : // location's lexical scope. In this case, splitting of an interval
791 : // can result in an interval outside of the scope being created,
792 : // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
793 : // this, trim the intervals to the lexical scope.
794 :
795 0 : LexicalScope *Scope = LS.findLexicalScope(dl);
796 0 : if (!Scope)
797 0 : return;
798 :
799 : SlotIndex PrevEnd;
800 : LocMap::iterator I = locInts.begin();
801 :
802 : // Iterate over the lexical scope ranges. Each time round the loop
803 : // we check the intervals for overlap with the end of the previous
804 : // range and the start of the next. The first range is handled as
805 : // a special case where there is no PrevEnd.
806 0 : for (const InsnRange &Range : Scope->getRanges()) {
807 0 : SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
808 0 : SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
809 :
810 : // At the start of each iteration I has been advanced so that
811 : // I.stop() >= PrevEnd. Check for overlap.
812 0 : if (PrevEnd && I.start() < PrevEnd) {
813 0 : SlotIndex IStop = I.stop();
814 0 : DbgValueLocation Loc = I.value();
815 :
816 : // Stop overlaps previous end - trim the end of the interval to
817 : // the scope range.
818 0 : I.setStopUnchecked(PrevEnd);
819 : ++I;
820 :
821 : // If the interval also overlaps the start of the "next" (i.e.
822 : // current) range create a new interval for the remainder (which
823 : // may be further trimmed).
824 0 : if (RStart < IStop)
825 0 : I.insert(RStart, IStop, Loc);
826 : }
827 :
828 : // Advance I so that I.stop() >= RStart, and check for overlap.
829 0 : I.advanceTo(RStart);
830 : if (!I.valid())
831 0 : return;
832 :
833 0 : if (I.start() < RStart) {
834 : // Interval start overlaps range - trim to the scope range.
835 0 : I.setStartUnchecked(RStart);
836 : // Remember that this interval was trimmed.
837 0 : trimmedDefs.insert(RStart);
838 : }
839 :
840 : // The end of a lexical scope range is the last instruction in the
841 : // range. To convert to an interval we need the index of the
842 : // instruction after it.
843 : REnd = REnd.getNextIndex();
844 :
845 : // Advance I to first interval outside current range.
846 0 : I.advanceTo(REnd);
847 : if (!I.valid())
848 0 : return;
849 :
850 : PrevEnd = REnd;
851 : }
852 :
853 : // Check for overlap with end of final range.
854 0 : if (PrevEnd && I.start() < PrevEnd)
855 0 : I.setStopUnchecked(PrevEnd);
856 : }
857 :
858 9221 : void LDVImpl::computeIntervals() {
859 9221 : LexicalScopes LS;
860 9221 : LS.initialize(*MF);
861 :
862 90479 : for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
863 162516 : userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
864 81258 : userValues[i]->mapVirtRegs(this);
865 : }
866 9221 : }
867 :
868 9221 : bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
869 9221 : clear();
870 9221 : MF = &mf;
871 9221 : LIS = &pass.getAnalysis<LiveIntervals>();
872 9221 : TRI = mf.getSubtarget().getRegisterInfo();
873 : LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
874 : << mf.getName() << " **********\n");
875 :
876 9221 : bool Changed = collectDebugValues(mf);
877 9221 : computeIntervals();
878 : LLVM_DEBUG(print(dbgs()));
879 9221 : ModifiedMF = Changed;
880 9221 : return Changed;
881 : }
882 :
883 184780 : static void removeDebugValues(MachineFunction &mf) {
884 410076 : for (MachineBasicBlock &MBB : mf) {
885 2148623 : for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
886 1923327 : if (!MBBI->isDebugValue()) {
887 : ++MBBI;
888 1923297 : continue;
889 : }
890 30 : MBBI = MBB.erase(MBBI);
891 : }
892 : }
893 184780 : }
894 :
895 194001 : bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
896 194001 : if (!EnableLDV)
897 : return false;
898 194001 : if (!mf.getFunction().getSubprogram()) {
899 184780 : removeDebugValues(mf);
900 184780 : return false;
901 : }
902 9221 : if (!pImpl)
903 703 : pImpl = new LDVImpl(this);
904 9221 : return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
905 : }
906 :
907 194015 : void LiveDebugVariables::releaseMemory() {
908 194015 : if (pImpl)
909 9510 : static_cast<LDVImpl*>(pImpl)->clear();
910 194015 : }
911 :
912 38828 : LiveDebugVariables::~LiveDebugVariables() {
913 19414 : if (pImpl)
914 700 : delete static_cast<LDVImpl*>(pImpl);
915 38828 : }
916 19414 :
917 : //===----------------------------------------------------------------------===//
918 : // Live Range Splitting
919 19414 : //===----------------------------------------------------------------------===//
920 19414 :
921 19414 : bool
922 700 : UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
923 19414 : LiveIntervals& LIS) {
924 : LLVM_DEBUG({
925 : dbgs() << "Splitting Loc" << OldLocNo << '\t';
926 : print(dbgs(), nullptr);
927 : });
928 : bool DidChange = false;
929 : LocMap::iterator LocMapI;
930 4797 : LocMapI.setMap(locInts);
931 : for (unsigned i = 0; i != NewRegs.size(); ++i) {
932 : LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
933 : if (LI->empty())
934 : continue;
935 :
936 : // Don't allocate the new LocNo until it is needed.
