LCOV - code coverage report
Current view: top level - lib/CodeGen - MachineBasicBlock.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 504 611 82.5 %
Date: 2018-10-20 13:21:21 Functions: 66 72 91.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // Collect the sequence of machine instructions for a basic block.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "llvm/CodeGen/MachineBasicBlock.h"
      15             : #include "llvm/ADT/SmallPtrSet.h"
      16             : #include "llvm/CodeGen/LiveIntervals.h"
      17             : #include "llvm/CodeGen/LiveVariables.h"
      18             : #include "llvm/CodeGen/MachineDominators.h"
      19             : #include "llvm/CodeGen/MachineFunction.h"
      20             : #include "llvm/CodeGen/MachineInstrBuilder.h"
      21             : #include "llvm/CodeGen/MachineLoopInfo.h"
      22             : #include "llvm/CodeGen/MachineRegisterInfo.h"
      23             : #include "llvm/CodeGen/SlotIndexes.h"
      24             : #include "llvm/CodeGen/TargetInstrInfo.h"
      25             : #include "llvm/CodeGen/TargetRegisterInfo.h"
      26             : #include "llvm/CodeGen/TargetSubtargetInfo.h"
      27             : #include "llvm/Config/llvm-config.h"
      28             : #include "llvm/IR/BasicBlock.h"
      29             : #include "llvm/IR/DataLayout.h"
      30             : #include "llvm/IR/DebugInfoMetadata.h"
      31             : #include "llvm/IR/ModuleSlotTracker.h"
      32             : #include "llvm/MC/MCAsmInfo.h"
      33             : #include "llvm/MC/MCContext.h"
      34             : #include "llvm/Support/DataTypes.h"
      35             : #include "llvm/Support/Debug.h"
      36             : #include "llvm/Support/raw_ostream.h"
      37             : #include "llvm/Target/TargetMachine.h"
      38             : #include <algorithm>
      39             : using namespace llvm;
      40             : 
      41             : #define DEBUG_TYPE "codegen"
      42             : 
      43     3307968 : MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
      44     3307968 :     : BB(B), Number(-1), xParent(&MF) {
      45     3307968 :   Insts.Parent = this;
      46     3307968 :   if (B)
      47     6532790 :     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
      48     3307968 : }
      49             : 
      50     3307793 : MachineBasicBlock::~MachineBasicBlock() {
      51     3307794 : }
      52             : 
      53             : /// Return the MCSymbol for this basic block.
      54     4355028 : MCSymbol *MachineBasicBlock::getSymbol() const {
      55     4355028 :   if (!CachedMCSymbol) {
      56     2166233 :     const MachineFunction *MF = getParent();
      57     2166233 :     MCContext &Ctx = MF->getContext();
      58     2166233 :     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
      59             :     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
      60     2166233 :     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
      61     2166233 :                                            Twine(MF->getFunctionNumber()) +
      62     4332466 :                                            "_" + Twine(getNumber()));
      63             :   }
      64             : 
      65     4355028 :   return CachedMCSymbol;
      66             : }
      67             : 
      68             : 
      69           0 : raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
      70           0 :   MBB.print(OS);
      71           0 :   return OS;
      72             : }
      73             : 
      74       91052 : Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
      75       91052 :   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
      76             : }
      77             : 
      78             : /// When an MBB is added to an MF, we need to update the parent pointer of the
      79             : /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
      80             : /// operand list for registers.
      81             : ///
      82             : /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
      83             : /// gets the next available unique MBB number. If it is removed from a
      84             : /// MachineFunction, it goes back to being #-1.
      85     3307965 : void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
      86             :     MachineBasicBlock *N) {
      87     3307965 :   MachineFunction &MF = *N->getParent();
      88     3307965 :   N->Number = MF.addToMBBNumbering(N);
      89             : 
      90             :   // Make sure the instructions have their operands in the reginfo lists.
      91     3307965 :   MachineRegisterInfo &RegInfo = MF.getRegInfo();
      92             :   for (MachineBasicBlock::instr_iterator
      93     3308063 :          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
      94          98 :     I->AddRegOperandsToUseLists(RegInfo);
      95     3307965 : }
      96             : 
      97     3307793 : void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
      98             :     MachineBasicBlock *N) {
      99     3307793 :   N->getParent()->removeFromMBBNumbering(N->Number);
     100     3307793 :   N->Number = -1;
     101     3307793 : }
     102             : 
     103             : /// When we add an instruction to a basic block list, we update its parent
     104             : /// pointer and add its operands from reg use/def lists if appropriate.
     105    54115094 : void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
     106             :   assert(!N->getParent() && "machine instruction already in a basic block");
     107    54115094 :   N->setParent(Parent);
     108             : 
     109             :   // Add the instruction's register operands to their corresponding
     110             :   // use/def lists.
     111    54115094 :   MachineFunction *MF = Parent->getParent();
     112    54115094 :   N->AddRegOperandsToUseLists(MF->getRegInfo());
     113    54115093 :   MF->handleInsertion(*N);
     114    54115092 : }
     115             : 
     116             : /// When we remove an instruction from a basic block list, we update its parent
     117             : /// pointer and remove its operands from reg use/def lists if appropriate.
     118    19629834 : void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
     119             :   assert(N->getParent() && "machine instruction not in a basic block");
     120             : 
     121             :   // Remove from the use/def lists.
     122    19629834 :   if (MachineFunction *MF = N->getMF()) {
     123    19629834 :     MF->handleRemoval(*N);
     124    19629834 :     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
     125             :   }
     126             : 
     127             :   N->setParent(nullptr);
     128    19629835 : }
     129             : 
     130             : /// When moving a range of instructions from one MBB list to another, we need to
     131             : /// update the parent pointers and the use/def lists.
     132      114707 : void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
     133             :                                                        instr_iterator First,
     134             :                                                        instr_iterator Last) {
     135             :   assert(Parent->getParent() == FromList.Parent->getParent() &&
     136             :         "MachineInstr parent mismatch!");
     137             :   assert(this != &FromList && "Called without a real transfer...");
     138             :   assert(Parent != FromList.Parent && "Two lists have the same parent?");
     139             : 
     140             :   // If splicing between two blocks within the same function, just update the
     141             :   // parent pointers.
     142      457163 :   for (; First != Last; ++First)
     143      342456 :     First->setParent(Parent);
     144      114707 : }
     145             : 
     146    17892898 : void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
     147             :   assert(!MI->getParent() && "MI is still in a block!");
     148    17892898 :   Parent->getParent()->DeleteMachineInstr(MI);
     149    17892898 : }
     150             : 
     151    21989432 : MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
     152             :   instr_iterator I = instr_begin(), E = instr_end();
     153    22011597 :   while (I != E && I->isPHI())
     154             :     ++I;
     155             :   assert((I == E || !I->isInsideBundle()) &&
     156             :          "First non-phi MI cannot be inside a bundle!");
     157    21989432 :   return I;
     158             : }
     159             : 
     160             : MachineBasicBlock::iterator
     161      841920 : MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
     162      841920 :   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
     163             : 
     164             :   iterator E = end();
     165     2221491 :   while (I != E && (I->isPHI() || I->isPosition() ||
     166      493485 :                     TII->isBasicBlockPrologue(*I)))
     167             :     ++I;
     168             :   // FIXME: This needs to change if we wish to bundle labels
     169             :   // inside the bundle.
     170             :   assert((I == E || !I->isInsideBundle()) &&
     171             :          "First non-phi / non-label instruction is inside a bundle!");
     172      841920 :   return I;
     173             : }
     174             : 
     175             : MachineBasicBlock::iterator
     176      985726 : MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
     177      985726 :   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
     178             : 
     179             :   iterator E = end();
     180     2514225 :   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
     181      993450 :                     TII->isBasicBlockPrologue(*I)))
     182             :     ++I;
     183             :   // FIXME: This needs to change if we wish to bundle labels / dbg_values
     184             :   // inside the bundle.
