Line data Source code
1 : //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This pass moves instructions into successor blocks when possible, so that
11 : // they aren't executed on paths where their results aren't needed.
12 : //
13 : // This pass is not intended to be a replacement or a complete alternative
14 : // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 : // constructs that are not exposed before lowering and instruction selection.
16 : //
17 : //===----------------------------------------------------------------------===//
18 :
19 : #include "llvm/ADT/SetVector.h"
20 : #include "llvm/ADT/SmallSet.h"
21 : #include "llvm/ADT/SmallVector.h"
22 : #include "llvm/ADT/SparseBitVector.h"
23 : #include "llvm/ADT/Statistic.h"
24 : #include "llvm/Analysis/AliasAnalysis.h"
25 : #include "llvm/CodeGen/MachineBasicBlock.h"
26 : #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 : #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 : #include "llvm/CodeGen/MachineDominators.h"
29 : #include "llvm/CodeGen/MachineFunction.h"
30 : #include "llvm/CodeGen/MachineFunctionPass.h"
31 : #include "llvm/CodeGen/MachineInstr.h"
32 : #include "llvm/CodeGen/MachineLoopInfo.h"
33 : #include "llvm/CodeGen/MachineOperand.h"
34 : #include "llvm/CodeGen/MachinePostDominators.h"
35 : #include "llvm/CodeGen/MachineRegisterInfo.h"
36 : #include "llvm/CodeGen/TargetInstrInfo.h"
37 : #include "llvm/CodeGen/TargetRegisterInfo.h"
38 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 : #include "llvm/IR/BasicBlock.h"
40 : #include "llvm/IR/LLVMContext.h"
41 : #include "llvm/IR/DebugInfoMetadata.h"
42 : #include "llvm/Pass.h"
43 : #include "llvm/Support/BranchProbability.h"
44 : #include "llvm/Support/CommandLine.h"
45 : #include "llvm/Support/Debug.h"
46 : #include "llvm/Support/raw_ostream.h"
47 : #include <algorithm>
48 : #include <cassert>
49 : #include <cstdint>
50 : #include <map>
51 : #include <utility>
52 : #include <vector>
53 :
54 : using namespace llvm;
55 :
56 : #define DEBUG_TYPE "machine-sink"
57 :
58 : static cl::opt<bool>
59 : SplitEdges("machine-sink-split",
60 : cl::desc("Split critical edges during machine sinking"),
61 : cl::init(true), cl::Hidden);
62 :
63 : static cl::opt<bool>
64 : UseBlockFreqInfo("machine-sink-bfi",
65 : cl::desc("Use block frequency info to find successors to sink"),
66 : cl::init(true), cl::Hidden);
67 :
68 : static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69 : "machine-sink-split-probability-threshold",
70 : cl::desc(
71 : "Percentage threshold for splitting single-instruction critical edge. "
72 : "If the branch threshold is higher than this threshold, we allow "
73 : "speculative execution of up to 1 instruction to avoid branching to "
74 : "splitted critical edge"),
75 : cl::init(40), cl::Hidden);
76 :
77 : STATISTIC(NumSunk, "Number of machine instructions sunk");
78 : STATISTIC(NumSplit, "Number of critical edges split");
79 : STATISTIC(NumCoalesces, "Number of copies coalesced");
80 : STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 :
82 : namespace {
83 :
84 : class MachineSinking : public MachineFunctionPass {
85 : const TargetInstrInfo *TII;
86 : const TargetRegisterInfo *TRI;
87 : MachineRegisterInfo *MRI; // Machine register information
88 : MachineDominatorTree *DT; // Machine dominator tree
89 : MachinePostDominatorTree *PDT; // Machine post dominator tree
90 : MachineLoopInfo *LI;
91 : const MachineBlockFrequencyInfo *MBFI;
92 : const MachineBranchProbabilityInfo *MBPI;
93 : AliasAnalysis *AA;
94 :
95 : // Remember which edges have been considered for breaking.
96 : SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97 : CEBCandidates;
98 : // Remember which edges we are about to split.
99 : // This is different from CEBCandidates since those edges
100 : // will be split.
101 : SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 :
103 : SparseBitVector<> RegsToClearKillFlags;
104 :
105 : using AllSuccsCache =
106 : std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 :
108 : public:
109 : static char ID; // Pass identification
110 :
111 20208 : MachineSinking() : MachineFunctionPass(ID) {
112 20208 : initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
113 20208 : }
114 :
115 : bool runOnMachineFunction(MachineFunction &MF) override;
116 :
117 20044 : void getAnalysisUsage(AnalysisUsage &AU) const override {
118 20044 : AU.setPreservesCFG();
119 20044 : MachineFunctionPass::getAnalysisUsage(AU);
120 : AU.addRequired<AAResultsWrapperPass>();
121 : AU.addRequired<MachineDominatorTree>();
122 : AU.addRequired<MachinePostDominatorTree>();
123 : AU.addRequired<MachineLoopInfo>();
124 : AU.addRequired<MachineBranchProbabilityInfo>();
125 : AU.addPreserved<MachineDominatorTree>();
126 : AU.addPreserved<MachinePostDominatorTree>();
127 : AU.addPreserved<MachineLoopInfo>();
128 20044 : if (UseBlockFreqInfo)
129 : AU.addRequired<MachineBlockFrequencyInfo>();
130 20044 : }
131 :
132 197763 : void releaseMemory() override {
133 : CEBCandidates.clear();
134 197763 : }
135 :
136 : private:
137 : bool ProcessBlock(MachineBasicBlock &MBB);
138 : bool isWorthBreakingCriticalEdge(MachineInstr &MI,
139 : MachineBasicBlock *From,
140 : MachineBasicBlock *To);
141 :
142 : /// Postpone the splitting of the given critical
143 : /// edge (\p From, \p To).
