Line data Source code
1 : //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file defines the RAGreedy function pass for register allocation in
11 : // optimized builds.
12 : //
13 : //===----------------------------------------------------------------------===//
14 :
15 : #include "AllocationOrder.h"
16 : #include "InterferenceCache.h"
17 : #include "LiveDebugVariables.h"
18 : #include "RegAllocBase.h"
19 : #include "SpillPlacement.h"
20 : #include "Spiller.h"
21 : #include "SplitKit.h"
22 : #include "llvm/ADT/ArrayRef.h"
23 : #include "llvm/ADT/BitVector.h"
24 : #include "llvm/ADT/DenseMap.h"
25 : #include "llvm/ADT/IndexedMap.h"
26 : #include "llvm/ADT/MapVector.h"
27 : #include "llvm/ADT/SetVector.h"
28 : #include "llvm/ADT/SmallPtrSet.h"
29 : #include "llvm/ADT/SmallSet.h"
30 : #include "llvm/ADT/SmallVector.h"
31 : #include "llvm/ADT/Statistic.h"
32 : #include "llvm/ADT/StringRef.h"
33 : #include "llvm/Analysis/AliasAnalysis.h"
34 : #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 : #include "llvm/CodeGen/CalcSpillWeights.h"
36 : #include "llvm/CodeGen/EdgeBundles.h"
37 : #include "llvm/CodeGen/LiveInterval.h"
38 : #include "llvm/CodeGen/LiveIntervalUnion.h"
39 : #include "llvm/CodeGen/LiveIntervals.h"
40 : #include "llvm/CodeGen/LiveRangeEdit.h"
41 : #include "llvm/CodeGen/LiveRegMatrix.h"
42 : #include "llvm/CodeGen/LiveStacks.h"
43 : #include "llvm/CodeGen/MachineBasicBlock.h"
44 : #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 : #include "llvm/CodeGen/MachineDominators.h"
46 : #include "llvm/CodeGen/MachineFrameInfo.h"
47 : #include "llvm/CodeGen/MachineFunction.h"
48 : #include "llvm/CodeGen/MachineFunctionPass.h"
49 : #include "llvm/CodeGen/MachineInstr.h"
50 : #include "llvm/CodeGen/MachineLoopInfo.h"
51 : #include "llvm/CodeGen/MachineOperand.h"
52 : #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 : #include "llvm/CodeGen/MachineRegisterInfo.h"
54 : #include "llvm/CodeGen/RegAllocRegistry.h"
55 : #include "llvm/CodeGen/RegisterClassInfo.h"
56 : #include "llvm/CodeGen/SlotIndexes.h"
57 : #include "llvm/CodeGen/TargetInstrInfo.h"
58 : #include "llvm/CodeGen/TargetRegisterInfo.h"
59 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 : #include "llvm/CodeGen/VirtRegMap.h"
61 : #include "llvm/IR/Function.h"
62 : #include "llvm/IR/LLVMContext.h"
63 : #include "llvm/MC/MCRegisterInfo.h"
64 : #include "llvm/Pass.h"
65 : #include "llvm/Support/BlockFrequency.h"
66 : #include "llvm/Support/BranchProbability.h"
67 : #include "llvm/Support/CommandLine.h"
68 : #include "llvm/Support/Debug.h"
69 : #include "llvm/Support/MathExtras.h"
70 : #include "llvm/Support/Timer.h"
71 : #include "llvm/Support/raw_ostream.h"
72 : #include "llvm/Target/TargetMachine.h"
73 : #include <algorithm>
74 : #include <cassert>
75 : #include <cstdint>
76 : #include <memory>
77 : #include <queue>
78 : #include <tuple>
79 : #include <utility>
80 :
81 : using namespace llvm;
82 :
83 : #define DEBUG_TYPE "regalloc"
84 :
85 : STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 : STATISTIC(NumLocalSplits, "Number of split local live ranges");
87 : STATISTIC(NumEvicted, "Number of interferences evicted");
88 :
89 : static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90 : "split-spill-mode", cl::Hidden,
91 : cl::desc("Spill mode for splitting live ranges"),
92 : cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93 : clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94 : clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95 : cl::init(SplitEditor::SM_Speed));
96 :
97 : static cl::opt<unsigned>
98 : LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99 : cl::desc("Last chance recoloring max depth"),
100 : cl::init(5));
101 :
102 : static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103 : "lcr-max-interf", cl::Hidden,
104 : cl::desc("Last chance recoloring maximum number of considered"
105 : " interference at a time"),
106 : cl::init(8));
107 :
108 : static cl::opt<bool> ExhaustiveSearch(
109 : "exhaustive-register-search", cl::NotHidden,
110 : cl::desc("Exhaustive Search for registers bypassing the depth "
111 : "and interference cutoffs of last chance recoloring"),
112 : cl::Hidden);
113 :
114 : static cl::opt<bool> EnableLocalReassignment(
115 : "enable-local-reassign", cl::Hidden,
116 : cl::desc("Local reassignment can yield better allocation decisions, but "
117 : "may be compile time intensive"),
118 : cl::init(false));
119 :
120 : static cl::opt<bool> EnableDeferredSpilling(
121 : "enable-deferred-spilling", cl::Hidden,
122 : cl::desc("Instead of spilling a variable right away, defer the actual "
123 : "code insertion to the end of the allocation. That way the "
124 : "allocator might still find a suitable coloring for this "
125 : "variable because of other evicted variables."),
126 : cl::init(false));
127 :
128 : static cl::opt<unsigned>
129 : HugeSizeForSplit("huge-size-for-split", cl::Hidden,
130 : cl::desc("A threshold of live range size which may cause "
131 : "high compile time cost in global splitting."),
132 : cl::init(5000));
133 :
134 : // FIXME: Find a good default for this flag and remove the flag.
135 : static cl::opt<unsigned>
136 : CSRFirstTimeCost("regalloc-csr-first-time-cost",
137 : cl::desc("Cost for first time use of callee-saved register."),
138 : cl::init(0), cl::Hidden);
139 :
140 : static cl::opt<bool> ConsiderLocalIntervalCost(
141 : "condsider-local-interval-cost", cl::Hidden,
142 : cl::desc("Consider the cost of local intervals created by a split "
143 : "candidate when choosing the best split candidate."),
144 : cl::init(false));
145 :
146 : static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
147 : createGreedyRegisterAllocator);
148 :
149 : namespace {
150 :
151 : class RAGreedy : public MachineFunctionPass,
152 : public RegAllocBase,
153 : private LiveRangeEdit::Delegate {
154 : // Convenient shortcuts.
155 : using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
156 : using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
157 : using SmallVirtRegSet = SmallSet<unsigned, 16>;
158 :
159 : // context
160 : MachineFunction *MF;
161 :
162 : // Shortcuts to some useful interface.
163 : const TargetInstrInfo *TII;
164 : const TargetRegisterInfo *TRI;
165 : RegisterClassInfo RCI;
166 :
167 : // analyses
168 : SlotIndexes *Indexes;
169 : MachineBlockFrequencyInfo *MBFI;
170 : MachineDominatorTree *DomTree;
171 : MachineLoopInfo *Loops;
172 : MachineOptimizationRemarkEmitter *ORE;
173 : EdgeBundles *Bundles;
174 : SpillPlacement *SpillPlacer;
175 : LiveDebugVariables *DebugVars;
176 : AliasAnalysis *AA;
177 :
178 : // state
179 : std::unique_ptr<Spiller> SpillerInstance;
180 : PQueue Queue;
181 : unsigned NextCascade;
182 :
183 : // Live ranges pass through a number of stages as we try to allocate them.
184 : // Some of the stages may also create new live ranges:
185 : //
186 : // - Region splitting.
187 : // - Per-block splitting.
188 : // - Local splitting.
189 : // - Spilling.
190 : //
191 : // Ranges produced by one of the stages skip the previous stages when they are
192 : // dequeued. This improves performance because we can skip interference checks
193 : // that are unlikely to give any results. It also guarantees that the live
194 : // range splitting algorithm terminates, something that is otherwise hard to
195 : // ensure.
196 : enum LiveRangeStage {
197 : /// Newly created live range that has never been queued.
198 : RS_New,
199 :
200 : /// Only attempt assignment and eviction. Then requeue as RS_Split.
201 : RS_Assign,
202 :
203 : /// Attempt live range splitting if assignment is impossible.
204 : RS_Split,
205 :
206 : /// Attempt more aggressive live range splitting that is guaranteed to make
207 : /// progress. This is used for split products that may not be making
208 : /// progress.
209 : RS_Split2,
210 :
211 : /// Live range will be spilled. No more splitting will be attempted.
212 : RS_Spill,
213 :
214 :
215 : /// Live range is in memory. Because of other evictions, it might get moved
216 : /// in a register in the end.
217 : RS_Memory,
218 :
219 : /// There is nothing more we can do to this live range. Abort compilation
220 : /// if it can't be assigned.
221 : RS_Done
222 : };
223 :
224 : // Enum CutOffStage to keep a track whether the register allocation failed
225 : // because of the cutoffs encountered in last chance recoloring.
226 : // Note: This is used as bitmask. New value should be next power of 2.
227 : enum CutOffStage {
228 : // No cutoffs encountered
229 : CO_None = 0,
230 :
231 : // lcr-max-depth cutoff encountered
232 : CO_Depth = 1,
233 :
234 : // lcr-max-interf cutoff encountered
235 : CO_Interf = 2
236 : };
237 :
238 : uint8_t CutOffInfo;
239 :
240 : #ifndef NDEBUG
241 : static const char *const StageName[];
242 : #endif
243 :
244 : // RegInfo - Keep additional information about each live range.
245 : struct RegInfo {
246 : LiveRangeStage Stage = RS_New;
247 :
248 : // Cascade - Eviction loop prevention. See canEvictInterference().
249 : unsigned Cascade = 0;
250 :
251 0 : RegInfo() = default;
252 : };
253 :
254 : IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
255 :
256 0 : LiveRangeStage getStage(const LiveInterval &VirtReg) const {
257 1664562 : return ExtraRegInfo[VirtReg.reg].Stage;
258 : }
259 :
260 0 : void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
261 126714 : ExtraRegInfo.resize(MRI->getNumVirtRegs());
262 70566 : ExtraRegInfo[VirtReg.reg].Stage = Stage;
263 0 : }
264 :
265 : template<typename Iterator>
266 29500 : void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
267 59000 : ExtraRegInfo.resize(MRI->getNumVirtRegs());
268 67192 : for (;Begin != End; ++Begin) {
269 37692 : unsigned Reg = *Begin;
270 37692 : if (ExtraRegInfo[Reg].Stage == RS_New)
271 37505 : ExtraRegInfo[Reg].Stage = NewStage;
272 : }
273 29500 : }
274 29475 :
275 58950 : /// Cost of evicting interference.
276 67114 : struct EvictionCost {
277 37639 : unsigned BrokenHints = 0; ///< Total number of broken hints.
278 37639 : float MaxWeight = 0; ///< Maximum spill weight evicted.
279 37452 :
280 : EvictionCost() = default;
281 29475 :
282 25 : bool isMax() const { return BrokenHints == ~0u; }
283 50 :
284 78 : void setMax() { BrokenHints = ~0u; }
285 53 :
286 53 : void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
287 53 :
288 : bool operator<(const EvictionCost &O) const {
289 25 : return std::tie(BrokenHints, MaxWeight) <
290 : std::tie(O.BrokenHints, O.MaxWeight);
291 : }
292 : };
293 :
294 : /// EvictionTrack - Keeps track of past evictions in order to optimize region
295 : /// split decision.
296 : class EvictionTrack {
297 :
298 0 : public:
299 : using EvictorInfo =
300 125422 : std::pair<unsigned /* evictor */, unsigned /* physreg */>;
301 : using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
302 50076 :
303 : private:
304 : /// Each Vreg that has been evicted in the last stage of selectOrSplit will
305 : /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
306 : EvicteeInfo Evictees;
307 :
308 : public:
309 : /// Clear all eviction information.
310 : void clear() { Evictees.clear(); }
311 :
312 19642 : /// Clear eviction information for the given evictee Vreg.
313 : /// E.g. when Vreg get's a new allocation, the old eviction info is no
314 : /// longer relevant.
315 : /// \param Evictee The evictee Vreg for whom we want to clear collected
316 : /// eviction info.
317 : void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
318 :
319 : /// Track new eviction.
320 : /// The Evictor vreg has evicted the Evictee vreg from Physreg.
321 : /// \param PhysReg The phisical register Evictee was evicted from.
322 : /// \param Evictor The evictor Vreg that evicted Evictee.
323 : /// \param Evictee The evictee Vreg.
324 : void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
325 : Evictees[Evictee].first = Evictor;
326 193768 : Evictees[Evictee].second = PhysReg;
327 : }
328 :
329 : /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
330 : /// \param Evictee The evictee vreg.
331 : /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
332 : /// nobody has evicted Evictee from PhysReg.
333 1474948 : EvictorInfo getEvictor(unsigned Evictee) {
334 : if (Evictees.count(Evictee)) {
335 : return Evictees[Evictee];
336 : }
337 :
338 : return EvictorInfo(0, 0);
339 : }
340 39080 : };
341 39080 :
342 39080 : // Keeps track of past evictions in order to optimize region split decision.
343 39080 : EvictionTrack LastEvicted;
344 :
345 : // splitting state.
346 : std::unique_ptr<SplitAnalysis> SA;
347 : std::unique_ptr<SplitEditor> SE;
348 :
349 28894 : /// Cached per-block interference maps
350 28894 : InterferenceCache IntfCache;
351 8501 :
352 : /// All basic blocks where the current register has uses.
353 : SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
354 20393 :
355 : /// Global live range splitting candidate info.
356 : struct GlobalSplitCandidate {
357 : // Register intended for assignment, or 0.
358 : unsigned PhysReg;
359 :
360 : // SplitKit interval index for this candidate.
361 : unsigned IntvIdx;
362 :
363 : // Interference for PhysReg.
364 : InterferenceCache::Cursor Intf;
365 :
366 : // Bundles where this candidate should be live.
367 : BitVector LiveBundles;
368 : SmallVector<unsigned, 8> ActiveBlocks;
369 :
370 : void reset(InterferenceCache &Cache, unsigned Reg) {
371 : PhysReg = Reg;
372 : IntvIdx = 0;
373 : Intf.setPhysReg(Cache, Reg);
374 : LiveBundles.clear();
375 : ActiveBlocks.clear();
376 : }
377 :
378 : // Set B[i] = C for every live bundle where B[i] was NoCand.
379 : unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
380 : unsigned Count = 0;
381 : for (unsigned i : LiveBundles.set_bits())
382 : if (B[i] == NoCand) {
383 : B[i] = C;
384 : Count++;
385 : }
386 : return Count;
387 338763 : }
388 338763 : };
389 320084 :
390 : /// Candidate info for each PhysReg in AllocationOrder.
391 : /// This vector never shrinks, but grows to the size of the largest register
392 : /// class.
393 : SmallVector<GlobalSplitCandidate, 32> GlobalCand;
394 :
395 12244 : enum : unsigned { NoCand = ~0u };
396 :
397 105256 : /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
398 186024 : /// NoCand which indicates the stack interval.
399 86130 : SmallVector<unsigned, 32> BundleCand;
400 86130 :
401 : /// Callee-save register cost, calculated once per machine function.
402 12244 : BlockFrequency CSRCost;
403 :
404 : /// Run or not the local reassignment heuristic. This information is
405 : /// obtained from the TargetSubtargetInfo.
406 : bool EnableLocalReassign;
407 :
408 : /// Enable or not the consideration of the cost of local intervals created
409 : /// by a split candidate when choosing the best split candidate.
410 : bool EnableAdvancedRASplitCost;
411 :
412 : /// Set of broken hints that may be reconciled later because of eviction.