     185             :   assert((I == E || !I->isInsideBundle()) &&
     186             :          "First non-phi / non-label / non-debug "
     187             :          "instruction is inside a bundle!");
     188      985726 :   return I;
     189             : }
     190             : 
     191    10578871 : MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
     192    10578871 :   iterator B = begin(), E = end(), I = E;
     193    38484211 :   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
     194             :     ; /*noop */
     195    38501873 :   while (I != E && !I->isTerminator())
     196             :     ++I;
     197    10578871 :   return I;
     198             : }
     199             : 
     200       37372 : MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
     201             :   instr_iterator B = instr_begin(), E = instr_end(), I = E;
     202      152432 :   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
     203             :     ; /*noop */
     204      141236 :   while (I != E && !I->isTerminator())
     205             :     ++I;
     206       37372 :   return I;
     207             : }
     208             : 
     209     2251287 : MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
     210             :   // Skip over begin-of-block dbg_value instructions.
     211     2251287 :   return skipDebugInstructionsForward(begin(), end());
     212             : }
     213             : 
     214     2184335 : MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
     215             :   // Skip over end-of-block dbg_value instructions.
     216             :   instr_iterator B = instr_begin(), I = instr_end();
     217     2192829 :   while (I != B) {
     218             :     --I;
     219             :     // Return instruction that starts a bundle.
     220     2158571 :     if (I->isDebugInstr() || I->isInsideBundle())
     221             :       continue;
     222     2158226 :     return I;
     223             :   }
     224             :   // The block is all debug values.
     225             :   return end();
     226             : }
     227             : 
     228      658000 : bool MachineBasicBlock::hasEHPadSuccessor() const {
     229     1454531 :   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
     230      835375 :     if ((*I)->isEHPad())
     231             :       return true;
     232             :   return false;
     233             : }
     234             : 
     235             : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     236             : LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
     237             :   print(dbgs());
     238             : }
     239             : #endif
     240             : 
     241       16675 : bool MachineBasicBlock::isLegalToHoistInto() const {
     242       16675 :   if (isReturnBlock() || hasEHPadSuccessor())
     243           0 :     return false;
     244             :   return true;
     245             : }
     246             : 
     247        2675 : StringRef MachineBasicBlock::getName() const {
     248        2675 :   if (const BasicBlock *LBB = getBasicBlock())
     249        2635 :     return LBB->getName();
     250             :   else
     251          40 :     return StringRef("", 0);
     252             : }
     253             : 
     254             : /// Return a hopefully unique identifier for this block.
     255           0 : std::string MachineBasicBlock::getFullName() const {
     256             :   std::string Name;
     257           0 :   if (getParent())
     258           0 :     Name = (getParent()->getName() + ":").str();
     259           0 :   if (getBasicBlock())
     260           0 :     Name += getBasicBlock()->getName();
     261             :   else
     262           0 :     Name += ("BB" + Twine(getNumber())).str();
     263           0 :   return Name;
     264             : }
     265             : 
     266           0 : void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
     267             :                               bool IsStandalone) const {
     268           0 :   const MachineFunction *MF = getParent();
     269           0 :   if (!MF) {
     270           0 :     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
     271           0 :        << " is null\n";
     272           0 :     return;
     273             :   }
     274           0 :   const Function &F = MF->getFunction();
     275           0 :   const Module *M = F.getParent();
     276           0 :   ModuleSlotTracker MST(M);
     277           0 :   MST.incorporateFunction(F);
     278           0 :   print(OS, MST, Indexes, IsStandalone);
     279             : }
     280             : 
     281       15627 : void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
     282             :                               const SlotIndexes *Indexes,
     283             :                               bool IsStandalone) const {
     284       15627 :   const MachineFunction *MF = getParent();
     285       15627 :   if (!MF) {
     286           0 :     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
     287           0 :        << " is null\n";
     288           0 :     return;
     289             :   }
     290             : 
     291       15627 :   if (Indexes)
     292        1632 :     OS << Indexes->getMBBStartIdx(this) << '\t';
     293             : 
     294       15627 :   OS << "bb." << getNumber();
     295             :   bool HasAttributes = false;
     296       15627 :   if (const auto *BB = getBasicBlock()) {
     297       15545 :     if (BB->hasName()) {
     298       14993 :       OS << "." << BB->getName();
     299             :     } else {
     300             :       HasAttributes = true;
     301         552 :       OS << " (";
     302         552 :       int Slot = MST.getLocalSlot(BB);
     303         552 :       if (Slot == -1)
     304           0 :         OS << "<ir-block badref>";
     305             :       else
     306        1104 :         OS << (Twine("%ir-block.") + Twine(Slot)).str();
     307             :     }
     308             :   }
     309             : 
     310       15627 :   if (hasAddressTaken()) {
     311           4 :     OS << (HasAttributes ? ", " : " (");
     312           2 :     OS << "address-taken";
     313             :     HasAttributes = true;
     314             :   }
     315       15627 :   if (isEHPad()) {
     316           8 :     OS << (HasAttributes ? ", " : " (");
     317           4 :     OS << "landing-pad";
     318             :     HasAttributes = true;
     319             :   }
     320       15627 :   if (getAlignment()) {
     321           0 :     OS << (HasAttributes ? ", " : " (");
     322           0 :     OS << "align " << getAlignment();
     323             :     HasAttributes = true;
     324             :   }
     325       15627 :   if (HasAttributes)
     326         558 :     OS << ")";
     327       15627 :   OS << ":\n";
     328             : 
     329       15627 :   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
     330       15627 :   const MachineRegisterInfo &MRI = MF->getRegInfo();
     331       15627 :   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
     332             :   bool HasLineAttributes = false;
     333             : 
     334             :   // Print the preds of this block according to the CFG.
     335       15627 :   if (!pred_empty() && IsStandalone) {
     336       13736 :     if (Indexes) OS << '\t';
     337             :     // Don't indent(2), align with previous line attributes.
     338       13736 :     OS << "; predecessors: ";
     339       35558 :     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
     340       21822 :       if (I != pred_begin())
     341        8086 :         OS << ", ";
     342       43644 :       OS << printMBBReference(**I);
     343             :     }
     344             :     OS << '\n';
     345             :     HasLineAttributes = true;
     346             :   }
     347             : 
     348       15627 :   if (!succ_empty()) {
     349       11937 :     if (Indexes) OS << '\t';
     350             :     // Print the successors
     351       11937 :     OS.indent(2) << "successors: ";
     352       33759 :     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
     353       21822 :       if (I != succ_begin())
     354        9885 :         OS << ", ";
     355       43644 :       OS << printMBBReference(**I);
     356       21822 :       if (!Probs.empty())
     357             :         OS << '('
     358       43644 :            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
     359             :            << ')';
     360             :     }
     361       11937 :     if (!Probs.empty() && IsStandalone) {
     362             :       // Print human readable probabilities as comments.