144 : ///
145 : /// We do not split the edges on the fly. Indeed, this invalidates
146 : /// the dominance information and thus triggers a lot of updates
147 : /// of that information underneath.
148 : /// Instead, we postpone all the splits after each iteration of
149 : /// the main loop. That way, the information is at least valid
150 : /// for the lifetime of an iteration.
151 : ///
152 : /// \return True if the edge is marked as toSplit, false otherwise.
153 : /// False can be returned if, for instance, this is not profitable.
154 : bool PostponeSplitCriticalEdge(MachineInstr &MI,
155 : MachineBasicBlock *From,
156 : MachineBasicBlock *To,
157 : bool BreakPHIEdge);
158 : bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 :
160 : AllSuccsCache &AllSuccessors);
161 : bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
162 : MachineBasicBlock *DefMBB,
163 : bool &BreakPHIEdge, bool &LocalUse) const;
164 : MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
165 : bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
166 : bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
167 : MachineBasicBlock *MBB,
168 : MachineBasicBlock *SuccToSinkTo,
169 : AllSuccsCache &AllSuccessors);
170 :
171 : bool PerformTrivialForwardCoalescing(MachineInstr &MI,
172 : MachineBasicBlock *MBB);
173 :
174 : SmallVector<MachineBasicBlock *, 4> &
175 : GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
176 : AllSuccsCache &AllSuccessors) const;
177 : };
178 :
179 : } // end anonymous namespace
180 :
181 : char MachineSinking::ID = 0;
182 :
183 : char &llvm::MachineSinkingID = MachineSinking::ID;
184 :
185 31780 : INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
186 : "Machine code sinking", false, false)
187 31780 : INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
188 31780 : INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 31780 : INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 31780 : INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
191 105355 : INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
192 : "Machine code sinking", false, false)
193 :
194 0 : bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
195 : MachineBasicBlock *MBB) {
196 0 : if (!MI.isCopy())
197 0 : return false;
198 :
199 0 : unsigned SrcReg = MI.getOperand(1).getReg();
200 0 : unsigned DstReg = MI.getOperand(0).getReg();
201 0 : if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
202 0 : !TargetRegisterInfo::isVirtualRegister(DstReg) ||
203 0 : !MRI->hasOneNonDBGUse(SrcReg))
204 0 : return false;
205 :
206 0 : const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
207 : const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
208 0 : if (SRC != DRC)
209 0 : return false;
210 :
211 0 : MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
212 : if (DefMI->isCopyLike())
213 0 : return false;
214 : LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
215 : LLVM_DEBUG(dbgs() << "*** to: " << MI);
216 0 : MRI->replaceRegWith(DstReg, SrcReg);
217 0 : MI.eraseFromParent();
218 :
219 : // Conservatively, clear any kill flags, since it's possible that they are no
220 : // longer correct.
221 0 : MRI->clearKillFlags(SrcReg);
222 :
223 : ++NumCoalesces;
224 0 : return true;
225 : }
226 :
227 : /// AllUsesDominatedByBlock - Return true if all uses of the specified register
228 : /// occur in blocks dominated by the specified block. If any use is in the
229 : /// definition block, then return false since it is never legal to move def
230 : /// after uses.
231 : bool
232 0 : MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
233 : MachineBasicBlock *MBB,
234 : MachineBasicBlock *DefMBB,
235 : bool &BreakPHIEdge,
236 : bool &LocalUse) const {
237 : assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
238 : "Only makes sense for vregs");
239 :
240 : // Ignore debug uses because debug info doesn't affect the code.
241 0 : if (MRI->use_nodbg_empty(Reg))
242 0 : return true;
243 :
244 : // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
245 : // into and they are all PHI nodes. In this case, machine-sink must break
246 : // the critical edge first. e.g.
247 : //
248 : // %bb.1: derived from LLVM BB %bb4.preheader
249 : // Predecessors according to CFG: %bb.0
250 : // ...
251 : // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
252 : // ...
253 : // JE_4 <%bb.37>, implicit %eflags
254 : // Successors according to CFG: %bb.37 %bb.2
255 : //
256 : // %bb.2: derived from LLVM BB %bb.nph
257 : // Predecessors according to CFG: %bb.0 %bb.1
258 : // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
259 0 : BreakPHIEdge = true;
260 0 : for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
261 0 : MachineInstr *UseInst = MO.getParent();
262 0 : unsigned OpNo = &MO - &UseInst->getOperand(0);
263 0 : MachineBasicBlock *UseBlock = UseInst->getParent();
264 0 : if (!(UseBlock == MBB && UseInst->isPHI() &&
265 0 : UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
266 0 : BreakPHIEdge = false;
267 0 : break;
268 : }
269 : }
270 0 : if (BreakPHIEdge)
271 0 : return true;
272 :
273 0 : for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
274 : // Determine the block of the use.
275 0 : MachineInstr *UseInst = MO.getParent();
276 0 : unsigned OpNo = &MO - &UseInst->getOperand(0);
277 0 : MachineBasicBlock *UseBlock = UseInst->getParent();
278 : if (UseInst->isPHI()) {
279 : // PHI nodes use the operand in the predecessor block, not the block with
280 : // the PHI.
