LCOV - code coverage report
Current view: top level - lib/CodeGen - LiveInterval.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 551 617 89.3 %
Date: 2018-10-20 13:21:21 Functions: 46 59 78.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- LiveInterval.cpp - Live Interval Representation --------------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file implements the LiveRange and LiveInterval classes.  Given some
      11             : // numbering of each the machine instructions an interval [i, j) is said to be a
      12             : // live range for register v if there is no instruction with number j' >= j
      13             : // such that v is live at j' and there is no instruction with number i' < i such
      14             : // that v is live at i'. In this implementation ranges can have holes,
      15             : // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
      16             : // individual segment is represented as an instance of LiveRange::Segment,
      17             : // and the whole range is represented as an instance of LiveRange.
      18             : //
      19             : //===----------------------------------------------------------------------===//
      20             : 
      21             : #include "llvm/CodeGen/LiveInterval.h"
      22             : #include "LiveRangeUtils.h"
      23             : #include "RegisterCoalescer.h"
      24             : #include "llvm/ADT/ArrayRef.h"
      25             : #include "llvm/ADT/STLExtras.h"
      26             : #include "llvm/ADT/SmallPtrSet.h"
      27             : #include "llvm/ADT/SmallVector.h"
      28             : #include "llvm/ADT/iterator_range.h"
      29             : #include "llvm/CodeGen/LiveIntervals.h"
      30             : #include "llvm/CodeGen/MachineBasicBlock.h"
      31             : #include "llvm/CodeGen/MachineInstr.h"
      32             : #include "llvm/CodeGen/MachineOperand.h"
      33             : #include "llvm/CodeGen/MachineRegisterInfo.h"
      34             : #include "llvm/CodeGen/SlotIndexes.h"
      35             : #include "llvm/CodeGen/TargetRegisterInfo.h"
      36             : #include "llvm/Config/llvm-config.h"
      37             : #include "llvm/MC/LaneBitmask.h"
      38             : #include "llvm/Support/Compiler.h"
      39             : #include "llvm/Support/Debug.h"
      40             : #include "llvm/Support/raw_ostream.h"
      41             : #include <algorithm>
      42             : #include <cassert>
      43             : #include <cstddef>
      44             : #include <iterator>
      45             : #include <utility>
      46             : 
      47             : using namespace llvm;
      48             : 
      49             : namespace {
      50             : 
      51             : //===----------------------------------------------------------------------===//
      52             : // Implementation of various methods necessary for calculation of live ranges.
      53             : // The implementation of the methods abstracts from the concrete type of the
      54             : // segment collection.
      55             : //
      56             : // Implementation of the class follows the Template design pattern. The base
      57             : // class contains generic algorithms that call collection-specific methods,
      58             : // which are provided in concrete subclasses. In order to avoid virtual calls
      59             : // these methods are provided by means of C++ template instantiation.
      60             : // The base class calls the methods of the subclass through method impl(),
      61             : // which casts 'this' pointer to the type of the subclass.
      62             : //
      63             : //===----------------------------------------------------------------------===//
      64             : 
      65             : template <typename ImplT, typename IteratorT, typename CollectionT>
      66             : class CalcLiveRangeUtilBase {
      67             : protected:
      68             :   LiveRange *LR;
      69             : 
      70             : protected:
      71    16241403 :   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
      72             : 
      73             : public:
      74             :   using Segment = LiveRange::Segment;
      75             :   using iterator = IteratorT;
      76             : 
      77             :   /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
      78             :   /// value defined at @p Def.
      79             :   /// If @p ForVNI is null, and there is no value defined at @p Def, a new
      80             :   /// value will be allocated using @p VNInfoAllocator.
      81             :   /// If @p ForVNI is null, the return value is the value defined at @p Def,
      82             :   /// either a pre-existing one, or the one newly created.
      83             :   /// If @p ForVNI is not null, then @p Def should be the location where
      84             :   /// @p ForVNI is defined. If the range does not have a value defined at
      85             :   /// @p Def, the value @p ForVNI will be used instead of allocating a new
      86             :   /// one. If the range already has a value defined at @p Def, it must be
      87             :   /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
      88     6027494 :   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
      89             :                         VNInfo *ForVNI) {
      90             :     assert(!Def.isDead() && "Cannot define a value at the dead slot");
      91             :     assert((!ForVNI || ForVNI->def == Def) &&
      92             :            "If ForVNI is specified, it must match Def");
      93     9692081 :     iterator I = impl().find(Def);
      94     6027494 :     if (I == segments().end()) {
      95     4681184 :       VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
      96     8181647 :       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
      97     4681184 :       return VNI;
      98             :     }
      99             : 
     100             :     Segment *S = segmentAt(I);
     101     1346310 :     if (SlotIndex::isSameInstr(Def, S->start)) {
     102             :       assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
     103             :       assert(S->valno->def == S->start && "Inconsistent existing value def");
     104             : 
     105             :       // It is possible to have both normal and early-clobber defs of the same
     106             :       // register on an instruction. It doesn't make a lot of sense, but it is
     107             :       // possible to specify in inline assembly.
     108             :       //
     109             :       // Just convert everything to early-clobber.
     110      140448 :       Def = std::min(Def, S->start);
     111      140285 :       if (Def != S->start)
     112           0 :         S->start = S->valno->def = Def;
     113      140285 :       return S->valno;
     114             :     }
     115             :     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
     116     1206025 :     VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
     117     1206025 :     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
     118     1206025 :     return VNI;
     119             :   }
     120     3664587 : 
     121             :   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
     122             :     if (segments().empty())
     123             :       return nullptr;
     124             :     iterator I =
     125     7329174 :       impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
     126     3664587 :     if (I == segments().begin())
     127     3500463 :       return nullptr;
     128     7000926 :     --I;
     129     3500463 :     if (I->end <= StartIdx)
     130             :       return nullptr;
     131             :     if (I->end < Use)
     132             :       extendSegmentEndTo(I, Use);
     133      164124 :     return I->valno;
     134             :   }
     135             : 
     136             :   std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
     137             :       SlotIndex StartIdx, SlotIndex Use) {
     138             :     if (segments().empty())
     139             :       return std::make_pair(nullptr, false);
     140             :     SlotIndex BeforeUse = Use.getPrevSlot();
     141             :     iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
     142      126840 :     if (I == segments().begin())
     143      126680 :       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
     144           0 :     --I;
     145      126680 :     if (I->end <= StartIdx)
     146             :       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
     147             :     if (I->end < Use) {
     148       37444 :       if (LR->isUndefIn(Undefs, I->end, BeforeUse))
     149       37444 :         return std::make_pair(nullptr, true);
     150       37444 :       extendSegmentEndTo(I, Use);
     151             :     }
     152     2362907 :     return std::make_pair(I->valno, false);
     153             :   }
     154             : 
     155             :   /// This method is used when we want to extend the segment specified
     156             :   /// by I to end at the specified endpoint. To do this, we should
     157     2362907 :   /// merge and eliminate all segments that this will overlap
     158     2362907 :   /// with. The iterator is not invalidated.
     159     1180721 :   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
     160     1180721 :     assert(I != segments().end() && "Not a valid segment!");
     161     1180721 :     Segment *S = segmentAt(I);
     162             :     VNInfo *ValNo = I->valno;
     163             : 
     164             :     // Search for the first segment that we can't merge with.
