Line data Source code
1 : //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // Perform peephole optimizations on the machine code:
11 : //
12 : // - Optimize Extensions
13 : //
14 : // Optimization of sign / zero extension instructions. It may be extended to
15 : // handle other instructions with similar properties.
16 : //
17 : // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 : // leave the source value in the lower part of the result. This optimization
19 : // will replace some uses of the pre-extension value with uses of the
20 : // sub-register of the results.
21 : //
22 : // - Optimize Comparisons
23 : //
24 : // Optimization of comparison instructions. For instance, in this code:
25 : //
26 : // sub r1, 1
27 : // cmp r1, 0
28 : // bz L1
29 : //
30 : // If the "sub" instruction all ready sets (or could be modified to set) the
31 : // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 : // eliminate the "cmp" instruction.
33 : //
34 : // Another instance, in this code:
35 : //
36 : // sub r1, r3 | sub r1, imm
37 : // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 : // bge L1
39 : //
40 : // If the branch instruction can use flag from "sub", then we can replace
41 : // "sub" with "subs" and eliminate the "cmp" instruction.
42 : //
43 : // - Optimize Loads:
44 : //
45 : // Loads that can be folded into a later instruction. A load is foldable
46 : // if it loads to virtual registers and the virtual register defined has
47 : // a single use.
48 : //
49 : // - Optimize Copies and Bitcast (more generally, target specific copies):
50 : //
51 : // Rewrite copies and bitcasts to avoid cross register bank copies
52 : // when possible.
53 : // E.g., Consider the following example, where capital and lower
54 : // letters denote different register file:
55 : // b = copy A <-- cross-bank copy
56 : // C = copy b <-- cross-bank copy
57 : // =>
58 : // b = copy A <-- cross-bank copy
59 : // C = copy A <-- same-bank copy
60 : //
61 : // E.g., for bitcast:
62 : // b = bitcast A <-- cross-bank copy
63 : // C = bitcast b <-- cross-bank copy
64 : // =>
65 : // b = bitcast A <-- cross-bank copy
66 : // C = copy A <-- same-bank copy
67 : //===----------------------------------------------------------------------===//
68 :
69 : #include "llvm/ADT/DenseMap.h"
70 : #include "llvm/ADT/Optional.h"
71 : #include "llvm/ADT/SmallPtrSet.h"
72 : #include "llvm/ADT/SmallSet.h"
73 : #include "llvm/ADT/SmallVector.h"
74 : #include "llvm/ADT/Statistic.h"
75 : #include "llvm/CodeGen/MachineBasicBlock.h"
76 : #include "llvm/CodeGen/MachineDominators.h"
77 : #include "llvm/CodeGen/MachineFunction.h"
78 : #include "llvm/CodeGen/MachineFunctionPass.h"
79 : #include "llvm/CodeGen/MachineInstr.h"
80 : #include "llvm/CodeGen/MachineInstrBuilder.h"
81 : #include "llvm/CodeGen/MachineLoopInfo.h"
82 : #include "llvm/CodeGen/MachineOperand.h"
83 : #include "llvm/CodeGen/MachineRegisterInfo.h"
84 : #include "llvm/CodeGen/TargetInstrInfo.h"
85 : #include "llvm/CodeGen/TargetOpcodes.h"
86 : #include "llvm/CodeGen/TargetRegisterInfo.h"
87 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
88 : #include "llvm/MC/LaneBitmask.h"
89 : #include "llvm/MC/MCInstrDesc.h"
90 : #include "llvm/Pass.h"
91 : #include "llvm/Support/CommandLine.h"
92 : #include "llvm/Support/Debug.h"
93 : #include "llvm/Support/ErrorHandling.h"
94 : #include "llvm/Support/raw_ostream.h"
95 : #include <cassert>
96 : #include <cstdint>
97 : #include <memory>
98 : #include <utility>
99 :
100 : using namespace llvm;
101 : using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 : using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103 :
104 : #define DEBUG_TYPE "peephole-opt"
105 :
106 : // Optimize Extensions
107 : static cl::opt<bool>
108 : Aggressive("aggressive-ext-opt", cl::Hidden,
109 : cl::desc("Aggressive extension optimization"));
110 :
111 : static cl::opt<bool>
112 : DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113 : cl::desc("Disable the peephole optimizer"));
114 :
115 : /// Specifiy whether or not the value tracking looks through
116 : /// complex instructions. When this is true, the value tracker
117 : /// bails on everything that is not a copy or a bitcast.
118 : static cl::opt<bool>
119 : DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120 : cl::desc("Disable advanced copy optimization"));
121 :
122 : static cl::opt<bool> DisableNAPhysCopyOpt(
123 : "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124 : cl::desc("Disable non-allocatable physical register copy optimization"));
125 :
126 : // Limit the number of PHI instructions to process
127 : // in PeepholeOptimizer::getNextSource.
128 : static cl::opt<unsigned> RewritePHILimit(
129 : "rewrite-phi-limit", cl::Hidden, cl::init(10),
130 : cl::desc("Limit the length of PHI chains to lookup"));
131 :
132 : // Limit the length of recurrence chain when evaluating the benefit of
133 : // commuting operands.
134 : static cl::opt<unsigned> MaxRecurrenceChain(
135 : "recurrence-chain-limit", cl::Hidden, cl::init(3),
136 : cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137 : "of commuting operands"));
138 :
139 :
140 : STATISTIC(NumReuse, "Number of extension results reused");
141 : STATISTIC(NumCmps, "Number of compares eliminated");
142 : STATISTIC(NumImmFold, "Number of move immediate folded");
143 : STATISTIC(NumLoadFold, "Number of loads folded");
144 : STATISTIC(NumSelects, "Number of selects optimized");
145 : STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146 : STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147 : STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148 :
149 : namespace {
150 :
151 : class ValueTrackerResult;
152 : class RecurrenceInstr;
153 :
154 : class PeepholeOptimizer : public MachineFunctionPass {
155 : const TargetInstrInfo *TII;
156 : const TargetRegisterInfo *TRI;
157 : MachineRegisterInfo *MRI;
158 : MachineDominatorTree *DT; // Machine dominator tree
159 : MachineLoopInfo *MLI;
160 :
161 : public:
162 : static char ID; // Pass identification
163 :
164 20223 : PeepholeOptimizer() : MachineFunctionPass(ID) {
165 20223 : initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166 20223 : }
167 :
168 : bool runOnMachineFunction(MachineFunction &MF) override;
169 :
170 20049 : void getAnalysisUsage(AnalysisUsage &AU) const override {
171 20049 : AU.setPreservesCFG();
172 20049 : MachineFunctionPass::getAnalysisUsage(AU);
173 : AU.addRequired<MachineLoopInfo>();
174 : AU.addPreserved<MachineLoopInfo>();
175 20049 : if (Aggressive) {
176 : AU.addRequired<MachineDominatorTree>();
177 : AU.addPreserved<MachineDominatorTree>();
178 : }
179 20049 : }
180 :
181 : /// Track Def -> Use info used for rewriting copies.
182 : using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183 :
184 : /// Sequence of instructions that formulate recurrence cycle.
185 : using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186 :
187 : private:
188 : bool optimizeCmpInstr(MachineInstr &MI);
189 : bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190 : SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191 : bool optimizeSelect(MachineInstr &MI,
192 : SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193 : bool optimizeCondBranch(MachineInstr &MI);
194 : bool optimizeCoalescableCopy(MachineInstr &MI);
195 : bool optimizeUncoalescableCopy(MachineInstr &MI,
196 : SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197 : bool optimizeRecurrence(MachineInstr &PHI);
198 : bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199 : bool isMoveImmediate(MachineInstr &MI,
200 : SmallSet<unsigned, 4> &ImmDefRegs,
201 : DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202 : bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203 : DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204 :
205 : /// Finds recurrence cycles, but only ones that formulated around
206 : /// a def operand and a use operand that are tied. If there is a use
207 : /// operand commutable with the tied use operand, find recurrence cycle
208 : /// along that operand as well.
209 : bool findTargetRecurrence(unsigned Reg,
210 : const SmallSet<unsigned, 2> &TargetReg,
211 : RecurrenceCycle &RC);
212 :
213 : /// If copy instruction \p MI is a virtual register copy, track it in
214 : /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215 : /// previously seen as a copy, replace the uses of this copy with the
216 : /// previously seen copy's destination register.
217 : bool foldRedundantCopy(MachineInstr &MI,
218 : SmallSet<unsigned, 4> &CopySrcRegs,
219 : DenseMap<unsigned, MachineInstr *> &CopyMIs);
220 :
221 : /// Is the register \p Reg a non-allocatable physical register?
222 : bool isNAPhysCopy(unsigned Reg);
223 :
224 : /// If copy instruction \p MI is a non-allocatable virtual<->physical
225 : /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226 : /// non-allocatable physical register was previously copied to a virtual
227 : /// registered and hasn't been clobbered, the virt->phys copy can be
228 : /// deleted.
229 : bool foldRedundantNAPhysCopy(MachineInstr &MI,
230 : DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231 :
232 : bool isLoadFoldable(MachineInstr &MI,
233 : SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234 :
235 : /// Check whether \p MI is understood by the register coalescer
236 : /// but may require some rewriting.
237 0 : bool isCoalescableCopy(const MachineInstr &MI) {
238 : // SubregToRegs are not interesting, because they are already register
239 : // coalescer friendly.
240 4285146 : return MI.isCopy() || (!DisableAdvCopyOpt &&
241 3094737 : (MI.isRegSequence() || MI.isInsertSubreg() ||
242 0 : MI.isExtractSubreg()));
243 : }
244 :
245 : /// Check whether \p MI is a copy like instruction that is
246 : /// not recognized by the register coalescer.
247 0 : bool isUncoalescableCopy(const MachineInstr &MI) {
248 0 : return MI.isBitcast() ||
249 0 : (!DisableAdvCopyOpt &&
250 0 : (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251 0 : MI.isExtractSubregLike()));
252 : }
253 :
254 : MachineInstr &rewriteSource(MachineInstr &CopyLike,
255 : RegSubRegPair Def, RewriteMapTy &RewriteMap);
256 : };
257 :
258 : /// Helper class to hold instructions that are inside recurrence cycles.
