Line data Source code
1 : //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This pass performs global common subexpression elimination on machine
11 : // instructions using a scoped hash table based value numbering scheme. It
12 : // must be run while the machine function is still in SSA form.
13 : //
14 : //===----------------------------------------------------------------------===//
15 :
16 : #include "llvm/ADT/DenseMap.h"
17 : #include "llvm/ADT/ScopedHashTable.h"
18 : #include "llvm/ADT/SmallPtrSet.h"
19 : #include "llvm/ADT/SmallSet.h"
20 : #include "llvm/ADT/SmallVector.h"
21 : #include "llvm/ADT/Statistic.h"
22 : #include "llvm/Analysis/AliasAnalysis.h"
23 : #include "llvm/CodeGen/MachineBasicBlock.h"
24 : #include "llvm/CodeGen/MachineDominators.h"
25 : #include "llvm/CodeGen/MachineFunction.h"
26 : #include "llvm/CodeGen/MachineFunctionPass.h"
27 : #include "llvm/CodeGen/MachineInstr.h"
28 : #include "llvm/CodeGen/MachineOperand.h"
29 : #include "llvm/CodeGen/MachineRegisterInfo.h"
30 : #include "llvm/CodeGen/Passes.h"
31 : #include "llvm/CodeGen/TargetInstrInfo.h"
32 : #include "llvm/CodeGen/TargetOpcodes.h"
33 : #include "llvm/CodeGen/TargetRegisterInfo.h"
34 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 : #include "llvm/MC/MCInstrDesc.h"
36 : #include "llvm/MC/MCRegisterInfo.h"
37 : #include "llvm/Pass.h"
38 : #include "llvm/Support/Allocator.h"
39 : #include "llvm/Support/Debug.h"
40 : #include "llvm/Support/RecyclingAllocator.h"
41 : #include "llvm/Support/raw_ostream.h"
42 : #include <cassert>
43 : #include <iterator>
44 : #include <utility>
45 : #include <vector>
46 :
47 : using namespace llvm;
48 :
49 : #define DEBUG_TYPE "machine-cse"
50 :
51 : STATISTIC(NumCoalesces, "Number of copies coalesced");
52 : STATISTIC(NumCSEs, "Number of common subexpression eliminated");
53 : STATISTIC(NumPhysCSEs,
54 : "Number of physreg referencing common subexpr eliminated");
55 : STATISTIC(NumCrossBBCSEs,
56 : "Number of cross-MBB physreg referencing CS eliminated");
57 : STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
58 :
59 : namespace {
60 :
61 : class MachineCSE : public MachineFunctionPass {
62 : const TargetInstrInfo *TII;
63 : const TargetRegisterInfo *TRI;
64 : AliasAnalysis *AA;
65 : MachineDominatorTree *DT;
66 : MachineRegisterInfo *MRI;
67 :
68 : public:
69 : static char ID; // Pass identification
70 :
71 22122 : MachineCSE() : MachineFunctionPass(ID) {
72 22122 : initializeMachineCSEPass(*PassRegistry::getPassRegistry());
73 22122 : }
74 :
75 : bool runOnMachineFunction(MachineFunction &MF) override;
76 :
77 21948 : void getAnalysisUsage(AnalysisUsage &AU) const override {
78 21948 : AU.setPreservesCFG();
79 21948 : MachineFunctionPass::getAnalysisUsage(AU);
80 : AU.addRequired<AAResultsWrapperPass>();
81 21948 : AU.addPreservedID(MachineLoopInfoID);
82 : AU.addRequired<MachineDominatorTree>();
83 : AU.addPreserved<MachineDominatorTree>();
84 21948 : }
85 :
86 217213 : void releaseMemory() override {
87 217213 : ScopeMap.clear();
88 : Exps.clear();
89 217213 : }
90 :
91 : private:
92 : using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93 : ScopedHashTableVal<MachineInstr *, unsigned>>;
94 : using ScopedHTType =
95 : ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96 : AllocatorTy>;
97 : using ScopeType = ScopedHTType::ScopeTy;
98 :
99 : unsigned LookAheadLimit = 0;
100 : DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101 : ScopedHTType VNT;
102 : SmallVector<MachineInstr *, 64> Exps;
103 : unsigned CurrVN = 0;
104 :
105 : bool PerformTrivialCopyPropagation(MachineInstr *MI,
106 : MachineBasicBlock *MBB);