413 : SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
414 :
415 : public:
416 : RAGreedy();
417 :
418 : /// Return the pass name.
419 : StringRef getPassName() const override { return "Greedy Register Allocator"; }
420 :
421 : /// RAGreedy analysis usage.
422 : void getAnalysisUsage(AnalysisUsage &AU) const override;
423 : void releaseMemory() override;
424 : Spiller &spiller() override { return *SpillerInstance; }
425 : void enqueue(LiveInterval *LI) override;
426 : LiveInterval *dequeue() override;
427 : unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
428 : void aboutToRemoveInterval(LiveInterval &) override;
429 :
430 : /// Perform register allocation.
431 : bool runOnMachineFunction(MachineFunction &mf) override;
432 :
433 : MachineFunctionProperties getRequiredProperties() const override {
434 : return MachineFunctionProperties().set(
435 19504 : MachineFunctionProperties::Property::NoPHIs);
436 : }
437 :
438 : static char ID;
439 :
440 387528 : private:
441 : unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
442 : SmallVirtRegSet &, unsigned = 0);
443 :
444 : bool LRE_CanEraseVirtReg(unsigned) override;
445 : void LRE_WillShrinkVirtReg(unsigned) override;
446 : void LRE_DidCloneVirtReg(unsigned, unsigned) override;
447 : void enqueue(PQueue &CurQueue, LiveInterval *LI);
448 : LiveInterval *dequeue(PQueue &CurQueue);
449 19491 :
450 19491 : BlockFrequency calcSpillCost();
451 19491 : bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
452 : bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
453 : bool growRegion(GlobalSplitCandidate &Cand);
454 : bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
455 : unsigned BBNumber,
456 : const AllocationOrder &Order);
457 : bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
458 : GlobalSplitCandidate &Cand, unsigned BBNumber,
459 : const AllocationOrder &Order);
460 : BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
461 : const AllocationOrder &Order,
462 : bool *CanCauseEvictionChain);
463 : bool calcCompactRegion(GlobalSplitCandidate&);
464 : void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
465 : void calcGapWeights(unsigned, SmallVectorImpl<float>&);
466 : unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
467 : bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
468 : bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
469 : bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470 : SlotIndex Start, SlotIndex End,
471 : EvictionCost &MaxCost);
472 : unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473 : LiveInterval &VirtReg, SlotIndex Start,
474 : SlotIndex End, float *BestEvictWeight);
475 : void evictInterference(LiveInterval&, unsigned,
476 : SmallVectorImpl<unsigned>&);
477 : bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478 : SmallLISet &RecoloringCandidates,
479 : const SmallVirtRegSet &FixedRegisters);
480 :
481 : unsigned tryAssign(LiveInterval&, AllocationOrder&,
482 : SmallVectorImpl<unsigned>&);
483 : unsigned tryEvict(LiveInterval&, AllocationOrder&,
484 : SmallVectorImpl<unsigned>&, unsigned = ~0u);
485 : unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
486 : SmallVectorImpl<unsigned>&);
487 : unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
488 : /// Calculate cost of region splitting.
489 : unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
490 : AllocationOrder &Order,
491 : BlockFrequency &BestCost,
492 : unsigned &NumCands, bool IgnoreCSR,
493 : bool *CanCauseEvictionChain = nullptr);
494 : /// Perform region splitting.
495 : unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
496 : bool HasCompact,
497 : SmallVectorImpl<unsigned> &NewVRegs);
498 : /// Check other options before using a callee-saved register for the first
499 : /// time.
500 : unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
501 : unsigned PhysReg, unsigned &CostPerUseLimit,
502 : SmallVectorImpl<unsigned> &NewVRegs);
503 : void initializeCSRCost();
504 : unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
505 : SmallVectorImpl<unsigned>&);
506 : unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
507 : SmallVectorImpl<unsigned>&);
508 : unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
509 : SmallVectorImpl<unsigned>&);
510 : unsigned trySplit(LiveInterval&, AllocationOrder&,
511 : SmallVectorImpl<unsigned>&);
512 : unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
513 : SmallVectorImpl<unsigned> &,
514 : SmallVirtRegSet &, unsigned);
515 : bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
516 : SmallVirtRegSet &, unsigned);
517 : void tryHintRecoloring(LiveInterval &);
518 : void tryHintsRecoloring();
519 :
520 : /// Model the information carried by one end of a copy.
521 : struct HintInfo {
522 : /// The frequency of the copy.
523 : BlockFrequency Freq;
524 : /// The virtual register or physical register.
525 : unsigned Reg;
526 : /// Its currently assigned register.
527 : /// In case of a physical register Reg == PhysReg.
528 : unsigned PhysReg;
529 :
530 : HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
531 : : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
532 : };
533 : using HintsInfo = SmallVector<HintInfo, 4>;
534 :
535 : BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
536 : void collectHintInfo(unsigned, HintsInfo &);
537 :
538 : bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
539 :
540 : /// Compute and report the number of spills and reloads for a loop.
541 : void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
542 : unsigned &FoldedReloads, unsigned &Spills,
543 : unsigned &FoldedSpills);
544 :
545 : /// Report the number of spills and reloads for each loop.
546 : void reportNumberOfSplillsReloads() {
547 95339 : for (MachineLoop *L : *Loops) {
548 : unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
549 : reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
550 : FoldedSpills);
551 : }
552 : }
553 : };
554 :
555 : } // end anonymous namespace
556 :
557 : char RAGreedy::ID = 0;
558 : char &llvm::RAGreedyID = RAGreedy::ID;
559 :
560 : INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
561 : "Greedy Register Allocator", false, false)
562 193764 : INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
563 201298 : INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
564 : INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
565 7534 : INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
566 : INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
567 : INITIALIZE_PASS_DEPENDENCY(LiveStacks)
568 193764 : INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
569 : INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
570 : INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
571 : INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
572 : INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
573 : INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
574 : INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
575 : INITIALIZE_PASS_END(RAGreedy, "greedy",
576 31780 : "Greedy Register Allocator", false, false)
577 :
578 31780 : #ifndef NDEBUG
579 31780 : const char *const RAGreedy::StageName[] = {
580 31780 : "RS_New",
581 31780 : "RS_Assign",
582 31780 : "RS_Split",
583 31780 : "RS_Split2",
584 31780 : "RS_Spill",
585 31780 : "RS_Memory",
586 31780 : "RS_Done"
587 31780 : };
588 31780 : #endif
589 31780 :
590 31780 : // Hysteresis to use when comparing floats.
591 85147 : // This helps stabilize decisions based on float comparisons.
592 : const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
593 :
594 : FunctionPass* llvm::createGreedyRegisterAllocator() {
595 : return new RAGreedy();
596 : }
597 :
598 : RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
599 : }
600 :
601 : void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
602 : AU.setPreservesCFG();
603 : AU.addRequired<MachineBlockFrequencyInfo>();
604 : AU.addPreserved<MachineBlockFrequencyInfo>();
605 : AU.addRequired<AAResultsWrapperPass>();
606 : AU.addPreserved<AAResultsWrapperPass>();
607 : AU.addRequired<LiveIntervals>();
608 : AU.addPreserved<LiveIntervals>();
609 : AU.addRequired<SlotIndexes>();
610 19628 : AU.addPreserved<SlotIndexes>();
611 19628 : AU.addRequired<LiveDebugVariables>();
612 : AU.addPreserved<LiveDebugVariables>();
613 : AU.addRequired<LiveStacks>();
614 58926 : AU.addPreserved<LiveStacks>();
615 19642 : AU.addRequired<MachineDominatorTree>();
616 : AU.addPreserved<MachineDominatorTree>();
617 19488 : AU.addRequired<MachineLoopInfo>();
618 19488 : AU.addPreserved<MachineLoopInfo>();
619 : AU.addRequired<VirtRegMap>();
620 : AU.addPreserved<VirtRegMap>();
621 : AU.addRequired<LiveRegMatrix>();
622 : AU.addPreserved<LiveRegMatrix>();
623 : AU.addRequired<EdgeBundles>();
624 : AU.addRequired<SpillPlacement>();
625 : AU.addRequired<MachineOptimizationRemarkEmitterPass>();
626 : MachineFunctionPass::getAnalysisUsage(AU);
627 : }
628 :
629 : //===----------------------------------------------------------------------===//
630 : // LiveRangeEdit delegate methods
631 : //===----------------------------------------------------------------------===//
632 :
633 : bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
634 : LiveInterval &LI = LIS->getInterval(VirtReg);
635 : if (VRM->hasPhys(VirtReg)) {
636 : Matrix->unassign(LI);
637 : aboutToRemoveInterval(LI);
638 : return true;
639 : }
640 : // Unassigned virtreg is probably in the priority queue.
641 : // RegAllocBase will erase it after dequeueing.
642 19488 : // Nonetheless, clear the live-range so that the debug
643 19488 : // dump will show the right state for that VirtReg.
644 : LI.clear();
645 : return false;
646 : }
647 :
648 : void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
649 54118 : if (!VRM->hasPhys(VirtReg))
650 54118 : return;
651 108236 :
652 558 : // Register is assigned, put it back on the queue for reassignment.
653 : LiveInterval &LI = LIS->getInterval(VirtReg);
654 558 : Matrix->unassign(LI);
655 : enqueue(&LI);
656 : }
657 :
658 : void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
659 : // Cloning a register we haven't even heard about yet? Just ignore it.
660 : if (!ExtraRegInfo.inBounds(Old))
661 53560 : return;
662 :
663 : // LRE may clone a virtual register because dead code elimination causes it to
664 37541 : // be split into connected components. The new components are much smaller
665 75082 : // than the original, so they should get a new chance at being assigned.
666 : // same stage as the parent.
667 : ExtraRegInfo[Old].Stage = RS_Assign;
668 : ExtraRegInfo.grow(New);
669 5374 : ExtraRegInfo[New] = ExtraRegInfo[Old];
670 5374 : }
671 :
672 : void RAGreedy::releaseMemory() {
673 : SpillerInstance.reset();
674 190 : ExtraRegInfo.clear();
675 : GlobalCand.clear();
676 190 : }
677 :
678 : void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
679 :
680 : void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
681 : // Prioritize live ranges by size, assigning larger ranges first.
682 : // The queue holds (size, reg) pairs.
683 187 : const unsigned Size = LI->getSize();
684 : const unsigned Reg = LI->reg;
685 187 : assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
686 : "Can only enqueue virtual registers");
687 : unsigned Prio;
688 387547 :
689 : ExtraRegInfo.grow(Reg);
690 : if (ExtraRegInfo[Reg].Stage == RS_New)
691 : ExtraRegInfo[Reg].Stage = RS_Assign;
692 387547 :
693 : if (ExtraRegInfo[Reg].Stage == RS_Split) {
694 1551997 : // Unsplit ranges that couldn't be allocated immediately are deferred until
695 : // everything else has been allocated.
696 1560808 : Prio = Size;
697 : } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
698 : // Memory operand should be considered last.
699 1560808 : // Change the priority such that Memory operand are assigned in
700 1560808 : // the reverse order that they came in.
701 : // TODO: Make this a member variable and probably do something about hints.
702 : static unsigned MemOp = 0;
703 : Prio = MemOp++;
704 : } else {
705 : // Giant live ranges fall back to the global assignment heuristic, which
706 1560808 : // prevents excessive spilling in pathological cases.
707 1405624 : bool ReverseLocal = TRI->reverseLocalAssignment();
708 : const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
709 1560808 : bool ForceGlobal = !ReverseLocal &&
710 : (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
711 :
712 : if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
713 1505169 : LIS->intervalIsInOneMBB(*LI)) {
714 : // Allocate original local ranges in linear instruction order. Since they
715 : // are singly defined, this produces optimal coloring in the absence of
716 : // global interference and other constraints.
717 : if (!ReverseLocal)
718 : Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
719 0 : else {
720 : // Allocating bottom up may allow many short LRGs to be assigned first
721 : // to one of the cheap registers. This could be much faster for very
722 : // large blocks on targets with many physical registers.
723 1505169 : Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
724 1505169 : }
725 1505169 : Prio |= RC.AllocationPriority << 24;
726 3010338 : } else {
727 : // Allocate global and split ranges in long->short order. Long ranges that
728 2825073 : // don't fit should be spilled (or split) ASAP so they don't create
729 1319904 : // interference. Mark a bit to prioritize global above local ranges.
730 : Prio = (1u << 29) + Size;
731 : }
732 : // Mark a higher bit to prioritize global and local above RS_Split.
733 1208881 : Prio |= (1u << 31);
734 1208881 :
735 : // Boost ranges that have a physical register hint.
736 : if (VRM->hasKnownPreference(Reg))
737 : Prio |= (1u << 30);
738 : }
739 0 : // The virtual register number is a tie breaker for same-sized ranges.
740 : // Give lower vreg numbers higher priority to assign them first.
741 1208881 : CurQueue.push(std::make_pair(Prio, ~Reg));
742 : }
743 :
744 : LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
745 :
746 296288 : LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
747 : if (CurQueue.empty())
748 : return nullptr;
749 1505169 : LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
750 : CurQueue.pop();
751 : return LI;
752 1505169 : }
753 616766 :
754 : //===----------------------------------------------------------------------===//
755 : // Direct Assignment
756 : //===----------------------------------------------------------------------===//
757 1560808 :
758 1560808 : /// tryAssign - Try to assign VirtReg to an available register.
759 : unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
760 1745750 : AllocationOrder &Order,
761 : SmallVectorImpl<unsigned> &NewVRegs) {
762 0 : Order.rewind();
763 0 : unsigned PhysReg;
764 0 : while ((PhysReg = Order.next()))
765 0 : if (!Matrix->checkInterference(VirtReg, PhysReg))
766 0 : break;
767 0 : if (!PhysReg || Order.isHint())
768 : return PhysReg;
769 :
770 : // PhysReg is available, but there may be a better choice.
771 :
772 : // If we missed a simple hint, try to cheaply evict interference from the
773 : // preferred register.
774 : if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
775 1560090 : if (Order.isHint(Hint)) {
776 : LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
777 : EvictionCost MaxCost;
778 : MaxCost.setBrokenHints(1);
779 : if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
780 5846278 : evictInterference(VirtReg, Hint, NewVRegs);
781 5708644 : return Hint;
782 : }
783 1560090 : // Record the missed hint, we may be able to recover
784 : // at the end if the surrounding allocation changed.
785 : SetOfBrokenHints.insert(&VirtReg);
786 : }
787 :
788 : // Try to evict interference from a cheaper alternative.
789 : unsigned Cost = TRI->getCostPerUse(PhysReg);
790 1747096 :
791 156603 : // Most registers have 0 additional cost.
792 : if (!Cost)
793 50076 : return PhysReg;
794 :
795 50076 : LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
796 1241 : << Cost << '\n');
797 1241 : unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
798 : return CheapReg ? CheapReg : PhysReg;
799 : }
800 :
801 48835 : //===----------------------------------------------------------------------===//
802 : // Interference eviction
803 : //===----------------------------------------------------------------------===//
804 :
805 872318 : unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
806 : AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
807 : unsigned PhysReg;
808 872318 : while ((PhysReg = Order.next())) {
809 : if (PhysReg == PrevReg)
810 : continue;
811 :
812 : MCRegUnitIterator Units(PhysReg, TRI);
813 34114 : for (; Units.isValid(); ++Units) {
814 34114 : // Instantiate a "subquery", not to be confused with the Queries array.
815 : LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
816 : if (subQ.checkInterference())
817 : break;
818 : }
819 : // If no units have interference, break out with the current PhysReg.