937 : unsigned NewLocNo = UndefLocNo;
938 4797 :
939 19956 : // Iterate over the overlaps between locInts and LI.
940 30318 : LocMapI.find(LI->beginIndex());
941 15159 : if (!LocMapI.valid())
942 : continue;
943 : LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
944 : LiveInterval::iterator LIE = LI->end();
945 : while (LocMapI.valid() && LII != LIE) {
946 : // At this point, we know that LocMapI.stop() > LII->start.
947 : LII = LI->advanceTo(LII, LocMapI.start());
948 15048 : if (LII == LIE)
949 : break;
950 :
951 13942 : // Now LII->end > LocMapI.start(). Do we have an overlap?
952 : if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
953 9292 : // Overlapping correct location. Allocate NewLocNo now.
954 : if (NewLocNo == UndefLocNo) {
955 8003 : MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
956 8003 : MO.setSubReg(locations[OldLocNo].getSubReg());
957 : NewLocNo = getLocationNo(MO);
958 : DidChange = true;
959 : }
960 14210 :
961 : SlotIndex LStart = LocMapI.start();
962 6091 : SlotIndex LStop = LocMapI.stop();
963 5700 : DbgValueLocation OldLoc = LocMapI.value();
964 5700 :
965 5700 : // Trim LocMapI down to the LII overlap.
966 : if (LStart < LII->start)
967 : LocMapI.setStartUnchecked(LII->start);
968 : if (LStop > LII->end)
969 6091 : LocMapI.setStopUnchecked(LII->end);
970 6091 :
971 6091 : // Change the value in the overlap. This may trigger coalescing.
972 : LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
973 :
974 6091 : // Re-insert any removed OldLocNo ranges.
975 833 : if (LStart < LocMapI.start()) {
976 6091 : LocMapI.insert(LStart, LocMapI.start(), OldLoc);
977 96 : ++LocMapI;
978 : assert(LocMapI.valid() && "Unexpected coalescing");
979 : }
980 6091 : if (LStop > LocMapI.stop()) {
981 : ++LocMapI;
982 : LocMapI.insert(LII->end, LStop, OldLoc);
983 6091 : --LocMapI;
984 833 : }
985 : }
986 :
987 : // Advance to the next overlap.
988 6091 : if (LII->end < LocMapI.stop()) {
989 : if (++LII == LIE)
990 96 : break;
991 : LocMapI.advanceTo(LII->start);
992 : } else {
993 : ++LocMapI;
994 : if (!LocMapI.valid())
995 : break;
996 8003 : LII = LI->advanceTo(LII, LocMapI.start());
997 539 : }
998 : }
999 29 : }
1000 :
1001 : // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1002 : locations.erase(locations.begin() + OldLocNo);
1003 : LocMapI.goToBegin();
1004 2301 : while (LocMapI.valid()) {
1005 : DbgValueLocation v = LocMapI.value();
1006 : if (v.locNo() == OldLocNo) {
1007 : LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1008 : << LocMapI.stop() << ")\n");
1009 : LocMapI.erase();
1010 4797 : } else {
1011 4797 : // Undef values always have location number UndefLocNo, so don't change
1012 9203 : // locNo in that case. See getLocationNo().