107 : bool isPhysDefTriviallyDead(unsigned Reg,
108 : MachineBasicBlock::const_iterator I,
109 : MachineBasicBlock::const_iterator E) const;
110 : bool hasLivePhysRegDefUses(const MachineInstr *MI,
111 : const MachineBasicBlock *MBB,
112 : SmallSet<unsigned,8> &PhysRefs,
113 : SmallVectorImpl<unsigned> &PhysDefs,
114 : bool &PhysUseDef) const;
115 : bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116 : SmallSet<unsigned,8> &PhysRefs,
117 : SmallVectorImpl<unsigned> &PhysDefs,
118 : bool &NonLocal) const;
119 : bool isCSECandidate(MachineInstr *MI);
120 : bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121 : MachineInstr *CSMI, MachineInstr *MI);
122 : void EnterScope(MachineBasicBlock *MBB);
123 : void ExitScope(MachineBasicBlock *MBB);
124 : bool ProcessBlock(MachineBasicBlock *MBB);
125 : void ExitScopeIfDone(MachineDomTreeNode *Node,
126 : DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127 : bool PerformCSE(MachineDomTreeNode *Node);
128 : };
129 :
130 : } // end anonymous namespace
131 :
132 : char MachineCSE::ID = 0;
133 :
134 : char &llvm::MachineCSEID = MachineCSE::ID;
135 :
136 31780 : INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137 : "Machine Common Subexpression Elimination", false, false)
138 31780 : INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 31780 : INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 107269 : INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141 : "Machine Common Subexpression Elimination", false, false)
142 :
143 : /// The source register of a COPY machine instruction can be propagated to all
144 : /// its users, and this propagation could increase the probability of finding
145 : /// common subexpressions. If the COPY has only one user, the COPY itself can
146 : /// be removed.
147 0 : bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148 : MachineBasicBlock *MBB) {
149 : bool Changed = false;
150 0 : for (MachineOperand &MO : MI->operands()) {
151 0 : if (!MO.isReg() || !MO.isUse())
152 0 : continue;
153 0 : unsigned Reg = MO.getReg();
154 0 : if (!TargetRegisterInfo::isVirtualRegister(Reg))
155 0 : continue;
156 0 : bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157 0 : MachineInstr *DefMI = MRI->getVRegDef(Reg);
158 0 : if (!DefMI->isCopy())
159 0 : continue;
160 0 : unsigned SrcReg = DefMI->getOperand(1).getReg();
161 0 : if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162 0 : continue;
163 0 : if (DefMI->getOperand(0).getSubReg())
164 0 : continue;
165 : // FIXME: We should trivially coalesce subregister copies to expose CSE
166 : // opportunities on instructions with truncated operands (see
167 : // cse-add-with-overflow.ll). This can be done here as follows:
168 : // if (SrcSubReg)
169 : // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170 : // SrcSubReg);
171 : // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
172 : //
173 : // The 2-addr pass has been updated to handle coalesced subregs. However,
174 : // some machine-specific code still can't handle it.
175 : // To handle it properly we also need a way find a constrained subregister
176 : // class given a super-reg class and subreg index.
177 0 : if (DefMI->getOperand(1).getSubReg())
178 0 : continue;
179 0 : if (!MRI->constrainRegAttrs(SrcReg, Reg))
180 0 : continue;
181 : LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
182 : LLVM_DEBUG(dbgs() << "*** to: " << *MI);
183 :
184 : // Update matching debug values.
185 0 : DefMI->changeDebugValuesDefReg(SrcReg);
186 :
187 : // Propagate SrcReg of copies to MI.
188 0 : MO.setReg(SrcReg);
189 0 : MRI->clearKillFlags(SrcReg);
190 : // Coalesce single use copies.