     165     1182186 :     iterator MergeTo = std::next(I);
     166             :     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
     167             :       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
     168             : 
     169             :     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
     170             :     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
     171             : 
     172             :     // If the newly formed segment now touches the segment after it and if they
     173             :     // have the same value number, merge the two segments into one segment.
     174       13608 :     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
     175       13605 :         MergeTo->valno == ValNo) {
     176           0 :       S->end = MergeTo->end;
     177       13605 :       ++MergeTo;
     178             :     }
     179             : 
     180     1168581 :     // Erase any dead segments.
     181     1168581 :     segments().erase(std::next(I), MergeTo);
     182     1168581 :   }
     183             : 
     184             :   /// This method is used when we want to extend the segment specified
     185      303653 :   /// by I to start at the specified endpoint.  To do this, we should
     186      303653 :   /// merge and eliminate all segments that this will overlap with.
     187             :   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
     188      303653 :     assert(I != segments().end() && "Not a valid segment!");
     189             :     Segment *S = segmentAt(I);
     190      303653 :     VNInfo *ValNo = I->valno;
     191             : 
     192      303608 :     // Search for the first segment that we can't merge with.
     193      303608 :     iterator MergeTo = I;
     194             :     do {
     195      108487 :       if (MergeTo == segments().begin()) {
     196       52687 :         S->start = NewStart;
     197      108487 :         segments().erase(MergeTo, I);
     198             :         return I;
     199      303653 :       }
     200      303653 :       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
     201             :       --MergeTo;
     202      303653 :     } while (NewStart <= MergeTo->start);
     203             : 
     204      303653 :     // If we start in the middle of another segment, just delete a range and
     205             :     // extend that segment.
     206      303608 :     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
     207      303608 :       segmentAt(MergeTo)->end = S->end;
     208             :     } else {
     209      108487 :       // Otherwise, extend the segment right after.
     210       52687 :       ++MergeTo;
     211      108487 :       Segment *MergeToSeg = segmentAt(MergeTo);
     212             :       MergeToSeg->start = NewStart;
     213           0 :       MergeToSeg->end = S->end;
     214           0 :     }
     215             : 
     216           0 :     segments().erase(std::next(MergeTo), std::next(I));
     217             :     return MergeTo;
     218           0 :   }
     219             : 
     220             :   iterator addSegment(Segment S) {
     221           0 :     SlotIndex Start = S.start, End = S.end;
     222             :     iterator I = impl().findInsertPos(S);
     223           0 : 
     224           0 :     // If the inserted segment starts in the middle or right at the end of
     225           0 :     // another segment, just extend that segment to contain the segment of S.
     226             :     if (I != segments().begin()) {
     227             :       iterator B = std::prev(I);
     228     8748210 :       if (S.valno == B->valno) {
     229             :         if (B->start <= Start && B->end >= Start) {
     230     8748210 :           extendSegmentEndTo(B, End);
     231           0 :           return B;
     232             :         }
     233     8748210 :       } else {
     234     8748210 :         // Check to make sure that we are not overlapping two live segments with
     235        3154 :         // different valno's.
     236     7198614 :         assert(B->end <= Start &&
     237     8745056 :                "Cannot overlap two segments with differing ValID's"
     238     1819440 :                " (did you def the same reg twice in a MachineInstr?)");
     239     6925616 :       }
     240     6423734 :     }
     241           2 : 
     242     6423732 :     // Otherwise, if this segment ends in the middle of, or right next
     243             :     // to, another segment, merge it into that segment.
     244     6925614 :     if (I != segments().end()) {
     245             :       if (S.valno == I->valno) {
     246     7201768 :         if (I->start <= End) {
     247             :           I = extendSegmentStartTo(I, Start);
     248     7201768 : 
     249           0 :           // If S is a complete superset of a segment, we may need to grow its
     250             :           // endpoint as well.
     251     7201768 :           if (End > I->end)
     252     7201768 :             extendSegmentEndTo(I, End);
     253        3154 :           return I;
     254     7198614 :         }
     255     7198614 :       } else {
     256     1819335 :         // Check to make sure that we are not overlapping two live segments with
     257     5379279 :         // different valno's.
     258     4882142 :         assert(I->start >= End &&
     259           2 :                "Cannot overlap two segments with differing ValID's");
     260     4882140 :       }
     261             :     }
     262     5379277 : 
     263             :     // Otherwise, this is just a new segment that doesn't interact with
     264     1546442 :     // anything.
     265             :     // Insert it.
     266     1546442 :     return segments().insert(I, S);
     267           0 :   }
     268             : 
     269     1546442 : private:
     270     1546442 :   ImplT &impl() { return *static_cast<ImplT *>(this); }
     271           0 : 
     272             :   CollectionT &segments() { return impl().segmentsColl(); }
     273     1546442 : 
     274         105 :   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
     275     1546337 : };
     276     1541592 : 
     277           0 : //===----------------------------------------------------------------------===//
     278     1541592 : //   Instantiation of the methods for calculation of live ranges
     279             : //   based on a segment vector.
     280     1546337 : //===----------------------------------------------------------------------===//
     281             : 
     282             : class CalcLiveRangeUtilVector;
     283             : using CalcLiveRangeUtilVectorBase =
     284             :     CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
     285             :                           LiveRange::Segments>;
     286             : 
     287     7190107 : class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
     288             : public:
     289             :   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
     290     7190107 : 
     291             : private:
     292             :   friend CalcLiveRangeUtilVectorBase;
     293     1541644 : 
     294     7190107 :   LiveRange::Segments &segmentsColl() { return LR->segments; }
     295             : 
     296             :   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
     297             : 
     298     7190107 :   iterator find(SlotIndex Pos) { return LR->find(Pos); }
     299             : 
     300             :   iterator findInsertPos(Segment S) {
     301             :     return std::upper_bound(LR->begin(), LR->end(), S.start);
     302     7190107 :   }
     303      488891 : };
     304       56862 : 
     305       56861 : //===----------------------------------------------------------------------===//
     306             : //   Instantiation of the methods for calculation of live ranges
     307             : //   based on a segment set.
     308             : //===----------------------------------------------------------------------===//
     309     1541644 : 
     310     7190107 : class CalcLiveRangeUtilSet;
     311     5648463 : using CalcLiveRangeUtilSetBase =
     312             :     CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
     313             :                           LiveRange::SegmentSet>;
     314     5648463 : 
     315             : class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
     316             : public:
     317             :   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
     318     5648463 : 
     319             : private:
     320             :   friend CalcLiveRangeUtilSetBase;
     321             : 
     322     5648463 :   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
     323             : 
     324             :   void insertAtEnd(const Segment &S) {
     325             :     LR->segmentSet->insert(LR->segmentSet->end(), S);
     326     5648463 :   }
     327      447516 : 
     328       56861 :   iterator find(SlotIndex Pos) {
     329       56861 :     iterator I =
     330             :         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
     331             :     if (I == LR->segmentSet->begin())
     332             :       return I;
     333             :     iterator PrevI = std::prev(I);
     334     5648463 :     if (Pos < (*PrevI).end)
     335     1541644 :       return PrevI;
     336             :     return I;
     337             :   }
     338     1541644 : 
     339             :   iterator findInsertPos(Segment S) {
     340             :     iterator I = LR->segmentSet->upper_bound(S);
     341     1541644 :     if (I != LR->segmentSet->end() && !(S.start < *I))
     342     1541644 :       ++I;
     343             :     return I;
     344             :   }
     345             : };
     346     1541644 : 
     347             : } // end anonymous namespace
     348             : 
     349             : //===----------------------------------------------------------------------===//
     350     1541644 : //   LiveRange methods
     351       41375 : //===----------------------------------------------------------------------===//
     352           1 : 
     353             : LiveRange::iterator LiveRange::find(SlotIndex Pos) {
     354             :   // This algorithm is basically std::upper_bound.