     363       11937 :       OS << "; ";
     364       33759 :       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
     365       21822 :         const BranchProbability &BP = getSuccProbability(I);
     366       21822 :         if (I != succ_begin())
     367        9885 :           OS << ", ";
     368       43644 :         OS << printMBBReference(**I) << '('
     369       21822 :            << format("%.2f%%",
     370       21822 :                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
     371       21822 :                           100.0 * 100.0) /
     372       21822 :                          100.0)
     373             :            << ')';
     374             :       }
     375             :     }
     376             : 
     377             :     OS << '\n';
     378             :     HasLineAttributes = true;
     379             :   }
     380             : 
     381       15627 :   if (!livein_empty() && MRI.tracksLiveness()) {
     382        6951 :     if (Indexes) OS << '\t';
     383        6951 :     OS.indent(2) << "liveins: ";
     384             : 
     385             :     bool First = true;
     386       16812 :     for (const auto &LI : liveins()) {
     387        9861 :       if (!First)
     388        2910 :         OS << ", ";
     389             :       First = false;
     390        9861 :       OS << printReg(LI.PhysReg, TRI);
     391        9861 :       if (!LI.LaneMask.all())
     392           0 :         OS << ":0x" << PrintLaneMask(LI.LaneMask);
     393             :     }
     394             :     HasLineAttributes = true;
     395             :   }
     396             : 
     397        8676 :   if (HasLineAttributes)
     398             :     OS << '\n';
     399             : 
     400             :   bool IsInBundle = false;
     401       77039 :   for (const MachineInstr &MI : instrs()) {
     402       61412 :     if (Indexes) {
     403             :       if (Indexes->hasIndex(MI))
     404       12702 :         OS << Indexes->getInstructionIndex(MI);
     405             :       OS << '\t';
     406             :     }
     407             : 
     408       61412 :     if (IsInBundle && !MI.isInsideBundle()) {
     409           2 :       OS.indent(2) << "}\n";
     410             :       IsInBundle = false;
     411             :     }
     412             : 
     413      122814 :     OS.indent(IsInBundle ? 4 : 2);
     414       61412 :     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
     415             :              /*AddNewLine=*/false, &TII);
     416             : 
     417       61412 :     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
     418           2 :       OS << " {";
     419             :       IsInBundle = true;
     420             :     }
     421             :     OS << '\n';
     422             :   }
     423             : 
     424       15627 :   if (IsInBundle)
     425           0 :     OS.indent(2) << "}\n";
     426             : 
     427       15627 :   if (IrrLoopHeaderWeight && IsStandalone) {
     428           0 :     if (Indexes) OS << '\t';
     429           0 :     OS.indent(2) << "; Irreducible loop header weight: "
     430           0 :                  << IrrLoopHeaderWeight.getValue() << '\n';
     431             :   }
     432             : }
     433             : 
     434       91052 : void MachineBasicBlock::printAsOperand(raw_ostream &OS,
     435             :                                        bool /*PrintType*/) const {
     436       91052 :   OS << "%bb." << getNumber();
     437       91052 : }
     438             : 
     439       33071 : void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
     440             :   LiveInVector::iterator I = find_if(
     441             :       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
     442       33071 :   if (I == LiveIns.end())
     443             :     return;
     444             : 
     445       16648 :   I->LaneMask &= ~LaneMask;
     446       16648 :   if (I->LaneMask.none())
     447             :     LiveIns.erase(I);
     448             : }
     449             : 
     450             : MachineBasicBlock::livein_iterator
     451         822 : MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
     452             :   // Get non-const version of iterator.
     453             :   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
     454         822 :   return LiveIns.erase(LI);
     455             : }
     456             : 
     457     1067020 : bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
     458             :   livein_iterator I = find_if(
     459             :       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
     460     1067020 :   return I != livein_end() && (I->LaneMask & LaneMask).any();
     461             : }
     462             : 
     463      459144 : void MachineBasicBlock::sortUniqueLiveIns() {
     464             :   llvm::sort(LiveIns,
     465             :              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
     466           0 :                return LI0.PhysReg < LI1.PhysReg;
     467             :              });
     468             :   // Liveins are sorted by physreg now we can merge their lanemasks.
     469             :   LiveInVector::const_iterator I = LiveIns.begin();
     470             :   LiveInVector::const_iterator J;
     471             :   LiveInVector::iterator Out = LiveIns.begin();
     472     1527153 :   for (; I != LiveIns.end(); ++Out, I = J) {
     473     1068009 :     unsigned PhysReg = I->PhysReg;
     474     1068009 :     LaneBitmask LaneMask = I->LaneMask;
     475     1068180 :     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
     476             :       LaneMask |= J->LaneMask;
     477     1068009 :     Out->PhysReg = PhysReg;
     478     1068009 :     Out->LaneMask = LaneMask;
     479             :   }
     480             :   LiveIns.erase(Out, LiveIns.end());
     481      459144 : }
     482             : 
     483             : unsigned
     484      676114 : MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
     485             :   assert(getParent() && "MBB must be inserted in function");
     486             :   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
     487             :   assert(RC && "Register class is required");
     488             :   assert((isEHPad() || this == &getParent()->front()) &&
     489             :          "Only the entry block and landing pads can have physreg live ins");
     490             : 
     491      676114 :   bool LiveIn = isLiveIn(PhysReg);
     492      676114 :   iterator I = SkipPHIsAndLabels(begin()), E = end();
     493      676114 :   MachineRegisterInfo &MRI = getParent()->getRegInfo();
     494      676114 :   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
     495             : 
     496             :   // Look for an existing copy.
     497      676114 :   if (LiveIn)
     498           0 :     for (;I != E && I->isCopy(); ++I)
     499           0 :       if (I->getOperand(1).getReg() == PhysReg) {
     500           0 :         unsigned VirtReg = I->getOperand(0).getReg();
     501           0 :         if (!MRI.constrainRegClass(VirtReg, RC))
     502           0 :           llvm_unreachable("Incompatible live-in register class.");
     503             :         return VirtReg;
     504             :       }
     505             : 
     506             :   // No luck, create a virtual register.
     507      676114 :   unsigned VirtReg = MRI.createVirtualRegister(RC);
     508     2028342 :   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
     509      676114 :     .addReg(PhysReg, RegState::Kill);
     510      676114 :   if (!LiveIn)
     511             :     addLiveIn(PhysReg);
     512             :   return VirtReg;
     513             : }
     514             : 
     515        3513 : void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
     516        3513 :   getParent()->splice(NewAfter->getIterator(), getIterator());
     517        3513 : }
     518             : 
     519       40723 : void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
     520       40723 :   getParent()->splice(++NewBefore->getIterator(), getIterator());
     521       40723 : }
     522             : 
     523      359947 : void MachineBasicBlock::updateTerminator() {
     524      359947 :   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
     525             :   // A block with no successors has no concerns with fall-through edges.
     526      359947 :   if (this->succ_empty())
     527      270079 :     return;
     528             : 
     529      348727 :   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
     530             :   SmallVector<MachineOperand, 4> Cond;
     531      348727 :   DebugLoc DL = findBranchDebugLoc();
     532      348727 :   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
     533             :   (void) B;
     534             :   assert(!B && "UpdateTerminators requires analyzable predecessors!");
     535      348727 :   if (Cond.empty()) {
     536      226480 :     if (TBB) {
     537             :       // The block has an unconditional branch. If its successor is now its
     538             :       // layout successor, delete the branch.
     539       94211 :       if (isLayoutSuccessor(TBB))
     540       21179 :         TII->removeBranch(*this);
     541             :     } else {
     542             :       // The block has an unconditional fallthrough. If its successor is not its
     543             :       // layout successor, insert a branch. First we have to locate the only
     544             :       // non-landing-pad successor, as that is the fallthrough block.
     545      322083 :       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
     546      189814 :         if ((*SI)->isEHPad())
     547             :           continue;
     548             :         assert(!TBB && "Found more than one non-landing-pad successor!");
     549      132269 :         TBB = *SI;
     550             :       }
     551             : 
     552             :       // If there is no non-landing-pad successor, the block has no fall-through
     553             :       // edges to be concerned with.
     554      132269 :       if (!TBB)
     555             :         return;
     556             : 
     557             :       // Finally update the unconditional successor to be reached via a branch
     558             :       // if it would not be reached by fallthrough.
     559      132269 :       if (!isLayoutSuccessor(TBB))
     560       39318 :         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
     561             :     }
     562      226480 :     return;
     563             :   }
     564             : 
     565      122247 :   if (FBB) {
     566             :     // The block has a non-fallthrough conditional branch. If one of its
     567             :     // successors is its layout successor, rewrite it to a fallthrough
     568             :     // conditional branch.
     569       32358 :     if (isLayoutSuccessor(TBB)) {
     570       29110 :       if (TII->reverseBranchCondition(Cond))
     571             :         return;
     572       29108 :       TII->removeBranch(*this);
     573       58216 :       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
     574        3248 :     } else if (isLayoutSuccessor(FBB)) {
     575        2071 :       TII->removeBranch(*this);
     576        4142 :       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
     577             :     }
     578       32356 :     return;
     579             :   }
     580             : 
     581             :   // Walk through the successors and find the successor which is not a landing
     582             :   // pad and is not the conditional branch destination (in TBB) as the
     583             :   // fallthrough successor.