191 0 : if (OnlyOneUse) {
192 0 : DefMI->eraseFromParent();
193 : ++NumCoalesces;
194 : }
195 : Changed = true;
196 : }
197 :
198 0 : return Changed;
199 : }
200 :
201 : bool
202 0 : MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
203 : MachineBasicBlock::const_iterator I,
204 : MachineBasicBlock::const_iterator E) const {
205 0 : unsigned LookAheadLeft = LookAheadLimit;
206 0 : while (LookAheadLeft) {
207 : // Skip over dbg_value's.
208 0 : I = skipDebugInstructionsForward(I, E);
209 :
210 0 : if (I == E)
211 : // Reached end of block, we don't know if register is dead or not.
212 0 : return false;
213 :
214 : bool SeenDef = false;
215 0 : for (const MachineOperand &MO : I->operands()) {
216 0 : if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
217 : SeenDef = true;
218 0 : if (!MO.isReg() || !MO.getReg())
219 0 : continue;
220 0 : if (!TRI->regsOverlap(MO.getReg(), Reg))
221 0 : continue;
222 0 : if (MO.isUse())
223 : // Found a use!
224 0 : return false;
225 : SeenDef = true;
226 : }
227 0 : if (SeenDef)
228 : // See a def of Reg (or an alias) before encountering any use, it's
229 : // trivially dead.
230 0 : return true;
231 :
232 0 : --LookAheadLeft;
233 : ++I;
234 : }
235 : return false;
236 : }
237 :
238 : /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
239 : /// physical registers (except for dead defs of physical registers). It also
240 : /// returns the physical register def by reference if it's the only one and the
241 : /// instruction does not uses a physical register.
242 293534 : bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
243 : const MachineBasicBlock *MBB,
244 : SmallSet<unsigned,8> &PhysRefs,
245 : SmallVectorImpl<unsigned> &PhysDefs,
246 : bool &PhysUseDef) const{
247 : // First, add all uses to PhysRefs.
248 2068183 : for (const MachineOperand &MO : MI->operands()) {
249 1774649 : if (!MO.isReg() || MO.isDef())
250 : continue;
251 487566 : unsigned Reg = MO.getReg();
252 487566 : if (!Reg)
253 : continue;
254 391925 : if (TargetRegisterInfo::isVirtualRegister(Reg))
255 : continue;
256 : // Reading either caller preserved or constant physregs is ok.
257 383002 : if (!MRI->isCallerPreservedOrConstPhysReg(Reg))
258 2586192 : for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
259 2213787 : PhysRefs.insert(*AI);
260 : }
261 :
262 : // Next, collect all defs into PhysDefs. If any is already in PhysRefs
263 : // (which currently contains only uses), set the PhysUseDef flag.
264 293534 : PhysUseDef = false;
265 293534 : MachineBasicBlock::const_iterator I = MI; I = std::next(I);
266 2068183 : for (const MachineOperand &MO : MI->operands()) {
267 1774649 : if (!MO.isReg() || !MO.isDef())
268 1202452 : continue;
269 671341 : unsigned Reg = MO.getReg();
270 671341 : if (!Reg)
271 : continue;
272 671341 : if (TargetRegisterInfo::isVirtualRegister(Reg))
273 : continue;
274 : // Check against PhysRefs even if the def is "dead".
275 572197 : if (PhysRefs.count(Reg))
276 369909 : PhysUseDef = true;
277 : // If the def is dead, it's ok. But the def may not marked "dead". That's
278 : // common since this pass is run before livevariables. We can scan
279 : // forward a few instructions and check if it is obviously dead.
280 572197 : if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
281 11665 : PhysDefs.push_back(Reg);
282 : }
283 :
284 : // Finally, add all defs to PhysRefs as well.
285 305199 : for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
286 44090 : for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
287 32425 : PhysRefs.insert(*AI);
288 :
289 293534 : return !PhysRefs.empty();
290 : }
291 :
292 0 : bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
293 : SmallSet<unsigned,8> &PhysRefs,
294 : SmallVectorImpl<unsigned> &PhysDefs,
295 : bool &NonLocal) const {
296 : // For now conservatively returns false if the common subexpression is
297 : // not in the same basic block as the given instruction. The only exception
298 : // is if the common subexpression is in the sole predecessor block.