     355             :   // Unfortunately, std::upper_bound cannot be used with mixed types until we
     356             :   // adopt C++0x. Many libraries can do it, but not all.
     357     1541644 :   if (empty() || Pos >= endIndex())
     358     1541644 :     return end();
     359             :   iterator I = begin();
     360             :   size_t Len = size();
     361             :   do {
     362             :     size_t Mid = Len >> 1;
     363       97778 :     if (Pos < I[Mid].end) {
     364             :       Len = Mid;
     365             :     } else {
     366       97778 :       I += Mid + 1;
     367             :       Len -= Mid + 1;
     368             :     }
     369             :   } while (Len);
     370             :   return I;
     371       97778 : }
     372          12 : 
     373             : VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
     374          12 :   // Use the segment set, if it is available.
     375             :   if (segmentSet != nullptr)
     376             :     return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
     377       97766 :   // Otherwise use the segment vector.
     378       97766 :   return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
     379             : }
     380             : 
     381             : VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
     382       97766 :   // Use the segment set, if it is available.
     383           0 :   if (segmentSet != nullptr)
     384             :     return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
     385             :   // Otherwise use the segment vector.
     386             :   return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
     387             : }
     388       97766 : 
     389       97766 : // overlaps - Return true if the intersection of the two live ranges is
     390             : // not empty.
     391             : //
     392           0 : // An example for overlaps():
     393       97766 : //
     394             : // 0: A = ...
     395       97778 : // 4: B = ...
     396             : // 8: C = A + B ;; last use of A
     397             : //
     398       97778 : // The live ranges should look like:
     399             : //
     400             : // A = [3, 11)
     401             : // B = [7, x)
     402             : // C = [11, y)
     403       97778 : //
     404          12 : // A->overlaps(C) should return false since we want to be able to join
     405             : // A and C.
     406          12 : //
     407             : bool LiveRange::overlapsFrom(const LiveRange& other,
     408             :                              const_iterator StartPos) const {
     409       97766 :   assert(!empty() && "empty range");
     410       97766 :   const_iterator i = begin();
     411             :   const_iterator ie = end();
     412             :   const_iterator j = StartPos;
     413             :   const_iterator je = other.end();
     414       97766 : 
     415           0 :   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
     416             :          StartPos != other.end() && "Bogus start position hint!");
     417             : 
     418             :   if (i->start < j->start) {
     419             :     i = std::upper_bound(i, ie, j->start);
     420       97766 :     if (i != begin()) --i;
     421       97766 :   } else if (j->start < i->start) {
     422             :     ++StartPos;
     423             :     if (StartPos != other.end() && StartPos->start <= i->start) {
     424             :       assert(StartPos < other.end() && i < end());
     425       97766 :       j = std::upper_bound(j, je, i->start);
     426             :       if (j != other.begin()) --j;
     427           0 :     }
     428             :   } else {
     429             :     return true;
     430           0 :   }
     431             : 
     432             :   if (j == je) return false;
     433             : 
     434             :   while (i != ie) {
     435           0 :     if (i->start > j->start) {
     436           0 :       std::swap(i, j);
     437             :       std::swap(ie, je);
     438           0 :     }
     439             : 
     440             :     if (i->end > j->start)
     441             :       return true;
     442           0 :     ++i;
     443             :   }
     444             : 
     445             :   return false;
     446           0 : }
     447           0 : 
     448             : bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
     449             :                          const SlotIndexes &Indexes) const {
     450             :   assert(!empty() && "empty range");
     451             :   if (Other.empty())
     452           0 :     return false;
     453           0 : 
     454             :   // Use binary searches to find initial positions.
     455             :   const_iterator I = find(Other.beginIndex());
     456           0 :   const_iterator IE = end();
     457           0 :   if (I == IE)
     458             :     return false;
     459             :   const_iterator J = Other.find(I->start);
     460     1162046 :   const_iterator JE = Other.end();
     461     1162046 :   if (J == JE)
     462     1162046 :     return false;
     463             : 
     464             :   while (true) {
     465             :     // J has just been advanced to satisfy:
     466     1162046 :     assert(J->end >= I->start);
     467         105 :     // Check for an overlap.
     468     1043211 :     if (J->start < I->end) {
     469      906771 :       // I and J are overlapping. Find the later start.
     470      713688 :       SlotIndex Def = std::max(I->start, J->start);
     471      713688 :       // Allow the overlap if Def is a coalescable copy.
     472             :       if (Def.isBlock() ||
     473             :           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
     474             :         return true;
     475             :     }
     476             :     // Advance the iterator that ends first to check for more overlaps.
     477             :     if (J->end > I->end) {
     478             :       std::swap(I, J);
     479             :       std::swap(IE, JE);
     480             :     }
     481             :     // Advance J until J->end >= I->start.
     482             :     do
     483             :       if (++J == JE)
     484      448358 :         return false;
     485      187802 :     while (J->end < I->start);
     486      152272 :   }
     487       97778 : }
     488             : 
     489             : /// overlaps - Return true if the live range overlaps an interval specified
     490             : /// by [Start, End).
     491       97778 : bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
     492           0 :   assert(Start < End && "Invalid range");
     493       97778 :   const_iterator I = std::lower_bound(begin(), end(), End);
     494             :   return I != begin() && (--I)->end > Start;
     495             : }
     496             : 
     497             : bool LiveRange::covers(const LiveRange &Other) const {
     498             :   if (empty())
     499             :     return Other.empty();
     500             : 
     501             :   const_iterator I = begin();
     502             :   for (const Segment &O : Other.segments) {
     503             :     I = advanceTo(I, O.start);
     504             :     if (I == end() || I->start > O.start)
     505             :       return false;
     506      350580 : 
     507             :     // Check adjacent live segments and see if we can get behind O.end.
     508     1161941 :     while (I->end < O.end) {
     509     1161941 :       const_iterator Last = I;
     510     1161941 :       // Get next segment and abort if it was not adjacent.
     511             :       ++I;
     512             :       if (I == end() || Last->end != I->start)
     513             :         return false;
     514     1161941 :     }
     515             :   }
     516     1043106 :   return true;
     517      906705 : }
     518      713636 : 
     519      713636 : /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
     520             : /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
     521             : /// it can be nuked later.
     522             : void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
     523             :   if (ValNo->id == getNumValNums()-1) {
     524             :     do {
     525             :       valnos.pop_back();
     526             :     } while (!valnos.empty() && valnos.back()->isUnused());
     527             :   } else {
     528             :     ValNo->markUnused();
     529             :   }
     530             : }
     531             : 
     532      448305 : /// RenumberValues - Renumber all values in order of appearance and delete the
     533      187757 : /// remaining unused values.