259 : /// The recurrence cycle is formulated around 1) a def operand and its
260 : /// tied use operand, or 2) a def operand and a use operand that is commutable
261 : /// with another use operand which is tied to the def operand. In the latter
262 : /// case, index of the tied use operand and the commutable use operand are
263 : /// maintained with CommutePair.
264 2493 : class RecurrenceInstr {
265 : public:
266 : using IndexPair = std::pair<unsigned, unsigned>;
267 :
268 2326 : RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
269 : RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270 167 : : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271 :
272 0 : MachineInstr *getMI() const { return MI; }
273 : Optional<IndexPair> getCommutePair() const { return CommutePair; }
274 :
275 : private:
276 : MachineInstr *MI;
277 : Optional<IndexPair> CommutePair;
278 : };
279 :
280 : /// Helper class to hold a reply for ValueTracker queries.
281 : /// Contains the returned sources for a given search and the instructions
282 : /// where the sources were tracked from.
283 6673554 : class ValueTrackerResult {
284 : private:
285 : /// Track all sources found by one ValueTracker query.
286 : SmallVector<RegSubRegPair, 2> RegSrcs;
287 :
288 : /// Instruction using the sources in 'RegSrcs'.
289 : const MachineInstr *Inst = nullptr;
290 :
291 : public:
292 0 : ValueTrackerResult() = default;
293 :
294 1174190 : ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295 : addSource(Reg, SubReg);
296 : }
297 :
298 : bool isValid() const { return getNumSources() > 0; }
299 :
300 1174328 : void setInst(const MachineInstr *I) { Inst = I; }
301 0 : const MachineInstr *getInst() const { return Inst; }
302 :
303 : void clear() {
304 : RegSrcs.clear();
305 : Inst = nullptr;
306 : }
307 :
308 : void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309 2348380 : RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310 : }
311 :
312 : void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313 : assert(Idx < getNumSources() && "Reg pair source out of index");
314 : RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315 : }
316 :
317 5832927 : int getNumSources() const { return RegSrcs.size(); }
318 :
319 : RegSubRegPair getSrc(int Idx) const {
320 1174753 : return RegSrcs[Idx];
321 : }
322 :
323 : unsigned getSrcReg(int Idx) const {
324 : assert(Idx < getNumSources() && "Reg source out of index");
325 1471973 : return RegSrcs[Idx].Reg;
326 : }
327 :
328 : unsigned getSrcSubReg(int Idx) const {
329 : assert(Idx < getNumSources() && "SubReg source out of index");
330 12 : return RegSrcs[Idx].SubReg;
331 : }
332 :
333 : bool operator==(const ValueTrackerResult &Other) {
334 : if (Other.getInst() != getInst())
335 : return false;
336 :
337 : if (Other.getNumSources() != getNumSources())
338 : return false;
339 :
340 : for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341 : if (Other.getSrcReg(i) != getSrcReg(i) ||
342 : Other.getSrcSubReg(i) != getSrcSubReg(i))
343 : return false;
344 : return true;
345 : }
346 : };
347 :
348 : /// Helper class to track the possible sources of a value defined by
349 : /// a (chain of) copy related instructions.
350 : /// Given a definition (instruction and definition index), this class
351 : /// follows the use-def chain to find successive suitable sources.
352 : /// The given source can be used to rewrite the definition into
353 : /// def = COPY src.
354 : ///
355 : /// For instance, let us consider the following snippet:
356 : /// v0 =
357 : /// v2 = INSERT_SUBREG v1, v0, sub0
358 : /// def = COPY v2.sub0
359 : ///
360 : /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361 : /// suitable sources:
362 : /// v2.sub0 and v0.
363 : /// Then, def can be rewritten into def = COPY v0.
364 : class ValueTracker {
365 : private:
366 : /// The current point into the use-def chain.
367 : const MachineInstr *Def = nullptr;
368 :
369 : /// The index of the definition in Def.
370 : unsigned DefIdx = 0;
371 :
372 : /// The sub register index of the definition.
373 : unsigned DefSubReg;
374 :
375 : /// The register where the value can be found.
376 : unsigned Reg;
377 :
378 : /// MachineRegisterInfo used to perform tracking.
379 : const MachineRegisterInfo &MRI;
380 :
381 : /// Optional TargetInstrInfo used to perform some complex tracking.
382 : const TargetInstrInfo *TII;
383 :
384 : /// Dispatcher to the right underlying implementation of getNextSource.
385 : ValueTrackerResult getNextSourceImpl();
386 :
387 : /// Specialized version of getNextSource for Copy instructions.
388 : ValueTrackerResult getNextSourceFromCopy();
389 :
390 : /// Specialized version of getNextSource for Bitcast instructions.
391 : ValueTrackerResult getNextSourceFromBitcast();
392 :
393 : /// Specialized version of getNextSource for RegSequence instructions.
394 : ValueTrackerResult getNextSourceFromRegSequence();
395 :
396 : /// Specialized version of getNextSource for InsertSubreg instructions.
397 : ValueTrackerResult getNextSourceFromInsertSubreg();
398 :
399 : /// Specialized version of getNextSource for ExtractSubreg instructions.
400 : ValueTrackerResult getNextSourceFromExtractSubreg();
401 :
402 : /// Specialized version of getNextSource for SubregToReg instructions.
403 : ValueTrackerResult getNextSourceFromSubregToReg();
404 :
405 : /// Specialized version of getNextSource for PHI instructions.
406 : ValueTrackerResult getNextSourceFromPHI();
407 :
408 : public:
409 : /// Create a ValueTracker instance for the value defined by \p Reg.
410 : /// \p DefSubReg represents the sub register index the value tracker will
411 : /// track. It does not need to match the sub register index used in the
412 : /// definition of \p Reg.
413 : /// If \p Reg is a physical register, a value tracker constructed with
414 : /// this constructor will not find any alternative source.
415 : /// Indeed, when \p Reg is a physical register that constructor does not
416 : /// know which definition of \p Reg it should track.
417 : /// Use the next constructor to track a physical register.
418 983098 : ValueTracker(unsigned Reg, unsigned DefSubReg,
419 : const MachineRegisterInfo &MRI,
420 : const TargetInstrInfo *TII = nullptr)
421 983098 : : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422 983098 : if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
423 983098 : Def = MRI.getVRegDef(Reg);
424 983098 : DefIdx = MRI.def_begin(Reg).getOperandNo();
425 : }
426 983098 : }
427 :
428 : /// Following the use-def chain, get the next available source
429 : /// for the tracked value.
430 : /// \return A ValueTrackerResult containing a set of registers
431 : /// and sub registers with tracked values. A ValueTrackerResult with
432 : /// an empty set of registers means no source was found.
433 : ValueTrackerResult getNextSource();
434 : };
435 :
436 : } // end anonymous namespace
437 :
438 : char PeepholeOptimizer::ID = 0;
439 :
440 : char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441 :
442 31780 : INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443 : "Peephole Optimizations", false, false)
444 31780 : INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445 31780 : INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446 105370 : INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447 : "Peephole Optimizations", false, false)
448 :
449 : /// If instruction is a copy-like instruction, i.e. it reads a single register
450 : /// and writes a single register and it does not modify the source, and if the
451 : /// source value is preserved as a sub-register of the result, then replace all
452 : /// reachable uses of the source with the subreg of the result.
453 : ///
454 : /// Do not generate an EXTRACT that is used only in a debug use, as this changes
455 : /// the code. Since this code does not currently share EXTRACTs, just ignore all
456 : /// debug uses.
457 4145378 : bool PeepholeOptimizer::
458 : optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459 : SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460 : unsigned SrcReg, DstReg, SubIdx;
461 4145378 : if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
462 : return false;
463 :
464 8634 : if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
465 4313 : TargetRegisterInfo::isPhysicalRegister(SrcReg))
466 : return false;
467 :
468 4313 : if (MRI->hasOneNonDBGUse(SrcReg))
469 : // No other uses.
470 : return false;
471 :
472 : // Ensure DstReg can get a register class that actually supports
473 : // sub-registers. Don't change the class until we commit.
474 568 : const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475 568 : DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476 568 : if (!DstRC)
477 : return false;
478 :
479 : // The ext instr may be operating on a sub-register of SrcReg as well.
480 : // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481 : // register.
482 : // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483 : // SrcReg:SubIdx should be replaced.
484 : bool UseSrcSubIdx =
485 1136 : TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486 :
487 : // The source has other uses. See if we can replace the other uses with use of
488 : // the result of the extension.
489 : SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490 1375 : for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491 807 : ReachedBBs.insert(UI.getParent());
492 :
493 : // Uses that are in the same BB of uses of the result of the instruction.
494 : SmallVector<MachineOperand*, 8> Uses;
495 :
496 : // Uses that the result of the instruction can reach.
497 : SmallVector<MachineOperand*, 8> ExtendedUses;
498 :
499 : bool ExtendLife = true;
500 1746 : for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501 988 : MachineInstr *UseMI = UseMO.getParent();
502 988 : if (UseMI == &MI)
503 : continue;
504 :
505 : if (UseMI->isPHI()) {
506 : ExtendLife = false;
507 : continue;
508 : }
509 :
510 : // Only accept uses of SrcReg:SubIdx.
511 607 : if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512 : continue;
513 :
514 : // It's an error to translate this:
515 : //
516 : // %reg1025 = <sext> %reg1024
517 : // ...
518 : // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519 : //
520 : // into this:
521 : //
522 : // %reg1025 = <sext> %reg1024
523 : // ...
524 : // %reg1027 = COPY %reg1025:4
525 : // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526 : //
527 : // The problem here is that SUBREG_TO_REG is there to assert that an
528 : // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529 : // the COPY here, it will give us the value after the <sext>, not the
530 : // original value of %reg1024 before <sext>.
531 604 : if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532 : continue;
533 :
534 602 : MachineBasicBlock *UseMBB = UseMI->getParent();
535 602 : if (UseMBB == &MBB) {
536 : // Local uses that come after the extension.
537 207 : if (!LocalMIs.count(UseMI))
538 110 : Uses.push_back(&UseMO);
539 395 : } else if (ReachedBBs.count(UseMBB)) {
540 : // Non-local uses where the result of the extension is used. Always
541 : // replace these unless it's a PHI.