     584             :   MachineBasicBlock *FallthroughBB = nullptr;
     585      269659 :   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
     586      179770 :     if ((*SI)->isEHPad() || *SI == TBB)
     587       89889 :       continue;
     588             :     assert(!FallthroughBB && "Found more than one fallthrough successor.");
     589             :     FallthroughBB = *SI;
     590             :   }
     591             : 
     592       89889 :   if (!FallthroughBB) {
     593           8 :     if (canFallThrough()) {
     594             :       // We fallthrough to the same basic block as the conditional jump targets.
     595             :       // Remove the conditional jump, leaving unconditional fallthrough.
     596             :       // FIXME: This does not seem like a reasonable pattern to support, but it
     597             :       // has been seen in the wild coming out of degenerate ARM test cases.
     598           7 :       TII->removeBranch(*this);
     599             : 
     600             :       // Finally update the unconditional successor to be reached via a branch if
     601             :       // it would not be reached by fallthrough.
     602           7 :       if (!isLayoutSuccessor(TBB))
     603           0 :         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
     604           7 :       return;
     605             :     }
     606             : 
     607             :     // We enter here iff exactly one successor is TBB which cannot fallthrough
     608             :     // and the rest successors if any are EHPads.  In this case, we need to
     609             :     // change the conditional branch into unconditional branch.
     610           1 :     TII->removeBranch(*this);
     611             :     Cond.clear();
     612           2 :     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
     613           1 :     return;
     614             :   }
     615             : 
     616             :   // The block has a fallthrough conditional branch.
     617       89881 :   if (isLayoutSuccessor(TBB)) {
     618       26741 :     if (TII->reverseBranchCondition(Cond)) {
     619             :       // We can't reverse the condition, add an unconditional branch.
     620             :       Cond.clear();
     621          26 :       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
     622          13 :       return;
     623             :     }
     624       26728 :     TII->removeBranch(*this);
     625       53456 :     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
     626       63140 :   } else if (!isLayoutSuccessor(FallthroughBB)) {
     627        1847 :     TII->removeBranch(*this);
     628        3694 :     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
     629             :   }
     630             : }
     631             : 
     632           0 : void MachineBasicBlock::validateSuccProbs() const {
     633             : #ifndef NDEBUG
     634             :   int64_t Sum = 0;
     635             :   for (auto Prob : Probs)
     636             :     Sum += Prob.getNumerator();
     637             :   // Due to precision issue, we assume that the sum of probabilities is one if
     638             :   // the difference between the sum of their numerators and the denominator is
     639             :   // no greater than the number of successors.
     640             :   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
     641             :              Probs.size() &&
     642             :          "The sum of successors's probabilities exceeds one.");
     643             : #endif // NDEBUG
     644           0 : }
     645             : 
     646      439146 : void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
     647             :                                      BranchProbability Prob) {
     648             :   // Probability list is either empty (if successor list isn't empty, this means
     649             :   // disabled optimization) or has the same size as successor list.
     650      439146 :   if (!(Probs.empty() && !Successors.empty()))
     651      439079 :     Probs.push_back(Prob);
     652      439146 :   Successors.push_back(Succ);
     653      439146 :   Succ->addPredecessor(this);
     654      439146 : }
     655             : 
     656     3393850 : void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
     657             :   // We need to make sure probability list is either empty or has the same size
     658             :   // of successor list. When this function is called, we can safely delete all
     659             :   // probability in the list.
     660             :   Probs.clear();
     661     3393850 :   Successors.push_back(Succ);
     662     3393850 :   Succ->addPredecessor(this);
     663     3393850 : }
     664             : 
     665           0 : void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
     666             :                                        MachineBasicBlock *New,
     667             :                                        bool NormalizeSuccProbs) {
     668           0 :   succ_iterator OldI = llvm::find(successors(), Old);
     669             :   assert(OldI != succ_end() && "Old is not a successor of this block!");
     670             :   assert(llvm::find(successors(), New) == succ_end() &&
     671             :          "New is already a successor of this block!");
     672             : 
     673             :   // Add a new successor with equal probability as the original one. Note
     674             :   // that we directly copy the probability using the iterator rather than
     675             :   // getting a potentially synthetic probability computed when unknown. This
     676             :   // preserves the probabilities as-is and then we can renormalize them and
     677             :   // query them effectively afterward.
     678           0 :   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
     679           0 :                                   : *getProbabilityIterator(OldI));
     680           0 :   if (NormalizeSuccProbs)
     681             :     normalizeSuccProbs();
     682           0 : }
     683             : 
     684       23402 : void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
     685             :                                         bool NormalizeSuccProbs) {
     686       23402 :   succ_iterator I = find(Successors, Succ);
     687       23402 :   removeSuccessor(I, NormalizeSuccProbs);
     688       23402 : }
     689             : 
     690             : MachineBasicBlock::succ_iterator
     691       52434 : MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
     692             :   assert(I != Successors.end() && "Not a current successor!");
     693             : 
     694             :   // If probability list is empty it means we don't use it (disabled
     695             :   // optimization).
     696       52434 :   if (!Probs.empty()) {
     697       45516 :     probability_iterator WI = getProbabilityIterator(I);
     698             :     Probs.erase(WI);
     699       45516 :     if (NormalizeSuccProbs)
     700             :       normalizeSuccProbs();
     701             :   }
     702             : 
     703       52434 :   (*I)->removePredecessor(this);
     704       52434 :   return Successors.erase(I);
     705             : }
     706             : 
     707       45557 : void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
     708             :                                          MachineBasicBlock *New) {
     709       45557 :   if (Old == New)
     710             :     return;
     711             : 
     712             :   succ_iterator E = succ_end();
     713             :   succ_iterator NewI = E;
     714             :   succ_iterator OldI = E;
     715      139002 :   for (succ_iterator I = succ_begin(); I != E; ++I) {
     716       93981 :     if (*I == Old) {
     717             :       OldI = I;
     718       45557 :       if (NewI != E)
     719             :         break;
     720             :     }
     721       93750 :     if (*I == New) {
     722             :       NewI = I;
     723         536 :       if (OldI != E)
     724             :         break;
     725             :     }
     726             :   }
     727             :   assert(OldI != E && "Old is not a successor of this block");
     728             : 
     729             :   // If New isn't already a successor, let it take Old's place.
     730       45557 :   if (NewI == E) {
     731       45021 :     Old->removePredecessor(this);
     732       45021 :     New->addPredecessor(this);
     733       45021 :     *OldI = New;
     734       45021 :     return;
     735             :   }
     736             : 
     737             :   // New is already a successor.
     738             :   // Update its probability instead of adding a duplicate edge.
     739         536 :   if (!Probs.empty()) {
     740         536 :     auto ProbIter = getProbabilityIterator(NewI);
     741         536 :     if (!ProbIter->isUnknown())
     742        1026 :       *ProbIter += *getProbabilityIterator(OldI);
     743             :   }
     744         536 :   removeSuccessor(OldI);
     745             : }
     746             : 
     747          10 : void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
     748             :                                       succ_iterator I) {
     749          10 :   if (Orig->Probs.empty())
     750           0 :     addSuccessor(*I, Orig->getSuccProbability(I));
     751             :   else
     752          10 :     addSuccessorWithoutProb(*I);
     753          10 : }
     754             : 
     755     3878017 : void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
     756     3878017 :   Predecessors.push_back(Pred);
     757     3878017 : }
     758             : 
     759       97455 : void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
     760             :   pred_iterator I = find(Predecessors, Pred);
     761             :   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
     762       97455 :   Predecessors.erase(I);
     763       97455 : }
     764             : 
     765       15415 : void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
     766       15415 :   if (this == FromMBB)
     767             :     return;
     768             : 
     769       26101 :   while (!FromMBB->succ_empty()) {
     770       10686 :     MachineBasicBlock *Succ = *FromMBB->succ_begin();
     771             : 
     772             :     // If probability list is empty it means we don't use it (disabled optimization).