     534      152272 : void LiveRange::RenumberValues() {
     535       97778 :   SmallPtrSet<VNInfo*, 8> Seen;
     536             :   valnos.clear();
     537             :   for (const Segment &S : segments) {
     538             :     VNInfo *VNI = S.valno;
     539       97778 :     if (!Seen.insert(VNI).second)
     540           0 :       continue;
     541       97778 :     assert(!VNI->isUnused() && "Unused valno used by live segment");
     542             :     VNI->id = (unsigned)valnos.size();
     543             :     valnos.push_back(VNI);
     544             :   }
     545             : }
     546             : 
     547             : void LiveRange::addSegmentToSet(Segment S) {
     548             :   CalcLiveRangeUtilSet(this).addSegment(S);
     549             : }
     550             : 
     551             : LiveRange::iterator LiveRange::addSegment(Segment S) {
     552             :   // Use the segment set, if it is available.
     553             :   if (segmentSet != nullptr) {
     554      350527 :     addSegmentToSet(S);
     555             :     return end();
     556         105 :   }
     557         105 :   // Otherwise use the segment vector.
     558         105 :   return CalcLiveRangeUtilVector(this).addSegment(S);
     559             : }
     560             : 
     561             : void LiveRange::append(const Segment S) {
     562         105 :   // Check that the segment belongs to the back of the list.
     563         105 :   assert(segments.empty() || segments.back().end <= S.start);
     564         105 :   segments.push_back(S);
     565          66 : }
     566          52 : 
     567          52 : std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
     568             :     SlotIndex StartIdx, SlotIndex Kill) {
     569             :   // Use the segment set, if it is available.
     570             :   if (segmentSet != nullptr)
     571             :     return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
     572             :   // Otherwise use the segment vector.
     573             :   return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
     574             : }
     575             : 
     576             : VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
     577             :   // Use the segment set, if it is available.
     578             :   if (segmentSet != nullptr)
     579             :     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
     580          53 :   // Otherwise use the segment vector.
     581          45 :   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
     582           0 : }
     583           0 : 
     584             : /// Remove the specified segment from this range.  Note that the segment must
     585             : /// be in a single Segment in its entirety.
     586             : void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
     587           0 :                               bool RemoveDeadValNo) {
     588           0 :   // Find the Segment containing this span.
     589           0 :   iterator I = find(Start);
     590             :   assert(I != end() && "Segment is not in range!");
     591             :   assert(I->containsInterval(Start, End)
     592             :          && "Segment is not entirely in range!");
     593             : 
     594             :   // If the span we are removing is at the start of the Segment, adjust it.
     595             :   VNInfo *ValNo = I->valno;
     596             :   if (I->start == Start) {
     597             :     if (I->end == End) {
     598             :       if (RemoveDeadValNo) {
     599             :         // Check if val# is dead.
     600             :         bool isDead = true;
     601             :         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
     602          53 :           if (II != I && II->valno == ValNo) {
     603             :             isDead = false;
     604             :             break;
     605             :           }
     606             :         if (isDead) {
     607             :           // Now that ValNo is dead, remove it.
     608    33243631 :           markValNoForDeletion(ValNo);
     609             :         }
     610           0 :       }
     611             : 
     612             :       segments.erase(I);  // Removed the whole Segment.
     613             :     } else
     614             :       I->start = End;
     615             :     return;
     616             :   }
     617             : 
     618             :   // Otherwise if the span we are removing is at the end of the Segment,
     619             :   // adjust the other way.
     620             :   if (I->end == End) {
     621             :     I->end = Start;
     622             :     return;
     623             :   }
     624             : 
     625             :   // Otherwise, we are splitting the Segment into two pieces.
     626             :   SlotIndex OldEnd = I->end;
     627             :   I->end = Start;   // Trim the old segment.
     628             : 
     629             :   // Insert the new one.
     630           0 :   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
     631             : }
     632     3500463 : 
     633             : /// removeValNo - Remove all the segments defined by the specified value#.
     634     3664587 : /// Also remove the value# from value# list.
     635             : void LiveRange::removeValNo(VNInfo *ValNo) {
     636           0 :   if (empty()) return;
     637           0 :   segments.erase(remove_if(*this, [ValNo](const Segment &S) {
     638             :     return S.valno == ValNo;
     639             :   }), end());
     640             :   // Now that ValNo is dead, remove it.
     641             :   markValNoForDeletion(ValNo);
     642             : }
     643             : 
     644             : void LiveRange::join(LiveRange &Other,
     645             :                      const int *LHSValNoAssignments,
     646             :                      const int *RHSValNoAssignments,
     647             :                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
     648             :   verify();
     649             : 
     650             :   // Determine if any of our values are mapped.  This is uncommon, so we want
     651             :   // to avoid the range scan if not.
     652             :   bool MustMapCurValNos = false;
     653             :   unsigned NumVals = getNumValNums();
     654             :   unsigned NumNewVals = NewVNInfo.size();
     655             :   for (unsigned i = 0; i != NumVals; ++i) {
     656             :     unsigned LHSValID = LHSValNoAssignments[i];
     657             :     if (i != LHSValID ||
     658           0 :         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
     659             :       MustMapCurValNos = true;
     660           0 :       break;
     661           0 :     }
     662           0 :   }
     663             : 
     664           0 :   // If we have to apply a mapping to our base range assignment, rewrite it now.
     665             :   if (MustMapCurValNos && !empty()) {
     666           0 :     // Map the first live range.
     667           0 : 
     668           0 :     iterator OutIt = begin();
     669           0 :     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
     670           0 :     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
     671           0 :       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
     672           0 :       assert(nextValNo && "Huh?");
     673             : 
     674             :       // If this live range has the same value # as its immediate predecessor,
     675           0 :       // and if they are neighbors, remove one Segment.  This happens when we
     676           0 :       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
     677           0 :       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
     678             :         OutIt->end = I->end;
     679           0 :       } else {
     680             :         // Didn't merge. Move OutIt to the next segment,
     681             :         ++OutIt;
     682             :         OutIt->valno = nextValNo;
     683             :         if (OutIt != I) {
     684             :           OutIt->start = I->start;
     685             :           OutIt->end = I->end;
     686             :         }
     687             :       }
     688             :     }
     689    82617600 :     // If we merge some segments, chop off the end.
     690             :     ++OutIt;
     691             :     segments.erase(OutIt, end());
     692             :   }
     693    82617600 : 
     694    12959946 :   // Rewrite Other values before changing the VNInfo ids.
     695             :   // This can leave Other in an invalid state because we're not coalescing
     696             :   // touching segments that now have identical values. That's OK since Other is
     697             :   // not supposed to be valid after calling join();
     698   107952518 :   for (Segment &S : Other.segments)
     699   215905036 :     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
     700             : 
     701             :   // Update val# info. Renumber them and make sure they all belong to this
     702    18935611 :   // LiveRange now. Also remove dead val#'s.
     703    18935611 :   unsigned NumValNos = 0;
     704             :   for (unsigned i = 0; i < NumNewVals; ++i) {
     705   107952518 :     VNInfo *VNI = NewVNInfo[i];
     706             :     if (VNI) {
     707             :       if (NumValNos >= NumVals)
     708             :         valnos.push_back(VNI);
     709     5962389 :       else
     710             :         valnos[NumValNos] = VNI;
     711     5962389 :       VNI->id = NumValNos++;  // Renumber val#.