1013 9203 : if (!v.isUndef() && v.locNo() > OldLocNo)
1014 9203 : LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1015 : ++LocMapI;
1016 : }
1017 0 : }
1018 :
1019 : LLVM_DEBUG({
1020 : dbgs() << "Split result: \t";
1021 9073 : print(dbgs(), nullptr);
1022 6464 : });
1023 : return DidChange;
1024 : }
1025 :
1026 : bool
1027 : UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1028 : LiveIntervals &LIS) {
1029 : bool DidChange = false;
1030 : // Split locations referring to OldReg. Iterate backwards so splitLocation can
1031 4797 : // safely erase unused locations.
1032 : for (unsigned i = locations.size(); i ; --i) {
1033 : unsigned LocNo = i-1;
1034 : const MachineOperand *Loc = &locations[LocNo];
1035 19858 : if (!Loc->isReg() || Loc->getReg() != OldReg)
1036 : continue;
1037 : DidChange |= splitLocation(LocNo, NewRegs, LIS);
1038 : }
1039 : return DidChange;
1040 44349 : }
1041 24491 :
1042 24491 : void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1043 24491 : bool DidChange = false;
1044 : for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1045 4797 : DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1046 :
1047 19858 : if (!DidChange)
1048 : return;
1049 :
1050 17181 : // Map all of the new virtual registers.
1051 : UserValue *UV = lookupVirtReg(OldReg);
1052 37039 : for (unsigned i = 0; i != NewRegs.size(); ++i)
1053 19858 : mapVirtReg(NewRegs[i], UV);
1054 : }
1055 17181 :
1056 : void LiveDebugVariables::
1057 : splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1058 : if (pImpl)
1059 918 : static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1060 3433 : }
1061 5030 :
1062 : void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1063 : const TargetInstrInfo &TII,
1064 26348 : const TargetRegisterInfo &TRI,
1065 : SpillOffsetMap &SpillOffsets) {
1066 26348 : // Build a set of new locations with new numbers so we can coalesce our
1067 17181 : // IntervalMap if two vreg intervals collapse to the same physical location.
1068 26348 : // Use MapVector instead of SetVector because MapVector::insert returns the
1069 : // position of the previously or newly inserted element. The boolean value
1070 81258 : // tracks if the location was produced by a spill.
1071 : // FIXME: This will be problematic if we ever support direct and indirect
1072 : // frame index locations, i.e. expressing both variables in memory and
1073 : // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1074 : MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1075 : SmallVector<unsigned, 4> LocNoMap(locations.size());
1076 : for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1077 : bool Spilled = false;
1078 : unsigned SpillOffset = 0;
1079 : MachineOperand Loc = locations[I];
1080 : // Only virtual registers are rewritten.
1081 : if (Loc.isReg() && Loc.getReg() &&
1082 81258 : TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1083 81258 : unsigned VirtReg = Loc.getReg();
1084 177581 : if (VRM.isAssignedReg(VirtReg) &&
1085 : TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1086 96323 : // This can create a %noreg operand in rare cases when the sub-register
1087 192646 : // index is no longer available. That means the user value is in a
1088 : // non-existent sub-register, and %noreg is exactly what we want.
1089 96323 : Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1090 : } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1091 : // Retrieve the stack slot offset.
1092 59966 : unsigned SpillSize;
1093 : const MachineRegisterInfo &MRI = MF.getRegInfo();
1094 : const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1095 : bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1096 : SpillOffset, MF);
1097 59660 :
1098 1895 : // FIXME: Invalidate the location if the offset couldn't be calculated.
1099 : (void)Success;
1100 :
1101 1589 : Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1102 : Spilled = true;
1103 1589 : } else {
1104 1589 : Loc.setReg(0);
1105 : Loc.setSubReg(0);
1106 : }
1107 : }
1108 :
1109 1589 : // Insert this location if it doesn't already exist and record a mapping
1110 : // from the old number to the new number.