281 0 : UseBlock = UseInst->getOperand(OpNo+1).getMBB();
282 0 : } else if (UseBlock == DefMBB) {
283 0 : LocalUse = true;
284 0 : return false;
285 : }
286 :
287 : // Check that it dominates.
288 0 : if (!DT->dominates(MBB, UseBlock))
289 0 : return false;
290 : }
291 :
292 : return true;
293 : }
294 :
295 197746 : bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
296 197746 : if (skipFunction(MF.getFunction()))
297 : return false;
298 :
299 : LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
300 :
301 197560 : TII = MF.getSubtarget().getInstrInfo();
302 197560 : TRI = MF.getSubtarget().getRegisterInfo();
303 197560 : MRI = &MF.getRegInfo();
304 197560 : DT = &getAnalysis<MachineDominatorTree>();
305 197560 : PDT = &getAnalysis<MachinePostDominatorTree>();
306 197560 : LI = &getAnalysis<MachineLoopInfo>();
307 197560 : MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
308 197560 : MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
309 197560 : AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310 :
311 : bool EverMadeChange = false;
312 :
313 : while (true) {
314 : bool MadeChange = false;
315 :
316 : // Process all basic blocks.
317 : CEBCandidates.clear();
318 : ToSplit.clear();
319 1059627 : for (auto &MBB: MF)
320 852066 : MadeChange |= ProcessBlock(MBB);
321 :
322 : // If we have anything we marked as toSplit, split it now.
323 236524 : for (auto &Pair : ToSplit) {
324 28963 : auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
325 28963 : if (NewSucc != nullptr) {
326 : LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
327 : << printMBBReference(*Pair.first) << " -- "
328 : << printMBBReference(*NewSucc) << " -- "
329 : << printMBBReference(*Pair.second) << '\n');
330 : MadeChange = true;
331 : ++NumSplit;
332 : } else
333 : LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334 : }
335 : // If this iteration over the code changed anything, keep iterating.
336 207561 : if (!MadeChange) break;
337 : EverMadeChange = true;
338 : }
339 :
340 : // Now clear any kill flags for recorded registers.
341 197560 : for (auto I : RegsToClearKillFlags)
342 23578 : MRI->clearKillFlags(I);
343 : RegsToClearKillFlags.clear();
344 :
345 197559 : return EverMadeChange;
346 : }
347 :
348 852066 : bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
349 : // Can't sink anything out of a block that has less than two successors.
350 852066 : if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351 :
352 : // Don't bother sinking code out of unreachable blocks. In addition to being
353 : // unprofitable, it can also lead to infinite looping, because in an
354 : // unreachable loop there may be nowhere to stop.
355 596134 : if (!DT->isReachableFromEntry(&MBB)) return false;
356 :
357 : bool MadeChange = false;
358 :
359 : // Cache all successors, sorted by frequency info and loop depth.
360 : AllSuccsCache AllSuccessors;
361 :
362 : // Walk the basic block bottom-up. Remember if we saw a store.
363 298067 : MachineBasicBlock::iterator I = MBB.end();
364 : --I;
365 298067 : bool ProcessedBegin, SawStore = false;
366 : do {
367 : MachineInstr &MI = *I; // The instruction to sink.
368 :
369 : // Predecrement I (if it's not begin) so that it isn't invalidated by
370 : // sinking.
371 : ProcessedBegin = I == MBB.begin();
372 3936471 : if (!ProcessedBegin)
373 : --I;
374 :
375 : if (MI.isDebugInstr())
376 : continue;
377 :
378 3686156 : bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
379 3686156 : if (Joined) {
380 : MadeChange = true;
381 : continue;
382 : }
383 :
384 3685625 : if (SinkInstruction(MI, SawStore, AllSuccessors)) {
385 : ++NumSunk;
386 : MadeChange = true;
387 : }
388 :
389 : // If we just processed the first instruction in the block, we're done.
390 3936471 : } while (!ProcessedBegin);
391 :
392 : return MadeChange;
393 : }
394 :
395 39513 : bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
396 : MachineBasicBlock *From,
397 : MachineBasicBlock *To) {
398 : // FIXME: Need much better heuristics.
399 :
400 : // If the pass has already considered breaking this edge (during this pass
401 : // through the function), then let's go ahead and break it. This means
402 : // sinking multiple "cheap" instructions into the same block.
403 39513 : if (!CEBCandidates.insert(std::make_pair(From, To)).second)
404 : return true;
405 :
406 35043 : if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
407 : return true;
408 :
409 5816 : if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
410 : BranchProbability(SplitEdgeProbabilityThreshold, 100))
411 892 : return true;
412 :
413 : // MI is cheap, we probably don't want to break the critical edge for it.
414 : // However, if this would allow some definitions of its source operands
415 : // to be sunk then it's probably worth it.
416 14010 : for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
417 9905 : const MachineOperand &MO = MI.getOperand(i);
418 9905 : if (!MO.isReg() || !MO.isUse())
419 : continue;
420 2539 : unsigned Reg = MO.getReg();
421 2539 : if (Reg == 0)
422 : continue;
423 :
424 : // We don't move live definitions of physical registers,
425 : // so sinking their uses won't enable any opportunities.
426 2510 : if (TargetRegisterInfo::isPhysicalRegister(Reg))
427 : continue;
428 :
429 : // If this instruction is the only user of a virtual register,
430 : // check if breaking the edge will enable sinking
431 : // both this instruction and the defining instruction.
432 2489 : if (MRI->hasOneNonDBGUse(Reg)) {
433 : // If the definition resides in same MBB,
434 : // claim it's likely we can sink these together.