     712     2362907 :     }
     713             :   }
     714     3599482 :   if (NumNewVals < NumVals)
     715             :     valnos.resize(NumNewVals);  // shrinkify
     716             : 
     717       65105 :   // Okay, now insert the RHS live segments into the LHS.
     718             :   LiveRangeUpdater Updater(this);
     719       65105 :   for (Segment &S : Other.segments)
     720           0 :     Updater.add(S);
     721             : }
     722       65105 : 
     723             : /// Merge all of the segments in RHS into this live range as the specified
     724             : /// value number.  The segments in RHS are allowed to overlap with segments in
     725             : /// the current range, but only if the overlapping segments have the
     726             : /// specified value number.
     727             : void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
     728             :                                        VNInfo *LHSValNo) {
     729             :   LiveRangeUpdater Updater(this);
     730             :   for (const Segment &S : RHS.segments)
     731             :     Updater.add(S.start, S.end, LHSValNo);
     732             : }
     733             : 
     734             : /// MergeValueInAsValue - Merge all of the live segments of a specific val#
     735             : /// in RHS into this live range as the specified value number.
     736             : /// The segments in RHS are allowed to overlap with segments in the
     737             : /// current range, it will replace the value numbers of the overlaped
     738             : /// segments with the specified value number.
     739             : void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
     740             :                                     const VNInfo *RHSValNo,
     741             :                                     VNInfo *LHSValNo) {
     742             :   LiveRangeUpdater Updater(this);
     743      514916 :   for (const Segment &S : RHS.segments)
     744             :     if (S.valno == RHSValNo)
     745             :       Updater.add(S.start, S.end, LHSValNo);
     746             : }
     747             : 
     748             : /// MergeValueNumberInto - This method is called when two value nubmers
     749             : /// are found to be equivalent.  This eliminates V1, replacing all
     750             : /// segments with the V1 value number with the V2 value number.  This can
     751             : /// cause merging of V1/V2 values numbers and compaction of the value space.
     752             : VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
     753             :   assert(V1 != V2 && "Identical value#'s are always equivalent!");
     754      514916 : 
     755      248401 :   // This code actually merges the (numerically) larger value number into the
     756      248401 :   // smaller value number, which is likely to allow us to compactify the value
     757      266515 :   // space.  The only thing we have to be careful of is to preserve the
     758      265745 :   // instruction that defines the result value.
     759      265745 : 
     760             :   // Make sure V2 is smaller than V1.
     761      149494 :   if (V1->id < V2->id) {
     762      149494 :     V1->copyFrom(*V2);
     763             :     std::swap(V1, V2);
     764             :   }
     765             : 
     766             :   // Merge V1 segments into V2.
     767             :   for (iterator I = begin(); I != end(); ) {
     768      514146 :     iterator S = I++;
     769             :     if (S->valno != V1) continue;  // Not a V1 Segment.
     770      799968 : 
     771      645013 :     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
     772             :     // range, extend it.
     773             :     if (S != begin()) {
     774             :       iterator Prev = S-1;
     775             :       if (Prev->valno == V2 && Prev->end == S->start) {
     776      645013 :         Prev->end = S->end;
     777             : 
     778      285822 :         // Erase this live-range.
     779             :         segments.erase(S);
     780             :         I = Prev+1;
     781             :         S = Prev;
     782             :       }
     783             :     }
     784    10611357 : 
     785             :     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
     786             :     // Ensure that it is a V2 live-range.
     787    10611357 :     S->valno = V2;
     788             : 
     789             :     // If we can merge it into later V2 segments, do so now.  We ignore any
     790             :     // following V1 segments, as they will be merged in subsequent iterations
     791     3054757 :     // of the loop.
     792             :     if (I != end()) {
     793     3054757 :       if (I->start == S->end && I->valno == V2) {
     794             :         S->end = I->end;
     795     2702369 :         segments.erase(I);
     796             :         I = S+1;
     797     2702369 :       }
     798             :     }
     799             :   }
     800             : 
     801             :   // Now that V1 is dead, remove it.
     802             :   markValNoForDeletion(V1);
     803             : 
     804     2285043 :   return V2;
     805             : }
     806     1690560 : 
     807             : void LiveRange::flushSegmentSet() {
     808     1844608 :   assert(segmentSet != nullptr && "segment set must have been created");
     809      919143 :   assert(
     810             :       segments.empty() &&
     811             :       "segment set can be used only initially before switching to the array");
     812             :   segments.append(segmentSet->begin(), segmentSet->end());
     813     1527414 :   segmentSet = nullptr;
     814             :   verify();
     815             : }
     816             : 
     817             : bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
     818             :   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
     819     2450612 :   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
     820             : 
     821     1442570 :   // If there are no regmask slots, we have nothing to search.
     822             :   if (SlotI == SlotE)
     823             :     return false;
     824             : 
     825             :   // Start our search at the first segment that ends after the first slot.
     826             :   const_iterator SegmentI = find(*SlotI);
     827       54238 :   const_iterator SegmentE = end();
     828             : 
     829             :   // If there are no segments that end after the first slot, we're done.
     830       54238 :   if (SegmentI == SegmentE)
     831             :     return false;
     832             : 
     833     1026492 :   // Look for each slot in the live range.
     834     1026492 :   for ( ; SlotI != SlotE; ++SlotI) {
     835           0 :     // Go to the next segment that ends after the current slot.
     836             :     // The slot may be within a hole in the range.
     837             :     SegmentI = advanceTo(SegmentI, *SlotI);
     838     2088632 :     if (SegmentI == SegmentE)
     839     1062140 :       return false;
     840     1062140 : 
     841             :     // If this segment contains the slot, we're done.
     842             :     if (SegmentI->contains(*SlotI))
     843             :       return true;
     844     1891100 :     // Otherwise, look for the next slot.
     845             :   }
     846             : 
     847      828960 :   // We didn't find a segment containing any of the slots.
     848      828960 :   return false;
     849             : }
     850             : 
     851             : void LiveInterval::freeSubRange(SubRange *S) {
     852             :   S->~SubRange();
     853             :   // Memory was allocated with BumpPtr allocator and is not freed here.
     854             : }
     855             : 
     856             : void LiveInterval::removeEmptySubRanges() {
     857             :   SubRange **NextPtr = &SubRanges;
     858       78253 :   SubRange *I = *NextPtr;
     859      156506 :   while (I != nullptr) {
     860             :     if (!I->empty()) {
     861             :       NextPtr = &I->Next;
     862       71520 :       I = *NextPtr;
     863             :       continue;
     864             :     }
     865             :     // Skip empty subranges until we find the first nonempty one.
     866       78253 :     do {
     867             :       SubRange *Next = I->Next;
     868             :       freeSubRange(I);
     869             :       I = Next;
     870       61634 :     } while (I != nullptr && I->empty());
     871             :     *NextPtr = I;
     872             :   }
     873      236808 : }
     874      175174 : 
     875      175174 : void LiveInterval::clearSubRanges() {
     876       69039 :   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
     877             :     Next = I->Next;
     878      106135 :     freeSubRange(I);
     879      106135 :   }
     880             :   SubRanges = nullptr;
     881       61634 : }
     882             : 
     883         105 : void LiveInterval::refineSubRanges(BumpPtrAllocator &Allocator,
     884         105 :     LaneBitmask LaneMask, std::function<void(LiveInterval::SubRange&)> Apply) {
     885         105 :   LaneBitmask ToApply = LaneMask;
     886             :   for (SubRange &SR : subranges()) {
     887     1161953 :     LaneBitmask SRMask = SR.LaneMask;
     888             :     LaneBitmask Matching = SRMask & LaneMask;
     889     1161953 :     if (Matching.none())
     890          12 :       continue;
     891          12 : 
     892             :     SubRange *MatchingRange;
     893             :     if (SRMask == Matching) {
     894     1161941 :       // The subrange fits (it does not cover bits outside \p LaneMask).