820 : if (!Units.isValid())
821 133244 : break;
822 133244 : }
823 : if (PhysReg)
824 17221510 : LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
825 17102593 : << printReg(PrevReg, TRI) << " to "
826 : << printReg(PhysReg, TRI) << '\n');
827 : return PhysReg;
828 17015630 : }
829 17089500 :
830 : /// shouldEvict - determine if A should evict the assigned live range B. The
831 34224216 : /// eviction policy defined by this function together with the allocation order
832 17075173 : /// defined by enqueue() decides which registers ultimately end up being split
833 : /// and spilled.
834 : ///
835 : /// Cascade numbers are used to prevent infinite loops if this function is a
836 17015630 : /// cyclic relation.
837 : ///
838 : /// @param A The live range to be assigned.
839 : /// @param IsHint True when A is about to be assigned to its preferred
840 : /// register.
841 : /// @param B The live range to be evicted.
842 : /// @param BreaksHint True when B is already assigned to its preferred register.
843 133244 : bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
844 : LiveInterval &B, bool BreaksHint) {
845 : bool CanSplit = getStage(B) < RS_Spill;
846 :
847 : // Be fairly aggressive about following hints as long as the evictee can be
848 : // split.
849 : if (CanSplit && IsHint && !BreaksHint)
850 : return true;
851 :
852 : if (A.weight > B.weight) {
853 : LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
854 : return true;
855 : }
856 : return false;
857 : }
858 :
859 : /// canEvictInterference - Return true if all interferences between VirtReg and
860 : /// PhysReg can be evicted.
861 527046 : ///
862 : /// @param VirtReg Live range that is about to be assigned.
863 : /// @param PhysReg Desired register for assignment.
864 : /// @param IsHint True when PhysReg is VirtReg's preferred register.
865 527046 : /// @param MaxCost Only look for cheaper candidates and update with new cost
866 : /// when returning true.
867 : /// @returns True when interference can be evicted cheaper than MaxCost.
868 524598 : bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
869 : bool IsHint, EvictionCost &MaxCost) {
870 : // It is only possible to evict virtual register interference.
871 : if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
872 : return false;
873 :
874 : bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
875 :
876 : // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
877 : // involved in an eviction before. If a cascade number was assigned, deny
878 : // evicting anything with the same or a newer cascade number. This prevents
879 : // infinite eviction loops.
880 : //
881 : // This works out so a register without a cascade number is allowed to evict
882 : // anything, and it can be evicted by anything.
883 : unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
884 1556528 : if (!Cascade)
885 : Cascade = NextCascade;
886 :
887 1556528 : EvictionCost Cost;
888 : for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
889 : LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
890 743367 : // If there is 10 or more interferences, chances are one is heavier.
891 : if (Q.collectInterferingVRegs(10) >= 10)
892 : return false;
893 :
894 : // Check if any interfering live range is heavier than MaxWeight.
895 : for (unsigned i = Q.interferingVRegs().size(); i; --i) {
896 : LiveInterval *Intf = Q.interferingVRegs()[i - 1];
897 : assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
898 : "Only expecting virtual register interference from query");
899 743367 : // Never evict spill products. They cannot split or spill.
900 743367 : if (getStage(*Intf) == RS_Done)
901 338613 : return false;
902 : // Once a live range becomes small enough, it is urgent that we find a
903 743367 : // register for it. This is indicated by an infinite spill weight. These
904 1622399 : // urgent live ranges get to evict almost anything.
905 1642140 : //
906 : // Also allow urgent evictions of unspillable ranges from a strictly
907 821070 : // larger allocation order.
908 : bool Urgent = !VirtReg.isSpillable() &&
909 : (Intf->isSpillable() ||
910 : RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
911 945961 : RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
912 810296 : // Only evict older cascades or live ranges without a cascade.
913 : unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
914 : if (Cascade <= IntfCascade) {
915 : if (!Urgent)
916 1620592 : return false;
917 : // We permit breaking cascades for urgent evictions. It should be the
918 : // last resort, though, so make it really expensive.
919 : Cost.BrokenHints += 10;
920 : }
921 : // Would this break a satisfied hint?
922 : bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
923 : // Update eviction cost.
924 1609730 : Cost.BrokenHints += BreaksHint;
925 32844 : Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
926 1132 : // Abort if this would be too expensive.
927 1132 : if (!(Cost < MaxCost))
928 : return false;
929 804865 : if (Urgent)
930 804865 : continue;
931 91358 : // Apply the eviction policy for non-urgent evictions.
932 : if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
933 : return false;
934 : // If !MaxCost.isMax(), then we're just looking for a cheap register.
935 3 : // Evicting another local live range in this case could lead to suboptimal
936 : // coloring.
937 : if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
938 713510 : (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
939 : return false;
940 713510 : }
941 1352297 : }
942 : }
943 : MaxCost = Cost;
944 : return true;
945 536441 : }
946 :
947 : /// Return true if all interferences between VirtReg and PhysReg between
948 : /// Start and End can be evicted.
949 : ///
950 : /// \param VirtReg Live range that is about to be assigned.
951 : /// \param PhysReg Desired register for assignment.
952 : /// \param Start Start of range to look for interferences.
953 249118 : /// \param End End of range to look for interferences.
954 133244 : /// \param MaxCost Only look for cheaper candidates and update with new cost
955 118917 : /// when returning true.
956 : /// \return True when interference can be evicted cheaper than MaxCost.
957 : bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
958 : unsigned PhysReg, SlotIndex Start,
959 57962 : SlotIndex End,
960 57962 : EvictionCost &MaxCost) {
961 : EvictionCost Cost;
962 :
963 : for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
964 : LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
965 :
966 : // Check if any interfering live range is heavier than MaxWeight.
967 : for (unsigned i = Q.interferingVRegs().size(); i; --i) {
968 : LiveInterval *Intf = Q.interferingVRegs()[i - 1];
969 :
970 : // Check if interference overlast the segment in interest.
971 : if (!Intf->overlaps(Start, End))
972 : continue;
973 123280 :
974 : // Cannot evict non virtual reg interference.
975 : if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
976 : return false;
977 123280 : // Never evict spill products. They cannot split or spill.
978 : if (getStage(*Intf) == RS_Done)
979 569098 : return false;
980 668928 :
981 : // Would this break a satisfied hint?
982 : bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
983 370870 : // Update eviction cost.
984 48332 : Cost.BrokenHints += BreaksHint;
985 : Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
986 : // Abort if this would be too expensive.
987 48332 : if (!(Cost < MaxCost))
988 : return false;
989 : }
990 : }
991 56768 :
992 : if (Cost.MaxWeight == 0)
993 : return false;
994 28384 :
995 : MaxCost = Cost;
996 : return true;
997 : }
998 28339 :
999 : /// Return the physical register that will be best
1000 28339 : /// candidate for eviction by a local split interval that will be created
1001 56678 : /// between Start and End.
1002 : ///
1003 : /// \param Order The allocation order
1004 : /// \param VirtReg Live range that is about to be assigned.
1005 : /// \param Start Start of range to look for interferences
1006 : /// \param End End of range to look for interferences
1007 : /// \param BestEvictweight The eviction cost of that eviction
1008 111354 : /// \return The PhysReg which is the best candidate for eviction and the
1009 : /// eviction cost in BestEvictweight
1010 : unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1011 16458 : LiveInterval &VirtReg,
1012 16458 : SlotIndex Start, SlotIndex End,
1013 : float *BestEvictweight) {
1014 : EvictionCost BestEvictCost;
1015 : BestEvictCost.setMax();
1016 : BestEvictCost.MaxWeight = VirtReg.weight;
1017 : unsigned BestEvicteePhys = 0;
1018 :
1019 : // Go over all physical registers and find the best candidate for eviction
1020 : for (auto PhysReg : Order.getOrder()) {
1021 :
1022 : if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1023 : BestEvictCost))
1024 : continue;
1025 :
1026 8908 : // Best so far.
1027 : BestEvicteePhys = PhysReg;
1028 : }
1029 : *BestEvictweight = BestEvictCost.MaxWeight;
1030 : return BestEvicteePhys;
1031 : }
1032 8908 :
1033 : /// evictInterference - Evict any interferring registers that prevent VirtReg
1034 : /// from being assigned to Physreg. This assumes that canEvictInterference
1035 : /// returned true.
1036 132188 : void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1037 : SmallVectorImpl<unsigned> &NewVRegs) {
1038 123280 : // Make sure that VirtReg has a cascade number, and assign that cascade
1039 : // number to every evicted register. These live ranges than then only be
1040 106822 : // evicted by a newer cascade, preventing infinite loops.
1041 : unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1042 : if (!Cascade)
1043 : Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1044 :
1045 8908 : LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1046 8908 : << " interference: Cascade " << Cascade << '\n');
1047 :
1048 : // Collect all interfering virtregs first.
1049 : SmallVector<LiveInterval*, 8> Intfs;
1050 : for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1051 : LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1052 40407 : // We usually have the interfering VRegs cached so collectInterferingVRegs()
1053 : // should be fast, we may need to recalculate if when different physregs
1054 : // overlap the same register unit so we had different SubRanges queried
1055 : // against it.
1056 : Q.collectInterferingVRegs();
1057 40407 : ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1058 40407 : Intfs.append(IVR.begin(), IVR.end());
1059 58468 : }
1060 :
1061 : // Evict them second. This will invalidate the queries.
1062 : for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1063 : LiveInterval *Intf = Intfs[i];
1064 : // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1065 : if (!VRM->hasPhys(Intf->reg))
1066 173677 : continue;
1067 185726 :
1068 : LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1069 :
1070 : Matrix->unassign(*Intf);
1071 : assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1072 92863 : VirtReg.isSpillable() < Intf->isSpillable()) &&
1073 : "Cannot decrease cascade number, illegal eviction");
1074 92863 : ExtraRegInfo[Intf->reg].Cascade = Cascade;
1075 : ++NumEvicted;
1076 : NewVRegs.push_back(Intf->reg);
1077 : }
1078 129272 : }
1079 88865 :
1080 : /// Returns true if the given \p PhysReg is a callee saved register and has not
1081 177730 : /// been used for allocation yet.
1082 : bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1083 : unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1084 39080 : if (CSR == 0)
1085 : return false;
1086 39080 :
1087 : return !Matrix->isPhysRegUsed(PhysReg);
1088 : }
1089 :
1090 39080 : /// tryEvict - Try to evict all interferences for a physreg.
1091 : /// @param VirtReg Currently unassigned virtual register.
1092 39080 : /// @param Order Physregs to try.
1093 : /// @return Physreg to assign VirtReg, or 0.
1094 40407 : unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1095 : AllocationOrder &Order,
1096 : SmallVectorImpl<unsigned> &NewVRegs,
1097 : unsigned CostPerUseLimit) {
1098 242360 : NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1099 : TimePassesIsEnabled);
1100 242360 :
1101 : // Keep track of the cheapest interference seen so far.
1102 : EvictionCost BestCost;
1103 64529 : BestCost.setMax();
1104 : unsigned BestPhys = 0;
1105 : unsigned OrderLimit = Order.getOrder().size();
1106 :
1107 : // When we are just looking for a reduced cost per use, don't break any
1108 : // hints, and only evict smaller spill weights.
1109 : if (CostPerUseLimit < ~0u) {
1110 116514 : BestCost.BrokenHints = 0;
1111 : BestCost.MaxWeight = VirtReg.weight;
1112 :
1113 : // Check of any registers in RC are below CostPerUseLimit.
1114 : const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1115 233028 : unsigned MinCost = RegClassInfo.getMinCost(RC);
1116 : if (MinCost >= CostPerUseLimit) {
1117 : LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1118 116514 : << MinCost << ", no cheaper registers to be found.\n");
1119 : return 0;
1120 : }
1121 116514 :
1122 : // It is normal for register classes to have a long tail of registers with
1123 : // the same cost. We don't need to look at them if they're too expensive.
1124 : if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1125 116514 : OrderLimit = RegClassInfo.getLastCostChange(RC);
1126 34130 : LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1127 34130 : << " regs.\n");
1128 : }
1129 : }
1130 34130 :
1131 34130 : Order.rewind();
1132 34130 : while (unsigned PhysReg = Order.next(OrderLimit)) {
1133 : if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1134 : continue;
1135 : // The first use of a callee-saved register in a function has cost 1.
1136 : // Don't start using a CSR when the CostPerUseLimit is low.
1137 : if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1138 : LLVM_DEBUG(
1139 : dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1140 102387 : << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1141 11306 : << '\n');
1142 : continue;
1143 : }
1144 :
1145 : if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
1146 : continue;
1147 :
1148 1850149 : // Best so far.
1149 3470490 : BestPhys = PhysReg;
1150 :
1151 : // Stop if the hint can be used.
1152 : if (Order.isHint())
1153 1533943 : break;
1154 : }
1155 :
1156 : if (!BestPhys)
1157 : return 0;
1158 :
1159 : evictInterference(VirtReg, BestPhys, NewVRegs);
1160 : return BestPhys;
1161 1506452 : }
1162 :
1163 : //===----------------------------------------------------------------------===//
1164 : // Region Splitting
1165 : //===----------------------------------------------------------------------===//
1166 :
1167 : /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1168 56721 : /// interference pattern in Physreg and its aliases. Add the constraints to
1169 : /// SpillPlacement and return the static cost of this split in Cost, assuming
1170 : /// that all preferences in SplitConstraints are met.
1171 : /// Return false if there are no bundles with positive bias.
1172 116513 : bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1173 : BlockFrequency &Cost) {
1174 : ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1175 39166 :
1176 39166 : // Reset interference dependent info.
1177 : SplitConstraints.resize(UseBlocks.size());
1178 : BlockFrequency StaticCost = 0;
1179 : for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1180 : const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1181 : SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1182 :
1183 : BC.Number = BI.MBB->getNumber();
1184 : Intf.moveToBlock(BC.Number);
1185 : BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1186 : BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1187 : BC.ChangesValue = BI.FirstDef.isValid();
1188 0 :
1189 : if (!Intf.hasInterference())
1190 : continue;
1191 :
1192 : // Number of spill code instructions to insert.
1193 0 : unsigned Ins = 0;
1194 :
1195 0 : // Interference for the live-in value.
1196 : if (BI.LiveIn) {
1197 : if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1198 : BC.Entry = SpillPlacement::MustSpill;
1199 0 : ++Ins;
1200 0 : } else if (Intf.first() < BI.FirstInstr) {
1201 0 : BC.Entry = SpillPlacement::PrefSpill;
1202 0 : ++Ins;
1203 0 : } else if (Intf.first() < BI.LastInstr) {
1204 : ++Ins;
1205 0 : }
1206 0 :
1207 : // Abort if the spill cannot be inserted at the MBB' start
1208 : if (((BC.Entry == SpillPlacement::MustSpill) ||
1209 : (BC.Entry == SpillPlacement::PrefSpill)) &&
1210 : SlotIndex::isEarlierInstr(BI.FirstInstr,
1211 : SA->getFirstSplitPoint(BC.Number)))
1212 0 : return false;
1213 0 : }
1214 0 :
1215 : // Interference for the live-out value.
1216 0 : if (BI.LiveOut) {
1217 0 : if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1218 : BC.Exit = SpillPlacement::MustSpill;
1219 0 : ++Ins;
1220 : } else if (Intf.last() > BI.LastInstr) {
1221 : BC.Exit = SpillPlacement::PrefSpill;
1222 : ++Ins;
1223 : } else if (Intf.last() > BI.FirstInstr) {
1224 0 : ++Ins;
1225 0 : }
1226 : }
1227 :
1228 0 : // Accumulate the total frequency of inserted spill code.
1229 : while (Ins--)
1230 : StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1231 : }
1232 0 : Cost = StaticCost;
1233 0 :
1234 0 : // Add constraints for use-blocks. Note that these are the only constraints
1235 0 : // that may add a positive bias, it is downhill from here.
1236 0 : SpillPlacer->addConstraints(SplitConstraints);
1237 0 : return SpillPlacer->scanActiveBundles();
1238 0 : }
1239 0 :
1240 0 : /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1241 : /// live-through blocks in Blocks.