542 17 : Uses.push_back(&UseMO);
543 378 : } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544 : // We may want to extend the live range of the extension result in order
545 : // to replace these uses.
546 0 : ExtendedUses.push_back(&UseMO);
547 : } else {
548 : // Both will be live out of the def MBB anyway. Don't extend live range of
549 : // the extension result.
550 : ExtendLife = false;
551 : break;
552 : }
553 : }
554 :
555 568 : if (ExtendLife && !ExtendedUses.empty())
556 : // Extend the liveness of the extension result.
557 0 : Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558 :
559 : // Now replace all uses.
560 : bool Changed = false;
561 568 : if (!Uses.empty()) {
562 : SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563 :
564 : // Look for PHI uses of the extended result, we don't want to extend the
565 : // liveness of a PHI input. It breaks all kinds of assumptions down
566 : // stream. A PHI use is expected to be the kill of its source values.
567 294 : for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568 : if (UI.isPHI())
569 11 : PHIBBs.insert(UI.getParent());
570 :
571 103 : const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572 230 : for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573 127 : MachineOperand *UseMO = Uses[i];
574 127 : MachineInstr *UseMI = UseMO->getParent();
575 127 : MachineBasicBlock *UseMBB = UseMI->getParent();
576 127 : if (PHIBBs.count(UseMBB))
577 : continue;
578 :
579 : // About to add uses of DstReg, clear DstReg's kill flags.
580 127 : if (!Changed) {
581 103 : MRI->clearKillFlags(DstReg);
582 103 : MRI->constrainRegClass(DstReg, DstRC);
583 : }
584 :
585 254 : unsigned NewVR = MRI->createVirtualRegister(RC);
586 127 : MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587 127 : TII->get(TargetOpcode::COPY), NewVR)
588 127 : .addReg(DstReg, 0, SubIdx);
589 : // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590 127 : if (UseSrcSubIdx) {
591 0 : Copy->getOperand(0).setSubReg(SubIdx);
592 0 : Copy->getOperand(0).setIsUndef();
593 : }
594 127 : UseMO->setReg(NewVR);
595 : ++NumReuse;
596 : Changed = true;
597 : }
598 : }
599 :
600 : return Changed;
601 : }
602 :
603 : /// If the instruction is a compare and the previous instruction it's comparing
604 : /// against already sets (or could be modified to set) the same flag as the
605 : /// compare, then we can remove the comparison and use the flag from the
606 : /// previous instruction.
607 0 : bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608 : // If this instruction is a comparison against zero and isn't comparing a
609 : // physical register, we can try to optimize it.
610 : unsigned SrcReg, SrcReg2;
611 : int CmpMask, CmpValue;
612 0 : if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613 0 : TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
614 0 : (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
615 0 : return false;
616 :
617 : // Attempt to optimize the comparison instruction.
618 0 : if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619 : ++NumCmps;
620 0 : return true;
621 : }
622 :
623 : return false;
624 : }
625 :
626 : /// Optimize a select instruction.
627 0 : bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
628 : SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
629 0 : unsigned TrueOp = 0;
630 0 : unsigned FalseOp = 0;
631 0 : bool Optimizable = false;
632 : SmallVector<MachineOperand, 4> Cond;
633 0 : if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
634 0 : return false;
635 0 : if (!Optimizable)
636 0 : return false;
637 0 : if (!TII->optimizeSelect(MI, LocalMIs))
638 0 : return false;
639 0 : MI.eraseFromParent();
640 : ++NumSelects;
641 0 : return true;
642 : }
643 :
644 : /// Check if a simpler conditional branch can be generated.
645 0 : bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
646 0 : return TII->optimizeCondBranch(MI);
647 : }
648 :
649 : /// Try to find the next source that share the same register file
650 : /// for the value defined by \p Reg and \p SubReg.
651 : /// When true is returned, the \p RewriteMap can be used by the client to
652 : /// retrieve all Def -> Use along the way up to the next source. Any found
653 : /// Use that is not itself a key for another entry, is the next source to
654 : /// use. During the search for the next source, multiple sources can be found
655 : /// given multiple incoming sources of a PHI instruction. In this case, we
656 : /// look in each PHI source for the next source; all found next sources must
657 : /// share the same register file as \p Reg and \p SubReg. The client should
658 : /// then be capable to rewrite all intermediate PHIs to get the next source.
659 : /// \return False if no alternative sources are available. True otherwise.
660 982940 : bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
661 : RewriteMapTy &RewriteMap) {
662 : // Do not try to find a new source for a physical register.
663 : // So far we do not have any motivating example for doing that.
664 : // Thus, instead of maintaining untested code, we will revisit that if
665 : // that changes at some point.
666 982940 : unsigned Reg = RegSubReg.Reg;
667 982940 : if (TargetRegisterInfo::isPhysicalRegister(Reg))
668 : return false;
669 982940 : const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
670 :
671 : SmallVector<RegSubRegPair, 4> SrcToLook;
672 982940 : RegSubRegPair CurSrcPair = RegSubReg;
673 982940 : SrcToLook.push_back(CurSrcPair);
674 :
675 : unsigned PHICount = 0;
676 : do {
677 983098 : CurSrcPair = SrcToLook.pop_back_val();
678 : // As explained above, do not handle physical registers
679 983098 : if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
680 756196 : return false;
681 :
682 983098 : ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
683 :
684 : // Follow the chain of copies until we find a more suitable source, a phi
685 : // or have to abort.
686 : while (true) {
687 1479875 : ValueTrackerResult Res = ValTracker.getNextSource();
688 : // Abort at the end of a chain (without finding a suitable source).
689 1479875 : if (!Res.isValid())
690 : return false;
691 :
692 : // Insert the Def -> Use entry for the recently found source.
693 1174328 : ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
694 1174328 : if (CurSrcRes.isValid()) {
695 : assert(CurSrcRes == Res && "ValueTrackerResult found must match");
696 : // An existent entry with multiple sources is a PHI cycle we must avoid.
697 : // Otherwise it's an entry with a valid next source we already found.
698 5 : if (CurSrcRes.getNumSources() > 1) {
699 : LLVM_DEBUG(dbgs()
700 : << "findNextSource: found PHI cycle, aborting...\n");
701 : return false;
702 : }
703 : break;
704 : }
705 1174323 : RewriteMap.insert(std::make_pair(CurSrcPair, Res));
706 :
707 : // ValueTrackerResult usually have one source unless it's the result from
708 : // a PHI instruction. Add the found PHI edges to be looked up further.
709 : unsigned NumSrcs = Res.getNumSources();
710 1174323 : if (NumSrcs > 1) {
711 138 : PHICount++;
712 138 : if (PHICount >= RewritePHILimit) {
713 : LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
714 : return false;
715 : }
716 :
717 422 : for (unsigned i = 0; i < NumSrcs; ++i)
718 568 : SrcToLook.push_back(Res.getSrc(i));
719 : break;
720 : }
721 :
722 1174185 : CurSrcPair = Res.getSrc(0);
723 : // Do not extend the live-ranges of physical registers as they add
724 : // constraints to the register allocator. Moreover, if we want to extend
725 : // the live-range of a physical register, unlike SSA virtual register,
726 : // we will have to check that they aren't redefine before the related use.
727 1174185 : if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
728 : return false;
729 :
730 : // Keep following the chain if the value isn't any better yet.
731 723536 : const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
732 723536 : if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
733 723536 : CurSrcPair.SubReg))
734 : continue;
735 :
736 : // We currently cannot deal with subreg operands on PHI instructions
737 : // (see insertPHI()).
738 226760 : if (PHICount > 0 && CurSrcPair.SubReg != 0)
739 : continue;
740 :
741 : // We found a suitable source, and are done with this chain.
742 : break;
743 : }
744 226902 : } while (!SrcToLook.empty());
745 :
746 : // If we did not find a more suitable source, there is nothing to optimize.
747 226744 : return CurSrcPair.Reg != Reg;
748 : }
749 :
750 : /// Insert a PHI instruction with incoming edges \p SrcRegs that are
751 : /// guaranteed to have the same register class. This is necessary whenever we
752 : /// successfully traverse a PHI instruction and find suitable sources coming
753 : /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754 : /// suitable to be used in a new COPY instruction.
755 : static MachineInstr &
756 6 : insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
757 : const SmallVectorImpl<RegSubRegPair> &SrcRegs,
758 : MachineInstr &OrigPHI) {
759 : assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
760 :
761 6 : const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
762 : // NewRC is only correct if no subregisters are involved. findNextSource()
763 : // should have rejected those cases already.
764 : assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
765 6 : unsigned NewVR = MRI.createVirtualRegister(NewRC);
766 6 : MachineBasicBlock *MBB = OrigPHI.getParent();
767 : MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
768 6 : TII.get(TargetOpcode::PHI), NewVR);
769 :
770 : unsigned MBBOpIdx = 2;
771 18 : for (const RegSubRegPair &RegPair : SrcRegs) {
772 12 : MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
773 24 : MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
774 : // Since we're extended the lifetime of RegPair.Reg, clear the
775 : // kill flags to account for that and make RegPair.Reg reaches
776 : // the new PHI.
777 12 : MRI.clearKillFlags(RegPair.Reg);
778 12 : MBBOpIdx += 2;
779 : }
780 :
781 6 : return *MIB;
782 : }
783 :
784 : namespace {
785 :
786 : /// Interface to query instructions amenable to copy rewriting.
787 : class Rewriter {
788 : protected:
789 : MachineInstr &CopyLike;
790 : unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
791 : public:
792 862017 : Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
793 : virtual ~Rewriter() {}
794 :
795 : /// Get the next rewritable source (SrcReg, SrcSubReg) and
796 : /// the related value that it affects (DstReg, DstSubReg).
797 : /// A source is considered rewritable if its register class and the
798 : /// register class of the related DstReg may not be register
799 : /// coalescer friendly. In other words, given a copy-like instruction
800 : /// not all the arguments may be returned at rewritable source, since
801 : /// some arguments are none to be register coalescer friendly.
802 : ///
803 : /// Each call of this method moves the current source to the next
804 : /// rewritable source.
805 : /// For instance, let CopyLike be the instruction to rewrite.