     773       10686 :     if (!FromMBB->Probs.empty()) {
     774       10600 :       auto Prob = *FromMBB->Probs.begin();
     775       10600 :       addSuccessor(Succ, Prob);
     776             :     } else
     777          86 :       addSuccessorWithoutProb(Succ);
     778             : 
     779       10686 :     FromMBB->removeSuccessor(Succ);
     780             :   }
     781             : }
     782             : 
     783             : void
     784        9598 : MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
     785        9598 :   if (this == FromMBB)
     786             :     return;
     787             : 
     788       18077 :   while (!FromMBB->succ_empty()) {
     789        8479 :     MachineBasicBlock *Succ = *FromMBB->succ_begin();
     790        8479 :     if (!FromMBB->Probs.empty()) {
     791        1756 :       auto Prob = *FromMBB->Probs.begin();
     792        1756 :       addSuccessor(Succ, Prob);
     793             :     } else
     794        6723 :       addSuccessorWithoutProb(Succ);
     795        8479 :     FromMBB->removeSuccessor(Succ);
     796             : 
     797             :     // Fix up any PHI nodes in the successor.
     798             :     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
     799       10602 :            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
     800        8455 :       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
     801        6332 :         MachineOperand &MO = MI->getOperand(i);
     802        6332 :         if (MO.getMBB() == FromMBB)
     803             :           MO.setMBB(this);
     804             :       }
     805             :   }
     806             :   normalizeSuccProbs();
     807             : }
     808             : 
     809         939 : bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
     810         939 :   return is_contained(predecessors(), MBB);
     811             : }
     812             : 
     813     5731252 : bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
     814     5731251 :   return is_contained(successors(), MBB);
     815             : }
     816             : 
     817    12365787 : bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
     818             :   MachineFunction::const_iterator I(this);
     819    12365787 :   return std::next(I) == MachineFunction::const_iterator(MBB);
     820             : }
     821             : 
     822     2016087 : MachineBasicBlock *MachineBasicBlock::getFallThrough() {
     823     2016087 :   MachineFunction::iterator Fallthrough = getIterator();
     824             :   ++Fallthrough;
     825             :   // If FallthroughBlock is off the end of the function, it can't fall through.
     826     4032174 :   if (Fallthrough == getParent()->end())
     827             :     return nullptr;
     828             : 
     829             :   // If FallthroughBlock isn't a successor, no fallthrough is possible.
     830     1898143 :   if (!isSuccessor(&*Fallthrough))
     831             :     return nullptr;
     832             : 
     833             :   // Analyze the branches, if any, at the end of the block.
     834     1254396 :   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
     835             :   SmallVector<MachineOperand, 4> Cond;
     836     1254396 :   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
     837     1254396 :   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
     838             :     // If we couldn't analyze the branch, examine the last instruction.
     839             :     // If the block doesn't end in a known control barrier, assume fallthrough
     840             :     // is possible. The isPredicated check is needed because this code can be
     841             :     // called during IfConversion, where an instruction which is normally a
     842             :     // Barrier is predicated and thus no longer an actual control barrier.
     843       17943 :     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
     844       17943 :                ? &*Fallthrough
     845             :                : nullptr;
     846             :   }
     847             : 
     848             :   // If there is no branch, control always falls through.
     849     1236453 :   if (!TBB) return &*Fallthrough;
     850             : 
     851             :   // If there is some explicit branch to the fallthrough block, it can obviously
     852             :   // reach, even though the branch should get folded to fall through implicitly.
     853      571100 :   if (MachineFunction::iterator(TBB) == Fallthrough ||
     854      541846 :       MachineFunction::iterator(FBB) == Fallthrough)
     855             :     return &*Fallthrough;
     856             : 
     857             :   // If it's an unconditional branch to some block not the fall through, it
     858             :   // doesn't fall through.
     859      484051 :   if (Cond.empty()) return nullptr;
     860             : 
     861             :   // Otherwise, if it is conditional and has no explicit false block, it falls
     862             :   // through.
     863      455570 :   return (FBB == nullptr) ? &*Fallthrough : nullptr;
     864             : }
     865             : 
     866     2016082 : bool MachineBasicBlock::canFallThrough() {
     867     2016082 :   return getFallThrough() != nullptr;
     868             : }
     869             : 
     870       34062 : MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
     871             :                                                         Pass &P) {
     872       34062 :   if (!canSplitCriticalEdge(Succ))
     873             :     return nullptr;
     874             : 
     875       33630 :   MachineFunction *MF = getParent();
     876       33630 :   DebugLoc DL;  // FIXME: this is nowhere
     877             : 
     878       33630 :   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
     879             :   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
     880             :   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
     881             :                     << " -- " << printMBBReference(*NMBB) << " -- "
     882             :                     << printMBBReference(*Succ) << '\n');
     883             : 
     884       33630 :   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
     885       33630 :   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
     886       33630 :   if (LIS)
     887           0 :     LIS->insertMBBInMaps(NMBB);
     888       33630 :   else if (Indexes)
     889           0 :     Indexes->insertMBBInMaps(NMBB);
     890             : 
     891             :   // On some targets like Mips, branches may kill virtual registers. Make sure
     892             :   // that LiveVariables is properly updated after updateTerminator replaces the
     893             :   // terminators.
     894       33630 :   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
     895             : 
     896             :   // Collect a list of virtual registers killed by the terminators.
     897             :   SmallVector<unsigned, 4> KilledRegs;
     898       33630 :   if (LV)
     899        4594 :     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
     900       13100 :          I != E; ++I) {
     901             :       MachineInstr *MI = &*I;
     902       13869 :       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
     903       22375 :            OE = MI->operands_end(); OI != OE; ++OI) {
     904        4947 :         if (!OI->isReg() || OI->getReg() == 0 ||
     905       18478 :             !OI->isUse() || !OI->isKill() || OI->isUndef())
     906        9372 :           continue;
     907        4497 :         unsigned Reg = OI->getReg();
     908        4707 :         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
     909         210 :             LV->getVarInfo(Reg).removeKill(*MI)) {
     910        4497 :           KilledRegs.push_back(Reg);
     911             :           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
     912             :           OI->setIsKill(false);
     913             :         }
     914             :       }
     915             :     }
     916             : 
     917             :   SmallVector<unsigned, 4> UsedRegs;
     918       33630 :   if (LIS) {
     919           0 :     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
     920           0 :          I != E; ++I) {
     921             :       MachineInstr *MI = &*I;
     922             : 
     923           0 :       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
     924           0 :            OE = MI->operands_end(); OI != OE; ++OI) {
     925           0 :         if (!OI->isReg() || OI->getReg() == 0)
     926           0 :           continue;
     927             : 
     928           0 :         unsigned Reg = OI->getReg();
     929           0 :         if (!is_contained(UsedRegs, Reg))
     930           0 :           UsedRegs.push_back(Reg);
     931             :       }
     932             :     }
     933             :   }
     934             : 
     935       33630 :   ReplaceUsesOfBlockWith(Succ, NMBB);
     936             : 
     937             :   // If updateTerminator() removes instructions, we need to remove them from
     938             :   // SlotIndexes.