435 : // If definition resides elsewhere, we aren't
436 : // blocking it from being sunk so don't break the edge.
437 859 : MachineInstr *DefMI = MRI->getVRegDef(Reg);
438 859 : if (DefMI->getParent() == MI.getParent())
439 : return true;
440 : }
441 : }
442 :
443 : return false;
444 : }
445 :
446 39513 : bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
447 : MachineBasicBlock *FromBB,
448 : MachineBasicBlock *ToBB,
449 : bool BreakPHIEdge) {
450 39513 : if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
451 : return false;
452 :
453 : // Avoid breaking back edge. From == To means backedge for single BB loop.
454 35408 : if (!SplitEdges || FromBB == ToBB)
455 : return false;
456 :
457 : // Check for backedges of more "complex" loops.
458 141251 : if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
459 35027 : LI->isLoopHeader(ToBB))
460 : return false;
461 :
462 : // It's not always legal to break critical edges and sink the computation
463 : // to the edge.
464 : //
465 : // %bb.1:
466 : // v1024
467 : // Beq %bb.3
468 : // <fallthrough>
469 : // %bb.2:
470 : // ... no uses of v1024
471 : // <fallthrough>
472 : // %bb.3:
473 : // ...
474 : // = v1024
475 : //
476 : // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477 : //
478 : // %bb.1:
479 : // ...
480 : // Bne %bb.2
481 : // %bb.4:
482 : // v1024 =
483 : // B %bb.3
484 : // %bb.2:
485 : // ... no uses of v1024
486 : // <fallthrough>
487 : // %bb.3:
488 : // ...
489 : // = v1024
490 : //
491 : // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
492 : // flow. We need to ensure the new basic block where the computation is
493 : // sunk to dominates all the uses.
494 : // It's only legal to break critical edge and sink the computation to the
495 : // new block if all the predecessors of "To", except for "From", are
496 : // not dominated by "From". Given SSA property, this means these
497 : // predecessors are dominated by "To".
498 : //
499 : // There is no need to do this check if all the uses are PHI nodes. PHI
500 : // sources are only defined on the specific predecessor edges.
501 32658 : if (!BreakPHIEdge) {
502 : for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
503 723 : E = ToBB->pred_end(); PI != E; ++PI) {
504 720 : if (*PI == FromBB)
505 : continue;
506 872 : if (!DT->dominates(ToBB, *PI))
507 : return false;
508 : }
509 : }
510 :
511 32249 : ToSplit.insert(std::make_pair(FromBB, ToBB));
512 :
513 32249 : return true;
514 : }
515 :
516 : /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
517 230523 : bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
518 : MachineBasicBlock *MBB,
519 : MachineBasicBlock *SuccToSinkTo,
520 : AllSuccsCache &AllSuccessors) {
521 : assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
522 :
523 230523 : if (MBB == SuccToSinkTo)
524 : return false;
525 :
526 : // It is profitable if SuccToSinkTo does not post dominate current block.
527 225002 : if (!PDT->dominates(SuccToSinkTo, MBB))
528 : return true;
529 :
530 : // It is profitable to sink an instruction from a deeper loop to a shallower
531 : // loop, even if the latter post-dominates the former (PR21115).
532 42685 : if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
533 : return true;
534 :
535 : // Check if only use in post dominated block is PHI instruction.
536 : bool NonPHIUse = false;
537 87249 : for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
538 49784 : MachineBasicBlock *UseBlock = UseInst.getParent();
539 49784 : if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
540 : NonPHIUse = true;
541 : }
542 37465 : if (!NonPHIUse)
543 : return true;
544 :
545 : // If SuccToSinkTo post dominates then also it may be profitable if MI
546 : // can further profitably sinked into another block in next round.
547 10116 : bool BreakPHIEdge = false;
548 : // FIXME - If finding successor is compile time expensive then cache results.
549 10116 : if (MachineBasicBlock *MBB2 =
550 10116 : FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
551 0 : return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
552 :
553 : // If SuccToSinkTo is final destination and it is a post dominator of current
554 : // block then it is not profitable to sink MI into SuccToSinkTo block.
555 : return false;
556 : }
557 :
558 : /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
559 : /// computing it if it was not already cached.
560 : SmallVector<MachineBasicBlock *, 4> &
561 955498 : MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
562 : AllSuccsCache &AllSuccessors) const {
563 : // Do we have the sorted successors in cache ?
564 : auto Succs = AllSuccessors.find(MBB);
565 955498 : if (Succs != AllSuccessors.end())
566 677969 : return Succs->second;
567 :
568 : SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
569 277529 : MBB->succ_end());
570 :
571 : // Handle cases where sinking can happen but where the sink point isn't a
572 : // successor. For example:
573 : //
574 : // x = computation
575 : // if () {} else {}
576 : // use x
577 : //
578 : const std::vector<MachineDomTreeNode *> &Children =
579 277529 : DT->getNode(MBB)->getChildren();
580 857609 : for (const auto &DTChild : Children)
581 : // DomTree children of MBB that have MBB as immediate dominator are added.
582 1152412 : if (DTChild->getIDom()->getBlock() == MI.getParent() &&
583 : // Skip MBBs already added to the AllSuccs vector above.
584 572332 : !MBB->isSuccessor(DTChild->getBlock()))
585 87738 : AllSuccs.push_back(DTChild->getBlock());
586 :
587 : // Sort Successors according to their loop depth or block frequency info.