     895             :       MatchingRange = &SR;
     896             :     } else {
     897           0 :       // We have to split the subrange into a matching and non-matching part.
     898             :       // Reduce lanemask of existing lane to non-matching part.
     899             :       SR.LaneMask = SRMask & ~Matching;
     900           0 :       // Create a new subrange for the matching part
     901           0 :       MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
     902             :     }
     903     8748210 :     Apply(*MatchingRange);
     904             :     ToApply &= ~Matching;
     905             :   }
     906     8748210 :   // Create a new subrange if there are uncovered bits left.
     907     1546442 :   if (ToApply.any()) {
     908             :     SubRange *NewRange = createSubRange(Allocator, ToApply);
     909     7201768 :     Apply(*NewRange);
     910             :   }
     911             : }
     912      303653 : 
     913             : unsigned LiveInterval::getSize() const {
     914      303653 :   unsigned Sum = 0;
     915           0 :   for (const Segment &S : segments)
     916             :     Sum += S.start.distance(S.end);
     917      303653 :   return Sum;
     918             : }
     919             : 
     920             : void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
     921             :                                          LaneBitmask LaneMask,
     922      119089 :                                          const MachineRegisterInfo &MRI,
     923             :                                          const SlotIndexes &Indexes) const {
     924             :   assert(TargetRegisterInfo::isVirtualRegister(reg));
     925      119089 :   LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
     926             :   assert((VRegMask & LaneMask).any());
     927             :   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
     928             :   for (const MachineOperand &MO : MRI.def_operands(reg)) {
     929             :     if (!MO.isUndef())
     930             :       continue;
     931      119089 :     unsigned SubReg = MO.getSubReg();
     932      119089 :     assert(SubReg != 0 && "Undef should only be set on subreg defs");
     933       44157 :     LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
     934       43091 :     LaneBitmask UndefMask = VRegMask & ~DefMask;
     935             :     if ((UndefMask & LaneMask).any()) {
     936             :       const MachineInstr &MI = *MO.getParent();
     937         186 :       bool EarlyClobber = MO.isEarlyClobber();
     938         146 :       SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
     939             :       Undefs.push_back(Pos);
     940             :     }
     941             :   }
     942          40 : }
     943             : 
     944          40 : raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
     945             :   return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
     946             : }
     947             : 
     948             : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     949             : LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
     950        1066 :   dbgs() << *this << '\n';
     951       44157 : }
     952             : #endif
     953             : 
     954             : void LiveRange::print(raw_ostream &OS) const {
     955             :   if (empty())
     956       74932 :     OS << "EMPTY";
     957       74284 :   else {
     958       74284 :     for (const Segment &S : segments) {
     959             :       OS << S;
     960             :       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
     961             :     }
     962             :   }
     963         648 : 
     964             :   // Print value number info.
     965             :   if (getNumValNums()) {
     966        1296 :     OS << "  ";
     967             :     unsigned vnum = 0;
     968             :     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
     969             :          ++i, ++vnum) {
     970             :       const VNInfo *vni = *i;
     971       78197 :       if (vnum) OS << ' ';
     972       78197 :       OS << vnum << '@';
     973             :       if (vni->isUnused()) {
     974             :         OS << 'x';
     975             :       } else {
     976             :         OS << vni->def;
     977       78197 :         if (vni->isPHIDef())
     978             :           OS << "-phi";
     979             :       }
     980      986695 :     }
     981             :   }
     982             : }
     983             : 
     984             : void LiveInterval::SubRange::print(raw_ostream &OS) const {
     985             :   OS << " L" << PrintLaneMask(LaneMask) << ' '
     986             :      << static_cast<const LiveRange&>(*this);
     987             : }
     988             : 
     989             : void LiveInterval::print(raw_ostream &OS) const {
     990      986695 :   OS << printReg(reg) << ' ';
     991     2663483 :   super::print(OS);
     992     2356958 :   // Print subranges
     993     2356958 :   for (const SubRange &SR : subranges())
     994     4614702 :     OS << SR;
     995             :   OS << " weight:" << weight;
     996             : }
     997             : 
     998             : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     999             : LLVM_DUMP_METHOD void LiveRange::dump() const {
    1000             :   dbgs() << *this << '\n';
    1001      986695 : }
    1002             : 
    1003             : LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
    1004             :   dbgs() << *this << '\n';
    1005     1360340 : }
    1006     3389769 : 
    1007     2709599 : LLVM_DUMP_METHOD void LiveInterval::dump() const {
    1008             :   dbgs() << *this << '\n';
    1009             : }
    1010             : #endif
    1011             : 
    1012             : #ifndef NDEBUG
    1013     2709599 : void LiveRange::verify() const {
    1014        9601 :   for (const_iterator I = begin(), E = end(); I != E; ++I) {
    1015             :     assert(I->start.isValid());
    1016             :     assert(I->end.isValid());
    1017     2699998 :     assert(I->start < I->end);
    1018     2699998 :     assert(I->valno != nullptr);
    1019     2699998 :     assert(I->valno->id < valnos.size());
    1020        9968 :     assert(I->valno == valnos[I->valno->id]);
    1021        9968 :     if (std::next(I) != E) {
    1022             :       assert(I->end <= std::next(I)->start);
    1023             :       if (I->end == std::next(I)->start)
    1024             :         assert(I->valno != std::next(I)->valno);
    1025             :     }
    1026      680170 :   }
    1027             : }
    1028             : 
    1029             : void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
    1030             :   super::verify();
    1031             : 
    1032             :   // Make sure SubRanges are fine and LaneMasks are disjunct.
    1033             :   LaneBitmask Mask;
    1034     2215732 :   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
    1035     2458074 :                                        : LaneBitmask::getAll();
    1036             :   for (const SubRange &SR : subranges()) {
    1037             :     // Subrange lanemask should be disjunct to any previous subrange masks.
    1038             :     assert((Mask & SR.LaneMask).none());
    1039             :     Mask |= SR.LaneMask;
    1040     4832197 : 
    1041     3845502 :     // subrange mask should not contained in maximum lane mask for the vreg.
    1042     3845502 :     assert((Mask & ~MaxMask).none());
    1043     3845502 :     // empty subranges must be removed.
    1044      170963 :     assert(!SR.empty());
    1045             : 
    1046     7349078 :     SR.verify();
    1047     3845502 :     // Main liverange should cover subrange.
    1048             :     assert(covers(SR));
    1049             :   }
    1050      986695 : }
    1051       11849 : #endif
    1052             : 
    1053             : //===----------------------------------------------------------------------===//
    1054      986695 : //                           LiveRangeUpdater class
    1055     2215732 : //===----------------------------------------------------------------------===//
    1056     1229037 : //
    1057      986695 : // The LiveRangeUpdater class always maintains these invariants:
    1058             : //
    1059             : // - When LastStart is invalid, Spills is empty and the iterators are invalid.