     939             :   SmallVector<MachineInstr*, 4> Terminators;
     940       33630 :   if (Indexes) {
     941           0 :     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
     942           0 :          I != E; ++I)
     943           0 :       Terminators.push_back(&*I);
     944             :   }
     945             : 
     946       33630 :   updateTerminator();
     947             : 
     948       33630 :   if (Indexes) {
     949             :     SmallVector<MachineInstr*, 4> NewTerminators;
     950           0 :     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
     951           0 :          I != E; ++I)
     952           0 :       NewTerminators.push_back(&*I);
     953             : 
     954           0 :     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
     955           0 :         E = Terminators.end(); I != E; ++I) {
     956           0 :       if (!is_contained(NewTerminators, *I))
     957           0 :         Indexes->removeMachineInstrFromMaps(**I);
     958             :     }
     959             :   }
     960             : 
     961             :   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
     962       33630 :   NMBB->addSuccessor(Succ);
     963       33630 :   if (!NMBB->isLayoutSuccessor(Succ)) {
     964             :     SmallVector<MachineOperand, 4> Cond;
     965       32456 :     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
     966       64912 :     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
     967             : 
     968       32456 :     if (Indexes) {
     969           0 :       for (MachineInstr &MI : NMBB->instrs()) {
     970             :         // Some instructions may have been moved to NMBB by updateTerminator(),
     971             :         // so we first remove any instruction that already has an index.
     972             :         if (Indexes->hasIndex(MI))
     973           0 :           Indexes->removeMachineInstrFromMaps(MI);
     974           0 :         Indexes->insertMachineInstrInMaps(MI);
     975             :       }
     976             :     }
     977             :   }
     978             : 
     979             :   // Fix PHI nodes in Succ so they refer to NMBB instead of this
     980             :   for (MachineBasicBlock::instr_iterator
     981             :          i = Succ->instr_begin(),e = Succ->instr_end();
     982       75563 :        i != e && i->isPHI(); ++i)
     983      193826 :     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
     984      303786 :       if (i->getOperand(ni+1).getMBB() == this)
     985             :         i->getOperand(ni+1).setMBB(NMBB);
     986             : 
     987             :   // Inherit live-ins from the successor
     988       34054 :   for (const auto &LI : Succ->liveins())
     989             :     NMBB->addLiveIn(LI);
     990             : 
     991             :   // Update LiveVariables.
     992       33630 :   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
     993       33630 :   if (LV) {
     994             :     // Restore kills of virtual registers that were killed by the terminators.
     995        9091 :     while (!KilledRegs.empty()) {
     996             :       unsigned Reg = KilledRegs.pop_back_val();
     997        4497 :       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
     998        4497 :         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
     999             :           continue;
    1000        4497 :         if (TargetRegisterInfo::isVirtualRegister(Reg))
    1001         210 :           LV->getVarInfo(Reg).Kills.push_back(&*I);
    1002             :         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
    1003             :         break;
    1004             :       }
    1005             :     }
    1006             :     // Update relevant live-through information.
    1007        4594 :     LV->addNewBlock(NMBB, this, Succ);
    1008             :   }
    1009             : 
    1010       33630 :   if (LIS) {
    1011             :     // After splitting the edge and updating SlotIndexes, live intervals may be
    1012             :     // in one of two situations, depending on whether this block was the last in
    1013             :     // the function. If the original block was the last in the function, all
    1014             :     // live intervals will end prior to the beginning of the new split block. If
    1015             :     // the original block was not at the end of the function, all live intervals
    1016             :     // will extend to the end of the new split block.
    1017             : 
    1018             :     bool isLastMBB =
    1019           0 :       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
    1020             : 
    1021             :     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
    1022             :     SlotIndex PrevIndex = StartIndex.getPrevSlot();
    1023             :     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
    1024             : 
    1025             :     // Find the registers used from NMBB in PHIs in Succ.
    1026           0 :     SmallSet<unsigned, 8> PHISrcRegs;
    1027             :     for (MachineBasicBlock::instr_iterator
    1028             :          I = Succ->instr_begin(), E = Succ->instr_end();
    1029           0 :          I != E && I->isPHI(); ++I) {
    1030           0 :       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
    1031           0 :         if (I->getOperand(ni+1).getMBB() == NMBB) {
    1032             :           MachineOperand &MO = I->getOperand(ni);
    1033           0 :           unsigned Reg = MO.getReg();
    1034           0 :           PHISrcRegs.insert(Reg);
    1035           0 :           if (MO.isUndef())
    1036           0 :             continue;
    1037             : 
    1038           0 :           LiveInterval &LI = LIS->getInterval(Reg);
    1039           0 :           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
    1040             :           assert(VNI &&
    1041             :                  "PHI sources should be live out of their predecessors.");
    1042           0 :           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
    1043             :         }
    1044             :       }
    1045             :     }
    1046             : 
    1047           0 :     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
    1048           0 :     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    1049           0 :       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    1050           0 :       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
    1051           0 :         continue;
    1052             : 
    1053           0 :       LiveInterval &LI = LIS->getInterval(Reg);
    1054           0 :       if (!LI.liveAt(PrevIndex))
    1055             :         continue;
    1056             : 
    1057           0 :       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
    1058           0 :       if (isLiveOut && isLastMBB) {
    1059           0 :         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
    1060             :         assert(VNI && "LiveInterval should have VNInfo where it is live.");
    1061           0 :         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
    1062           0 :       } else if (!isLiveOut && !isLastMBB) {
    1063           0 :         LI.removeSegment(StartIndex, EndIndex);
    1064             :       }
    1065             :     }
    1066             : 
    1067             :     // Update all intervals for registers whose uses may have been modified by
    1068             :     // updateTerminator().
    1069           0 :     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
    1070             :   }
    1071             : 
    1072       33630 :   if (MachineDominatorTree *MDT =
    1073       33630 :           P.getAnalysisIfAvailable<MachineDominatorTree>())
    1074       33630 :     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
    1075             : 
    1076       33630 :   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
    1077        4323 :     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
    1078             :       // If one or the other blocks were not in a loop, the new block is not
    1079             :       // either, and thus LI doesn't need to be updated.
    1080        3277 :       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
    1081        3277 :         if (TIL == DestLoop) {
    1082             :           // Both in the same loop, the NMBB joins loop.
    1083        5972 :           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
    1084         582 :         } else if (TIL->contains(DestLoop)) {
    1085             :           // Edge from an outer loop to an inner loop.  Add to the outer loop.
    1086           8 :           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
    1087         566 :         } else if (DestLoop->contains(TIL)) {
    1088             :           // Edge from an inner loop to an outer loop.  Add to the outer loop.
    1089         258 :           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
    1090             :         } else {
    1091             :           // Edge from two loops with no containment relation.  Because these
    1092             :           // are natural loops, we know that the destination block must be the
    1093             :           // header of its loop (adding a branch into a loop elsewhere would
    1094             :           // create an irreducible loop).
    1095             :           assert(DestLoop->getHeader() == Succ &&
    1096             :                  "Should not create irreducible loops!");
    1097          25 :           if (MachineLoop *P = DestLoop->getParentLoop())
    1098           0 :             P->addBasicBlockToLoop(NMBB, MLI->getBase());
    1099             :         }
    1100             :       }
    1101             :     }
    1102             : 
    1103             :   return NMBB;
    1104             : }
    1105             : 
    1106       34062 : bool MachineBasicBlock::canSplitCriticalEdge(
    1107             :     const MachineBasicBlock *Succ) const {
    1108             :   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
    1109             :   // it in this generic function.
    1110       34062 :   if (Succ->isEHPad())
    1111             :     return false;
    1112             : 
    1113       34062 :   const MachineFunction *MF = getParent();
    1114             : 
    1115             :   // Performance might be harmed on HW that implements branching using exec mask
    1116             :   // where both sides of the branches are always executed.
    1117       68124 :   if (MF->getTarget().requiresStructuredCFG())
    1118             :     return false;
    1119             : 
    1120             :   // We may need to update this's terminator, but we can't do that if
    1121             :   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
    1122       33975 :   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    1123       33975 :   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    1124             :   SmallVector<MachineOperand, 4> Cond;
    1125             :   // AnalyzeBanch should modify this, since we did not allow modification.
    1126       33975 :   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
    1127       33975 :                          /*AllowModify*/ false))
    1128             :     return false;
    1129             : 
    1130             :   // Avoid bugpoint weirdness: A block may end with a conditional branch but
    1131             :   // jumps to the same MBB is either case. We have duplicate CFG edges in that
    1132             :   // case that we can't handle. Since this never happens in properly optimized
    1133             :   // code, just skip those edges.