806 : /// CopyLike has one definition and one source:
807 : /// dst.dstSubIdx = CopyLike src.srcSubIdx.
808 : ///
809 : /// The first call will give the first rewritable source, i.e.,
810 : /// the only source this instruction has:
811 : /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812 : /// This source defines the whole definition, i.e.,
813 : /// (DstReg, DstSubReg) = (dst, dstSubIdx).
814 : ///
815 : /// The second and subsequent calls will return false, as there is only one
816 : /// rewritable source.
817 : ///
818 : /// \return True if a rewritable source has been found, false otherwise.
819 : /// The output arguments are valid if and only if true is returned.
820 : virtual bool getNextRewritableSource(RegSubRegPair &Src,
821 : RegSubRegPair &Dst) = 0;
822 :
823 : /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824 : /// \return True if the rewriting was possible, false otherwise.
825 : virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
826 : };
827 :
828 : /// Rewriter for COPY instructions.
829 : class CopyRewriter : public Rewriter {
830 : public:
831 757100 : CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
832 : assert(MI.isCopy() && "Expected copy instruction");
833 : }
834 757100 : virtual ~CopyRewriter() = default;
835 :
836 1514200 : bool getNextRewritableSource(RegSubRegPair &Src,
837 : RegSubRegPair &Dst) override {
838 : // CurrentSrcIdx > 0 means this function has already been called.
839 1514200 : if (CurrentSrcIdx > 0)
840 : return false;
841 : // This is the first call to getNextRewritableSource.
842 : // Move the CurrentSrcIdx to remember that we made that call.
843 757100 : CurrentSrcIdx = 1;
844 : // The rewritable source is the argument.
845 757100 : const MachineOperand &MOSrc = CopyLike.getOperand(1);
846 757100 : Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
847 : // What we track are the alternative sources of the definition.
848 : const MachineOperand &MODef = CopyLike.getOperand(0);
849 757100 : Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
850 757100 : return true;
851 : }
852 :
853 40842 : bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
854 40842 : if (CurrentSrcIdx != 1)
855 : return false;
856 40842 : MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
857 40842 : MOSrc.setReg(NewReg);
858 : MOSrc.setSubReg(NewSubReg);
859 40842 : return true;
860 : }
861 : };
862 :
863 : /// Helper class to rewrite uncoalescable copy like instructions
864 : /// into new COPY (coalescable friendly) instructions.
865 : class UncoalescableRewriter : public Rewriter {
866 : unsigned NumDefs; ///< Number of defs in the bitcast.
867 :
868 : public:
869 18118 : UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
870 9059 : NumDefs = MI.getDesc().getNumDefs();
871 : }
872 :
873 : /// \see See Rewriter::getNextRewritableSource()
874 : /// All such sources need to be considered rewritable in order to
875 : /// rewrite a uncoalescable copy-like instruction. This method return
876 : /// each definition that must be checked if rewritable.
877 9319 : bool getNextRewritableSource(RegSubRegPair &Src,
878 : RegSubRegPair &Dst) override {
879 : // Find the next non-dead definition and continue from there.
880 9319 : if (CurrentSrcIdx == NumDefs)
881 : return false;
882 :
883 18360 : while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
884 0 : ++CurrentSrcIdx;
885 0 : if (CurrentSrcIdx == NumDefs)
886 : return false;
887 : }
888 :
889 : // What we track are the alternative sources of the definition.
890 9180 : Src = RegSubRegPair(0, 0);
891 : const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
892 9180 : Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
893 :
894 9180 : CurrentSrcIdx++;
895 9180 : return true;
896 : }
897 :
898 0 : bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
899 0 : return false;
900 : }
901 : };
902 :
903 : /// Specialized rewriter for INSERT_SUBREG instruction.
904 : class InsertSubregRewriter : public Rewriter {
905 : public:
906 23710 : InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
907 : assert(MI.isInsertSubreg() && "Invalid instruction");
908 : }
909 :
910 : /// \see See Rewriter::getNextRewritableSource()
911 : /// Here CopyLike has the following form:
912 : /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913 : /// Src1 has the same register class has dst, hence, there is
914 : /// nothing to rewrite.
915 : /// Src2.src2SubIdx, may not be register coalescer friendly.
916 : /// Therefore, the first call to this method returns:
917 : /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918 : /// (DstReg, DstSubReg) = (dst, subIdx).
919 : ///
920 : /// Subsequence calls will return false.
921 47420 : bool getNextRewritableSource(RegSubRegPair &Src,
922 : RegSubRegPair &Dst) override {
923 : // If we already get the only source we can rewrite, return false.
924 47420 : if (CurrentSrcIdx == 2)
925 : return false;
926 : // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
927 23710 : CurrentSrcIdx = 2;
928 23710 : const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
929 23710 : Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
930 : const MachineOperand &MODef = CopyLike.getOperand(0);
931 :
932 : // We want to track something that is compatible with the
933 : // partial definition.
934 23710 : if (MODef.getSubReg())
935 : // Bail if we have to compose sub-register indices.
936 : return false;
937 23710 : Dst = RegSubRegPair(MODef.getReg(),
938 23710 : (unsigned)CopyLike.getOperand(3).getImm());
939 23710 : return true;
940 : }
941 :
942 2 : bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
943 2 : if (CurrentSrcIdx != 2)
944 : return false;
945 : // We are rewriting the inserted reg.
946 2 : MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
947 2 : MO.setReg(NewReg);
948 : MO.setSubReg(NewSubReg);
949 2 : return true;
950 : }
951 : };
952 :
953 : /// Specialized rewriter for EXTRACT_SUBREG instruction.
954 : class ExtractSubregRewriter : public Rewriter {
955 : const TargetInstrInfo &TII;
956 :
957 : public:
958 : ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
959 0 : : Rewriter(MI), TII(TII) {
960 : assert(MI.isExtractSubreg() && "Invalid instruction");
961 : }
962 :
963 : /// \see Rewriter::getNextRewritableSource()
964 : /// Here CopyLike has the following form:
965 : /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966 : /// There is only one rewritable source: Src.subIdx,
967 : /// which defines dst.dstSubIdx.
968 0 : bool getNextRewritableSource(RegSubRegPair &Src,
969 : RegSubRegPair &Dst) override {
970 : // If we already get the only source we can rewrite, return false.
971 0 : if (CurrentSrcIdx == 1)
972 : return false;
973 : // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
974 0 : CurrentSrcIdx = 1;
975 0 : const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
976 : // If we have to compose sub-register indices, bail out.
977 0 : if (MOExtractedReg.getSubReg())
978 : return false;
979 :
980 0 : Src = RegSubRegPair(MOExtractedReg.getReg(),
981 0 : CopyLike.getOperand(2).getImm());
982 :
983 : // We want to track something that is compatible with the definition.
984 : const MachineOperand &MODef = CopyLike.getOperand(0);
985 0 : Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
986 0 : return true;
987 : }
988 :
989 0 : bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
990 : // The only source we can rewrite is the input register.
991 0 : if (CurrentSrcIdx != 1)
992 : return false;
993 :
994 0 : CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
995 :
996 : // If we find a source that does not require to extract something,
997 : // rewrite the operation with a copy.
998 0 : if (!NewSubReg) {
999 : // Move the current index to an invalid position.
1000 : // We do not want another call to this method to be able
1001 : // to do any change.
1002 0 : CurrentSrcIdx = -1;
1003 : // Rewrite the operation as a COPY.
1004 : // Get rid of the sub-register index.
1005 0 : CopyLike.RemoveOperand(2);
1006 : // Morph the operation into a COPY.
1007 0 : CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1008 0 : return true;
1009 : }
1010 0 : CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1011 0 : return true;
1012 : }
1013 : };
1014 :
1015 : /// Specialized rewriter for REG_SEQUENCE instruction.
1016 : class RegSequenceRewriter : public Rewriter {
1017 : public:
1018 72148 : RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1019 : assert(MI.isRegSequence() && "Invalid instruction");
1020 : }
1021 :
1022 : /// \see Rewriter::getNextRewritableSource()
1023 : /// Here CopyLike has the following form:
1024 : /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025 : /// Each call will return a different source, walking all the available
1026 : /// source.
1027 : ///
1028 : /// The first call returns:
1029 : /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030 : /// (DstReg, DstSubReg) = (dst, subIdx1).
1031 : ///
1032 : /// The second call returns:
1033 : /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034 : /// (DstReg, DstSubReg) = (dst, subIdx2).
1035 : ///
1036 : /// And so on, until all the sources have been traversed, then
1037 : /// it returns false.
1038 265098 : bool getNextRewritableSource(RegSubRegPair &Src,
1039 : RegSubRegPair &Dst) override {
1040 : // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1041 :
1042 : // If this is the first call, move to the first argument.
1043 265098 : if (CurrentSrcIdx == 0) {
1044 72148 : CurrentSrcIdx = 1;
1045 : } else {
1046 : // Otherwise, move to the next argument and check that it is valid.
1047 192950 : CurrentSrcIdx += 2;
1048 192950 : if (CurrentSrcIdx >= CopyLike.getNumOperands())
1049 : return false;
1050 : }
1051 193012 : const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1052 193012 : Src.Reg = MOInsertedReg.getReg();
1053 : // If we have to compose sub-register indices, bail out.
1054 193012 : if ((Src.SubReg = MOInsertedReg.getSubReg()))
1055 : return false;
1056 :
1057 : // We want to track something that is compatible with the related
1058 : // partial definition.
1059 192950 : Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1060 :
1061 : const MachineOperand &MODef = CopyLike.getOperand(0);
1062 192950 : Dst.Reg = MODef.getReg();
1063 : // If we have to compose sub-registers, bail.
1064 192950 : return MODef.getSubReg() == 0;
1065 : }
1066 :
1067 19897 : bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1068 : // We cannot rewrite out of bound operands.
1069 : // Moreover, rewritable sources are at odd positions.
1070 19897 : if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1071 : return false;
1072 :
1073 19897 : MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1074 19897 : MO.setReg(NewReg);
1075 : MO.setSubReg(NewSubReg);
1076 19897 : return true;
1077 : }
1078 : };
1079 :
1080 : } // end anonymous namespace
1081 :
1082 : /// Get the appropriated Rewriter for \p MI.
1083 : /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084 : /// rewriter works for \p MI.