    1060             : //   This is the initial state, and the state created by flush().
    1061             : //   In this state, isDirty() returns false.
    1062             : //
    1063       30033 : // Otherwise, segments are kept in three separate areas:
    1064             : //
    1065       30033 : // 1. [begin; WriteI) at the front of LR.
    1066      102868 : // 2. [ReadI; end) at the back of LR.
    1067             : // 3. Spills.
    1068       30033 : //
    1069             : // - LR.begin() <= WriteI <= ReadI <= LR.end().
    1070             : // - Segments in all three areas are fully ordered and coalesced.
    1071             : // - Segments in area 1 precede and can't coalesce with segments in area 2.
    1072             : // - Segments in Spills precede and can't coalesce with segments in area 2.
    1073             : // - No coalescing is possible between segments in Spills and segments in area
    1074             : //   1, and there are no overlapping segments.
    1075       18595 : //
    1076             : // The segments in Spills are not ordered with respect to the segments in area
    1077             : // 1. They need to be merged.
    1078       18595 : //
    1079       92861 : // When they exist, Spills.back().start <= LastStart,
    1080       74266 : //                 and WriteI[-1].start <= LastStart.
    1081             : 
    1082       18595 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    1083             : void LiveRangeUpdater::print(raw_ostream &OS) const {
    1084             :   if (!isDirty()) {
    1085             :     if (LR)
    1086             :       OS << "Clean updater: " << *LR << '\n';
    1087             :     else
    1088          16 :       OS << "Null updater.\n";
    1089             :     return;
    1090             :   }
    1091             :   assert(LR && "Can't have null LR in dirty updater.");
    1092             :   OS << " updater with gap = " << (ReadI - WriteI)
    1093             :      << ", last start = " << LastStart
    1094             :      << ":\n  Area 1:";
    1095             :   for (const auto &S : make_range(LR->begin(), WriteI))
    1096             :     OS << ' ' << S;
    1097          16 :   OS << "\n  Spills:";
    1098             :   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
    1099             :     OS << ' ' << Spills[I];
    1100             :   OS << "\n  Area 2:";
    1101             :   for (const auto &S : make_range(ReadI, LR->end()))
    1102             :     OS << ' ' << S;
    1103          88 :   OS << '\n';
    1104          72 : }
    1105          72 : 
    1106             : LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
    1107             :   print(errs());
    1108             : }
    1109          18 : #endif
    1110          17 : 
    1111          17 : // Determine if A and B should be coalesced.
    1112           7 : static inline bool coalescable(const LiveRange::Segment &A,
    1113             :                                const LiveRange::Segment &B) {
    1114             :   assert(A.start <= B.start && "Unordered live segments.");
    1115             :   if (A.end == B.start)
    1116             :     return A.valno == B.valno;
    1117             :   if (A.end < B.start)
    1118             :     return false;
    1119             :   assert(A.valno == B.valno && "Cannot overlap different values");
    1120             :   return true;
    1121             : }
    1122             : 
    1123          18 : void LiveRangeUpdater::add(LiveRange::Segment Seg) {
    1124             :   assert(LR && "Cannot add to a null destination");
    1125             : 
    1126             :   // Fall back to the regular add method if the live range
    1127             :   // is using the segment set instead of the segment vector.
    1128          18 :   if (LR->segmentSet != nullptr) {
    1129          17 :     LR->addSegmentToSet(Seg);
    1130           4 :     return;
    1131             :   }
    1132           4 : 
    1133             :   // Flush the state if Start moves backwards.
    1134             :   if (!LastStart.isValid() || LastStart > Seg.start) {
    1135             :     if (isDirty())
    1136             :       flush();
    1137             :     // This brings us to an uninitialized state. Reinitialize.
    1138          16 :     assert(Spills.empty() && "Leftover spilled segments");
    1139             :     WriteI = ReadI = LR->begin();
    1140          16 :   }
    1141             : 
    1142             :   // Remember start for next time.
    1143     1317458 :   LastStart = Seg.start;
    1144             : 
    1145             :   // Advance ReadI until it ends after Seg.start.
    1146             :   LiveRange::iterator E = LR->end();
    1147             :   if (ReadI != E && ReadI->end <= Seg.start) {
    1148     2634916 :     // First try to close the gap between WriteI and ReadI with spills.
    1149             :     if (ReadI != WriteI)
    1150             :       mergeSpills();
    1151     1317458 :     // Then advance ReadI.
    1152             :     if (ReadI == WriteI)
    1153      692495 :       ReadI = WriteI = LR->find(Seg.start);
    1154             :     else
    1155      692495 :       while (ReadI != E && ReadI->end <= Seg.start)
    1156             :         *WriteI++ = *ReadI++;
    1157             :   }
    1158      692495 : 
    1159             :   assert(ReadI == E || ReadI->end > Seg.start);
    1160             : 
    1161             :   // Check if the ReadI segment begins early.
    1162      284849 :   if (ReadI != E && ReadI->start <= Seg.start) {
    1163             :     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
    1164             :     // Bail if Seg is completely contained in ReadI.
    1165             :     if (ReadI->end >= Seg.end)
    1166      284849 :       return;
    1167             :     // Coalesce into Seg.
    1168             :     Seg.start = ReadI->start;
    1169             :     ++ReadI;
    1170    11196512 :   }
    1171             : 
    1172             :   // Coalesce as much as possible from ReadI into Seg.
    1173    11156691 :   while (ReadI != E && coalescable(Seg, *ReadI)) {
    1174    11156691 :     Seg.end = std::max(Seg.end, ReadI->end);
    1175             :     ++ReadI;
    1176             :   }
    1177             : 
    1178    11025789 :   // Try coalescing Spills.back() into Seg.
    1179             :   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
    1180             :     Seg.start = Spills.back().start;
    1181             :     Seg.end = std::max(Spills.back().end, Seg.end);
    1182             :     Spills.pop_back();
    1183             :   }
    1184             : 
    1185             :   // Try coalescing Seg into WriteI[-1].
    1186             :   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
    1187      343282 :     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
    1188             :     return;
    1189             :   }
    1190      343282 : 
    1191             :   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
    1192     2918401 :   if (WriteI != ReadI) {
    1193     2918401 :     *WriteI++ = Seg;
    1194     2918401 :     return;
    1195     3258188 :   }
    1196      339787 : 
    1197      337949 :   // Finally, append to LR or Spills.
    1198      337949 :   if (WriteI == E) {
    1199      337949 :     LR->segments.push_back(Seg);
    1200             :     WriteI = ReadI = LR->end();
    1201             :   } else
    1202             :     Spills.push_back(Seg);
    1203        1902 : }
    1204        1902 : 
    1205             : // Merge as many spilled segments as possible into the gap between WriteI
    1206        1902 : // and ReadI. Advance WriteI to reflect the inserted instructions.
    1207        1838 : void LiveRangeUpdater::mergeSpills() {
    1208             :   // Perform a backwards merge of Spills and [SpillI;WriteI).
    1209     2918401 :   size_t GapSize = ReadI - WriteI;
    1210             :   size_t NumMoved = std::min(Spills.size(), GapSize);
    1211     2915991 :   LiveRange::iterator Src = WriteI;
    1212     3257371 :   LiveRange::iterator Dst = Src + NumMoved;
    1213      341380 :   LiveRange::iterator SpillSrc = Spills.end();
    1214      341380 :   LiveRange::iterator B = LR->begin();
    1215             : 
    1216     2915991 :   // This is the new WriteI position after merging spills.