    1134       33630 :   if (TBB && TBB == FBB) {
    1135             :     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
    1136             :                       << printMBBReference(*this) << '\n');
    1137           0 :     return false;
    1138             :   }
    1139             :   return true;
    1140             : }
    1141             : 
    1142             : /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
    1143             : /// neighboring instructions so the bundle won't be broken by removing MI.
    1144      627776 : static void unbundleSingleMI(MachineInstr *MI) {
    1145             :   // Removing the first instruction in a bundle.
    1146      627776 :   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
    1147           6 :     MI->unbundleFromSucc();
    1148             :   // Removing the last instruction in a bundle.
    1149      627776 :   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
    1150         683 :     MI->unbundleFromPred();
    1151             :   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
    1152             :   // are already fine.
    1153      627776 : }
    1154             : 
    1155             : MachineBasicBlock::instr_iterator
    1156      627678 : MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
    1157      627678 :   unbundleSingleMI(&*I);
    1158      627678 :   return Insts.erase(I);
    1159             : }
    1160             : 
    1161          98 : MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
    1162          98 :   unbundleSingleMI(MI);
    1163             :   MI->clearFlag(MachineInstr::BundledPred);
    1164             :   MI->clearFlag(MachineInstr::BundledSucc);
    1165          98 :   return Insts.remove(MI);
    1166             : }
    1167             : 
    1168             : MachineBasicBlock::instr_iterator
    1169     1606629 : MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
    1170             :   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    1171             :          "Cannot insert instruction with bundle flags");
    1172             :   // Set the bundle flags when inserting inside a bundle.
    1173     1606629 :   if (I != instr_end() && I->isBundledWithPred()) {
    1174             :     MI->setFlag(MachineInstr::BundledPred);
    1175             :     MI->setFlag(MachineInstr::BundledSucc);
    1176             :   }
    1177     1606629 :   return Insts.insert(I, MI);
    1178             : }
    1179             : 
    1180             : /// This method unlinks 'this' from the containing function, and returns it, but
    1181             : /// does not delete it.
    1182           0 : MachineBasicBlock *MachineBasicBlock::removeFromParent() {
    1183             :   assert(getParent() && "Not embedded in a function!");
    1184           0 :   getParent()->remove(this);
    1185           0 :   return this;
    1186             : }
    1187             : 
    1188             : /// This method unlinks 'this' from the containing function, and deletes it.
    1189        2662 : void MachineBasicBlock::eraseFromParent() {
    1190             :   assert(getParent() && "Not embedded in a function!");
    1191        2662 :   getParent()->erase(this);
    1192        2662 : }
    1193             : 
    1194             : /// Given a machine basic block that branched to 'Old', change the code and CFG
    1195             : /// so that it branches to 'New' instead.
    1196       44323 : void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
    1197             :                                                MachineBasicBlock *New) {
    1198             :   assert(Old != New && "Cannot replace self with self!");
    1199             : 
    1200             :   MachineBasicBlock::instr_iterator I = instr_end();
    1201      124177 :   while (I != instr_begin()) {
    1202             :     --I;
    1203      123855 :     if (!I->isTerminator()) break;
    1204             : 
    1205             :     // Scan the operands of this machine instruction, replacing any uses of Old
    1206             :     // with New.
    1207      204216 :     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    1208      248724 :       if (I->getOperand(i).isMBB() &&
    1209       79547 :           I->getOperand(i).getMBB() == Old)
    1210             :         I->getOperand(i).setMBB(New);
    1211             :   }
    1212             : 
    1213             :   // Update the successor information.
    1214       44323 :   replaceSuccessor(Old, New);
    1215       44323 : }
    1216             : 
    1217             : /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
    1218             : /// we have proven that MBB can only branch to DestA and DestB, remove any other
    1219             : /// MBB successors from the CFG.  DestA and DestB can be null.
    1220             : ///
    1221             : /// Besides DestA and DestB, retain other edges leading to LandingPads
    1222             : /// (currently there can be only one; we don't check or require that here).
    1223             : /// Note it is possible that DestA and/or DestB are LandingPads.
    1224     2069210 : bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
    1225             :                                              MachineBasicBlock *DestB,
    1226             :                                              bool IsCond) {
    1227             :   // The values of DestA and DestB frequently come from a call to the
    1228             :   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
    1229             :   // values from there.
    1230             :   //
    1231             :   // 1. If both DestA and DestB are null, then the block ends with no branches
    1232             :   //    (it falls through to its successor).
    1233             :   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
    1234             :   //    with only an unconditional branch.
    1235             :   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
    1236             :   //    with a conditional branch that falls through to a successor (DestB).
    1237             :   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
    1238             :   //    conditional branch followed by an unconditional branch. DestA is the
    1239             :   //    'true' destination and DestB is the 'false' destination.
    1240             : 
    1241             :   bool Changed = false;
    1242             : 
    1243             :   MachineBasicBlock *FallThru = getNextNode();
    1244             : 
    1245     2069210 :   if (!DestA && !DestB) {
    1246             :     // Block falls through to successor.
    1247             :     DestA = FallThru;
    1248             :     DestB = FallThru;
    1249     1228957 :   } else if (DestA && !DestB) {
    1250     1200886 :     if (IsCond)
    1251             :       // Block ends in conditional jump that falls through to successor.
    1252             :       DestB = FallThru;
    1253             :   } else {
    1254             :     assert(DestA && DestB && IsCond &&
    1255             :            "CFG in a bad state. Cannot correct CFG edges");
    1256             :   }
    1257             : 
    1258             :   // Remove superfluous edges. I.e., those which aren't destinations of this
    1259             :   // basic block, duplicate edges, or landing pads.
    1260             :   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
    1261             :   MachineBasicBlock::succ_iterator SI = succ_begin();
    1262     4966248 :   while (SI != succ_end()) {
    1263     2897038 :     const MachineBasicBlock *MBB = *SI;
    1264     5793893 :     if (!SeenMBBs.insert(MBB).second ||
    1265     2897038 :         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
    1266             :       // This is a superfluous edge, remove it.
    1267         183 :       SI = removeSuccessor(SI);
    1268             :       Changed = true;
    1269             :     } else {
    1270             :       ++SI;
    1271             :     }
    1272             :   }
    1273             : 
    1274     2069210 :   if (Changed)
    1275             :     normalizeSuccProbs();
    1276     2069210 :   return Changed;
    1277             : }
    1278             : 
    1279             : /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
    1280             : /// instructions.  Return UnknownLoc if there is none.
    1281             : DebugLoc
    1282     3234599 : MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
    1283             :   // Skip debug declarations, we don't want a DebugLoc from them.
    1284             :   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
    1285     3234599 :   if (MBBI != instr_end())
    1286             :     return MBBI->getDebugLoc();
    1287       16347 :   return {};
    1288             : }
    1289             : 
    1290             : /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
    1291             : /// instructions.  Return UnknownLoc if there is none.
    1292        3227 : DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
    1293        3227 :   if (MBBI == instr_begin()) return {};
    1294             :   // Skip debug declarations, we don't want a DebugLoc from them.
    1295             :   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
    1296             :   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
    1297           0 :   return {};
    1298             : }
    1299             : 
    1300             : /// Find and return the merged DebugLoc of the branch instructions of the block.
    1301             : /// Return UnknownLoc if there is none.
    1302             : DebugLoc
    1303     1090235 : MachineBasicBlock::findBranchDebugLoc() {
    1304     1090235 :   DebugLoc DL;
    1305     1090235 :   auto TI = getFirstTerminator();
    1306     1762435 :   while (TI != end() && !TI->isBranch())
    1307             :     ++TI;
    1308             : 
    1309     1090235 :   if (TI != end()) {
    1310             :     DL = TI->getDebugLoc();
    1311      714741 :     for (++TI ; TI != end() ; ++TI)
    1312       42689 :       if (TI->isBranch())
    1313       85378 :         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
    1314             :   }
    1315     1090235 :   return DL;
    1316             : }
    1317             : 
    1318             : /// Return probability of the edge from this block to MBB.