1111 : auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1112 306 : unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1113 : LocNoMap[I] = NewLocNo;
1114 : }
1115 :
1116 : // Rewrite the locations and record the stack slot offsets for spills.
1117 : locations.clear();
1118 : SpillOffsets.clear();
1119 96323 : for (auto &Pair : NewLocations) {
1120 96323 : bool Spilled;
1121 96323 : unsigned SpillOffset;
1122 : std::tie(Spilled, SpillOffset) = Pair.second;
1123 : locations.push_back(Pair.first);
1124 : if (Spilled) {
1125 : unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1126 81258 : SpillOffsets[NewLocNo] = SpillOffset;
1127 170547 : }
1128 : }
1129 :
1130 89289 : // Update the interval map, but only coalesce left, since intervals to the
1131 89289 : // right use the old location numbers. This should merge two contiguous
1132 89289 : // DBG_VALUE intervals with different vregs that were allocated to the same
1133 1585 : // physical register.
1134 1585 : for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1135 : DbgValueLocation Loc = I.value();
1136 : // Undef values don't exist in locations (and thus not in LocNoMap either)
1137 : // so skip over them. See getLocationNo().
1138 : if (Loc.isUndef())
1139 : continue;
1140 : unsigned NewLocNo = LocNoMap[Loc.locNo()];
1141 : I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1142 81258 : I.setStart(I.start());
1143 119068 : }
1144 : }
1145 :
1146 : /// Find an iterator for inserting a DBG_VALUE instruction.
1147 16292 : static MachineBasicBlock::iterator
1148 102776 : findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1149 102776 : LiveIntervals &LIS) {
1150 102776 : SlotIndex Start = LIS.getMBBStartIdx(MBB);
1151 : Idx = Idx.getBaseIndex();
1152 81258 :
1153 : // Try to find an insert location by going backwards from Idx.
1154 : MachineInstr *MI;
1155 : while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1156 119536 : // We've reached the beginning of MBB.
1157 : if (Idx == Start) {
1158 119536 : MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1159 : return I;
1160 : }
1161 : Idx = Idx.getPrevIndex();
1162 : }
1163 171504 :
1164 : // Don't insert anything after the first terminator, though.
1165 73759 : return MI->isTerminator() ? MBB->getFirstTerminator() :
1166 47775 : std::next(MachineBasicBlock::iterator(MI));
1167 47775 : }
1168 :
1169 : /// Find an iterator for inserting the next DBG_VALUE instruction
1170 : /// (or end if no more insert locations found).
1171 : static MachineBasicBlock::iterator
1172 : findNextInsertLocation(MachineBasicBlock *MBB,
1173 85 : MachineBasicBlock::iterator I,
1174 143437 : SlotIndex StopIdx, MachineOperand &LocMO,
1175 : LiveIntervals &LIS,
1176 : const TargetRegisterInfo &TRI) {
1177 : if (!LocMO.isReg())
1178 : return MBB->instr_end();
1179 : unsigned Reg = LocMO.getReg();
1180 119822 :
1181 : // Find the next instruction in the MBB that define the register Reg.
1182 : while (I != MBB->end() && !I->isTerminator()) {
1183 : if (!LIS.isNotInMIMap(*I) &&
1184 : SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1185 119822 : break;
1186 14575 : if (I->definesRegister(Reg, &TRI))
1187 105247 : // The insert location is directly after the instruction/bundle.
1188 : return std::next(I);
1189 : ++I;
1190 1704599 : }
1191 1110378 : return MBB->end();
1192 303360 : }
1193 :
1194 748459 : void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1195 : SlotIndex StopIdx, DbgValueLocation Loc,
1196 287 : bool Spilled, unsigned SpillOffset,
1197 : LiveIntervals &LIS, const TargetInstrInfo &TII,
1198 : const TargetRegisterInfo &TRI) {
1199 : SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1200 : // Only search within the current MBB.
1201 : StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1202 119536 : MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1203 : // Undef values don't exist in locations so create new "noreg" register MOs
1204 : // for them. See getLocationNo().
1205 : MachineOperand MO = !Loc.isUndef() ?