588 : std::stable_sort(
589 : AllSuccs.begin(), AllSuccs.end(),
590 : [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
591 : uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
592 : uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
593 : bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
594 : return HasBlockFreq ? LHSFreq < RHSFreq
595 : : LI->getLoopDepth(L) < LI->getLoopDepth(R);
596 : });
597 :
598 277529 : auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
599 :
600 277529 : return it.first->second;
601 : }
602 :
603 : /// FindSuccToSinkTo - Find a successor to sink this instruction to.
604 : MachineBasicBlock *
605 1639220 : MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
606 : bool &BreakPHIEdge,
607 : AllSuccsCache &AllSuccessors) {
608 : assert (MBB && "Invalid MachineBasicBlock!");
609 :
610 : // Loop over all the operands of the specified instruction. If there is
611 : // anything we can't handle, bail out.
612 :
613 : // SuccToSinkTo - This is the successor to sink this instruction to, once we
614 : // decide.
615 : MachineBasicBlock *SuccToSinkTo = nullptr;
616 4473452 : for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
617 4360919 : const MachineOperand &MO = MI.getOperand(i);
618 4360919 : if (!MO.isReg()) continue; // Ignore non-register operands.
619 :
620 3252488 : unsigned Reg = MO.getReg();
621 3252488 : if (Reg == 0) continue;
622 :
623 3037178 : if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
624 1758897 : if (MO.isUse()) {
625 : // If the physreg has no defs anywhere, it's just an ambient register
626 : // and we can freely move its uses. Alternatively, if it's allocatable,
627 : // it could get allocated to something with a def during allocation.
628 392095 : if (!MRI->isConstantPhysReg(Reg))
629 : return nullptr;
630 1366802 : } else if (!MO.isDead()) {
631 : // A def that isn't dead. We can't move it.
632 : return nullptr;
633 : }
634 : } else {
635 : // Virtual register uses are always safe to sink.
636 1278281 : if (MO.isUse()) continue;
637 :
638 : // If it's not safe to move defs of the register class, then abort.
639 1912656 : if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
640 : return nullptr;
641 :
642 : // Virtual register defs can only be sunk if all their uses are in blocks
643 : // dominated by one of the successors.
644 955515 : if (SuccToSinkTo) {
645 : // If a previous operand picked a block to sink to, then this operand
646 : // must be sinkable to the same block.
647 17 : bool LocalUse = false;
648 17 : if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
649 : BreakPHIEdge, LocalUse))
650 13 : return nullptr;
651 :
652 4 : continue;
653 : }
654 :
655 : // Otherwise, we should look at all the successors and decide which one
656 : // we should sink to. If we have reliable block frequency information
657 : // (frequency != 0) available, give successors with smaller frequencies
658 : // higher priority, otherwise prioritize smaller loop depths.
659 192201 : for (MachineBasicBlock *SuccBlock :
660 2103197 : GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
661 1130282 : bool LocalUse = false;
662 1130282 : if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
663 : BreakPHIEdge, LocalUse)) {
664 : SuccToSinkTo = SuccBlock;
665 230523 : break;
666 : }
667 899759 : if (LocalUse)
668 : // Def is used locally, it's never safe to move this def.
669 707558 : return nullptr;
670 : }
671 :
672 : // If we couldn't find a block to sink to, ignore this instruction.
673 247940 : if (!SuccToSinkTo)
674 : return nullptr;
675 230523 : if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
676 : return nullptr;
677 : }
678 : }
679 :
680 : // It is not possible to sink an instruction into its own block. This can
681 : // happen with loops.
682 112533 : if (MBB == SuccToSinkTo)
683 : return nullptr;
684 :
685 : // It's not safe to sink instructions to EH landing pad. Control flow into
686 : // landing pad is implicitly defined.
687 112533 : if (SuccToSinkTo && SuccToSinkTo->isEHPad())
688 13591 : return nullptr;
689 :
690 : return SuccToSinkTo;
691 : }
692 :
693 : /// Return true if MI is likely to be usable as a memory operation by the
694 : /// implicit null check optimization.
695 : ///
696 : /// This is a "best effort" heuristic, and should not be relied upon for
697 : /// correctness. This returning true does not guarantee that the implicit null
698 : /// check optimization is legal over MI, and this returning false does not
699 : /// guarantee MI cannot possibly be used to do a null check.
700 1629108 : static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
701 : const TargetInstrInfo *TII,
702 : const TargetRegisterInfo *TRI) {
703 : using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
704 :
705 1629108 : auto *MBB = MI.getParent();
706 1629108 : if (MBB->pred_size() != 1)
707 : return false;
708 :
709 966645 : auto *PredMBB = *MBB->pred_begin();
710 966645 : auto *PredBB = PredMBB->getBasicBlock();
711 :
712 : // Frontends that don't use implicit null checks have no reason to emit
713 : // branches with make.implicit metadata, and this function should always
714 : // return false for them.
715 1907397 : if (!PredBB ||
716 966504 : !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
717 966634 : return false;
718 :
719 : unsigned BaseReg;
720 : int64_t Offset;
721 11 : if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
722 : return false;
723 :
724 8 : if (!(MI.mayLoad() && !MI.isPredicable()))
725 0 : return false;
726 :
727 : MachineBranchPredicate MBP;
728 4 : if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
729 : return false;
730 :
731 4 : return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
732 4 : (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
733 4 : MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
734 4 : MBP.LHS.getReg() == BaseReg;
735 : }
736 :
737 : /// Sink an instruction and its associated debug instructions.