1242 : bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1243 : ArrayRef<unsigned> Blocks) {
1244 : const unsigned GroupSize = 8;
1245 0 : SpillPlacement::BlockConstraint BCS[GroupSize];
1246 0 : unsigned TBS[GroupSize];
1247 : unsigned B = 0, T = 0;
1248 0 :
1249 : for (unsigned i = 0; i != Blocks.size(); ++i) {
1250 : unsigned Number = Blocks[i];
1251 : Intf.moveToBlock(Number);
1252 0 :
1253 0 : if (!Intf.hasInterference()) {
1254 : assert(T < GroupSize && "Array overflow");
1255 : TBS[T] = Number;
1256 : if (++T == GroupSize) {
1257 : SpillPlacer->addLinks(makeArrayRef(TBS, T));
1258 409615 : T = 0;
1259 : }
1260 : continue;
1261 : }
1262 :
1263 : assert(B < GroupSize && "Array overflow");
1264 : BCS[B].Number = Number;
1265 2506091 :
1266 2103192 : // Abort if the spill cannot be inserted at the MBB' start
1267 2103192 : MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1268 : if (!MBB->empty() &&
1269 4206384 : SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1270 : SA->getFirstSplitPoint(Number)))
1271 1457451 : return false;
1272 1457451 : // Interference for the live-in value.
1273 63180 : if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1274 : BCS[B].Entry = SpillPlacement::MustSpill;
1275 : else
1276 1457451 : BCS[B].Entry = SpillPlacement::PrefSpill;
1277 :
1278 : // Interference for the live-out value.
1279 : if (Intf.last() >= SA->getLastSplitPoint(Number))
1280 645741 : BCS[B].Exit = SpillPlacement::MustSpill;
1281 : else
1282 : BCS[B].Exit = SpillPlacement::PrefSpill;
1283 645741 :
1284 1291272 : if (++B == GroupSize) {
1285 1291062 : SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1286 : B = 0;
1287 : }
1288 : }
1289 1917075 :
1290 74116 : SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1291 : SpillPlacer->addLinks(makeArrayRef(TBS, T));
1292 564909 : return true;
1293 : }
1294 :
1295 1278050 : bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1296 105855 : // Keep track of through blocks that have not been added to SpillPlacer.
1297 : BitVector Todo = SA->getThroughBlocks();
1298 533170 : SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1299 : unsigned AddedTo = 0;
1300 639025 : #ifndef NDEBUG
1301 14459 : unsigned Visited = 0;
1302 : #endif
1303 :
1304 : while (true) {
1305 : ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1306 402899 : // Find new through blocks in the periphery of PrefRegBundles.
1307 402899 : for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1308 402899 : unsigned Bundle = NewBundles[i];
1309 : // Look at all blocks connected to Bundle in the full graph.
1310 : ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1311 155986 : for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1312 : I != E; ++I) {
1313 155986 : unsigned Block = *I;
1314 : if (!Todo.test(Block))
1315 : continue;
1316 : Todo.reset(Block);
1317 : // This is a new through block. Add it to SpillPlacer later.
1318 : ActiveBlocks.push_back(Block);
1319 : #ifndef NDEBUG
1320 : ++Visited;
1321 577448 : #endif
1322 : }
1323 1908589 : }
1324 1331141 : // Any new blocks to add?
1325 : if (ActiveBlocks.size() == AddedTo)
1326 1331141 : break;
1327 4657900 :
1328 5989041 : // Compute through constraints from the interference, or assume that all
1329 4657900 : // through blocks prefer spilling when forming compact regions.
1330 4657900 : auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1331 2369571 : if (Cand.PhysReg) {
1332 : if (!addThroughConstraints(Cand.Intf, NewBlocks))
1333 : return false;
1334 2288329 : } else
1335 : // Provide a strong negative bias on through blocks to prevent unwanted
1336 : // liveness on loop backedges.
1337 : SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1338 : AddedTo = ActiveBlocks.size();
1339 :
1340 : // Perhaps iterating can enable more bundles?
1341 1154896 : SpillPlacer->iterate();
1342 : }
1343 : LLVM_DEBUG(dbgs() << ", v=" << Visited);
1344 : return true;
1345 : }
1346 428178 :
1347 428178 : /// calcCompactRegion - Compute the set of edge bundles that should be live
1348 819230 : /// when splitting the current live range into compact regions. Compact
1349 6716 : /// regions can be computed without looking at interference. They are the
1350 : /// regions formed by removing all the live-through blocks from the live range.
1351 : ///
1352 : /// Returns false if the current live range is already compact, or if the
1353 18563 : /// compact regions would form single block regions anyway.
1354 421462 : bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1355 : // Without any through blocks, the live range is already compact.
1356 : if (!SA->getNumThroughBlocks())
1357 421462 : return false;
1358 421462 :
1359 : // Compact regions don't correspond to any physreg.
1360 149270 : Cand.reset(IntfCache, 0);
1361 :
1362 : LLVM_DEBUG(dbgs() << "Compact region bundles");
1363 :
1364 : // Use the spill placer to determine the live bundles. GrowRegion pretends
1365 : // that all the through blocks have interference when PhysReg is unset.
1366 : SpillPlacer->prepare(Cand.LiveBundles);
1367 :
1368 : // The static split cost will be zero since Cand.Intf reports no interference.
1369 : BlockFrequency Cost;
1370 25027 : if (!addSplitConstraints(Cand.Intf, Cost)) {
1371 : LLVM_DEBUG(dbgs() << ", none.\n");
1372 25027 : return false;
1373 : }
1374 :
1375 : if (!growRegion(Cand)) {
1376 18679 : LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1377 : return false;
1378 : }
1379 :
1380 : SpillPlacer->finish();
1381 :
1382 18679 : if (!Cand.LiveBundles.any()) {
1383 : LLVM_DEBUG(dbgs() << ", none.\n");
1384 : return false;
1385 : }
1386 37358 :
1387 : LLVM_DEBUG({
1388 : for (int i : Cand.LiveBundles.set_bits())
1389 : dbgs() << " EB#" << i;
1390 : dbgs() << ".\n";
1391 18563 : });
1392 : return true;
1393 : }
1394 :
1395 : /// calcSpillCost - Compute how expensive it would be to split the live range in
1396 18563 : /// SA around all use blocks instead of forming bundle regions.
1397 : BlockFrequency RAGreedy::calcSpillCost() {
1398 18563 : BlockFrequency Cost = 0;
1399 : ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1400 14578 : for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1401 : const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1402 : unsigned Number = BI.MBB->getNumber();
1403 : // We normally only need one spill instruction - a load or a store.
1404 : Cost += SpillPlacer->getBlockFrequency(Number);
1405 :
1406 : // Unless the value is redefined in the block.
1407 : if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1408 : Cost += SpillPlacer->getBlockFrequency(Number);
1409 : }
1410 : return Cost;
1411 : }
1412 :
1413 25043 : /// Check if splitting Evictee will create a local split interval in
1414 : /// basic block number BBNumber that may cause a bad eviction chain. This is
1415 : /// intended to prevent bad eviction sequences like:
1416 118227 : /// movl %ebp, 8(%esp) # 4-byte Spill
1417 : /// movl %ecx, %ebp
1418 93184 : /// movl %ebx, %ecx
1419 : /// movl %edi, %ebx
1420 186368 : /// movl %edx, %edi
1421 : /// cltd
1422 : /// idivl %esi
1423 93184 : /// movl %edi, %edx
1424 2548 : /// movl %ebx, %edi
1425 : /// movl %ecx, %ebx
1426 25043 : /// movl %ebp, %ecx
1427 : /// movl 16(%esp), %ebp # 4 - byte Reload
1428 : ///
1429 : /// Such sequences are created in 2 scenarios:
1430 : ///
1431 : /// Scenario #1:
1432 : /// %0 is evicted from physreg0 by %1.
1433 : /// Evictee %0 is intended for region splitting with split candidate
1434 : /// physreg0 (the reg %0 was evicted from).
1435 : /// Region splitting creates a local interval because of interference with the
1436 : /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1437 : /// and "by stack" intervals and local interval created when interference
1438 : /// occurs).
1439 : /// One of the split intervals ends up evicting %2 from physreg1.
1440 : /// Evictee %2 is intended for region splitting with split candidate
1441 : /// physreg1.
1442 : /// One of the split intervals ends up evicting %3 from physreg2, etc.
1443 : ///
1444 : /// Scenario #2
1445 : /// %0 is evicted from physreg0 by %1.
1446 : /// %2 is evicted from physreg2 by %3 etc.
1447 : /// Evictee %0 is intended for region splitting with split candidate
1448 : /// physreg1.
1449 : /// Region splitting creates a local interval because of interference with the
1450 : /// evictor %1.
1451 : /// One of the split intervals ends up evicting back original evictor %1
1452 : /// from physreg0 (the reg %0 was evicted from).
1453 : /// Another evictee %2 is intended for region splitting with split candidate
1454 : /// physreg1.
1455 : /// One of the split intervals ends up evicting %3 from physreg2, etc.
1456 : ///
1457 : /// \param Evictee The register considered to be split.
1458 : /// \param Cand The split candidate that determines the physical register
1459 : /// we are splitting for and the interferences.
1460 : /// \param BBNumber The number of a BB for which the region split process will
1461 : /// create a local split interval.
1462 : /// \param Order The physical registers that may get evicted by a split
1463 : /// artifact of Evictee.
1464 : /// \return True if splitting Evictee may cause a bad eviction chain, false
1465 : /// otherwise.
1466 : bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1467 : GlobalSplitCandidate &Cand,
1468 : unsigned BBNumber,
1469 : const AllocationOrder &Order) {
1470 : EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1471 : unsigned Evictor = VregEvictorInfo.first;
1472 : unsigned PhysReg = VregEvictorInfo.second;
1473 :
1474 : // No actual evictor.
1475 : if (!Evictor || !PhysReg)
1476 : return false;
1477 :
1478 : float MaxWeight = 0;
1479 : unsigned FutureEvictedPhysReg =
1480 : getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1481 : Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1482 28894 :
1483 : // The bad eviction chain occurs when either the split candidate is the
1484 : // evicting reg or one of the split artifact will evict the evicting reg.
1485 : if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1486 28894 : return false;
1487 28894 :
1488 28894 : Cand.Intf.moveToBlock(BBNumber);
1489 :
1490 : // Check to see if the Evictor contains interference (with Evictee) in the
1491 28894 : // given BB. If so, this interference caused the eviction of Evictee from
1492 : // PhysReg. This suggest that we will create a local interval during the
1493 : // region split to avoid this interference This local interval may cause a bad
1494 8501 : // eviction chain.
1495 : if (!LIS->hasInterval(Evictor))
1496 17002 : return false;
1497 : LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1498 : if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1499 : return false;
1500 :
1501 8501 : // Now, check to see if the local interval we will create is going to be
1502 : // expensive enough to evict somebody If so, this may cause a bad eviction
1503 : // chain.
1504 1368 : VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1505 : float splitArtifactWeight =
1506 : VRAI.futureWeight(LIS->getInterval(Evictee),
1507 : Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1508 : if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1509 : return false;
1510 :
1511 1368 : return true;
1512 : }
1513 1367 :
1514 2734 : /// Check if splitting VirtRegToSplit will create a local split interval
1515 : /// in basic block number BBNumber that may cause a spill.
1516 : ///
1517 : /// \param VirtRegToSplit The register considered to be split.
1518 : /// \param Cand The split candidate that determines the physical
1519 : /// register we are splitting for and the interferences.
1520 893 : /// \param BBNumber The number of a BB for which the region split process
1521 : /// will create a local split interval.
1522 1786 : /// \param Order The physical registers that may get evicted by a
1523 : /// split artifact of VirtRegToSplit.
1524 893 : /// \return True if splitting VirtRegToSplit may cause a spill, false
1525 423 : /// otherwise.
1526 : bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1527 : GlobalSplitCandidate &Cand,
1528 : unsigned BBNumber,
1529 : const AllocationOrder &Order) {
1530 : Cand.Intf.moveToBlock(BBNumber);
1531 :
1532 : // Check if the local interval will find a non interfereing assignment.
1533 : for (auto PhysReg : Order.getOrder()) {
1534 : if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1535 : Cand.Intf.last(), PhysReg))
1536 : return false;
1537 : }
1538 :
1539 : // Check if the local interval will evict a cheaper interval.
1540 : float CheapestEvictWeight = 0;
1541 : unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1542 7206 : Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1543 : Cand.Intf.last(), &CheapestEvictWeight);
1544 :
1545 : // Have we found an interval that can be evicted?
1546 7206 : if (FutureEvictedPhysReg) {
1547 : VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1548 : float splitArtifactWeight =
1549 14363 : VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1550 27912 : Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1551 : // Will the weight of the local interval be higher than the cheapest evictee
1552 : // weight? If so it will evict it and will not cause a spill.
1553 : if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1554 : return false;
1555 : }
1556 407 :
1557 407 : // The local interval is not able to find non interferencing assignment and
1558 407 : // not able to evict a less worthy interval, therfore, it can cause a spill.
1559 : return true;
1560 : }
1561 :
1562 407 : /// calcGlobalSplitCost - Return the global split cost of following the split
1563 0 : /// pattern in LiveBundles. This cost should be added to the local cost of the
1564 : /// interference pattern in SplitConstraints.
1565 0 : ///
1566 : BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1567 : const AllocationOrder &Order,
1568 : bool *CanCauseEvictionChain) {
1569 0 : BlockFrequency GlobalCost = 0;
1570 : const BitVector &LiveBundles = Cand.LiveBundles;
1571 : unsigned VirtRegToSplit = SA->getParent().reg;
1572 : ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1573 : for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1574 : const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1575 : SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1576 : bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
1577 : bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1578 : unsigned Ins = 0;
1579 :
1580 : Cand.Intf.moveToBlock(BC.Number);
1581 : // Check wheather a local interval is going to be created during the region
1582 106663 : // split. Calculate adavanced spilt cost (cost of local intervals) if option
1583 : // is enabled.
1584 : if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1585 : BI.LiveOut && RegIn && RegOut) {
1586 :
1587 106663 : if (CanCauseEvictionChain &&
1588 : splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1589 528617 : // This interference causes our eviction from this assignment, we might
1590 : // evict somebody else and eventually someone will spill, add that cost.
1591 : // See splitCanCauseEvictionChain for detailed description of scenarios.
1592 421954 : GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1593 : GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1594 :
1595 : *CanCauseEvictionChain = true;
1596 421954 :
1597 : } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1598 : Order)) {
1599 : // This interference causes local interval to spill, add that cost.
1600 818406 : GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1601 573503 : GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1602 : }
1603 14656 : }
1604 7328 :
1605 : if (BI.LiveIn)
1606 : Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1607 : if (BI.LiveOut)
1608 244 : Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1609 244 : while (Ins--)
1610 : GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1611 122 : }
1612 :
1613 7206 : for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1614 : unsigned Number = Cand.ActiveBlocks[i];
1615 : bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
1616 814 : bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1617 814 : if (!RegIn && !RegOut)
1618 : continue;
1619 : if (RegIn && RegOut) {
1620 : // We need double spill code if this block has interference.
1621 421954 : Cand.Intf.moveToBlock(Number);
1622 298623 : if (Cand.Intf.hasInterference()) {
1623 421954 : GlobalCost += SpillPlacer->getBlockFrequency(Number);
1624 351857 : GlobalCost += SpillPlacer->getBlockFrequency(Number);
1625 574801 :
1626 305694 : // Check wheather a local interval is going to be created during the
1627 : // region split.
1628 : if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1629 1910027 : splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1630 1803364 : // This interference cause our eviction from this assignment, we might
1631 1803364 : // evict somebody else, add that cost.
1632 : // See splitCanCauseEvictionChain for detailed description of
1633 1803364 : // scenarios.