1085 852958 : static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1086 : // Handle uncoalescable copy-like instructions.
1087 3411832 : if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1088 : MI.isExtractSubregLike())
1089 0 : return new UncoalescableRewriter(MI);
1090 :
1091 1705916 : switch (MI.getOpcode()) {
1092 : default:
1093 : return nullptr;
1094 757100 : case TargetOpcode::COPY:
1095 757100 : return new CopyRewriter(MI);
1096 23710 : case TargetOpcode::INSERT_SUBREG:
1097 23710 : return new InsertSubregRewriter(MI);
1098 0 : case TargetOpcode::EXTRACT_SUBREG:
1099 0 : return new ExtractSubregRewriter(MI, TII);
1100 72148 : case TargetOpcode::REG_SEQUENCE:
1101 72148 : return new RegSequenceRewriter(MI);
1102 : }
1103 : }
1104 :
1105 : /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1106 : /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107 : /// multiple sources for a given \p Def are found along the way, we found a
1108 : /// PHI instructions that needs to be rewritten.
1109 : /// TODO: HandleMultipleSources should be removed once we test PHI handling
1110 : /// with coalescable copies.
1111 : static RegSubRegPair
1112 226755 : getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1113 : RegSubRegPair Def,
1114 : const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1115 : bool HandleMultipleSources = true) {
1116 226755 : RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1117 : while (true) {
1118 524526 : ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1119 : // If there are no entries on the map, LookupSrc is the new source.
1120 524526 : if (!Res.isValid())
1121 226749 : return LookupSrc;
1122 :
1123 : // There's only one source for this definition, keep searching...
1124 : unsigned NumSrcs = Res.getNumSources();
1125 297777 : if (NumSrcs == 1) {
1126 297771 : LookupSrc.Reg = Res.getSrcReg(0);
1127 297771 : LookupSrc.SubReg = Res.getSrcSubReg(0);
1128 : continue;
1129 : }
1130 :
1131 : // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132 6 : if (!HandleMultipleSources)
1133 : break;
1134 :
1135 : // Multiple sources, recurse into each source to find a new source
1136 : // for it. Then, rewrite the PHI accordingly to its new edges.
1137 : SmallVector<RegSubRegPair, 4> NewPHISrcs;
1138 18 : for (unsigned i = 0; i < NumSrcs; ++i) {
1139 12 : RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1140 12 : NewPHISrcs.push_back(
1141 24 : getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1142 : }
1143 :
1144 : // Build the new PHI node and return its def register as the new source.
1145 6 : MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1146 6 : MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1147 : LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148 : LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI);
1149 : LLVM_DEBUG(dbgs() << " With: " << NewPHI);
1150 6 : const MachineOperand &MODef = NewPHI.getOperand(0);
1151 6 : return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1152 : }
1153 :
1154 0 : return RegSubRegPair(0, 0);
1155 : }
1156 :
1157 : /// Optimize generic copy instructions to avoid cross register bank copy.
1158 : /// The optimization looks through a chain of copies and tries to find a source
1159 : /// that has a compatible register class.
1160 : /// Two register classes are considered to be compatible if they share the same
1161 : /// register bank.
1162 : /// New copies issued by this optimization are register allocator
1163 : /// friendly. This optimization does not remove any copy as it may
1164 : /// overconstrain the register allocator, but replaces some operands
1165 : /// when possible.
1166 : /// \pre isCoalescableCopy(*MI) is true.
1167 : /// \return True, when \p MI has been rewritten. False otherwise.
1168 1214033 : bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1169 : assert(isCoalescableCopy(MI) && "Invalid argument");
1170 : assert(MI.getDesc().getNumDefs() == 1 &&
1171 : "Coalescer can understand multiple defs?!");
1172 1214033 : const MachineOperand &MODef = MI.getOperand(0);
1173 : // Do not rewrite physical definitions.
1174 2428066 : if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
1175 : return false;
1176 :
1177 : bool Changed = false;
1178 : // Get the right rewriter for the current copy.
1179 852958 : std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1180 : // If none exists, bail out.
1181 852958 : if (!CpyRewriter)
1182 : return false;
1183 : // Rewrite each rewritable source.
1184 : RegSubRegPair Src;
1185 : RegSubRegPair TrackPair;
1186 1826718 : while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1187 : // Keep track of PHI nodes and its incoming edges when looking for sources.
1188 60741 : RewriteMapTy RewriteMap;
1189 : // Try to find a more suitable source. If we failed to do so, or get the
1190 : // actual source, move to the next source.
1191 973760 : if (!findNextSource(TrackPair, RewriteMap))
1192 913019 : continue;
1193 :
1194 : // Get the new source to rewrite. TODO: Only enable handling of multiple
1195 : // sources (PHIs) once we have a motivating example and testcases for it.
1196 : RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1197 226484 : /*HandleMultipleSources=*/false);
1198 226484 : if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1199 : continue;
1200 :
1201 : // Rewrite source.
1202 60741 : if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1203 : // We may have extended the live-range of NewSrc, account for that.
1204 60741 : MRI->clearKillFlags(NewSrc.Reg);
1205 : Changed = true;
1206 : }
1207 : }
1208 : // TODO: We could have a clean-up method to tidy the instruction.
1209 : // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1210 : // => v0 = COPY v1
1211 : // Currently we haven't seen motivating example for that and we
1212 : // want to avoid untested code.
1213 : NumRewrittenCopies += Changed;
1214 852958 : return Changed;
1215 : }
1216 :
1217 : /// Rewrite the source found through \p Def, by using the \p RewriteMap
1218 : /// and create a new COPY instruction. More info about RewriteMap in
1219 : /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220 : /// Uncoalescable copies, since they are copy like instructions that aren't
1221 : /// recognized by the register allocator.
1222 : MachineInstr &
1223 0 : PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1224 : RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1225 : assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
1226 : "We do not rewrite physical registers");
1227 :
1228 : // Find the new source to use in the COPY rewrite.
1229 0 : RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1230 :
1231 : // Insert the COPY.
1232 0 : const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1233 0 : unsigned NewVReg = MRI->createVirtualRegister(DefRC);
1234 :
1235 : MachineInstr *NewCopy =
1236 0 : BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1237 0 : TII->get(TargetOpcode::COPY), NewVReg)
1238 0 : .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1239 :
1240 0 : if (Def.SubReg) {
1241 0 : NewCopy->getOperand(0).setSubReg(Def.SubReg);
1242 0 : NewCopy->getOperand(0).setIsUndef();
1243 : }
1244 :
1245 : LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246 : LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike);
1247 : LLVM_DEBUG(dbgs() << " With: " << *NewCopy);
1248 0 : MRI->replaceRegWith(Def.Reg, NewVReg);
1249 0 : MRI->clearKillFlags(NewVReg);
1250 :
1251 : // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252 : // account for that.
1253 0 : MRI->clearKillFlags(NewSrc.Reg);
1254 :
1255 0 : return *NewCopy;
1256 : }
1257 :
1258 : /// Optimize copy-like instructions to create
1259 : /// register coalescer friendly instruction.
1260 : /// The optimization tries to kill-off the \p MI by looking
1261 : /// through a chain of copies to find a source that has a compatible
1262 : /// register class.
1263 : /// If such a source is found, it replace \p MI by a generic COPY
1264 : /// operation.
1265 : /// \pre isUncoalescableCopy(*MI) is true.
1266 : /// \return True, when \p MI has been optimized. In that case, \p MI has
1267 : /// been removed from its parent.
1268 : /// All COPY instructions created, are inserted in \p LocalMIs.
1269 9059 : bool PeepholeOptimizer::optimizeUncoalescableCopy(
1270 : MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1271 : assert(isUncoalescableCopy(MI) && "Invalid argument");
1272 : UncoalescableRewriter CpyRewriter(MI);
1273 :
1274 : // Rewrite each rewritable source by generating new COPYs. This works
1275 : // differently from optimizeCoalescableCopy since it first makes sure that all
1276 : // definitions can be rewritten.
1277 9059 : RewriteMapTy RewriteMap;
1278 : RegSubRegPair Src;
1279 : RegSubRegPair Def;
1280 : SmallVector<RegSubRegPair, 4> RewritePairs;
1281 9319 : while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1282 : // If a physical register is here, this is probably for a good reason.
1283 : // Do not rewrite that.
1284 18360 : if (TargetRegisterInfo::isPhysicalRegister(Def.Reg))
1285 : return false;
1286 :
1287 : // If we do not know how to rewrite this definition, there is no point
1288 : // in trying to kill this instruction.
1289 9180 : if (!findNextSource(Def, RewriteMap))
1290 : return false;
1291 :
1292 260 : RewritePairs.push_back(Def);
1293 : }
1294 :
1295 : // The change is possible for all defs, do it.
1296 398 : for (const RegSubRegPair &Def : RewritePairs) {
1297 : // Rewrite the "copy" in a way the register coalescer understands.
1298 259 : MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1299 259 : LocalMIs.insert(&NewCopy);
1300 : }
1301 :
1302 : // MI is now dead.
1303 139 : MI.eraseFromParent();
1304 : ++NumUncoalescableCopies;
1305 139 : return true;
1306 : }
1307 :
1308 : /// Check whether MI is a candidate for folding into a later instruction.
1309 : /// We only fold loads to virtual registers and the virtual register defined
1310 : /// has a single use.
1311 0 : bool PeepholeOptimizer::isLoadFoldable(
1312 : MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1313 0 : if (!MI.canFoldAsLoad() || !MI.mayLoad())
1314 0 : return false;
1315 0 : const MCInstrDesc &MCID = MI.getDesc();
1316 0 : if (MCID.getNumDefs() != 1)
1317 0 : return false;
1318 :
1319 0 : unsigned Reg = MI.getOperand(0).getReg();
1320 : // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1321 : // loads. It should be checked when processing uses of the load, since
1322 : // uses can be removed during peephole.