299 0 : const MachineBasicBlock *MBB = MI->getParent();
300 0 : const MachineBasicBlock *CSMBB = CSMI->getParent();
301 :
302 : bool CrossMBB = false;
303 0 : if (CSMBB != MBB) {
304 0 : if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
305 0 : return false;
306 :
307 0 : for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
308 0 : if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
309 : // Avoid extending live range of physical registers if they are
310 : //allocatable or reserved.
311 0 : return false;
312 : }
313 : CrossMBB = true;
314 : }
315 0 : MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
316 : MachineBasicBlock::const_iterator E = MI;
317 : MachineBasicBlock::const_iterator EE = CSMBB->end();
318 0 : unsigned LookAheadLeft = LookAheadLimit;
319 0 : while (LookAheadLeft) {
320 : // Skip over dbg_value's.
321 0 : while (I != E && I != EE && I->isDebugInstr())
322 : ++I;
323 :
324 0 : if (I == EE) {
325 : assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
326 : (void)CrossMBB;
327 : CrossMBB = false;
328 0 : NonLocal = true;
329 : I = MBB->begin();
330 : EE = MBB->end();
331 0 : continue;
332 : }
333 :
334 0 : if (I == E)
335 0 : return true;
336 :
337 0 : for (const MachineOperand &MO : I->operands()) {
338 : // RegMasks go on instructions like calls that clobber lots of physregs.
339 : // Don't attempt to CSE across such an instruction.
340 0 : if (MO.isRegMask())
341 0 : return false;
342 0 : if (!MO.isReg() || !MO.isDef())
343 0 : continue;
344 0 : unsigned MOReg = MO.getReg();
345 0 : if (TargetRegisterInfo::isVirtualRegister(MOReg))
346 0 : continue;
347 0 : if (PhysRefs.count(MOReg))
348 0 : return false;
349 : }
350 :
351 0 : --LookAheadLeft;
352 : ++I;
353 : }
354 :
355 : return false;
356 : }
357 :
358 0 : bool MachineCSE::isCSECandidate(MachineInstr *MI) {
359 0 : if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
360 : MI->isInlineAsm() || MI->isDebugInstr())
361 0 : return false;
362 :
363 : // Ignore copies.
364 : if (MI->isCopyLike())
365 0 : return false;
366 :
367 : // Ignore stuff that we obviously can't move.
368 0 : if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
369 0 : MI->hasUnmodeledSideEffects())
370 0 : return false;
371 :
372 0 : if (MI->mayLoad()) {
373 : // Okay, this instruction does a load. As a refinement, we allow the target
374 : // to decide whether the loaded value is actually a constant. If so, we can
375 : // actually use it as a load.
376 0 : if (!MI->isDereferenceableInvariantLoad(AA))
377 : // FIXME: we should be able to hoist loads with no other side effects if
378 : // there are no other instructions which can change memory in this loop.
379 : // This is a trivial form of alias analysis.
380 0 : return false;
381 : }
382 :
383 : // Ignore stack guard loads, otherwise the register that holds CSEed value may
384 : // be spilled and get loaded back with corrupted data.
385 0 : if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
386 0 : return false;
387 :
388 : return true;
389 : }
390 :
391 : /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
392 : /// common expression that defines Reg.
393 0 : bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
394 : MachineInstr *CSMI, MachineInstr *MI) {
395 : // FIXME: Heuristics that works around the lack the live range splitting.
396 :
397 : // If CSReg is used at all uses of Reg, CSE should not increase register
398 : // pressure of CSReg.
399 : bool MayIncreasePressure = true;
400 0 : if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
401 : TargetRegisterInfo::isVirtualRegister(Reg)) {
402 : MayIncreasePressure = false;
403 : SmallPtrSet<MachineInstr*, 8> CSUses;
404 0 : for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
405 0 : CSUses.insert(&MI);
406 : }
407 0 : for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
408 0 : if (!CSUses.count(&MI)) {
409 : MayIncreasePressure = true;
410 : break;
411 : }
412 : }
413 : }
414 0 : if (!MayIncreasePressure) return true;
415 :
416 : // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
417 : // an immediate predecessor. We don't want to increase register pressure and
418 : // end up causing other computation to be spilled.