1634 : GlobalCost += SpillPlacer->getBlockFrequency(Number);
1635 1166770 : GlobalCost += SpillPlacer->getBlockFrequency(Number);
1636 :
1637 808888 : *CanCauseEvictionChain = true;
1638 1617776 : }
1639 45840 : }
1640 45840 : continue;
1641 : }
1642 : // live-in / stack-out or stack-in live-out.
1643 : GlobalCost += SpillPlacer->getBlockFrequency(Number);
1644 44486 : }
1645 21566 : return GlobalCost;
1646 : }
1647 :
1648 : /// splitAroundRegion - Split the current live range around the regions
1649 : /// determined by BundleCand and GlobalCand.
1650 696 : ///
1651 696 : /// Before calling this function, GlobalCand and BundleCand must be initialized
1652 : /// so each bundle is assigned to a valid candidate, or NoCand for the
1653 348 : /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1654 : /// objects must be initialized for the current live range, and intervals
1655 : /// created for the used candidates.
1656 808888 : ///
1657 : /// @param LREdit The LiveRangeEdit object handling the current split.
1658 : /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1659 715764 : /// must appear in this list.
1660 : void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1661 106663 : ArrayRef<unsigned> UsedCands) {
1662 : // These are the intervals created for new global ranges. We may create more
1663 : // intervals for local ranges.
1664 : const unsigned NumGlobalIntvs = LREdit.size();
1665 : LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1666 : << " globals.\n");
1667 : assert(NumGlobalIntvs && "No global intervals configured");
1668 :
1669 : // Isolate even single instructions when dealing with a proper sub-class.
1670 : // That guarantees register class inflation for the stack interval because it
1671 : // is all copies.
1672 : unsigned Reg = SA->getParent().reg;
1673 : bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1674 :
1675 : // First handle all the blocks with uses.
1676 8697 : ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1677 : for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1678 : const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1679 : unsigned Number = BI.MBB->getNumber();
1680 8697 : unsigned IntvIn = 0, IntvOut = 0;
1681 : SlotIndex IntfIn, IntfOut;
1682 : if (BI.LiveIn) {
1683 : unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1684 : if (CandIn != NoCand) {
1685 : GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1686 : IntvIn = Cand.IntvIdx;
1687 : Cand.Intf.moveToBlock(Number);
1688 8697 : IntfIn = Cand.Intf.first();
1689 17394 : }
1690 : }
1691 : if (BI.LiveOut) {
1692 : unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1693 56288 : if (CandOut != NoCand) {
1694 : GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1695 47591 : IntvOut = Cand.IntvIdx;
1696 : Cand.Intf.moveToBlock(Number);
1697 47591 : IntfOut = Cand.Intf.last();
1698 47591 : }
1699 71594 : }
1700 35797 :
1701 24907 : // Create separate intervals for isolated blocks with multiple uses.
1702 24907 : if (!IntvIn && !IntvOut) {
1703 24907 : LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1704 49814 : if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1705 : SE->splitSingleBlock(BI);
1706 : continue;
1707 47591 : }
1708 74292 :
1709 37146 : if (IntvIn && IntvOut)
1710 27326 : SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1711 27326 : else if (IntvIn)
1712 27326 : SE->splitRegInBlock(BI, IntvIn, IntfIn);
1713 54652 : else
1714 : SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1715 : }
1716 :
1717 : // Handle live-through blocks. The relevant live-through blocks are stored in
1718 47591 : // the ActiveBlocks list with each candidate. We need to filter out
1719 : // duplicates.
1720 9483 : BitVector Todo = SA->getThroughBlocks();
1721 1788 : for (unsigned c = 0; c != UsedCands.size(); ++c) {
1722 9483 : ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1723 : for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1724 : unsigned Number = Blocks[i];
1725 38108 : if (!Todo.test(Number))
1726 14125 : continue;
1727 23983 : Todo.reset(Number);
1728 10782 :
1729 : unsigned IntvIn = 0, IntvOut = 0;
1730 13201 : SlotIndex IntfIn, IntfOut;
1731 :
1732 : unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1733 : if (CandIn != NoCand) {
1734 : GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1735 : IntvIn = Cand.IntvIdx;
1736 8697 : Cand.Intf.moveToBlock(Number);
1737 18388 : IntfIn = Cand.Intf.first();
1738 19382 : }
1739 177744 :
1740 336106 : unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1741 168053 : if (CandOut != NoCand) {
1742 49145 : GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1743 : IntvOut = Cand.IntvIdx;
1744 : Cand.Intf.moveToBlock(Number);
1745 : IntfOut = Cand.Intf.last();
1746 157851 : }
1747 : if (!IntvIn && !IntvOut)
1748 315702 : continue;
1749 157851 : SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1750 108053 : }
1751 108053 : }
1752 108053 :
1753 216106 : ++NumGlobalSplits;
1754 :
1755 : SmallVector<unsigned, 8> IntvMap;
1756 315702 : SE->finish(&IntvMap);
1757 157851 : DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1758 107935 :
1759 107935 : ExtraRegInfo.resize(MRI->getNumVirtRegs());
1760 107935 : unsigned OrigBlocks = SA->getNumLiveBlocks();
1761 215870 :
1762 : // Sort out the new intervals created by splitting. We get four kinds:
1763 157851 : // - Remainder intervals should not be split again.
1764 : // - Candidate intervals can be assigned to Cand.PhysReg.
1765 118908 : // - Block-local splits are candidates for local splitting.
1766 : // - DCE leftovers should go back on the queue.
1767 : for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1768 : LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1769 :
1770 : // Ignore old intervals from DCE.
1771 : if (getStage(Reg) != RS_New)
1772 8697 : continue;
1773 17394 :
1774 : // Remainder interval. Don't try splitting again, spill if it doesn't
1775 17394 : // allocate.
1776 : if (IntvMap[i] == 0) {
1777 : setStage(Reg, RS_Spill);
1778 : continue;
1779 : }
1780 :
1781 : // Global intervals. Allow repeated splitting as long as the number of live
1782 : // blocks is strictly decreasing.
1783 34163 : if (IntvMap[i] < NumGlobalIntvs) {
1784 50932 : if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1785 : LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1786 : << " blocks as original.\n");
1787 50932 : // Don't allow repeated splitting as a safe guard against looping.
1788 : setStage(Reg, RS_Split2);
1789 : }
1790 : continue;
1791 : }
1792 50932 :
1793 : // Other intervals are treated as new. This includes local intervals created
1794 9361 : // for blocks with multiple uses, and anything created by DCE.
1795 : }
1796 :
1797 : if (VerifyEnabled)
1798 : MF->verify(this, "After splitting live range around region");
1799 16105 : }
1800 12962 :
1801 : // Global split has high compile time cost especially for large live range.
1802 : // Return false for the case here where the potential benefit will never
1803 : // worth the cost.
1804 : unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1805 : MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1806 12962 : if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1807 : VirtReg.size() > HugeSizeForSplit)
1808 : return false;
1809 : return true;
1810 : }
1811 :
1812 : unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1813 8697 : SmallVectorImpl<unsigned> &NewVRegs) {
1814 8 : if (!isSplitBenefitWorthCost(VirtReg))
1815 8697 : return 0;
1816 : unsigned NumCands = 0;
1817 : BlockFrequency SpillCost = calcSpillCost();
1818 : BlockFrequency BestCost;
1819 :
1820 25027 : // Check if we can split this live range around a compact region.
1821 25027 : bool HasCompact = calcCompactRegion(GlobalCand.front());
1822 25027 : if (HasCompact) {
1823 : // Yes, keep GlobalCand[0] as the compact region candidate.
1824 0 : NumCands = 1;
1825 : BestCost = BlockFrequency::getMaxFrequency();
1826 : } else {
1827 : // No benefit from the compact region, our fallback will be per-block
1828 25027 : // splitting. Make sure we find a solution that is cheaper than spilling.
1829 : BestCost = SpillCost;
1830 25027 : LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1831 : MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1832 25027 : }
1833 25027 :
1834 : bool CanCauseEvictionChain = false;
1835 : unsigned BestCand =
1836 : calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1837 25027 : false /*IgnoreCSR*/, &CanCauseEvictionChain);
1838 25027 :
1839 : // Split candidates with compact regions can cause a bad eviction sequence.
1840 3985 : // See splitCanCauseEvictionChain for detailed description of scenarios.
1841 3985 : // To avoid it, we need to comapre the cost with the spill cost and not the
1842 : // current max frequency.
1843 : if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1844 : CanCauseEvictionChain) {
1845 21042 : return 0;
1846 : }
1847 :
1848 : // No solutions found, fall back to single block splitting.
1849 : if (!HasCompact && BestCand == NoCand)
1850 25027 : return 0;
1851 :
1852 25027 : return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1853 : }
1854 :
1855 : unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1856 : AllocationOrder &Order,
1857 : BlockFrequency &BestCost,
1858 : unsigned &NumCands, bool IgnoreCSR,
1859 25027 : bool *CanCauseEvictionChain) {
1860 : unsigned BestCand = NoCand;
1861 : Order.rewind();
1862 : while (unsigned PhysReg = Order.next()) {
1863 : if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1864 : continue;
1865 25022 :
1866 : // Discard bad candidates before we run out of interference cache cursors.
1867 : // This will only affect register classes with a lot of registers (>32).
1868 8687 : if (NumCands == IntfCache.getMaxCursors()) {
1869 : unsigned WorstCount = ~0u;
1870 : unsigned Worst = 0;
1871 25056 : for (unsigned i = 0; i != NumCands; ++i) {
1872 : if (i == BestCand || !GlobalCand[i].PhysReg)
1873 : continue;
1874 : unsigned Count = GlobalCand[i].LiveBundles.count();
1875 : if (Count < WorstCount) {
1876 : Worst = i;
1877 : WorstCount = Count;
1878 345433 : }
1879 320377 : }
1880 213714 : --NumCands;
1881 : GlobalCand[Worst] = GlobalCand[NumCands];
1882 : if (BestCand == NumCands)
1883 : BestCand = Worst;
1884 320084 : }
1885 :
1886 : if (GlobalCand.size() <= NumCands)
1887 198 : GlobalCand.resize(NumCands+1);
1888 192 : GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1889 : Cand.reset(IntfCache, PhysReg);
1890 :
1891 180 : SpillPlacer->prepare(Cand.LiveBundles);
1892 : BlockFrequency Cost;
1893 : if (!addSplitConstraints(Cand.Intf, Cost)) {
1894 : LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1895 : continue;
1896 6 : }
1897 12 : LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1898 6 : MBFI->printBlockFreq(dbgs(), Cost));
1899 : if (Cost >= BestCost) {
1900 : LLVM_DEBUG({
1901 : if (BestCand == NoCand)
1902 320084 : dbgs() << " worse than no bundles\n";
1903 0 : else
1904 320084 : dbgs() << " worse than "
1905 : << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1906 : });
1907 320084 : continue;
1908 : }
1909 640168 : if (!growRegion(Cand)) {
1910 : LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1911 : continue;
1912 : }
1913 :
1914 : SpillPlacer->finish();
1915 166367 :
1916 : // No live bundles, defer to splitSingleBlocks().
1917 : if (!Cand.LiveBundles.any()) {
1918 : LLVM_DEBUG(dbgs() << " no bundles.\n");
1919 : continue;
1920 : }
1921 :
1922 : bool HasEvictionChain = false;
1923 : Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1924 : LLVM_DEBUG({
1925 137423 : dbgs() << ", total = ";
1926 : MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1927 : for (int i : Cand.LiveBundles.set_bits())
1928 : dbgs() << " EB#" << i;
1929 : dbgs() << ".\n";
1930 130707 : });
1931 : if (Cost < BestCost) {
1932 : BestCand = NumCands;
1933 130707 : BestCost = Cost;
1934 : // See splitCanCauseEvictionChain for detailed description of bad
1935 : // eviction chain scenarios.
1936 : if (CanCauseEvictionChain)
1937 : *CanCauseEvictionChain = HasEvictionChain;
1938 106663 : }
1939 106663 : ++NumCands;
1940 : }
1941 :
1942 : if (CanCauseEvictionChain && BestCand != NoCand) {
1943 : // See splitCanCauseEvictionChain for detailed description of bad
1944 : // eviction chain scenarios.
1945 : LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1946 : << printReg(VirtReg.reg, TRI) << " may ");
1947 106663 : if (!(*CanCauseEvictionChain))
1948 11798 : LLVM_DEBUG(dbgs() << "not ");
1949 11798 : LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1950 : }
1951 :
1952 11798 : return BestCand;
1953 11788 : }
1954 :
1955 106663 : unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1956 : bool HasCompact,
1957 : SmallVectorImpl<unsigned> &NewVRegs) {
1958 : SmallVector<unsigned, 8> UsedCands;
1959 : // Prepare split editor.
1960 : LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1961 : SE->reset(LREdit, SplitSpillMode);
1962 :
1963 : // Assign all edge bundles to the preferred candidate, or NoCand.
1964 : BundleCand.assign(Bundles->getNumBundles(), NoCand);
1965 :
1966 : // Assign bundles for the best candidate region.
1967 : if (BestCand != NoCand) {
1968 25056 : GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1969 : if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1970 : UsedCands.push_back(BestCand);
1971 8697 : Cand.IntvIdx = SE->openIntv();
1972 : LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1973 : << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1974 : (void)B;
1975 : }
1976 8697 : }
1977 8697 :
1978 : // Assign bundles for the compact region.
1979 : if (HasCompact) {
1980 17394 : GlobalSplitCandidate &Cand = GlobalCand.front();
1981 : assert(!Cand.PhysReg && "Compact region has no physreg");
1982 : if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1983 8697 : UsedCands.push_back(0);
1984 8264 : Cand.IntvIdx = SE->openIntv();
1985 8264 : LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1986 8264 : << " bundles, intv " << Cand.IntvIdx << ".\n");
1987 8264 : (void)B;
1988 : }
1989 : }
1990 :
1991 : splitAroundRegion(LREdit, UsedCands);
1992 : return 0;
1993 : }
1994 :
1995 8697 : //===----------------------------------------------------------------------===//
1996 3980 : // Per-Block Splitting
1997 : //===----------------------------------------------------------------------===//
1998 3980 :
1999 1427 : /// tryBlockSplit - Split a global live range around every block with uses. This
2000 1427 : /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2001 : /// they don't allocate.
2002 : unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2003 : SmallVectorImpl<unsigned> &NewVRegs) {
2004 : assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2005 : unsigned Reg = VirtReg.reg;
2006 : bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2007 8697 : LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2008 8697 : SE->reset(LREdit, SplitSpillMode);
2009 : ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2010 : for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2011 : const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2012 : if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2013 : SE->splitSingleBlock(BI);
2014 : }
2015 : // No blocks were split.
2016 : if (LREdit.empty())
2017 : return 0;
2018 0 :
2019 : // We did split for some blocks.
2020 : SmallVector<unsigned, 8> IntvMap;
2021 0 : SE->finish(&IntvMap);
2022 0 :
2023 0 : // Tell LiveDebugVariables about the new ranges.
2024 0 : DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2025 :
2026 0 : ExtraRegInfo.resize(MRI->getNumVirtRegs());
2027 :
2028 0 : // Sort out the new intervals created by splitting. The remainder interval
2029 0 : // goes straight to spilling, the new local ranges get to stay RS_New.
2030 : for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2031 : LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2032 0 : if (getStage(LI) == RS_New && IntvMap[i] == 0)
2033 0 : setStage(LI, RS_Spill);
2034 : }
2035 :
2036 : if (VerifyEnabled)
2037 0 : MF->verify(this, "After splitting live range around basic blocks");
2038 : return 0;
2039 : }
2040 0 :
2041 : //===----------------------------------------------------------------------===//
2042 0 : // Per-Instruction Splitting
2043 : //===----------------------------------------------------------------------===//
2044 :
2045 : /// Get the number of allocatable registers that match the constraints of \p Reg
2046 0 : /// on \p MI and that are also in \p SuperRC.