1323 0 : if (!MI.getOperand(0).getSubReg() &&
1324 0 : TargetRegisterInfo::isVirtualRegister(Reg) &&
1325 0 : MRI->hasOneNonDBGUse(Reg)) {
1326 0 : FoldAsLoadDefCandidates.insert(Reg);
1327 0 : return true;
1328 : }
1329 : return false;
1330 : }
1331 :
1332 0 : bool PeepholeOptimizer::isMoveImmediate(
1333 : MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1334 : DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1335 0 : const MCInstrDesc &MCID = MI.getDesc();
1336 0 : if (!MI.isMoveImmediate())
1337 0 : return false;
1338 0 : if (MCID.getNumDefs() != 1)
1339 0 : return false;
1340 0 : unsigned Reg = MI.getOperand(0).getReg();
1341 0 : if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1342 0 : ImmDefMIs.insert(std::make_pair(Reg, &MI));
1343 0 : ImmDefRegs.insert(Reg);
1344 0 : return true;
1345 : }
1346 :
1347 : return false;
1348 : }
1349 :
1350 : /// Try folding register operands that are defined by move immediate
1351 : /// instructions, i.e. a trivial constant folding optimization, if
1352 : /// and only if the def and use are in the same BB.
1353 0 : bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1354 : SmallSet<unsigned, 4> &ImmDefRegs,
1355 : DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1356 0 : for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1357 0 : MachineOperand &MO = MI.getOperand(i);
1358 0 : if (!MO.isReg() || MO.isDef())
1359 0 : continue;
1360 : // Ignore dead implicit defs.
1361 0 : if (MO.isImplicit() && MO.isDead())
1362 0 : continue;
1363 0 : unsigned Reg = MO.getReg();
1364 0 : if (!TargetRegisterInfo::isVirtualRegister(Reg))
1365 0 : continue;
1366 0 : if (ImmDefRegs.count(Reg) == 0)
1367 0 : continue;
1368 0 : DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1369 : assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1370 0 : if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1371 : ++NumImmFold;
1372 0 : return true;
1373 : }
1374 : }
1375 : return false;
1376 : }
1377 :
1378 : // FIXME: This is very simple and misses some cases which should be handled when
1379 : // motivating examples are found.
1380 : //
1381 : // The copy rewriting logic should look at uses as well as defs and be able to
1382 : // eliminate copies across blocks.
1383 : //
1384 : // Later copies that are subregister extracts will also not be eliminated since
1385 : // only the first copy is considered.
1386 : //
1387 : // e.g.
1388 : // %1 = COPY %0
1389 : // %2 = COPY %0:sub1
1390 : //
1391 : // Should replace %2 uses with %1:sub1
1392 0 : bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1393 : SmallSet<unsigned, 4> &CopySrcRegs,
1394 : DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1395 : assert(MI.isCopy() && "expected a COPY machine instruction");
1396 :
1397 0 : unsigned SrcReg = MI.getOperand(1).getReg();
1398 0 : if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1399 0 : return false;
1400 :
1401 0 : unsigned DstReg = MI.getOperand(0).getReg();
1402 0 : if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1403 0 : return false;
1404 :
1405 0 : if (CopySrcRegs.insert(SrcReg).second) {
1406 : // First copy of this reg seen.
1407 0 : CopyMIs.insert(std::make_pair(SrcReg, &MI));
1408 0 : return false;
1409 : }
1410 :
1411 0 : MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1412 :
1413 0 : unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1414 0 : unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1415 :
1416 : // Can't replace different subregister extracts.
1417 0 : if (SrcSubReg != PrevSrcSubReg)
1418 0 : return false;
1419 :
1420 0 : unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
1421 :
1422 : // Only replace if the copy register class is the same.
1423 : //
1424 : // TODO: If we have multiple copies to different register classes, we may want
1425 : // to track multiple copies of the same source register.
1426 0 : if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1427 0 : return false;
1428 :
1429 0 : MRI->replaceRegWith(DstReg, PrevDstReg);
1430 :
1431 : // Lifetime of the previous copy has been extended.
1432 0 : MRI->clearKillFlags(PrevDstReg);
1433 0 : return true;
1434 : }
1435 :
1436 0 : bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1437 7421910 : return TargetRegisterInfo::isPhysicalRegister(Reg) &&
1438 2460906 : !MRI->isAllocatable(Reg);
1439 : }
1440 :
1441 1056056 : bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1442 : MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1443 : assert(MI.isCopy() && "expected a COPY machine instruction");
1444 :
1445 1056056 : if (DisableNAPhysCopyOpt)
1446 : return false;
1447 :
1448 1056056 : unsigned DstReg = MI.getOperand(0).getReg();
1449 1056056 : unsigned SrcReg = MI.getOperand(1).getReg();
1450 102942 : if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
1451 : // %vreg = COPY %physreg
1452 : // Avoid using a datastructure which can track multiple live non-allocatable
1453 : // phys->virt copies since LLVM doesn't seem to do this.
1454 51463 : NAPhysToVirtMIs.insert({SrcReg, &MI});
1455 51463 : return false;
1456 : }
1457 :
1458 1004593 : if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1459 1003484 : return false;
1460 :
1461 : // %physreg = COPY %vreg
1462 1109 : auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1463 1109 : if (PrevCopy == NAPhysToVirtMIs.end()) {
1464 : // We can't remove the copy: there was an intervening clobber of the
1465 : // non-allocatable physical register after the copy to virtual.
1466 : LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1467 : << MI);
1468 : return false;
1469 : }
1470 :
1471 842 : unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1472 842 : if (PrevDstReg == SrcReg) {
1473 : // Remove the virt->phys copy: we saw the virtual register definition, and
1474 : // the non-allocatable physical register's state hasn't changed since then.
1475 : LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1476 : ++NumNAPhysCopies;
1477 : return true;
1478 : }
1479 :
1480 : // Potential missed optimization opportunity: we saw a different virtual
1481 : // register get a copy of the non-allocatable physical register, and we only
1482 : // track one such copy. Avoid getting confused by this new non-allocatable
1483 : // physical register definition, and remove it from the tracked copies.
1484 : LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1485 : NAPhysToVirtMIs.erase(PrevCopy);
1486 350 : return false;
1487 : }
1488 :
1489 : /// \bried Returns true if \p MO is a virtual register operand.
1490 : static bool isVirtualRegisterOperand(MachineOperand &MO) {
1491 4473 : if (!MO.isReg())
1492 : return false;
1493 4473 : return TargetRegisterInfo::isVirtualRegister(MO.getReg());
1494 : }
1495 :
1496 16419 : bool PeepholeOptimizer::findTargetRecurrence(
1497 : unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1498 : RecurrenceCycle &RC) {
1499 : // Recurrence found if Reg is in TargetRegs.
1500 16419 : if (TargetRegs.count(Reg))
1501 : return true;
1502 :
1503 : // TODO: Curerntly, we only allow the last instruction of the recurrence
1504 : // cycle (the instruction that feeds the PHI instruction) to have more than
1505 : // one uses to guarantee that commuting operands does not tie registers
1506 : // with overlapping live range. Once we have actual live range info of
1507 : // each register, this constraint can be relaxed.
1508 14355 : if (!MRI->hasOneNonDBGUse(Reg))
1509 : return false;
1510 :
1511 : // Give up if the reccurrence chain length is longer than the limit.
1512 11052 : if (RC.size() >= MaxRecurrenceChain)
1513 : return false;
1514 :
1515 5492 : MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1516 5492 : unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1517 :
1518 : // Only interested in recurrences whose instructions have only one def, which
1519 : // is a virtual register.
1520 5492 : if (MI.getDesc().getNumDefs() != 1)
1521 : return false;
1522 :
1523 4473 : MachineOperand &DefOp = MI.getOperand(0);
1524 4473 : if (!isVirtualRegisterOperand(DefOp))
1525 : return false;
1526 :
1527 : // Check if def operand of MI is tied to any use operand. We are only
1528 : // interested in the case that all the instructions in the recurrence chain
1529 : // have there def operand tied with one of the use operand.
1530 : unsigned TiedUseIdx;
1531 4306 : if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1532 : return false;
1533 :
1534 2568 : if (Idx == TiedUseIdx) {
1535 4652 : RC.push_back(RecurrenceInstr(&MI));
1536 2326 : return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1537 : } else {
1538 : // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1539 242 : unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1540 242 : if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1541 334 : RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1542 167 : return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1543 : }
1544 : }
1545 :
1546 75 : return false;
1547 : }
1548 :
1549 : /// Phi instructions will eventually be lowered to copy instructions.
1550 : /// If phi is in a loop header, a recurrence may formulated around the source
1551 : /// and destination of the phi. For such case commuting operands of the
1552 : /// instructions in the recurrence may enable coalescing of the copy instruction
1553 : /// generated from the phi. For example, if there is a recurrence of
1554 : ///
1555 : /// LoopHeader:
1556 : /// %1 = phi(%0, %100)
1557 : /// LoopLatch:
1558 : /// %0<def, tied1> = ADD %2<def, tied0>, %1
1559 : ///
1560 : /// , the fact that %0 and %2 are in the same tied operands set makes
1561 : /// the coalescing of copy instruction generated from the phi in
1562 : /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1563 : /// %2 have overlapping live range. This introduces additional move
1564 : /// instruction to the final assembly. However, if we commute %2 and
1565 : /// %1 of ADD instruction, the redundant move instruction can be
1566 : /// avoided.
1567 13926 : bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1568 13926 : SmallSet<unsigned, 2> TargetRegs;
1569 42396 : for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1570 28470 : MachineOperand &MO = PHI.getOperand(Idx);
1571 : assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1572 28470 : TargetRegs.insert(MO.getReg());
1573 : }
1574 :
1575 : bool Changed = false;
1576 : RecurrenceCycle RC;
1577 13926 : if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1578 : // Commutes operands of instructions in RC if necessary so that the copy to
1579 : // be generated from PHI can be coalesced.
1580 : LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1581 4111 : for (auto &RI : RC) {
1582 : LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1583 : auto CP = RI.getCommutePair();
1584 2047 : if (CP) {
1585 : Changed = true;
1586 130 : TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1587 : (*CP).second);
1588 : LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1589 : }
1590 : }
1591 : }
1592 :
1593 13926 : return Changed;
1594 : }
1595 :
1596 197829 : bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1597 197829 : if (skipFunction(MF.getFunction()))
1598 : return false;
1599 :
1600 : LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1601 : LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1602 :
1603 197643 : if (DisablePeephole)
1604 : return false;
1605 :
1606 191092 : TII = MF.getSubtarget().getInstrInfo();
1607 191092 : TRI = MF.getSubtarget().getRegisterInfo();
1608 191092 : MRI = &MF.getRegInfo();
1609 191092 : DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1610 191092 : MLI = &getAnalysis<MachineLoopInfo>();
1611 :
1612 : bool Changed = false;
1613 :
1614 641715 : for (MachineBasicBlock &MBB : MF) {
1615 : bool SeenMoveImm = false;
1616 :
1617 : // During this forward scan, at some point it needs to answer the question
1618 : // "given a pointer to an MI in the current BB, is it located before or
1619 : // after the current instruction".