1206 : locations[Loc.locNo()] :
1207 239072 : MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1208 : /* isKill */ false, /* isDead */ false,
1209 119536 : /* isUndef */ false, /* isEarlyClobber */ false,
1210 119536 : /* SubReg */ 0, /* isDebug */ true);
1211 :
1212 : ++NumInsertedDebugValues;
1213 :
1214 103244 : assert(cast<DILocalVariable>(Variable)
1215 : ->isValidLocationForIntrinsic(getDebugLoc()) &&
1216 : "Expected inlined-at fields to agree");
1217 :
1218 103244 : // If the location was spilled, the new DBG_VALUE will be indirect. If the
1219 : // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1220 : // that the original virtual register was a pointer. Also, add the stack slot
1221 : // offset for the spilled register to the expression.
1222 : const DIExpression *Expr = Expression;
1223 : bool IsIndirect = Loc.wasIndirect();
1224 : if (Spilled) {
1225 : auto Deref = IsIndirect ? DIExpression::WithDeref : DIExpression::NoDeref;
1226 : Expr =
1227 : DIExpression::prepend(Expr, DIExpression::NoDeref, SpillOffset, Deref);
1228 : IsIndirect = true;
1229 : }
1230 119536 :
1231 119536 : assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1232 119536 :
1233 1656 : do {
1234 : BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1235 1656 : IsIndirect, MO, Variable, Expr);
1236 :
1237 : // Continue and insert DBG_VALUES after every redefinition of register
1238 : // associated with the debug value within the range
1239 : I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1240 : } while (I != MBB->end());
1241 : }
1242 119822 :
1243 239644 : void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1244 : const TargetInstrInfo &TII,
1245 : const TargetRegisterInfo &TRI,
1246 : const SpillOffsetMap &SpillOffsets) {
1247 119822 : MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1248 119822 :
1249 119536 : for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1250 : SlotIndex Start = I.start();
1251 81258 : SlotIndex Stop = I.stop();
1252 : DbgValueLocation Loc = I.value();
1253 : auto SpillIt =
1254 : !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1255 81258 : bool Spilled = SpillIt != SpillOffsets.end();
1256 : unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1257 281584 :
1258 119068 : // If the interval start was trimmed to the lexical scope insert the
1259 119068 : // DBG_VALUE at the previous index (otherwise it appears after the
1260 119068 : // first instruction in the range).
1261 : if (trimmedDefs.count(Start))
1262 119068 : Start = Start.getPrevIndex();
1263 :
1264 119068 : LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1265 : MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1266 : SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1267 :
1268 : LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1269 119068 : insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1270 31435 : TRI);
1271 : // This interval may span multiple basic blocks.
1272 : // Insert a DBG_VALUE into each one.
1273 119068 : while (Stop > MBBEnd) {
1274 119068 : // Move to the next block.
1275 : Start = MBBEnd;
1276 : if (++MBB == MFEnd)
1277 119068 : break;
1278 : MBBEnd = LIS.getMBBEndIdx(&*MBB);
1279 : LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1280 : insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1281 119536 : TRI);
1282 : }
1283 468 : LLVM_DEBUG(dbgs() << '\n');
1284 468 : if (MBB == MFEnd)
1285 : break;
1286 468 :
1287 : ++I;
1288 468 : }
1289 : }
1290 :
1291 : void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1292 119068 : LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1293 : if (!MF)
1294 : return;
1295 119068 : const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1296 : SpillOffsetMap SpillOffsets;
1297 81258 : for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1298 : LLVM_DEBUG(userValues[i]->print(dbgs(), TRI));
1299 9509 : userValues[i]->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1300 : userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1301 9509 : }
1302 289 : EmitDone = true;
1303 9220 : }
1304 :
1305 90479 : void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1306 : if (pImpl)
1307 162516 : static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1308 81258 : }
1309 :
1310 9221 : bool LiveDebugVariables::doInitialization(Module &M) {
1311 : return Pass::doInitialization(M);
1312 : }
1313 193975 :
1314 193975 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1315 9510 : LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1316 193975 : if (pImpl)
1317 : static_cast<LDVImpl*>(pImpl)->print(dbgs());
1318 19544 : }
1319 19544 : #endif
|