2047 0 : static unsigned getNumAllocatableRegsForConstraints(
2048 0 : const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2049 : const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2050 : const RegisterClassInfo &RCI) {
2051 : assert(SuperRC && "Invalid register class");
2052 0 :
2053 0 : const TargetRegisterClass *ConstrainedRC =
2054 : MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2055 : /* ExploreBundle */ true);
2056 : if (!ConstrainedRC)
2057 : return 0;
2058 : return RCI.getNumAllocatableRegs(ConstrainedRC);
2059 : }
2060 :
2061 : /// tryInstructionSplit - Split a live range around individual instructions.
2062 : /// This is normally not worthwhile since the spiller is doing essentially the
2063 45 : /// same thing. However, when the live range is in a constrained register
2064 : /// class, it may help to insert copies such that parts of the live range can
2065 : /// be moved to a larger register class.
2066 : ///
2067 : /// This is similar to spilling to a larger register class.
2068 : unsigned
2069 : RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2070 45 : SmallVectorImpl<unsigned> &NewVRegs) {
2071 : const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2072 45 : // There is no point to this if there are no larger sub-classes.
2073 : if (!RegClassInfo.isProperSubClass(CurRC))
2074 45 : return 0;
2075 :
2076 : // Always enable split spill mode, since we're effectively spilling to a
2077 : // register.
2078 : LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2079 : SE->reset(LREdit, SplitEditor::SM_Size);
2080 :
2081 : ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2082 : if (Uses.size() <= 1)
2083 : return 0;
2084 :
2085 0 : LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2086 : << " individual instrs.\n");
2087 0 :
2088 : const TargetRegisterClass *SuperRC =
2089 0 : TRI->getLargestLegalSuperClass(CurRC, *MF);
2090 0 : unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2091 : // Split around every non-copy instruction if this split will relax
2092 : // the constraints on the virtual register.
2093 : // Otherwise, splitting just inserts uncoalescable copies that do not help
2094 0 : // the allocation.
2095 0 : for (unsigned i = 0; i != Uses.size(); ++i) {
2096 : if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2097 : if (MI->isFullCopy() ||
2098 0 : SuperRCNumAllocatableRegs ==
2099 0 : getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2100 : TRI, RCI)) {
2101 : LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
2102 : continue;
2103 : }
2104 : SE->openIntv();
2105 0 : SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2106 0 : SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
2107 : SE->useIntv(SegStart, SegStop);
2108 : }
2109 :
2110 : if (LREdit.empty()) {
2111 0 : LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2112 0 : return 0;
2113 0 : }
2114 :
2115 0 : SmallVector<unsigned, 8> IntvMap;
2116 : SE->finish(&IntvMap);
2117 : DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2118 0 : ExtraRegInfo.resize(MRI->getNumVirtRegs());
2119 :
2120 0 : // Assign all new registers to RS_Spill. This was the last chance.
2121 0 : setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2122 0 : return 0;
2123 0 : }
2124 :
2125 : //===----------------------------------------------------------------------===//
2126 0 : // Local Splitting
2127 : //===----------------------------------------------------------------------===//
2128 0 :
2129 : /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2130 : /// in order to use PhysReg between two entries in SA->UseSlots.
2131 : ///
2132 0 : /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2133 0 : ///
2134 0 : void RAGreedy::calcGapWeights(unsigned PhysReg,
2135 : SmallVectorImpl<float> &GapWeight) {
2136 : assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2137 0 : const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2138 : ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2139 : const unsigned NumGaps = Uses.size()-1;
2140 :
2141 : // Start and end points for the interference check.
2142 : SlotIndex StartIdx =
2143 : BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2144 : SlotIndex StopIdx =
2145 : BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2146 :
2147 : GapWeight.assign(NumGaps, 0.0f);
2148 :
2149 : // Add interference from each overlapping register.
2150 131643 : for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2151 : if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2152 : .checkInterference())
2153 : continue;
2154 :
2155 131643 : // We know that VirtReg is a continuous interval from FirstInstr to
2156 : // LastInstr, so we don't need InterferenceQuery.
2157 : //
2158 : // Interference that overlaps an instruction is counted in both gaps
2159 131643 : // surrounding the instruction. The exception is interference before
2160 : // StartIdx and after StopIdx.
2161 131643 : //
2162 : LiveIntervalUnion::SegmentIter IntI =
2163 131643 : Matrix->getLiveUnions()[*Units] .find(StartIdx);
2164 : for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2165 : // Skip the gaps before IntI.
2166 477853 : while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2167 643701 : if (++Gap == NumGaps)
2168 : break;
2169 67439 : if (Gap == NumGaps)
2170 : break;
2171 :
2172 : // Update the gaps covered by IntI.
2173 : const float weight = IntI.value()->weight;
2174 : for (; Gap != NumGaps; ++Gap) {
2175 : GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2176 : if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2177 : break;
2178 : }
2179 294256 : if (Gap == NumGaps)
2180 3084507 : break;
2181 : }
2182 6520870 : }
2183 239500 :
2184 : // Add fixed interference.
2185 3020935 : for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2186 : const LiveRange &LR = LIS->getRegUnit(*Units);
2187 : LiveRange::const_iterator I = LR.find(StartIdx);
2188 : LiveRange::const_iterator E = LR.end();
2189 3020935 :
2190 3340791 : // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2191 3617785 : for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2192 6552422 : while (Uses[Gap+1].getBoundaryIndex() < I->start)
2193 : if (++Gap == NumGaps)
2194 : break;
2195 3020935 : if (Gap == NumGaps)
2196 : break;
2197 :
2198 : for (; Gap != NumGaps; ++Gap) {
2199 : GapWeight[Gap] = huge_valf;
2200 : if (Uses[Gap+1].getBaseIndex() >= I->end)
2201 477853 : break;
2202 429134 : }
2203 214567 : if (Gap == NumGaps)
2204 : break;
2205 : }
2206 : }
2207 3560120 : }
2208 6837902 :
2209 70447 : /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2210 : /// basic block.
2211 3348504 : ///
2212 : unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2213 : SmallVectorImpl<unsigned> &NewVRegs) {
2214 3389834 : // TODO: the function currently only handles a single UseBlock; it should be
2215 3386883 : // possible to generalize.
2216 6773766 : if (SA->getUseBlocks().size() != 1)
2217 : return 0;
2218 :
2219 3348504 : const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2220 :
2221 : // Note that it is possible to have an interval that is live-in or live-out
2222 : // while only covering a single block - A phi-def can use undef values from
2223 131643 : // predecessors, and the block could be a single-block loop.
2224 : // We don't bother doing anything clever about such a case, we simply assume
2225 : // that the interval is continuous from FirstInstr to LastInstr. We should
2226 : // make sure that we don't do anything illegal to such an interval, though.
2227 :
2228 30317 : ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2229 : if (Uses.size() <= 2)
2230 : return 0;
2231 : const unsigned NumGaps = Uses.size()-1;
2232 30317 :
2233 : LLVM_DEBUG({
2234 : dbgs() << "tryLocalSplit: ";
2235 : for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2236 : dbgs() << ' ' << Uses[i];
2237 : dbgs() << '\n';
2238 : });
2239 :
2240 : // If VirtReg is live across any register mask operands, compute a list of
2241 : // gaps with register masks.
2242 : SmallVector<unsigned, 8> RegMaskGaps;
2243 : if (Matrix->checkRegMaskInterference(VirtReg)) {
2244 : // Get regmask slots for the whole block.
2245 30316 : ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2246 : LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2247 11427 : // Constrain to VirtReg's live range.
2248 : unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
2249 : Uses.front().getRegSlot()) - RMS.begin();
2250 : unsigned re = RMS.size();
2251 : for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2252 : // Look for Uses[i] <= RMS <= Uses[i+1].
2253 : assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2254 : if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2255 : continue;
2256 : // Skip a regmask on the same instruction as the last use. It doesn't
2257 : // overlap the live range.
2258 : if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2259 11427 : break;
2260 : LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2261 5450 : << Uses[i + 1]);
2262 : RegMaskGaps.push_back(i);
2263 : // Advance ri to the next gap. A regmask on one of the uses counts in
2264 : // both gaps.
2265 5450 : while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2266 : ++ri;
2267 140247 : }
2268 : LLVM_DEBUG(dbgs() << '\n');
2269 : }
2270 404400 :
2271 : // Since we allow local split results to be split again, there is a risk of
2272 : // creating infinite loops. It is tempting to require that the new live
2273 : // ranges have less instructions than the original. That would guarantee
2274 10664 : // convergence, but it is too strict. A live range with 3 instructions can be
2275 : // split 2+3 (including the COPY), and we want to allow that.
2276 : //
2277 : // Instead we use these rules:
2278 10661 : //
2279 : // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2280 : // noop split, of course).
2281 31989 : // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2282 21328 : // the new ranges must have fewer instructions than before the split.
2283 : // 3. New ranges with the same number of instructions are marked RS_Split2,
2284 : // smaller ranges are marked RS_New.
2285 : //
2286 : // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2287 : // excessive splitting and infinite loops.
2288 : //
2289 : bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2290 :
2291 : // Best split candidate.
2292 : unsigned BestBefore = NumGaps;
2293 : unsigned BestAfter = 0;
2294 : float BestDiff = 0;
2295 :
2296 : const float blockFreq =
2297 : SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2298 : (1.0f / MBFI->getEntryFreq());
2299 : SmallVector<float, 8> GapWeight;
2300 :
2301 : Order.rewind();
2302 : while (unsigned PhysReg = Order.next()) {
2303 : // Keep track of the largest spill weight that would need to be evicted in
2304 : // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2305 11427 : calcGapWeights(PhysReg, GapWeight);
2306 :
2307 : // Remove any gaps with regmask clobbers.
2308 : if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2309 : for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2310 : GapWeight[RegMaskGaps[i]] = huge_valf;
2311 :
2312 : // Try to find the best sequence of gaps to close.
2313 11427 : // The new spill weight must be larger than any gap interference.
2314 11427 :
2315 : // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2316 : unsigned SplitBefore = 0, SplitAfter = 1;
2317 :
2318 143070 : // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2319 : // It is the spill weight that needs to be evicted.
2320 : float MaxGap = GapWeight[0];
2321 131643 :
2322 : while (true) {
2323 : // Live before/after split?
2324 131643 : const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2325 198555 : const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2326 391170 :
2327 : LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2328 : << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2329 :
2330 : // Stop before the interval gets so big we wouldn't be making progress.
2331 : if (!LiveBefore && !LiveAfter) {
2332 : LLVM_DEBUG(dbgs() << " all\n");
2333 : break;
2334 : }
2335 : // Should the interval be extended or shrunk?
2336 131643 : bool Shrink = true;
2337 :
2338 : // How many gaps would the new range have?
2339 : unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2340 3382214 :
2341 3382214 : // Legally, without causing looping?
2342 : bool Legal = !ProgressRequired || NewGaps < NumGaps;
2343 :
2344 : if (Legal && MaxGap < huge_valf) {
2345 : // Estimate the new spill weight. Each instruction reads or writes the
2346 : // register. Conservatively assume there are no read-modify-write
2347 3382214 : // instructions.
2348 : //
2349 : // Try to guess the size of the new interval.
2350 : const float EstWeight = normalizeSpillWeight(
2351 : blockFreq * (NewGaps + 1),
2352 : Uses[SplitBefore].distance(Uses[SplitAfter]) +
2353 : (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2354 : 1);
2355 3344115 : // Would this split be possible to allocate?
2356 : // Never allocate all gaps, we wouldn't be making progress.
2357 : LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2358 3344115 : if (EstWeight * Hysteresis >= MaxGap) {
2359 : Shrink = false;
2360 3344115 : float Diff = EstWeight - MaxGap;
2361 : if (Diff > BestDiff) {
2362 : LLVM_DEBUG(dbgs() << " (best)");
2363 : BestDiff = Hysteresis * Diff;
2364 : BestBefore = SplitBefore;
2365 : BestAfter = SplitAfter;
2366 3861188 : }
2367 1930594 : }
2368 3861188 : }
2369 1930594 :
2370 : // Try to shrink.
2371 : if (Shrink) {
2372 : if (++SplitBefore < SplitAfter) {
2373 : LLVM_DEBUG(dbgs() << " shrink\n");
2374 1930594 : // Recompute the max when necessary.
2375 : if (GapWeight[SplitBefore - 1] >= MaxGap) {
2376 1777335 : MaxGap = GapWeight[SplitBefore];
2377 1777335 : for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2378 : MaxGap = std::max(MaxGap, GapWeight[i]);
2379 218647 : }
2380 : continue;
2381 : }
2382 : MaxGap = 0;
2383 : }
2384 :
2385 : // Try to extend the interval.
2386 : if (SplitAfter >= NumGaps) {
2387 3344115 : LLVM_DEBUG(dbgs() << " end\n");
2388 1566780 : break;
2389 : }
2390 :
2391 2551994 : LLVM_DEBUG(dbgs() << " extend\n");
2392 8576 : MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2393 14362 : }
2394 5866 : }
2395 :
2396 1275997 : // Didn't find any candidates?
2397 : if (BestBefore == NumGaps)
2398 290783 : return 0;
2399 :
2400 : LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2401 : << Uses[BestAfter] << ", " << BestDiff << ", "
2402 2068118 : << (BestAfter - BestBefore + 1) << " instrs\n");
2403 :
2404 : LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2405 : SE->reset(LREdit);
2406 :
2407 : SE->openIntv();
2408 2250743 : SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2409 : SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
2410 131643 : SE->useIntv(SegStart, SegStop);
2411 : SmallVector<unsigned, 8> IntvMap;
2412 : SE->finish(&IntvMap);
2413 11427 : DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2414 :
2415 : // If the new range has the same number of instructions as before, mark it as
2416 : // RS_Split2 so the next split will be forced to make progress. Otherwise,
2417 : // leave the new intervals as RS_New so they can compete.
2418 : bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2419 : bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2420 20520 : unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2421 10260 : if (NewGaps >= NumGaps) {
2422 : LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2423 10260 : assert(!ProgressRequired && "Didn't make progress when it was required.");
2424 20520 : for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2425 20520 : if (IntvMap[i] == 1) {
2426 10260 : setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2427 : LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2428 10260 : }
2429 20520 : LLVM_DEBUG(dbgs() << '\n');
2430 : }
2431 : ++NumLocalSplits;
2432 :
2433 : return 0;
2434 10260 : }
2435 10260 :
2436 10260 : //===----------------------------------------------------------------------===//
2437 10260 : // Live Range Splitting
2438 : //===----------------------------------------------------------------------===//
2439 :
2440 16963 : /// trySplit - Try to split VirtReg or one of its interferences, making it
2441 22924 : /// assignable.
2442 11002 : /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2443 : unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2444 : SmallVectorImpl<unsigned>&NewVRegs) {
2445 : // Ranges must be Split2 or less.
2446 : if (getStage(VirtReg) >= RS_Spill)
2447 : return 0;
2448 :
2449 : // Local intervals are handled separately.
2450 : if (LIS->intervalIsInOneMBB(VirtReg)) {
2451 : NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2452 : TimerGroupDescription, TimePassesIsEnabled);
2453 : SA->analyze(&VirtReg);
2454 : unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2455 : if (PhysReg || !NewVRegs.empty())
2456 : return PhysReg;
2457 : return tryInstructionSplit(VirtReg, Order, NewVRegs);
2458 : }
2459 55689 :
2460 : NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2461 : TimerGroupDescription, TimePassesIsEnabled);
2462 111378 :
2463 : SA->analyze(&VirtReg);
2464 :
2465 : // FIXME: SplitAnalysis may repair broken live ranges coming from the
2466 55689 : // coalescer. That may cause the range to become allocatable which means that
2467 : // tryRegionSplit won't be making progress. This check should be replaced with
2468 60634 : // an assertion when the coalescer is fixed.