738 62959 : static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
739 : MachineBasicBlock::iterator InsertPos) {
740 : // Collect matching debug values.
741 : SmallVector<MachineInstr *, 2> DbgValuesToSink;
742 62959 : MI.collectDebugValues(DbgValuesToSink);
743 :
744 : // If we cannot find a location to use (merge with), then we erase the debug
745 : // location to prevent debug-info driven tools from potentially reporting
746 : // wrong location information.
747 62959 : if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
748 122648 : MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
749 : InsertPos->getDebugLoc()));
750 : else
751 3270 : MI.setDebugLoc(DebugLoc());
752 :
753 : // Move the instruction.
754 62959 : MachineBasicBlock *ParentBlock = MI.getParent();
755 : SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
756 : ++MachineBasicBlock::iterator(MI));
757 :
758 : // Move previously adjacent debug value instructions to the insert position.
759 7130 : for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
760 : DBE = DbgValuesToSink.end();
761 70089 : DBI != DBE; ++DBI) {
762 7130 : MachineInstr *DbgMI = *DBI;
763 : SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
764 : ++MachineBasicBlock::iterator(DbgMI));
765 : }
766 62959 : }
767 :
768 : /// SinkInstruction - Determine whether it is safe to sink the specified machine
769 : /// instruction out of its current block into a successor.
770 3685625 : bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
771 : AllSuccsCache &AllSuccessors) {
772 : // Don't sink instructions that the target prefers not to sink.
773 3685625 : if (!TII->shouldSink(MI))
774 : return false;
775 :
776 : // Check if it's safe to move the instruction.
777 3685615 : if (!MI.isSafeToMove(AA, SawStore))
778 : return false;
779 :
780 : // Convergent operations may not be made control-dependent on additional
781 : // values.
782 1629198 : if (MI.isConvergent())
783 : return false;
784 :
785 : // Don't break implicit null checks. This is a performance heuristic, and not
786 : // required for correctness.
787 1629108 : if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
788 : return false;
789 :
790 : // FIXME: This should include support for sinking instructions within the
791 : // block they are currently in to shorten the live ranges. We often get
792 : // instructions sunk into the top of a large block, but it would be better to
793 : // also sink them down before their first use in the block. This xform has to
794 : // be careful not to *increase* register pressure though, e.g. sinking
795 : // "x = y + z" down if it kills y and z would increase the live ranges of y
796 : // and z and only shrink the live range of x.
797 :
798 1629104 : bool BreakPHIEdge = false;
799 1629104 : MachineBasicBlock *ParentBlock = MI.getParent();
800 : MachineBasicBlock *SuccToSinkTo =
801 1629104 : FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
802 :
803 : // If there are no outputs, it must have side-effects.
804 1629104 : if (!SuccToSinkTo)
805 : return false;
806 :
807 : // If the instruction to move defines a dead physical register which is live
808 : // when leaving the basic block, don't move it because it could turn into a
809 : // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
810 558071 : for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
811 459202 : const MachineOperand &MO = MI.getOperand(I);
812 459202 : if (!MO.isReg()) continue;
813 318152 : unsigned Reg = MO.getReg();
814 318152 : if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
815 36316 : if (SuccToSinkTo->isLiveIn(Reg))
816 : return false;
817 : }
818 :
819 : LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
820 :
821 : // If the block has multiple predecessors, this is a critical edge.
822 : // Decide if we can sink along it or need to break the edge.
823 98869 : if (SuccToSinkTo->pred_size() > 1) {
824 : // We cannot sink a load across a critical edge - there may be stores in
825 : // other code paths.
826 : bool TryBreak = false;
827 43801 : bool store = true;
828 43801 : if (!MI.isSafeToMove(AA, store)) {
829 : LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
830 : TryBreak = true;
831 : }
832 :
833 : // We don't want to sink across a critical edge if we don't dominate the
834 : // successor. We could be introducing calculations to new code paths.
835 86618 : if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
836 : LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
837 : TryBreak = true;
838 : }
839 :
840 : // Don't sink instructions into a loop.
841 28876 : if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
842 : LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
843 : TryBreak = true;
844 : }
845 :
846 : // Otherwise we are OK with sinking along a critical edge.
847 43793 : if (!TryBreak)
848 : LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
849 : else {
850 : // Mark this edge as to be split.
851 : // If the edge can actually be split, the next iteration of the main loop
852 : // will sink MI in the newly created block.
853 : bool Status =
854 15425 : PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
855 : if (!Status)
856 : LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
857 : "break critical edge\n");
858 : // The instruction will not be sunk this time.
859 15425 : return false;
860 : }
861 : }
862 :
863 83444 : if (BreakPHIEdge) {
864 : // BreakPHIEdge is true if all the uses are in the successor MBB being
865 : // sunken into and they are all PHI nodes. In this case, machine-sink must
866 : // break the critical edge first.
867 24088 : bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
868 : SuccToSinkTo, BreakPHIEdge);
869 : if (!Status)
870 : LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
871 : "break critical edge\n");
872 : // The instruction will not be sunk this time.
873 24088 : return false;
874 : }
875 :
876 : // Determine where to insert into. Skip phi nodes.
877 : MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
878 64552 : while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
879 : ++InsertPos;
880 :
881 59356 : performSink(MI, *SuccToSinkTo, InsertPos);
882 :
883 : // Conservatively, clear any kill flags, since it's possible that they are no
884 : // longer correct.
885 : // Note that we have to clear the kill flags for any register this instruction
886 : // uses as we may sink over another instruction which currently kills the
887 : // used registers.