1620 : // To perform this, the following set keeps track of the MIs already seen
1621 : // during the scan, if a MI is not in the set, it is assumed to be located
1622 : // after. Newly created MIs have to be inserted in the set as well.
1623 : SmallPtrSet<MachineInstr*, 16> LocalMIs;
1624 450623 : SmallSet<unsigned, 4> ImmDefRegs;
1625 : DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1626 450623 : SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1627 :
1628 : // Track when a non-allocatable physical register is copied to a virtual
1629 : // register so that useless moves can be removed.
1630 : //
1631 : // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1632 : // without any intervening re-definition of %physreg.
1633 : DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1634 :
1635 : // Set of virtual registers that are copied from.
1636 450623 : SmallSet<unsigned, 4> CopySrcRegs;
1637 : DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1638 :
1639 450623 : bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1640 :
1641 : for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1642 5022738 : MII != MIE; ) {
1643 : MachineInstr *MI = &*MII;
1644 : // We may be erasing MI below, increment MII now.
1645 : ++MII;
1646 4572115 : LocalMIs.insert(MI);
1647 :
1648 : // Skip debug instructions. They should not affect this peephole optimization.
1649 : if (MI->isDebugInstr())
1650 : continue;
1651 :
1652 : if (MI->isPosition())
1653 : continue;
1654 :
1655 4325053 : if (IsLoopHeader && MI->isPHI()) {
1656 13926 : if (optimizeRecurrence(*MI)) {
1657 : Changed = true;
1658 : continue;
1659 : }
1660 : }
1661 :
1662 4324924 : if (!MI->isCopy()) {
1663 19492836 : for (const MachineOperand &MO : MI->operands()) {
1664 : // Visit all operands: definitions can be implicit or explicit.
1665 16286086 : if (MO.isReg()) {
1666 10291443 : unsigned Reg = MO.getReg();
1667 10291443 : if (MO.isDef() && isNAPhysCopy(Reg)) {
1668 1583862 : const auto &Def = NAPhysToVirtMIs.find(Reg);
1669 1583862 : if (Def != NAPhysToVirtMIs.end()) {
1670 : // A new definition of the non-allocatable physical register
1671 : // invalidates previous copies.
1672 : LLVM_DEBUG(dbgs()
1673 : << "NAPhysCopy: invalidating because of " << *MI);
1674 : NAPhysToVirtMIs.erase(Def);
1675 : }
1676 : }
1677 5994643 : } else if (MO.isRegMask()) {
1678 137831 : const uint32_t *RegMask = MO.getRegMask();
1679 186908 : for (auto &RegMI : NAPhysToVirtMIs) {
1680 49077 : unsigned Def = RegMI.first;
1681 49077 : if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1682 : LLVM_DEBUG(dbgs()
1683 : << "NAPhysCopy: invalidating because of " << *MI);
1684 48435 : NAPhysToVirtMIs.erase(Def);
1685 : }
1686 : }
1687 : }
1688 : }
1689 : }
1690 :
1691 4324924 : if (MI->isImplicitDef() || MI->isKill())
1692 : continue;
1693 :
1694 4287069 : if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1695 : // Blow away all non-allocatable physical registers knowledge since we
1696 : // don't know what's correct anymore.
1697 : //
1698 : // FIXME: handle explicit asm clobbers.
1699 : LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1700 : << *MI);
1701 73346 : NAPhysToVirtMIs.clear();
1702 : }
1703 :
1704 4296129 : if ((isUncoalescableCopy(*MI) &&
1705 4295989 : optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1706 8653263 : (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1707 908 : (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1708 : // MI is deleted.
1709 : LocalMIs.erase(MI);
1710 : Changed = true;
1711 1918 : continue;
1712 : }
1713 :
1714 4285151 : if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1715 : Changed = true;
1716 : continue;
1717 : }
1718 :
1719 1214033 : if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1720 : // MI is just rewritten.
1721 : Changed = true;
1722 : continue;
1723 : }
1724 :
1725 5312196 : if (MI->isCopy() &&
1726 2133389 : (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1727 1056056 : foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1728 : LocalMIs.erase(MI);
1729 21769 : MI->eraseFromParent();
1730 : Changed = true;
1731 21769 : continue;
1732 : }
1733 :
1734 4213094 : if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1735 : SeenMoveImm = true;
1736 : } else {
1737 4145379 : Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1738 : // optimizeExtInstr might have created new instructions after MI
1739 : // and before the already incremented MII. Adjust MII so that the
1740 : // next iteration sees the new instructions.
1741 : MII = MI;
1742 : ++MII;
1743 4145379 : if (SeenMoveImm)
1744 371310 : Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1745 : }
1746 :
1747 : // Check whether MI is a load candidate for folding into a later
1748 : // instruction. If MI is not a candidate, check whether we can fold an
1749 : // earlier load into MI.
1750 4213094 : if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1751 : !FoldAsLoadDefCandidates.empty()) {
1752 :
1753 : // We visit each operand even after successfully folding a previous
1754 : // one. This allows us to fold multiple loads into a single
1755 : // instruction. We do assume that optimizeLoadInstr doesn't insert
1756 : // foldable uses earlier in the argument list. Since we don't restart
1757 : // iteration, we'd miss such cases.
1758 402389 : const MCInstrDesc &MIDesc = MI->getDesc();
1759 1840852 : for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1760 : ++i) {
1761 1438463 : const MachineOperand &MOp = MI->getOperand(i);
1762 1438463 : if (!MOp.isReg())
1763 415699 : continue;
1764 1022764 : unsigned FoldAsLoadDefReg = MOp.getReg();
1765 1022764 : if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1766 : // We need to fold load after optimizeCmpInstr, since
1767 : // optimizeCmpInstr can enable folding by converting SUB to CMP.
1768 : // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1769 : // we need it for markUsesInDebugValueAsUndef().
1770 150586 : unsigned FoldedReg = FoldAsLoadDefReg;
1771 150586 : MachineInstr *DefMI = nullptr;
1772 150586 : if (MachineInstr *FoldMI =
1773 150586 : TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1774 : // Update LocalMIs since we replaced MI with FoldMI and deleted
1775 : // DefMI.
1776 : LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1777 : LLVM_DEBUG(dbgs() << " With: " << *FoldMI);
1778 : LocalMIs.erase(MI);
1779 4316 : LocalMIs.erase(DefMI);
1780 4316 : LocalMIs.insert(FoldMI);
1781 4316 : MI->eraseFromParent();
1782 4316 : DefMI->eraseFromParent();
1783 4316 : MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784 4316 : FoldAsLoadDefCandidates.erase(FoldedReg);
1785 : ++NumLoadFold;
1786 :
1787 : // MI is replaced with FoldMI so we can continue trying to fold
1788 : Changed = true;
1789 : MI = FoldMI;
1790 : }
1791 : }
1792 : }
1793 : }
1794 :
1795 : // If we run into an instruction we can't fold across, discard
1796 : // the load candidates. Note: We might be able to fold *into* this
1797 : // instruction, so this needs to be after the folding logic.
1798 4213094 : if (MI->isLoadFoldBarrier()) {
1799 : LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800 : FoldAsLoadDefCandidates.clear();
1801 : }
1802 : }
1803 : }
1804 :
1805 : return Changed;
1806 : }
1807 :
1808 912668 : ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809 : assert(Def->isCopy() && "Invalid definition");
1810 : // Copy instruction are supposed to be: Def = Src.
1811 : // If someone breaks this assumption, bad things will happen everywhere.
1812 : assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1813 :
1814 1825336 : if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1815 : // If we look for a different subreg, it means we want a subreg of src.
1816 : // Bails as we do not support composing subregs yet.
1817 3939 : return ValueTrackerResult();
1818 : // Otherwise, we want the whole source.
1819 : const MachineOperand &Src = Def->getOperand(1);
1820 908729 : if (Src.isUndef())
1821 0 : return ValueTrackerResult();
1822 908729 : return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1823 : }
1824 :
1825 4656 : ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1826 : assert(Def->isBitcast() && "Invalid definition");
1827 :
1828 : // Bail if there are effects that a plain copy will not expose.
1829 4656 : if (Def->hasUnmodeledSideEffects())
1830 0 : return ValueTrackerResult();
1831 :
1832 : // Bitcasts with more than one def are not supported.
1833 4656 : if (Def->getDesc().getNumDefs() != 1)
1834 0 : return ValueTrackerResult();
1835 9312 : const MachineOperand DefOp = Def->getOperand(DefIdx);
1836 4656 : if (DefOp.getSubReg() != DefSubReg)
1837 : // If we look for a different subreg, it means we want a subreg of the src.
1838 : // Bails as we do not support composing subregs yet.
1839 0 : return ValueTrackerResult();
1840 :
1841 4656 : unsigned SrcIdx = Def->getNumOperands();
1842 13364 : for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1843 : ++OpIdx) {
1844 : const MachineOperand &MO = Def->getOperand(OpIdx);
1845 8708 : if (!MO.isReg() || !MO.getReg())
1846 : continue;
1847 : // Ignore dead implicit defs.
1848 4680 : if (MO.isImplicit() && MO.isDead())
1849 : continue;
1850 : assert(!MO.isDef() && "We should have skipped all the definitions by now");
1851 4656 : if (SrcIdx != EndOpIdx)
1852 : // Multiple sources?
1853 0 : return ValueTrackerResult();
1854 : SrcIdx = OpIdx;
1855 : }
1856 :
1857 : // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1858 : // will break the assumed guarantees for the upper bits.