419 0 : if (TII->isAsCheapAsAMove(*MI)) {
420 0 : MachineBasicBlock *CSBB = CSMI->getParent();
421 0 : MachineBasicBlock *BB = MI->getParent();
422 0 : if (CSBB != BB && !CSBB->isSuccessor(BB))
423 0 : return false;
424 : }
425 :
426 : // Heuristics #2: If the expression doesn't not use a vr and the only use
427 : // of the redundant computation are copies, do not cse.
428 : bool HasVRegUse = false;
429 0 : for (const MachineOperand &MO : MI->operands()) {
430 0 : if (MO.isReg() && MO.isUse() &&
431 0 : TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
432 : HasVRegUse = true;
433 : break;
434 : }
435 : }
436 0 : if (!HasVRegUse) {
437 : bool HasNonCopyUse = false;
438 0 : for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
439 : // Ignore copies.
440 : if (!MI.isCopyLike()) {
441 : HasNonCopyUse = true;
442 : break;
443 : }
444 : }
445 0 : if (!HasNonCopyUse)
446 0 : return false;
447 : }
448 :
449 : // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
450 : // it unless the defined value is already used in the BB of the new use.
451 : bool HasPHI = false;
452 0 : for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
453 0 : HasPHI |= UseMI.isPHI();
454 0 : if (UseMI.getParent() == MI->getParent())
455 0 : return true;
456 : }
457 :
458 0 : return !HasPHI;
459 : }
460 :
461 450180 : void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
462 : LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
463 450180 : ScopeType *Scope = new ScopeType(VNT);
464 450180 : ScopeMap[MBB] = Scope;
465 450180 : }
466 :
467 450180 : void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
468 : LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
469 450180 : DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
470 : assert(SI != ScopeMap.end());
471 450180 : delete SI->second;
472 : ScopeMap.erase(SI);
473 450180 : }
474 :
475 450180 : bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
476 : bool Changed = false;
477 :
478 : SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
479 : SmallVector<unsigned, 2> ImplicitDefsToUpdate;
480 : SmallVector<unsigned, 2> ImplicitDefs;
481 5616717 : for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
482 5166537 : MachineInstr *MI = &*I;
483 : ++I;
484 :
485 5166537 : if (!isCSECandidate(MI))
486 5062978 : continue;
487 :
488 1721881 : bool FoundCSE = VNT.count(MI);
489 : if (!FoundCSE) {
490 : // Using trivial copy propagation to find more CSE opportunities.
491 1428589 : if (PerformTrivialCopyPropagation(MI, MBB)) {
492 : Changed = true;
493 :
494 : // After coalescing MI itself may become a copy.
495 55122 : if (MI->isCopyLike())
496 : continue;
497 :
498 : // Try again to see if CSE is possible.
499 55122 : FoundCSE = VNT.count(MI);
500 : }
501 : }
502 :
503 : // Commute commutable instructions.
504 : bool Commuted = false;
505 1721881 : if (!FoundCSE && MI->isCommutable()) {
506 267029 : if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
507 : Commuted = true;
508 237551 : FoundCSE = VNT.count(NewMI);
509 237551 : if (NewMI != MI) {
510 : // New instruction. It doesn't need to be kept.
511 0 : NewMI->eraseFromParent();
512 : Changed = true;
513 237551 : } else if (!FoundCSE)
514 : // MI was changed but it didn't help, commute it back!
515 237537 : (void)TII->commuteInstruction(*MI);
516 : }
517 : }
518 :
519 : // If the instruction defines physical registers and the values *may* be
520 : // used, then it's not safe to replace it with a common subexpression.
521 : // It's also not safe if the instruction uses physical registers.
522 1721881 : bool CrossMBBPhysDef = false;
523 103559 : SmallSet<unsigned, 8> PhysRefs;
524 : SmallVector<unsigned, 2> PhysDefs;
525 1721881 : bool PhysUseDef = false;
526 1721881 : if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
527 : PhysDefs, PhysUseDef)) {
528 : FoundCSE = false;
529 :
530 : // ... Unless the CS is local or is in the sole predecessor block
531 : // and it also defines the physical register which is not clobbered
532 : // in between and the physical register uses were not clobbered.