    1217     2915991 :   WriteI = Dst;
    1218             : 
    1219      615683 :   // Now merge Src and Spills backwards.
    1220             :   while (Src != Dst) {
    1221      615683 :     if (Src != B && Src[-1].start > SpillSrc[-1].start)
    1222     2247356 :       *--Dst = *--Src;
    1223     1631673 :     else
    1224             :       *--Dst = *--SpillSrc;
    1225     1631673 :   }
    1226             :   assert(NumMoved == size_t(Spills.end() - SpillSrc));
    1227             :   Spills.erase(SpillSrc, Spills.end());
    1228             : }
    1229      588339 : 
    1230             : void LiveRangeUpdater::flush() {
    1231             :   if (!isDirty())
    1232             :     return;
    1233             :   // Clear the dirty state.
    1234             :   LastStart = SlotIndex();
    1235      125360 : 
    1236             :   assert(LR && "Cannot add to a null destination");
    1237      125360 : 
    1238             :   // Nothing to merge?
    1239             :   if (Spills.empty()) {
    1240             :     LR->segments.erase(WriteI, ReadI);
    1241             :     LR->verify();
    1242             :     return;
    1243      615683 :   }
    1244      152738 : 
    1245             :   // Resize the WriteI - ReadI gap to match Spills.
    1246             :   size_t GapSize = ReadI - WriteI;
    1247      615683 :   if (GapSize < Spills.size()) {
    1248             :     // The gap is too small. Make some room.
    1249     2445657 :     size_t WritePos = WriteI - LR->begin();
    1250             :     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
    1251     6879652 :     // This also invalidated ReadI, but it is recomputed below.
    1252     4433995 :     WriteI = LR->begin() + WritePos;
    1253     2445657 :   } else {
    1254             :     // Shrink the gap if necessary.
    1255             :     LR->segments.erase(WriteI + Spills.size(), ReadI);
    1256      468423 :   }
    1257             :   ReadI = WriteI + Spills.size();
    1258             :   mergeSpills();
    1259             :   LR->verify();
    1260             : }
    1261      468423 : 
    1262             : unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
    1263      468423 :   // Create initial equivalence classes.
    1264     1881007 :   EqClass.clear();
    1265      944161 :   EqClass.grow(LR.getNumValNums());
    1266             : 
    1267             :   const VNInfo *used = nullptr, *unused = nullptr;
    1268             : 
    1269      212782 :   // Determine connections.
    1270      212782 :   for (const VNInfo *VNI : LR.valnos) {
    1271      212782 :     // Group all unused values into one class.
    1272      154030 :     if (VNI->isUnused()) {
    1273             :       if (unused)
    1274      154030 :         EqClass.join(unused->id, VNI->id);
    1275      154030 :       unused = VNI;
    1276             :       continue;
    1277             :     }
    1278      468423 :     used = VNI;
    1279             :     if (VNI->isPHIDef()) {
    1280          26 :       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
    1281          78 :       assert(MBB && "Phi-def has no defining MBB");
    1282             :       // Connect to values live out of predecessors.
    1283             :       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    1284             :            PE = MBB->pred_end(); PI != PE; ++PI)
    1285             :         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
    1286             :           EqClass.join(VNI->id, PVNI->id);
    1287             :     } else {
    1288             :       // Normal value defined by an instruction. Check for two-addr redef.
    1289             :       // FIXME: This could be coincidental. Should we really check for a tied
    1290          15 :       // operand constraint?
    1291          15 :       // Note that VNI->def may be a use slot for an early clobber def.
    1292           0 :       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
    1293             :         EqClass.join(VNI->id, UVNI->id);
    1294          41 :     }
    1295          26 :   }
    1296             : 
    1297             :   // Lump all the unused values in with the last used value.
    1298             :   if (used && unused)
    1299             :     EqClass.join(used->id, unused->id);
    1300             : 
    1301          15 :   EqClass.compress();
    1302          15 :   return EqClass.getNumClasses();
    1303             : }
    1304          41 : 
    1305             : void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
    1306          26 :                                           MachineRegisterInfo &MRI) {
    1307          26 :   // Rewrite instructions.
    1308             :   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
    1309          26 :        RE = MRI.reg_end(); RI != RE;) {
    1310             :     MachineOperand &MO = *RI;
    1311             :     MachineInstr *MI = RI->getParent();
    1312          26 :     ++RI;
    1313          26 :     const VNInfo *VNI;
    1314           0 :     if (MI->isDebugValue()) {
    1315             :       // DBG_VALUE instructions don't have slot indexes, so get the index of
    1316             :       // the instruction before them. The value is defined there too.
    1317             :       SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
    1318          15 :       VNI = LI.Query(Idx).valueOut();
    1319             :     } else {
    1320           4 :       SlotIndex Idx = LIS.getInstructionIndex(*MI);
    1321           4 :       LiveQueryResult LRQ = LI.Query(Idx);
    1322           4 :       VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
    1323           4 :     }
    1324             :     // In the case of an <undef> use that isn't tied to any def, VNI will be
    1325           6 :     // NULL. If the use is tied to a def, VNI will be the defined value.
    1326           6 :     if (!VNI)
    1327           6 :       continue;
    1328             :     if (unsigned EqClass = getEqClass(VNI))
    1329          10 :       MO.setReg(LIV[EqClass-1]->reg);
    1330             :   }
    1331           6 : 
    1332           6 :   // Distribute subregister liveranges.
    1333             :   if (LI.hasSubRanges()) {
    1334             :     unsigned NumComponents = EqClass.getNumClasses();
    1335             :     SmallVector<unsigned, 8> VNIMapping;
    1336             :     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
    1337             :     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
    1338             :     for (LiveInterval::SubRange &SR : LI.subranges()) {
    1339             :       // Create new subranges in the split intervals and construct a mapping
    1340             :       // for the VNInfos in the subrange.
    1341             :       unsigned NumValNos = SR.valnos.size();
    1342             :       VNIMapping.clear();
    1343             :       VNIMapping.reserve(NumValNos);
    1344             :       SubRanges.clear();
    1345             :       SubRanges.resize(NumComponents-1, nullptr);
    1346             :       for (unsigned I = 0; I < NumValNos; ++I) {
    1347             :         const VNInfo &VNI = *SR.valnos[I];
    1348             :         unsigned ComponentNum;
    1349             :         if (VNI.isUnused()) {
    1350             :           ComponentNum = 0;
    1351             :         } else {
    1352             :           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
    1353             :           assert(MainRangeVNI != nullptr
    1354             :                  && "SubRange def must have corresponding main range def");
    1355             :           ComponentNum = getEqClass(MainRangeVNI);
    1356             :           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
    1357             :             SubRanges[ComponentNum-1]
    1358             :               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
    1359             :           }
    1360             :         }
    1361             :         VNIMapping.push_back(ComponentNum);
    1362             :       }
    1363             :       DistributeRange(SR, SubRanges.data(), VNIMapping);
    1364             :     }
    1365             :     LI.removeEmptySubRanges();
    1366             :   }
    1367             : 
    1368             :   // Distribute main liverange.
    1369             :   DistributeRange(LI, LIV, EqClass);
    1370             : }

Generated by: LCOV version 1.13