888 319985 : for (MachineOperand &MO : MI.operands()) {
889 260629 : if (MO.isReg() && MO.isUse())
890 118016 : RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
891 : }
892 :
893 : return true;
894 : }
895 :
896 : //===----------------------------------------------------------------------===//
897 : // This pass is not intended to be a replacement or a complete alternative
898 : // for the pre-ra machine sink pass. It is only designed to sink COPY
899 : // instructions which should be handled after RA.
900 : //
901 : // This pass sinks COPY instructions into a successor block, if the COPY is not
902 : // used in the current block and the COPY is live-in to a single successor
903 : // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
904 : // copy on paths where their results aren't needed. This also exposes
905 : // additional opportunites for dead copy elimination and shrink wrapping.
906 : //
907 : // These copies were either not handled by or are inserted after the MachineSink
908 : // pass. As an example of the former case, the MachineSink pass cannot sink
909 : // COPY instructions with allocatable source registers; for AArch64 these type
910 : // of copy instructions are frequently used to move function parameters (PhyReg)
911 : // into virtual registers in the entry block.
912 : //
913 : // For the machine IR below, this pass will sink %w19 in the entry into its
914 : // successor (%bb.1) because %w19 is only live-in in %bb.1.
915 : // %bb.0:
916 : // %wzr = SUBSWri %w1, 1
917 : // %w19 = COPY %w0
918 : // Bcc 11, %bb.2
919 : // %bb.1:
920 : // Live Ins: %w19
921 : // BL @fun
922 : // %w0 = ADDWrr %w0, %w19
923 : // RET %w0
924 : // %bb.2:
925 : // %w0 = COPY %wzr
926 : // RET %w0
927 : // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
928 : // able to see %bb.0 as a candidate.
929 : //===----------------------------------------------------------------------===//
930 : namespace {
931 :
932 : class PostRAMachineSinking : public MachineFunctionPass {
933 : public:
934 : bool runOnMachineFunction(MachineFunction &MF) override;
935 :
936 : static char ID;
937 19695 : PostRAMachineSinking() : MachineFunctionPass(ID) {}
938 19548 : StringRef getPassName() const override { return "PostRA Machine Sink"; }
939 :
940 19532 : void getAnalysisUsage(AnalysisUsage &AU) const override {
941 19532 : AU.setPreservesCFG();
942 19532 : MachineFunctionPass::getAnalysisUsage(AU);
943 19532 : }
944 :
945 19535 : MachineFunctionProperties getRequiredProperties() const override {
946 19535 : return MachineFunctionProperties().set(
947 19535 : MachineFunctionProperties::Property::NoVRegs);
948 : }
949 :
950 : private:
951 : /// Track which register units have been modified and used.
952 : LiveRegUnits ModifiedRegUnits, UsedRegUnits;
953 :
954 : /// Sink Copy instructions unused in the same block close to their uses in
955 : /// successors.
956 : bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
957 : const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
958 : };
959 : } // namespace
960 :
961 : char PostRAMachineSinking::ID = 0;
962 : char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
963 :
964 85147 : INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
965 : "PostRA Machine Sink", false, false)
966 :
967 15125 : static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
968 : const TargetRegisterInfo *TRI) {
969 : LiveRegUnits LiveInRegUnits(*TRI);
970 15125 : LiveInRegUnits.addLiveIns(MBB);
971 15125 : return !LiveInRegUnits.available(Reg);
972 : }
973 :
974 : static MachineBasicBlock *
975 8165 : getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
976 : const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
977 : unsigned Reg, const TargetRegisterInfo *TRI) {
978 : // Try to find a single sinkable successor in which Reg is live-in.
979 : MachineBasicBlock *BB = nullptr;
980 17334 : for (auto *SI : SinkableBBs) {
981 11368 : if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
982 : // If BB is set here, Reg is live-in to at least two sinkable successors,
983 : // so quit.
984 9163 : if (BB)
985 2199 : return nullptr;
986 : BB = SI;
987 : }
988 : }
989 : // Reg is not live-in to any sinkable successors.
990 5966 : if (!BB)
991 : return nullptr;
992 :
993 : // Check if any register aliased with Reg is live-in in other successors.