533 : // This can never be the case if the instruction both uses and
534 : // defines the same physical register, which was detected above.
535 197819 : if (!PhysUseDef) {
536 10885 : unsigned CSVN = VNT.lookup(MI);
537 10885 : MachineInstr *CSMI = Exps[CSVN];
538 10885 : if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
539 : FoundCSE = true;
540 : }
541 : }
542 :
543 1524062 : if (!FoundCSE) {
544 1618322 : VNT.insert(MI, CurrVN++);
545 1618322 : Exps.push_back(MI);
546 : continue;
547 : }
548 :
549 : // Found a common subexpression, eliminate it.
550 103559 : unsigned CSVN = VNT.lookup(MI);
551 103559 : MachineInstr *CSMI = Exps[CSVN];
552 : LLVM_DEBUG(dbgs() << "Examining: " << *MI);
553 : LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
554 :
555 : // Check if it's profitable to perform this CSE.
556 : bool DoCSE = true;
557 103559 : unsigned NumDefs = MI->getNumDefs();
558 :
559 149562 : for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
560 107436 : MachineOperand &MO = MI->getOperand(i);
561 107436 : if (!MO.isReg() || !MO.isDef())
562 11488 : continue;
563 104853 : unsigned OldReg = MO.getReg();
564 209706 : unsigned NewReg = CSMI->getOperand(i).getReg();
565 :
566 : // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
567 : // we should make sure it is not dead at CSMI.
568 104853 : if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
569 2 : ImplicitDefsToUpdate.push_back(i);
570 :
571 : // Keep track of implicit defs of CSMI and MI, to clear possibly
572 : // made-redundant kill flags.
573 104853 : if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
574 384 : ImplicitDefs.push_back(OldReg);
575 :
576 104853 : if (OldReg == NewReg) {
577 8905 : --NumDefs;
578 8905 : continue;
579 : }
580 :
581 : assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
582 : TargetRegisterInfo::isVirtualRegister(NewReg) &&
583 : "Do not CSE physical register defs!");
584 :
585 95948 : if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
586 : LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
587 : DoCSE = false;
588 61433 : break;
589 : }
590 :
591 : // Don't perform CSE if the result of the new instruction cannot exist
592 : // within the constraints (register class, bank, or low-level type) of
593 : // the old instruction.
594 34519 : if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
595 : LLVM_DEBUG(
596 : dbgs() << "*** Not the same register constraints, avoid CSE!\n");
597 : DoCSE = false;
598 : break;
599 : }
600 :
601 34515 : CSEPairs.push_back(std::make_pair(OldReg, NewReg));
602 34515 : --NumDefs;
603 : }
604 :
605 : // Actually perform the elimination.
606 : if (DoCSE) {
607 76641 : for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
608 34515 : unsigned OldReg = CSEPair.first;
609 34515 : unsigned NewReg = CSEPair.second;
610 : // OldReg may have been unused but is used now, clear the Dead flag
611 34515 : MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
612 : assert(Def != nullptr && "CSEd register has no unique definition?");
613 34515 : Def->clearRegisterDeads(NewReg);
614 : // Replace with NewReg and clear kill flags which may be wrong now.
615 34515 : MRI->replaceRegWith(OldReg, NewReg);
616 34515 : MRI->clearKillFlags(NewReg);
617 : }
618 :
619 : // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
620 : // we should make sure it is not dead at CSMI.
621 42128 : for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
622 2 : CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
623 :
624 : // Go through implicit defs of CSMI and MI, and clear the kill flags on
625 : // their uses in all the instructions between CSMI and MI.
626 : // We might have made some of the kill flags redundant, consider:
627 : // subs ... implicit-def %nzcv <- CSMI
628 : // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
629 : // subs ... implicit-def %nzcv <- MI, to be eliminated
630 : // csinc ... implicit killed %nzcv
631 : // Since we eliminated MI, and reused a register imp-def'd by CSMI
632 : // (here %nzcv), that register, if it was killed before MI, should have
633 : // that kill flag removed, because it's lifetime was extended.