2469 30317 : if (SA->didRepairRange()) {
2470 30317 : // VirtReg has changed, so all cached queries are invalid.
2471 30317 : Matrix->invalidateVirtRegs();
2472 : if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2473 20057 : return PhysReg;
2474 : }
2475 :
2476 : // First try to split around a region spanning multiple blocks. RS_Split2
2477 50744 : // ranges already made dubious progress with region splitting, so they go
2478 : // straight to single block splitting.
2479 25372 : if (getStage(VirtReg) < RS_Split2) {
2480 : unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2481 : if (PhysReg || !NewVRegs.empty())
2482 : return PhysReg;
2483 : }
2484 :
2485 25372 : // Then isolate blocks.
2486 : return tryBlockSplit(VirtReg, Order, NewVRegs);
2487 0 : }
2488 0 :
2489 : //===----------------------------------------------------------------------===//
2490 : // Last Chance Recoloring
2491 : //===----------------------------------------------------------------------===//
2492 :
2493 : /// Return true if \p reg has any tied def operand.
2494 : static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2495 50744 : for (const MachineOperand &MO : MRI->def_operands(reg))
2496 25027 : if (MO.isTied())
2497 25027 : return true;
2498 :
2499 : return false;
2500 : }
2501 :
2502 16685 : /// mayRecolorAllInterferences - Check if the virtual registers that
2503 : /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2504 : /// recolored to free \p PhysReg.
2505 : /// When true is returned, \p RecoloringCandidates has been augmented with all
2506 : /// the live intervals that need to be recolored in order to free \p PhysReg
2507 : /// for \p VirtReg.
2508 : /// \p FixedRegisters contains all the virtual registers that cannot be
2509 : /// recolored.
2510 98 : bool
2511 196 : RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2512 98 : SmallLISet &RecoloringCandidates,
2513 : const SmallVirtRegSet &FixedRegisters) {
2514 : const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2515 :
2516 : for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2517 : LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2518 : // If there is LastChanceRecoloringMaxInterference or more interferences,
2519 : // chances are one would not be recolorable.
2520 : if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2521 : LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2522 : LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2523 : CutOffInfo |= CO_Interf;
2524 : return false;
2525 : }
2526 : for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2527 16757 : LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2528 : // If Intf is done and sit on the same register class as VirtReg,
2529 : // it would not be recolorable as it is in the same state as VirtReg.
2530 16757 : // However, if VirtReg has tied defs and Intf doesn't, then
2531 : // there is still a point in examining if it can be recolorable.
2532 68755 : if (((getStage(*Intf) == RS_Done &&
2533 86374 : MRI->getRegClass(Intf->reg) == CurRC) &&
2534 : !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2535 : FixedRegisters.count(Intf->reg)) {
2536 43187 : LLVM_DEBUG(
2537 43187 : dbgs() << "Early abort: the interference is not recolorable.\n");
2538 : return false;
2539 0 : }
2540 0 : RecoloringCandidates.insert(Intf);
2541 : }
2542 78428 : }
2543 43187 : return true;
2544 : }
2545 :
2546 : /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2547 : /// its interferences.
2548 43187 : /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2549 196 : /// virtual register that was using it. The recoloring process may recursively
2550 86374 : /// use the last chance recoloring. Therefore, when a virtual register has been
2551 43089 : /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2552 : /// be last-chance-recolored again during this recoloring "session".
2553 : /// E.g.,
2554 7946 : /// Let
2555 : /// vA can use {R1, R2 }
2556 35241 : /// vB can use { R2, R3}
2557 : /// vC can use {R1 }
2558 : /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2559 : /// instance) and they all interfere.
2560 : ///
2561 : /// vA is assigned R1
2562 : /// vB is assigned R2
2563 : /// vC tries to evict vA but vA is already done.
2564 : /// Regular register allocation fails.
2565 : ///
2566 : /// Last chance recoloring kicks in:
2567 : /// vC does as if vA was evicted => vC uses R1.
2568 : /// vC is marked as fixed.
2569 : /// vA needs to find a color.
2570 : /// None are available.
2571 : /// vA cannot evict vC: vC is a fixed virtual register now.
2572 : /// vA does as if vB was evicted => vA uses R2.
2573 : /// vB needs to find a color.
2574 : /// R3 is available.
2575 : /// Recoloring => vC = R1, vA = R2, vB = R3
2576 : ///
2577 : /// \p Order defines the preferred allocation order for \p VirtReg.
2578 : /// \p NewRegs will contain any new virtual register that have been created
2579 : /// (split, spill) during the process and that must be assigned.
2580 : /// \p FixedRegisters contains all the virtual registers that cannot be
2581 : /// recolored.
2582 : /// \p Depth gives the current depth of the last chance recoloring.
2583 : /// \return a physical register that can be used for VirtReg or ~0u if none
2584 : /// exists.
2585 : unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2586 : AllocationOrder &Order,
2587 : SmallVectorImpl<unsigned> &NewVRegs,
2588 : SmallVirtRegSet &FixedRegisters,
2589 : unsigned Depth) {
2590 : LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2591 : // Ranges must be Done.
2592 : assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2593 : "Last chance recoloring should really be last chance");
2594 : // Set the max depth to LastChanceRecoloringMaxDepth.
2595 : // We may want to reconsider that if we end up with a too large search space
2596 : // for target with hundreds of registers.
2597 : // Indeed, in that case we may want to cut the search space earlier.
2598 : if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2599 : LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2600 : CutOffInfo |= CO_Depth;
2601 8896 : return ~0u;
2602 : }
2603 :
2604 : // Set of Live intervals that will need to be recolored.
2605 : SmallLISet RecoloringCandidates;
2606 : // Record the original mapping virtual register to physical register in case
2607 : // the recoloring fails.
2608 : DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2609 : // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2610 : // this recoloring "session".
2611 : FixedRegisters.insert(VirtReg.reg);
2612 : SmallVector<unsigned, 4> CurrentNewVRegs;
2613 :
2614 8896 : Order.rewind();
2615 : while (unsigned PhysReg = Order.next()) {
2616 6720 : LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2617 6720 : << printReg(PhysReg, TRI) << '\n');
2618 : RecoloringCandidates.clear();
2619 : VirtRegToPhysReg.clear();
2620 : CurrentNewVRegs.clear();
2621 :
2622 : // It is only possible to recolor virtual register interference.
2623 : if (Matrix->checkInterference(VirtReg, PhysReg) >
2624 : LiveRegMatrix::IK_VirtReg) {
2625 : LLVM_DEBUG(
2626 : dbgs() << "Some interferences are not with virtual registers.\n");
2627 2176 :
2628 : continue;
2629 : }
2630 :
2631 19626 : // Early give up on this PhysReg if it is obvious we cannot recolor all
2632 : // the interferences.
2633 : if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2634 17450 : FixedRegisters)) {
2635 17450 : LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2636 : continue;
2637 : }
2638 :
2639 17450 : // RecoloringCandidates contains all the virtual registers that interfer
2640 : // with VirtReg on PhysReg (or one of its aliases).
2641 : // Enqueue them for recoloring and perform the actual recoloring.
2642 : PQueue RecoloringQueue;
2643 : for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2644 8639 : EndIt = RecoloringCandidates.end();
2645 : It != EndIt; ++It) {
2646 : unsigned ItVirtReg = (*It)->reg;
2647 : enqueue(RecoloringQueue, *It);
2648 : assert(VRM->hasPhys(ItVirtReg) &&
2649 16757 : "Interferences are supposed to be with allocated variables");
2650 :
2651 : // Record the current allocation.
2652 : VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2653 : // unset the related struct.
2654 : Matrix->unassign(**It);
2655 : }
2656 :
2657 : // Do as if VirtReg was assigned to PhysReg so that the underlying
2658 : // recoloring has the right information about the interferes and
2659 8811 : // available colors.
2660 8811 : Matrix->assign(VirtReg, PhysReg);
2661 17622 :
2662 8811 : // Save the current recoloring state.
2663 8811 : // If we cannot recolor all the interferences, we will have to start again
2664 : // at this point for the next physical register.
2665 : SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2666 : if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2667 : FixedRegisters, Depth)) {
2668 8811 : // Push the queued vregs into the main queue.
2669 : for (unsigned NewVReg : CurrentNewVRegs)
2670 17622 : NewVRegs.push_back(NewVReg);
2671 : // Do not mess up with the global assignment process.
2672 : // I.e., VirtReg must be unassigned.
2673 : Matrix->unassign(VirtReg);
2674 : return PhysReg;
2675 : }
2676 8811 :
2677 : LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2678 : << printReg(PhysReg, TRI) << '\n');
2679 :
2680 : // The recoloring attempt failed, undo the changes.
2681 17622 : FixedRegisters = SaveFixedRegisters;
2682 8811 : Matrix->unassign(VirtReg);
2683 :
2684 : // For a newly created vreg which is also in RecoloringCandidates,
2685 0 : // don't add it to NewVRegs because its physical register will be restored
2686 0 : // below. Other vregs in CurrentNewVRegs are created by calling
2687 : // selectOrSplit and should be added into NewVRegs.
2688 : for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2689 0 : End = CurrentNewVRegs.end();
2690 0 : Next != End; ++Next) {
2691 : if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2692 : continue;
2693 : NewVRegs.push_back(*Next);
2694 : }
2695 :
2696 : for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2697 : EndIt = RecoloringCandidates.end();
2698 8811 : It != EndIt; ++It) {
2699 : unsigned ItVirtReg = (*It)->reg;
2700 : if (VRM->hasPhys(ItVirtReg))
2701 : Matrix->unassign(**It);
2702 : unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2703 : Matrix->assign(**It, ItPhysReg);
2704 9 : }
2705 : }
2706 8820 :
2707 9 : // Last chance recoloring did not worked either, give up.
2708 : return ~0u;
2709 0 : }
2710 :
2711 : /// tryRecoloringCandidates - Try to assign a new color to every register
2712 8811 : /// in \RecoloringQueue.
2713 8811 : /// \p NewRegs will contain any new virtual register created during the
2714 17622 : /// recoloring process.
2715 8811 : /// \p FixedRegisters[in/out] contains all the registers that have been
2716 17622 : /// recolored.
2717 0 : /// \return true if all virtual registers in RecoloringQueue were successfully
2718 8811 : /// recolored, false otherwise.
2719 17622 : bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2720 : SmallVectorImpl<unsigned> &NewVRegs,
2721 : SmallVirtRegSet &FixedRegisters,
2722 : unsigned Depth) {
2723 : while (!RecoloringQueue.empty()) {
2724 2176 : LiveInterval *LI = dequeue(RecoloringQueue);
2725 : LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2726 : unsigned PhysReg;
2727 : PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2728 : // When splitting happens, the live-range may actually be empty.
2729 : // In that case, this is okay to continue the recoloring even
2730 : // if we did not find an alternative color for it. Indeed,
2731 : // there will not be anything to color for LI in the end.
2732 : if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2733 : return false;
2734 :
2735 8811 : if (!PhysReg) {
2736 : assert(LI->empty() && "Only empty live-range do not require a register");
2737 : LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2738 : << " succeeded. Empty LI.\n");
2739 8811 : continue;
2740 8811 : }
2741 : LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2742 : << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2743 8811 :
2744 : Matrix->assign(*LI, PhysReg);
2745 : FixedRegisters.insert(LI->reg);
2746 : }
2747 : return true;
2748 8811 : }
2749 :
2750 : //===----------------------------------------------------------------------===//
2751 0 : // Main Entry Point
2752 : //===----------------------------------------------------------------------===//
2753 :
2754 : unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2755 : SmallVectorImpl<unsigned> &NewVRegs) {
2756 : CutOffInfo = CO_None;
2757 : LLVMContext &Ctx = MF->getFunction().getContext();
2758 : SmallVirtRegSet FixedRegisters;
2759 : unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2760 0 : if (Reg == ~0U && (CutOffInfo != CO_None)) {
2761 0 : uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2762 : if (CutOffEncountered == CO_Depth)
2763 : Ctx.emitError("register allocation failed: maximum depth for recoloring "
2764 : "reached. Use -fexhaustive-register-search to skip "
2765 : "cutoffs");
2766 : else if (CutOffEncountered == CO_Interf)
2767 : Ctx.emitError("register allocation failed: maximum interference for "
2768 : "recoloring reached. Use -fexhaustive-register-search "
2769 : "to skip cutoffs");
2770 1551279 : else if (CutOffEncountered == (CO_Depth | CO_Interf))
2771 : Ctx.emitError("register allocation failed: maximum interference and "
2772 1551279 : "depth for recoloring reached. Use "
2773 1551279 : "-fexhaustive-register-search to skip cutoffs");
2774 1551279 : }
2775 1551279 : return Reg;
2776 1551279 : }
2777 1 :
2778 1 : /// Using a CSR for the first time has a cost because it causes push|pop
2779 1 : /// to be added to prologue|epilogue. Splitting a cold section of the live
2780 : /// range can have lower cost than using the CSR for the first time;
2781 : /// Spilling a live range in the cold path can have lower cost than using
2782 0 : /// the CSR for the first time. Returns the physical register if we decide
2783 0 : /// to use the CSR; otherwise return 0.
2784 : unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2785 : AllocationOrder &Order,
2786 0 : unsigned PhysReg,
2787 0 : unsigned &CostPerUseLimit,
2788 : SmallVectorImpl<unsigned> &NewVRegs) {
2789 : if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2790 : // We choose spill over using the CSR for the first time if the spill cost
2791 1551279 : // is lower than CSRCost.
2792 : SA->analyze(&VirtReg);
2793 : if (calcSpillCost() >= CSRCost)
2794 : return PhysReg;
2795 :
2796 : // We are going to spill, set CostPerUseLimit to 1 to make sure that
2797 : // we will not use a callee-saved register in tryEvict.
2798 : CostPerUseLimit = 1;
2799 : return 0;
2800 45 : }
2801 : if (getStage(VirtReg) < RS_Split) {
2802 : // We choose pre-splitting over using the CSR for the first time if
2803 : // the cost of splitting is lower than CSRCost.
2804 : SA->analyze(&VirtReg);
2805 90 : unsigned NumCands = 0;
2806 : BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2807 : unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2808 16 : NumCands, true /*IgnoreCSR*/);
2809 16 : if (BestCand == NoCand)
2810 : // Use the CSR if we can't find a region split below CSRCost.
2811 : return PhysReg;
2812 :
2813 : // Perform the actual pre-splitting.
2814 16 : doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2815 16 : return 0;
2816 : }
2817 29 : return PhysReg;
2818 : }
2819 :
2820 29 : void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2821 29 : // Do not keep invalid information around.
2822 29 : SetOfBrokenHints.remove(&LI);
2823 29 : }
2824 :
2825 29 : void RAGreedy::initializeCSRCost() {
2826 : // We use the larger one out of the command-line option and the value report
2827 : // by TRI.
2828 : CSRCost = BlockFrequency(
2829 : std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2830 10 : if (!CSRCost.getFrequency())
2831 10 : return;
2832 :
2833 : // Raw cost is relative to Entry == 2^14; scale it appropriately.
2834 : uint64_t ActualEntry = MBFI->getEntryFreq();
2835 : if (!ActualEntry) {
2836 7994 : CSRCost = 0;
2837 : return;
2838 8552 : }
2839 7994 : uint64_t FixedEntry = 1 << 14;
2840 : if (ActualEntry < FixedEntry)
2841 193768 : CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2842 : else if (ActualEntry <= UINT32_MAX)
2843 : // Invert the fraction and divide.
2844 193768 : CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2845 193768 : else
2846 193768 : // Can't use BranchProbability in general, since it takes 32-bit numbers.