    1319             : BranchProbability
    1320     2196348 : MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
    1321     2196348 :   if (Probs.empty())
    1322         644 :     return BranchProbability(1, succ_size());
    1323             : 
    1324     2195704 :   const auto &Prob = *getProbabilityIterator(Succ);
    1325     2195704 :   if (Prob.isUnknown()) {
    1326             :     // For unknown probabilities, collect the sum of all known ones, and evenly
    1327             :     // ditribute the complemental of the sum to each unknown probability.
    1328             :     unsigned KnownProbNum = 0;
    1329             :     auto Sum = BranchProbability::getZero();
    1330     1752665 :     for (auto &P : Probs) {
    1331      915598 :       if (!P.isUnknown()) {
    1332             :         Sum += P;
    1333          21 :         KnownProbNum++;
    1334             :       }
    1335             :     }
    1336      837067 :     return Sum.getCompl() / (Probs.size() - KnownProbNum);
    1337             :   } else
    1338     1358637 :     return Prob;
    1339             : }
    1340             : 
    1341             : /// Set successor probability of a given iterator.
    1342        2186 : void MachineBasicBlock::setSuccProbability(succ_iterator I,
    1343             :                                            BranchProbability Prob) {
    1344             :   assert(!Prob.isUnknown());
    1345        2186 :   if (Probs.empty())
    1346             :     return;
    1347        1280 :   *getProbabilityIterator(I) = Prob;
    1348             : }
    1349             : 
    1350             : /// Return probability iterator corresonding to the I successor iterator
    1351             : MachineBasicBlock::const_probability_iterator
    1352     2195704 : MachineBasicBlock::getProbabilityIterator(
    1353             :     MachineBasicBlock::const_succ_iterator I) const {
    1354             :   assert(Probs.size() == Successors.size() && "Async probability list!");
    1355     4391408 :   const size_t index = std::distance(Successors.begin(), I);
    1356             :   assert(index < Probs.size() && "Not a current successor!");
    1357     4391408 :   return Probs.begin() + index;
    1358             : }
    1359             : 
    1360             : /// Return probability iterator corresonding to the I successor iterator.
    1361             : MachineBasicBlock::probability_iterator
    1362       47846 : MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
    1363             :   assert(Probs.size() == Successors.size() && "Async probability list!");
    1364       47846 :   const size_t index = std::distance(Successors.begin(), I);
    1365             :   assert(index < Probs.size() && "Not a current successor!");
    1366       47846 :   return Probs.begin() + index;
    1367             : }
    1368             : 
    1369             : /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
    1370             : /// as of just before "MI".
    1371             : ///
    1372             : /// Search is localised to a neighborhood of
    1373             : /// Neighborhood instructions before (searching for defs or kills) and N
    1374             : /// instructions after (searching just for defs) MI.
    1375             : MachineBasicBlock::LivenessQueryResult
    1376         886 : MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
    1377             :                                            unsigned Reg, const_iterator Before,
    1378             :                                            unsigned Neighborhood) const {
    1379             :   unsigned N = Neighborhood;
    1380             : 
    1381             :   // Try searching forwards from Before, looking for reads or defs.
    1382         886 :   const_iterator I(Before);
    1383             :   // If this is the last insn in the block, don't search forwards.
    1384         886 :   if (I != end()) {
    1385        3348 :     for (++I; I != end() && N > 0; ++I) {
    1386             :       if (I->isDebugInstr())
    1387          29 :         continue;
    1388             : 
    1389        2840 :       --N;
    1390             : 
    1391             :       MachineOperandIteratorBase::PhysRegInfo Info =
    1392        2840 :           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
    1393             : 
    1394             :       // Register is live when we read it here.
    1395        2840 :       if (Info.Read)
    1396         404 :         return LQR_Live;
    1397             :       // Register is dead if we can fully overwrite or clobber it here.
    1398        2825 :       if (Info.FullyDefined || Info.Clobbered)
    1399             :         return LQR_Dead;
    1400             :     }
    1401             :   }
    1402             : 
    1403             :   // If we reached the end, it is safe to clobber Reg at the end of a block of
    1404             :   // no successor has it live in.
    1405         482 :   if (I == end()) {
    1406         380 :     for (MachineBasicBlock *S : successors()) {
    1407         130 :       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
    1408          77 :         if (TRI->regsOverlap(LI.PhysReg, Reg))
    1409             :           return LQR_Live;
    1410             :       }
    1411             :     }
    1412             : 
    1413             :     return LQR_Dead;
    1414             :   }
    1415             : 
    1416             : 
    1417             :   N = Neighborhood;
    1418             : 
    1419             :   // Start by searching backwards from Before, looking for kills, reads or defs.
    1420         155 :   I = const_iterator(Before);
    1421             :   // If this is the first insn in the block, don't search backwards.
    1422         155 :   if (I != begin()) {
    1423             :     do {
    1424             :       --I;
    1425             : 
    1426             :       if (I->isDebugInstr())
    1427           0 :         continue;
    1428             : 
    1429        1532 :       --N;
    1430             : 
    1431             :       MachineOperandIteratorBase::PhysRegInfo Info =
    1432        1532 :           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
    1433             : 
    1434             :       // Defs happen after uses so they take precedence if both are present.
    1435             : 
    1436             :       // Register is dead after a dead def of the full register.
    1437        1532 :       if (Info.DeadDef)
    1438           1 :         return LQR_Dead;
    1439             :       // Register is (at least partially) live after a def.
    1440        1532 :       if (Info.Defined) {
    1441           1 :         if (!Info.PartialDeadDef)
    1442             :           return LQR_Live;
    1443             :         // As soon as we saw a partial definition (dead or not),
    1444             :         // we cannot tell if the value is partial live without
    1445             :         // tracking the lanemasks. We are not going to do this,
    1446             :         // so fall back on the remaining of the analysis.
    1447           0 :         break;
    1448             :       }
    1449             :       // Register is dead after a full kill or clobber and no def.
    1450        1531 :       if (Info.Killed || Info.Clobbered)
    1451             :         return LQR_Dead;
    1452             :       // Register must be live if we read it.
    1453        1531 :       if (Info.Read)
    1454             :         return LQR_Live;
    1455             : 
    1456        1531 :     } while (I != begin() && N > 0);
    1457             :   }
    1458             : 
    1459             :   // Did we get to the start of the block?
    1460         154 :   if (I == begin()) {
    1461             :     // If so, the register's state is definitely defined by the live-in state.
    1462          50 :     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
    1463          37 :       if (TRI->regsOverlap(LI.PhysReg, Reg))
    1464             :         return LQR_Live;
    1465             : 
    1466             :     return LQR_Dead;
    1467             :   }
    1468             : 
    1469             :   // At this point we have no idea of the liveness of the register.
    1470             :   return LQR_Unknown;
    1471             : }
    1472             : 
    1473             : const uint32_t *
    1474      506229 : MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
    1475             :   // EH funclet entry does not preserve any registers.
    1476      506229 :   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
    1477             : }
    1478             : 
    1479             : const uint32_t *
    1480      506230 : MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
    1481             :   // If we see a return block with successors, this must be a funclet return,
    1482             :   // which does not preserve any registers. If there are no successors, we don't
    1483             :   // care what kind of return it is, putting a mask after it is a no-op.
    1484      506230 :   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
    1485             : }
    1486             : 
    1487       10710 : void MachineBasicBlock::clearLiveIns() {
    1488             :   LiveIns.clear();
    1489       10710 : }
    1490             : 
    1491     9052742 : MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
    1492             :   assert(getParent()->getProperties().hasProperty(
    1493             :       MachineFunctionProperties::Property::TracksLiveness) &&
    1494             :       "Liveness information is accurate");
    1495     9052742 :   return LiveIns.begin();
    1496             : }

Generated by: LCOV version 1.13