634 42126 : if (CSMI->getParent() == MI->getParent()) {
635 867550 : for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
636 858570 : for (auto ImplicitDef : ImplicitDefs)
637 387 : if (MachineOperand *MO = II->findRegisterUseOperand(
638 : ImplicitDef, /*isKill=*/true, TRI))
639 : MO->setIsKill(false);
640 : } else {
641 : // If the instructions aren't in the same BB, bail out and clear the
642 : // kill flag on all uses of the imp-def'd register.
643 33007 : for (auto ImplicitDef : ImplicitDefs)
644 248 : MRI->clearKillFlags(ImplicitDef);
645 : }
646 :
647 42126 : if (CrossMBBPhysDef) {
648 : // Add physical register defs now coming in from a predecessor to MBB
649 : // livein list.
650 493 : while (!PhysDefs.empty()) {
651 : unsigned LiveIn = PhysDefs.pop_back_val();
652 246 : if (!MBB->isLiveIn(LiveIn))
653 : MBB->addLiveIn(LiveIn);
654 : }
655 : ++NumCrossBBCSEs;
656 : }
657 :
658 42126 : MI->eraseFromParent();
659 : ++NumCSEs;
660 : if (!PhysRefs.empty())
661 : ++NumPhysCSEs;
662 : if (Commuted)
663 : ++NumCommutes;
664 : Changed = true;
665 : } else {
666 61433 : VNT.insert(MI, CurrVN++);
667 61433 : Exps.push_back(MI);
668 : }
669 : CSEPairs.clear();
670 : ImplicitDefsToUpdate.clear();
671 : ImplicitDefs.clear();
672 : }
673 :
674 450180 : return Changed;
675 : }
676 :
677 : /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
678 : /// dominator tree node if its a leaf or all of its children are done. Walk
679 : /// up the dominator tree to destroy ancestors which are now done.
680 : void
681 450180 : MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
682 : DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
683 450180 : if (OpenChildren[Node])
684 : return;
685 :
686 : // Pop scope.
687 328550 : ExitScope(Node->getBlock());
688 :
689 : // Now traverse upwards to pop ancestors whose offsprings are all done.
690 450180 : while (MachineDomTreeNode *Parent = Node->getIDom()) {
691 233173 : unsigned Left = --OpenChildren[Parent];
692 233173 : if (Left != 0)
693 : break;
694 121630 : ExitScope(Parent->getBlock());
695 121630 : Node = Parent;
696 121630 : }
697 : }
698 :
699 217007 : bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
700 : SmallVector<MachineDomTreeNode*, 32> Scopes;
701 : SmallVector<MachineDomTreeNode*, 8> WorkList;
702 : DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
703 :
704 217007 : CurrVN = 0;
705 :
706 : // Perform a DFS walk to determine the order of visit.
707 217007 : WorkList.push_back(Node);
708 : do {
709 450180 : Node = WorkList.pop_back_val();
710 450180 : Scopes.push_back(Node);
711 450180 : const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
712 450180 : OpenChildren[Node] = Children.size();
713 683353 : for (MachineDomTreeNode *Child : Children)
714 233173 : WorkList.push_back(Child);
715 450180 : } while (!WorkList.empty());
716 :
717 : // Now perform CSE.
718 : bool Changed = false;
719 667187 : for (MachineDomTreeNode *Node : Scopes) {
720 450180 : MachineBasicBlock *MBB = Node->getBlock();
721 450180 : EnterScope(MBB);
722 450180 : Changed |= ProcessBlock(MBB);
723 : // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
724 450180 : ExitScopeIfDone(Node, OpenChildren);
725 : }
726 :
727 217007 : return Changed;
728 : }
729 :
730 217196 : bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
731 217196 : if (skipFunction(MF.getFunction()))
732 : return false;
733 :
734 217007 : TII = MF.getSubtarget().getInstrInfo();
735 217007 : TRI = MF.getSubtarget().getRegisterInfo();
736 217007 : MRI = &MF.getRegInfo();
737 217007 : AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
738 217007 : DT = &getAnalysis<MachineDominatorTree>();
739 217007 : LookAheadLimit = TII->getMachineCSELookAheadLimit();
740 217007 : return PerformCSE(DT->getRootNode());
741 : }
|