2847 : CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2848 : }
2849 :
2850 33648 : /// Collect the hint info for \p Reg.
2851 33648 : /// The results are stored into \p Out.
2852 0 : /// \p Out is not cleared before being populated.
2853 0 : void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2854 : for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2855 : if (!Instr.isFullCopy())
2856 33648 : continue;
2857 33546 : // Look for the other end of the copy.
2858 102 : unsigned OtherReg = Instr.getOperand(0).getReg();
2859 : if (OtherReg == Reg) {
2860 15 : OtherReg = Instr.getOperand(1).getReg();
2861 : if (OtherReg == Reg)
2862 : continue;
2863 87 : }
2864 : // Get the current assignment.
2865 : unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2866 : ? OtherReg
2867 : : VRM->getPhys(OtherReg);
2868 : // Push the collected information.
2869 46281 : Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2870 302194 : OtherPhysReg));
2871 : }
2872 : }
2873 :
2874 95339 : /// Using the given \p List, compute the cost of the broken hints if
2875 95339 : /// \p PhysReg was used.
2876 47509 : /// \return The cost of \p List for \p PhysReg.
2877 47509 : BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2878 : unsigned PhysReg) {
2879 : BlockFrequency Cost = 0;
2880 : for (const HintInfo &Info : List) {
2881 : if (Info.PhysReg != PhysReg)
2882 95339 : Cost += Info.Freq;
2883 15755 : }
2884 : return Cost;
2885 95339 : }
2886 :
2887 : /// Using the register assigned to \p VirtReg, try to recolor
2888 46281 : /// all the live ranges that are copy-related with \p VirtReg.
2889 : /// The recoloring is then propagated to all the live-ranges that have
2890 : /// been recolored and so on, until no more copies can be coalesced or
2891 : /// it is not profitable.
2892 : /// For a given live range, profitability is determined by the sum of the
2893 0 : /// frequencies of the non-identity copies it would introduce with the old
2894 : /// and new register.
2895 : void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2896 0 : // We have a broken hint, check if it is possible to fix it by
2897 0 : // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2898 0 : // some register and PhysReg may be available for the other live-ranges.
2899 : SmallSet<unsigned, 4> Visited;
2900 0 : SmallVector<unsigned, 2> RecoloringCandidates;
2901 : HintsInfo Info;
2902 : unsigned Reg = VirtReg.reg;
2903 : unsigned PhysReg = VRM->getPhys(Reg);
2904 : // Start the recoloring algorithm from the input live-interval, then
2905 : // it will propagate to the ones that are copy-related with it.
2906 : Visited.insert(Reg);
2907 : RecoloringCandidates.push_back(Reg);
2908 :
2909 : LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2910 : << '(' << printReg(PhysReg, TRI) << ")\n");
2911 0 :
2912 : do {
2913 : Reg = RecoloringCandidates.pop_back_val();
2914 :
2915 0 : // We cannot recolor physical register.
2916 : if (TargetRegisterInfo::isPhysicalRegister(Reg))
2917 0 : continue;
2918 0 :
2919 0 : assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2920 :
2921 : // Get the live interval mapped with this virtual register to be able
2922 0 : // to check for the interference with the new color.
2923 0 : LiveInterval &LI = LIS->getInterval(Reg);
2924 : unsigned CurrPhys = VRM->getPhys(Reg);
2925 : // Check that the new color matches the register class constraints and
2926 : // that it is free for this live range.
2927 : if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2928 : Matrix->checkInterference(LI, PhysReg)))
2929 0 : continue;
2930 :
2931 : LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2932 0 : << ") is recolorable.\n");
2933 0 :
2934 : // Gather the hint info.
2935 : Info.clear();
2936 : collectHintInfo(Reg, Info);
2937 : // Check if recoloring the live-range will increase the cost of the
2938 : // non-identity copies.
2939 0 : if (CurrPhys != PhysReg) {
2940 0 : LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2941 : BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2942 : BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2943 0 : LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2944 0 : << "\nNew Cost: " << NewCopiesCost.getFrequency()
2945 0 : << '\n');
2946 : if (OldCopiesCost < NewCopiesCost) {
2947 : LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2948 : continue;
2949 : }
2950 : // At this point, the cost is either cheaper or equal. If it is
2951 : // equal, we consider this is profitable because it may expose
2952 0 : // more recoloring opportunities.
2953 : LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2954 : // Recolor the live-range.
2955 0 : Matrix->unassign(LI);
2956 : Matrix->assign(LI, PhysReg);
2957 0 : }
2958 0 : // Push all copy-related live-ranges to keep reconciling the broken
2959 : // hints.
2960 : for (const HintInfo &HI : Info) {
2961 : if (Visited.insert(HI.Reg).second)
2962 0 : RecoloringCandidates.push_back(HI.Reg);
2963 : }
2964 0 : } while (!RecoloringCandidates.empty());
2965 : }
2966 :
2967 : /// Try to recolor broken hints.
2968 : /// Broken hints may be repaired by recoloring when an evicted variable
2969 : /// freed up a register for a larger live-range.
2970 : /// Consider the following example:
2971 0 : /// BB1:
2972 0 : /// a =
2973 : /// b =
2974 : /// BB2:
2975 : /// ...
2976 0 : /// = b
2977 0 : /// = a
2978 0 : /// Let us assume b gets split:
2979 : /// BB1:
2980 0 : /// a =
2981 0 : /// b =
2982 : /// BB2:
2983 : /// c = b
2984 : /// ...
2985 : /// d = c
2986 : /// = d
2987 : /// = a
2988 : /// Because of how the allocation work, b, c, and d may be assigned different
2989 : /// colors. Now, if a gets evicted later:
2990 : /// BB1:
2991 : /// a =
2992 : /// st a, SpillSlot
2993 : /// b =
2994 : /// BB2:
2995 : /// c = b
2996 : /// ...
2997 : /// d = c
2998 : /// = d
2999 : /// e = ld SpillSlot
3000 : /// = e
3001 : /// This is likely that we can assign the same register for b, c, and d,
3002 : /// getting rid of 2 copies.
3003 : void RAGreedy::tryHintsRecoloring() {
3004 : for (LiveInterval *LI : SetOfBrokenHints) {
3005 : assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
3006 : "Recoloring is possible only for virtual registers");
3007 : // Some dead defs may be around (e.g., because of debug uses).
3008 : // Ignore those.
3009 : if (!VRM->hasPhys(LI->reg))
3010 : continue;
3011 : tryHintRecoloring(*LI);
3012 : }
3013 : }
3014 :
3015 : unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3016 : SmallVectorImpl<unsigned> &NewVRegs,
3017 : SmallVirtRegSet &FixedRegisters,
3018 : unsigned Depth) {
3019 193765 : unsigned CostPerUseLimit = ~0u;
3020 243781 : // First try assigning a free register.
3021 : AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3022 : if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
3023 : // If VirtReg got an assignment, the eviction info is no longre relevant.
3024 : LastEvicted.clearEvicteeInfo(VirtReg.reg);
3025 100032 : // When NewVRegs is not empty, we may have made decisions such as evicting
3026 : // a virtual register, go with the earlier decisions and use the physical
3027 43191 : // register.
3028 : if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3029 193765 : NewVRegs.empty()) {
3030 : unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3031 1560090 : CostPerUseLimit, NewVRegs);
3032 : if (CSRReg || !NewVRegs.empty())
3033 : // Return now if we decide to use a CSR or create new vregs due to
3034 : // pre-splitting.
3035 1560090 : return CSRReg;
3036 : } else
3037 1560090 : return PhysReg;
3038 1560090 : }
3039 :
3040 1422456 : LiveRangeStage Stage = getStage(VirtReg);
3041 : LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3042 : << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3043 :
3044 1422456 : // Try to evict a less worthy live range, but only for ranges from the primary
3045 45 : // queue. The RS_Split ranges already failed to do this, and they should not
3046 45 : // get a second chance until they have been split.
3047 : if (Stage != RS_Split)
3048 45 : if (unsigned PhysReg =
3049 : tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
3050 : unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3051 : // If VirtReg has a hint and that hint is broken record this
3052 : // virtual register as a recoloring candidate for broken hint.
3053 1422411 : // Indeed, since we evicted a variable in its neighborhood it is
3054 : // likely we can at least partially recolor some of the
3055 : // copy-related live-ranges.
3056 137650 : if (Hint && Hint != PhysReg)
3057 : SetOfBrokenHints.insert(&VirtReg);
3058 : // If VirtReg eviction someone, the eviction info for it as an evictee is
3059 : // no longre relevant.
3060 : LastEvicted.clearEvicteeInfo(VirtReg.reg);
3061 : return PhysReg;
3062 : }
3063 137650 :
3064 82400 : assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3065 82400 :
3066 26154 : // The first time we see a live range, don't try to split or spill.
3067 : // Wait until the second time, when all smaller ranges have been allocated.
3068 : // This gives a better picture of the interference to split around.
3069 : if (Stage < RS_Split) {
3070 : setStage(VirtReg, RS_Split);
3071 : LLVM_DEBUG(dbgs() << "wait for second round\n");
3072 26154 : NewVRegs.push_back(VirtReg.reg);
3073 11867 : return 0;
3074 : }
3075 :
3076 26154 : if (Stage < RS_Spill) {
3077 26154 : // Try splitting VirtReg or interferences.
3078 : unsigned NewVRegSizeBefore = NewVRegs.size();
3079 : unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
3080 : if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3081 : // If VirtReg got split, the eviction info is no longre relevant.
3082 : LastEvicted.clearEvicteeInfo(VirtReg.reg);
3083 : return PhysReg;
3084 : }
3085 111496 : }
3086 :
3087 : // If we couldn't allocate a register from spilling, there is probably some
3088 46787 : // invalid inline assembly. The base class will report it.
3089 46787 : if (Stage >= RS_Done || !VirtReg.isSpillable())
3090 : return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3091 : Depth);
3092 64709 :
3093 : // Finally spill VirtReg itself.
3094 55689 : if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3095 55689 : // TODO: This is experimental and in particular, we do not model
3096 55689 : // the live range splitting done by spilling correctly.
3097 : // We would need a deep integration with the spiller to do the
3098 26338 : // right thing here. Anyway, that is still good for early testing.
3099 26338 : setStage(VirtReg, RS_Memory);
3100 : LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3101 : NewVRegs.push_back(VirtReg.reg);
3102 : } else {
3103 : NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3104 : TimerGroupDescription, TimePassesIsEnabled);
3105 38371 : LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3106 8896 : spiller().spill(LRE);
3107 8896 : setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3108 :
3109 : if (VerifyEnabled)
3110 29475 : MF->verify(this, "After spilling");
3111 : }
3112 :
3113 : // The live virtual register requesting allocation was spilled, so tell
3114 : // the caller not to allocate anything during this round.
3115 : return 0;
3116 : }
3117 0 :
3118 : void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3119 : unsigned &FoldedReloads,
3120 58950 : unsigned &Spills,
3121 58950 : unsigned &FoldedSpills) {
3122 29475 : Reloads = 0;
3123 29475 : FoldedReloads = 0;
3124 : Spills = 0;
3125 29475 : FoldedSpills = 0;
3126 33 :
3127 : // Sum up the spill and reloads in subloops.
3128 : for (MachineLoop *SubLoop : *L) {
3129 : unsigned SubReloads;
3130 : unsigned SubFoldedReloads;
3131 : unsigned SubSpills;
3132 : unsigned SubFoldedSpills;
3133 :
3134 8719 : reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3135 : SubSpills, SubFoldedSpills);
3136 : Reloads += SubReloads;
3137 : FoldedReloads += SubFoldedReloads;
3138 8719 : Spills += SubSpills;
3139 8719 : FoldedSpills += SubFoldedSpills;
3140 8719 : }
3141 8719 :
3142 : const MachineFrameInfo &MFI = MF->getFrameInfo();
3143 : const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3144 9904 : int FI;
3145 :
3146 : for (MachineBasicBlock *MBB : L->getBlocks())
3147 : // Handle blocks that were not included in subloops.
3148 : if (Loops->getLoopFor(MBB) == L)
3149 : for (MachineInstr &MI : *MBB) {
3150 1185 : SmallVector<const MachineMemOperand *, 2> Accesses;
3151 : auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3152 1185 : return MFI.isSpillSlotObjectIndex(
3153 1185 : cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3154 1185 : ->getFrameIndex());
3155 1185 : };
3156 :
3157 : if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3158 8719 : ++Reloads;
3159 8719 : else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3160 : llvm::any_of(Accesses, isSpillSlotAccess))
3161 : ++FoldedReloads;
3162 56279 : else if (TII->isStoreToStackSlot(MI, FI) &&
3163 : MFI.isSpillSlotObjectIndex(FI))
3164 95120 : ++Spills;
3165 397376 : else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3166 : llvm::any_of(Accesses, isSpillSlotAccess))
3167 : ++FoldedSpills;
3168 0 : }
3169 :
3170 : if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3171 : using namespace ore;
3172 :
3173 357568 : ORE->emit([&]() {
3174 3337 : MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3175 354231 : L->getStartLoc(), L->getHeader());
3176 : if (Spills)
3177 680 : R << NV("NumSpills", Spills) << " spills ";
3178 353551 : if (FoldedSpills)
3179 3782 : R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3180 1180 : if (Reloads)
3181 352371 : R << NV("NumReloads", Reloads) << " reloads ";
3182 : if (FoldedReloads)
3183 127 : R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3184 : R << "generated in loop";
3185 : return R;
3186 8719 : });
3187 : }
3188 : }
3189 1107 :
3190 : bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3191 : LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3192 : << "********** Function: " << mf.getName() << '\n');
3193 :
3194 : MF = &mf;
3195 : TRI = MF->getSubtarget().getRegisterInfo();
3196 : TII = MF->getSubtarget().getInstrInfo();
3197 : RCI.runOnMachineFunction(mf);
3198 :
3199 : EnableLocalReassign = EnableLocalReassignment ||
3200 : MF->getSubtarget().enableRALocalReassignment(
3201 : MF->getTarget().getOptLevel());
3202 :
3203 : EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3204 8719 : MF->getSubtarget().enableAdvancedRASplitCost();
3205 :
3206 193768 : if (VerifyEnabled)
3207 : MF->verify(this, "Before greedy register allocator");
3208 :
3209 : RegAllocBase::init(getAnalysis<VirtRegMap>(),
3210 193768 : getAnalysis<LiveIntervals>(),
3211 193768 : getAnalysis<LiveRegMatrix>());
3212 193768 : Indexes = &getAnalysis<SlotIndexes>();
3213 193768 : MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3214 : DomTree = &getAnalysis<MachineDominatorTree>();
3215 581304 : ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3216 193768 : SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3217 193768 : Loops = &getAnalysis<MachineLoopInfo>();
3218 : Bundles = &getAnalysis<EdgeBundles>();
3219 387536 : SpillPlacer = &getAnalysis<SpillPlacement>();
3220 193768 : DebugVars = &getAnalysis<LiveDebugVariables>();
3221 : AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3222 193768 :
3223 5 : initializeCSRCost();
3224 :
3225 193768 : calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3226 :
3227 : LLVM_DEBUG(LIS->dump());
3228 193768 :
3229 193768 : SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3230 193768 : SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3231 193768 : ExtraRegInfo.clear();
3232 193768 : ExtraRegInfo.resize(MRI->getNumVirtRegs());
3233 193768 : NextCascade = 1;
3234 193768 : IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3235 193768 : GlobalCand.resize(32); // This will grow as needed.
3236 193768 : SetOfBrokenHints.clear();
3237 193768 : LastEvicted.clear();
3238 :
3239 193768 : allocatePhysRegs();
3240 : tryHintsRecoloring();
3241 193768 : postOptimization();
3242 : reportNumberOfSplillsReloads();
3243 :
3244 : releaseMemory();
3245 193768 : return true;
3246 193768 : }
|