1859 9472 : for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1860 4819 : if (UseMI.isSubregToReg())
1861 6 : return ValueTrackerResult();
1862 : }
1863 :
1864 4653 : const MachineOperand &Src = Def->getOperand(SrcIdx);
1865 4653 : if (Src.isUndef())
1866 3 : return ValueTrackerResult();
1867 4650 : return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1868 : }
1869 :
1870 244956 : ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1871 : assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1872 : "Invalid definition");
1873 :
1874 489912 : if (Def->getOperand(DefIdx).getSubReg())
1875 : // If we are composing subregs, bail out.
1876 : // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1877 : // This should almost never happen as the SSA property is tracked at
1878 : // the register level (as opposed to the subreg level).
1879 : // I.e.,
1880 : // Def.sub0 =
1881 : // Def.sub1 =
1882 : // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1883 : // Def. Thus, it must not be generated.
1884 : // However, some code could theoretically generates a single
1885 : // Def.sub0 (i.e, not defining the other subregs) and we would
1886 : // have this case.
1887 : // If we can ascertain (or force) that this never happens, we could
1888 : // turn that into an assertion.
1889 0 : return ValueTrackerResult();
1890 :
1891 244956 : if (!TII)
1892 : // We could handle the REG_SEQUENCE here, but we do not want to
1893 : // duplicate the code from the generic TII.
1894 0 : return ValueTrackerResult();
1895 :
1896 : SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1897 244956 : if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1898 0 : return ValueTrackerResult();
1899 :
1900 : // We are looking at:
1901 : // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1902 : // Check if one of the operand defines the subreg we are interested in.
1903 487915 : for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1904 479881 : if (RegSeqInput.SubIdx == DefSubReg) {
1905 236922 : if (RegSeqInput.SubReg)
1906 : // Bail if we have to compose sub registers.
1907 3046 : return ValueTrackerResult();
1908 :
1909 233876 : return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1910 : }
1911 : }
1912 :
1913 : // If the subreg we are tracking is super-defined by another subreg,
1914 : // we could follow this value. However, this would require to compose
1915 : // the subreg and we do not do that for now.
1916 8034 : return ValueTrackerResult();
1917 : }
1918 :
1919 28764 : ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1920 : assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1921 : "Invalid definition");
1922 :
1923 57528 : if (Def->getOperand(DefIdx).getSubReg())
1924 : // If we are composing subreg, bail out.
1925 : // Same remark as getNextSourceFromRegSequence.
1926 : // I.e., this may be turned into an assert.
1927 0 : return ValueTrackerResult();
1928 :
1929 28764 : if (!TII)
1930 : // We could handle the REG_SEQUENCE here, but we do not want to
1931 : // duplicate the code from the generic TII.
1932 0 : return ValueTrackerResult();
1933 :
1934 : RegSubRegPair BaseReg;
1935 : RegSubRegPairAndIdx InsertedReg;
1936 28764 : if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1937 0 : return ValueTrackerResult();
1938 :
1939 : // We are looking at:
1940 : // Def = INSERT_SUBREG v0, v1, sub1
1941 : // There are two cases:
1942 : // 1. DefSubReg == sub1, get v1.
1943 : // 2. DefSubReg != sub1, the value may be available through v0.
1944 :
1945 : // #1 Check if the inserted register matches the required sub index.
1946 28764 : if (InsertedReg.SubIdx == DefSubReg) {
1947 23807 : return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1948 : }
1949 : // #2 Otherwise, if the sub register we are looking for is not partial
1950 : // defined by the inserted element, we can look through the main
1951 : // register (v0).
1952 4957 : const MachineOperand &MODef = Def->getOperand(DefIdx);
1953 : // If the result register (Def) and the base register (v0) do not
1954 : // have the same register class or if we have to compose
1955 : // subregisters, bail out.
1956 14871 : if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1957 4221 : BaseReg.SubReg)
1958 736 : return ValueTrackerResult();
1959 :
1960 : // Get the TRI and check if the inserted sub-register overlaps with the
1961 : // sub-register we are tracking.
1962 4221 : const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1963 4221 : if (!TRI ||
1964 4221 : !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1965 4221 : TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1966 4214 : return ValueTrackerResult();
1967 : // At this point, the value is available in v0 via the same subreg
1968 : // we used for Def.
1969 7 : return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1970 : }
1971 :
1972 3121 : ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1973 : assert((Def->isExtractSubreg() ||
1974 : Def->isExtractSubregLike()) && "Invalid definition");
1975 : // We are looking at:
1976 : // Def = EXTRACT_SUBREG v0, sub0
1977 :
1978 : // Bail if we have to compose sub registers.
1979 : // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1980 3121 : if (DefSubReg)
1981 0 : return ValueTrackerResult();
1982 :
1983 3121 : if (!TII)
1984 : // We could handle the EXTRACT_SUBREG here, but we do not want to
1985 : // duplicate the code from the generic TII.
1986 0 : return ValueTrackerResult();
1987 :
1988 : RegSubRegPairAndIdx ExtractSubregInputReg;
1989 3121 : if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1990 0 : return ValueTrackerResult();
1991 :
1992 : // Bail if we have to compose sub registers.
1993 : // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1994 3121 : if (ExtractSubregInputReg.SubReg)
1995 0 : return ValueTrackerResult();
1996 : // Otherwise, the value is available in the v0.sub0.
1997 : return ValueTrackerResult(ExtractSubregInputReg.Reg,
1998 3121 : ExtractSubregInputReg.SubIdx);
1999 : }
2000 :
2001 0 : ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2002 : assert(Def->isSubregToReg() && "Invalid definition");
2003 : // We are looking at:
2004 : // Def = SUBREG_TO_REG Imm, v0, sub0
2005 :
2006 : // Bail if we have to compose sub registers.
2007 : // If DefSubReg != sub0, we would have to check that all the bits
2008 : // we track are included in sub0 and if yes, we would have to
2009 : // determine the right subreg in v0.
2010 0 : if (DefSubReg != Def->getOperand(3).getImm())
2011 0 : return ValueTrackerResult();
2012 : // Bail if we have to compose sub registers.
2013 : // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2014 0 : if (Def->getOperand(2).getSubReg())
2015 0 : return ValueTrackerResult();
2016 :
2017 : return ValueTrackerResult(Def->getOperand(2).getReg(),
2018 0 : Def->getOperand(3).getImm());
2019 : }
2020 :
2021 : /// Explore each PHI incoming operand and return its sources.
2022 0 : ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2023 : assert(Def->isPHI() && "Invalid definition");
2024 : ValueTrackerResult Res;
2025 :
2026 : // If we look for a different subreg, bail as we do not support composing
2027 : // subregs yet.
2028 0 : if (Def->getOperand(0).getSubReg() != DefSubReg)
2029 0 : return ValueTrackerResult();
2030 :
2031 : // Return all register sources for PHI instructions.
2032 0 : for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2033 0 : const MachineOperand &MO = Def->getOperand(i);
2034 : assert(MO.isReg() && "Invalid PHI instruction");
2035 : // We have no code to deal with undef operands. They shouldn't happen in
2036 : // normal programs anyway.
2037 0 : if (MO.isUndef())
2038 0 : return ValueTrackerResult();
2039 0 : Res.addSource(MO.getReg(), MO.getSubReg());
2040 : }
2041 :
2042 : return Res;
2043 : }
2044 :
2045 1479875 : ValueTrackerResult ValueTracker::getNextSourceImpl() {
2046 : assert(Def && "This method needs a valid definition");
2047 :
2048 : assert(((Def->getOperand(DefIdx).isDef() &&
2049 : (DefIdx < Def->getDesc().getNumDefs() ||
2050 : Def->getDesc().isVariadic())) ||
2051 : Def->getOperand(DefIdx).isImplicit()) &&
2052 : "Invalid DefIdx");
2053 2959750 : if (Def->isCopy())
2054 912668 : return getNextSourceFromCopy();
2055 567207 : if (Def->isBitcast())
2056 4656 : return getNextSourceFromBitcast();
2057 : // All the remaining cases involve "complex" instructions.
2058 : // Bail if we did not ask for the advanced tracking.
2059 562551 : if (DisableAdvCopyOpt)
2060 38 : return ValueTrackerResult();
2061 1444178 : if (Def->isRegSequence() || Def->isRegSequenceLike())
2062 244956 : return getNextSourceFromRegSequence();
2063 924100 : if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2064 28764 : return getNextSourceFromInsertSubreg();
2065 866379 : if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2066 3121 : return getNextSourceFromExtractSubreg();
2067 571344 : if (Def->isSubregToReg())
2068 11 : return getNextSourceFromSubregToReg();
2069 : if (Def->isPHI())
2070 369 : return getNextSourceFromPHI();
2071 285292 : return ValueTrackerResult();
2072 : }
2073 :
2074 1479875 : ValueTrackerResult ValueTracker::getNextSource() {
2075 : // If we reach a point where we cannot move up in the use-def chain,
2076 : // there is nothing we can get.
2077 1479875 : if (!Def)
2078 0 : return ValueTrackerResult();
2079 :
2080 1479875 : ValueTrackerResult Res = getNextSourceImpl();
2081 1479875 : if (Res.isValid()) {
2082 : // Update definition, definition index, and subregister for the
2083 : // next call of getNextSource.
2084 : // Update the current register.
2085 : bool OneRegSrc = Res.getNumSources() == 1;
2086 1174328 : if (OneRegSrc)
2087 1174190 : Reg = Res.getSrcReg(0);
2088 : // Update the result before moving up in the use-def chain
2089 : // with the instruction containing the last found sources.
2090 1174328 : Res.setInst(Def);
2091 :
2092 : // If we can still move up in the use-def chain, move to the next
2093 : // definition.
2094 2348656 : if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
2095 723541 : MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2096 723541 : if (DI != MRI.def_end()) {
2097 723541 : Def = DI->getParent();
2098 723541 : DefIdx = DI.getOperandNo();
2099 723541 : DefSubReg = Res.getSrcSubReg(0);
2100 : } else {
2101 0 : Def = nullptr;
2102 : }
2103 : return Res;
2104 : }
2105 : }
2106 : // If we end up here, this means we will not be able to find another source
2107 : // for the next iteration. Make sure any new call to getNextSource bails out
2108 : // early by cutting the use-def chain.
2109 756334 : Def = nullptr;
2110 : return Res;
2111 : }
|