994 12333 : for (auto *SI : CurBB.successors()) {
995 8712 : if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
996 : return nullptr;
997 : }
998 : return BB;
999 : }
1000 :
1001 : static MachineBasicBlock *
1002 8147 : getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1003 : const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1004 : ArrayRef<unsigned> DefedRegsInCopy,
1005 : const TargetRegisterInfo *TRI) {
1006 : MachineBasicBlock *SingleBB = nullptr;
1007 11768 : for (auto DefReg : DefedRegsInCopy) {
1008 : MachineBasicBlock *BB =
1009 8165 : getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1010 8165 : if (!BB || (SingleBB && SingleBB != BB))
1011 : return nullptr;
1012 : SingleBB = BB;
1013 : }
1014 : return SingleBB;
1015 : }
1016 :
1017 3603 : static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1018 : SmallVectorImpl<unsigned> &UsedOpsInCopy,
1019 : LiveRegUnits &UsedRegUnits,
1020 : const TargetRegisterInfo *TRI) {
1021 7208 : for (auto U : UsedOpsInCopy) {
1022 3605 : MachineOperand &MO = MI->getOperand(U);
1023 3605 : unsigned SrcReg = MO.getReg();
1024 3605 : if (!UsedRegUnits.available(SrcReg)) {
1025 1114 : MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1026 10557 : for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1027 9475 : if (UI.killsRegister(SrcReg, TRI)) {
1028 32 : UI.clearRegisterKills(SrcReg, TRI);
1029 : MO.setIsKill(true);
1030 : break;
1031 : }
1032 : }
1033 : }
1034 : }
1035 3603 : }
1036 :
1037 3603 : static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1038 : SmallVectorImpl<unsigned> &UsedOpsInCopy,
1039 : SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1040 3603 : MachineFunction &MF = *SuccBB->getParent();
1041 3603 : const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1042 7224 : for (unsigned DefReg : DefedRegsInCopy)
1043 27069 : for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1044 19827 : SuccBB->removeLiveIn(*S);
1045 7208 : for (auto U : UsedOpsInCopy) {
1046 3605 : unsigned Reg = MI->getOperand(U).getReg();
1047 3605 : if (!SuccBB->isLiveIn(Reg))
1048 : SuccBB->addLiveIn(Reg);
1049 : }
1050 3603 : }
1051 :
1052 17199 : static bool hasRegisterDependency(MachineInstr *MI,
1053 : SmallVectorImpl<unsigned> &UsedOpsInCopy,
1054 : SmallVectorImpl<unsigned> &DefedRegsInCopy,
1055 : LiveRegUnits &ModifiedRegUnits,
1056 : LiveRegUnits &UsedRegUnits) {
1057 : bool HasRegDependency = false;
1058 35574 : for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1059 27427 : MachineOperand &MO = MI->getOperand(i);
1060 27427 : if (!MO.isReg())
1061 0 : continue;
1062 27427 : unsigned Reg = MO.getReg();
1063 27427 : if (!Reg)
1064 : continue;
1065 27427 : if (MO.isDef()) {
1066 17247 : if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1067 : HasRegDependency = true;
1068 9052 : break;
1069 : }
1070 10178 : DefedRegsInCopy.push_back(Reg);
1071 :
1072 : // FIXME: instead of isUse(), readsReg() would be a better fix here,
1073 : // For example, we can ignore modifications in reg with undef. However,
1074 : // it's not perfectly clear if skipping the internal read is safe in all
1075 : // other targets.
1076 : } else if (MO.isUse()) {
1077 10180 : if (!ModifiedRegUnits.available(Reg)) {
1078 : HasRegDependency = true;
1079 : break;
1080 : }
1081 8197 : UsedOpsInCopy.push_back(i);
1082 : }
1083 : }
1084 17199 : return HasRegDependency;
1085 : }
1086 :
1087 0 : bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1088 : MachineFunction &MF,
1089 : const TargetRegisterInfo *TRI,
1090 : const TargetInstrInfo *TII) {
1091 : SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1092 : // FIXME: For now, we sink only to a successor which has a single predecessor
1093 : // so that we can directly sink COPY instructions to the successor without
1094 : // adding any new block or branch instruction.
1095 0 : for (MachineBasicBlock *SI : CurBB.successors())
1096 0 : if (!SI->livein_empty() && SI->pred_size() == 1)
1097 0 : SinkableBBs.insert(SI);
1098 :
1099 0 : if (SinkableBBs.empty())
1100 0 : return false;
1101 :
1102 : bool Changed = false;
1103 :
1104 : // Track which registers have been modified and used between the end of the
1105 : // block and the current instruction.
1106 : ModifiedRegUnits.clear();
1107 : UsedRegUnits.clear();
1108 :
1109 0 : for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1110 : MachineInstr *MI = &*I;
1111 : ++I;
1112 :
1113 0 : if (MI->isDebugInstr())
1114 0 : continue;
1115 :
1116 : // Do not move any instruction across function call.
1117 0 : if (MI->isCall())
1118 0 : return false;
1119 :
1120 0 : if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1121 0 : LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1122 : TRI);
1123 0 : continue;
1124 : }
1125 :
1126 : // Track the operand index for use in Copy.
1127 : SmallVector<unsigned, 2> UsedOpsInCopy;
1128 : // Track the register number defed in Copy.
1129 : SmallVector<unsigned, 2> DefedRegsInCopy;
1130 :
1131 : // Don't sink the COPY if it would violate a register dependency.
1132 0 : if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1133 0 : ModifiedRegUnits, UsedRegUnits)) {
1134 0 : LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1135 : TRI);
1136 0 : continue;
1137 : }
1138 : assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1139 : "Unexpect SrcReg or DefReg");
1140 : MachineBasicBlock *SuccBB =
1141 0 : getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1142 : // Don't sink if we cannot find a single sinkable successor in which Reg
1143 : // is live-in.
1144 0 : if (!SuccBB) {
1145 0 : LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1146 : TRI);
1147 0 : continue;
1148 : }
1149 : assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1150 : "Unexpected predecessor");
1151 :
1152 : // Clear the kill flag if SrcReg is killed between MI and the end of the
1153 : // block.
1154 0 : clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1155 0 : MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1156 0 : performSink(*MI, *SuccBB, InsertPos);
1157 0 : updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1158 :
1159 : Changed = true;
1160 : ++NumPostRACopySink;
1161 : }
1162 : return Changed;
1163 : }
1164 :
1165 193954 : bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1166 : bool Changed = false;
1167 193954 : const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1168 193954 : const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1169 :
1170 193954 : ModifiedRegUnits.init(*TRI);
1171 193954 : UsedRegUnits.init(*TRI);
1172 651975 : for (auto &BB : MF)
1173 458022 : Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1174 :
1175 193953 : return Changed;
1176 : }
|