LCOV - code coverage report
Current view: top level - lib/CodeGen/SelectionDAG - SelectionDAGBuilder.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 67 85 78.8 %
Date: 2018-10-20 13:21:21 Functions: 21 33 63.6 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This implements routines for translating from LLVM IR into SelectionDAG IR.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
      15             : #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
      16             : 
      17             : #include "StatepointLowering.h"
      18             : #include "llvm/ADT/APInt.h"
      19             : #include "llvm/ADT/ArrayRef.h"
      20             : #include "llvm/ADT/DenseMap.h"
      21             : #include "llvm/ADT/SmallVector.h"
      22             : #include "llvm/Analysis/AliasAnalysis.h"
      23             : #include "llvm/CodeGen/ISDOpcodes.h"
      24             : #include "llvm/CodeGen/SelectionDAG.h"
      25             : #include "llvm/CodeGen/SelectionDAGNodes.h"
      26             : #include "llvm/CodeGen/TargetLowering.h"
      27             : #include "llvm/CodeGen/ValueTypes.h"
      28             : #include "llvm/IR/CallSite.h"
      29             : #include "llvm/IR/DebugLoc.h"
      30             : #include "llvm/IR/Instruction.h"
      31             : #include "llvm/IR/Statepoint.h"
      32             : #include "llvm/Support/BranchProbability.h"
      33             : #include "llvm/Support/CodeGen.h"
      34             : #include "llvm/Support/ErrorHandling.h"
      35             : #include "llvm/Support/MachineValueType.h"
      36             : #include <algorithm>
      37             : #include <cassert>
      38             : #include <cstdint>
      39             : #include <utility>
      40             : #include <vector>
      41             : 
      42             : namespace llvm {
      43             : 
      44             : class AllocaInst;
      45             : class AtomicCmpXchgInst;
      46             : class AtomicRMWInst;
      47             : class BasicBlock;
      48             : class BranchInst;
      49             : class CallInst;
      50             : class CatchPadInst;
      51             : class CatchReturnInst;
      52             : class CatchSwitchInst;
      53             : class CleanupPadInst;
      54             : class CleanupReturnInst;
      55             : class Constant;
      56             : class ConstantInt;
      57             : class ConstrainedFPIntrinsic;
      58             : class DbgValueInst;
      59             : class DataLayout;
      60             : class DIExpression;
      61             : class DILocalVariable;
      62             : class DILocation;
      63             : class FenceInst;
      64             : class FunctionLoweringInfo;
      65             : class GCFunctionInfo;
      66             : class GCRelocateInst;
      67             : class GCResultInst;
      68             : class IndirectBrInst;
      69             : class InvokeInst;
      70             : class LandingPadInst;
      71             : class LLVMContext;
      72             : class LoadInst;
      73             : class MachineBasicBlock;
      74             : class PHINode;
      75             : class ResumeInst;
      76             : class ReturnInst;
      77             : class SDDbgValue;
      78             : class StoreInst;
      79             : class SwitchInst;
      80             : class TargetLibraryInfo;
      81             : class TargetMachine;
      82             : class Type;
      83             : class VAArgInst;
      84             : class UnreachableInst;
      85             : class Use;
      86             : class User;
      87             : class Value;
      88             : 
      89             : //===----------------------------------------------------------------------===//
      90             : /// SelectionDAGBuilder - This is the common target-independent lowering
      91             : /// implementation that is parameterized by a TargetLowering object.
      92             : ///
      93             : class SelectionDAGBuilder {
      94             :   /// CurInst - The current instruction being visited
      95             :   const Instruction *CurInst = nullptr;
      96             : 
      97             :   DenseMap<const Value*, SDValue> NodeMap;
      98             : 
      99             :   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
     100             :   /// to preserve debug information for incoming arguments.
     101             :   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
     102             : 
     103             :   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
     104       25323 :   class DanglingDebugInfo {
     105             :     const DbgValueInst* DI = nullptr;
     106             :     DebugLoc dl;
     107             :     unsigned SDNodeOrder = 0;
     108             : 
     109             :   public:
     110             :     DanglingDebugInfo() = default;
     111             :     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
     112           0 :         : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
     113             : 
     114           0 :     const DbgValueInst* getDI() { return DI; }
     115             :     DebugLoc getdl() { return dl; }
     116           0 :     unsigned getSDNodeOrder() { return SDNodeOrder; }
     117             :   };
     118             : 
     119             :   /// DanglingDebugInfoVector - Helper type for DanglingDebugInfoMap.
     120             :   typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
     121             : 
     122             :   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
     123             :   /// yet seen the referent.  We defer handling these until we do see it.
     124             :   DenseMap<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
     125             : 
     126             : public:
     127             :   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
     128             :   /// them up and then emit token factor nodes when possible.  This allows us to
     129             :   /// get simple disambiguation between loads without worrying about alias
     130             :   /// analysis.
     131             :   SmallVector<SDValue, 8> PendingLoads;
     132             : 
     133             :   /// State used while lowering a statepoint sequence (gc_statepoint,
     134             :   /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
     135             :   StatepointLoweringState StatepointLowering;
     136             : 
     137             : private:
     138             :   /// PendingExports - CopyToReg nodes that copy values to virtual registers
     139             :   /// for export to other blocks need to be emitted before any terminator
     140             :   /// instruction, but they have no other ordering requirements. We bunch them
     141             :   /// up and the emit a single tokenfactor for them just before terminator
     142             :   /// instructions.
     143             :   SmallVector<SDValue, 8> PendingExports;
     144             : 
     145             :   /// SDNodeOrder - A unique monotonically increasing number used to order the
     146             :   /// SDNodes we create.
     147             :   unsigned SDNodeOrder;
     148             : 
     149             :   enum CaseClusterKind {
     150             :     /// A cluster of adjacent case labels with the same destination, or just one
     151             :     /// case.
     152             :     CC_Range,
     153             :     /// A cluster of cases suitable for jump table lowering.
     154             :     CC_JumpTable,
     155             :     /// A cluster of cases suitable for bit test lowering.
     156             :     CC_BitTests
     157             :   };
     158             : 
     159             :   /// A cluster of case labels.
     160             :   struct CaseCluster {
     161             :     CaseClusterKind Kind;
     162             :     const ConstantInt *Low, *High;
     163             :     union {
     164             :       MachineBasicBlock *MBB;
     165             :       unsigned JTCasesIndex;
     166             :       unsigned BTCasesIndex;
     167             :     };
     168             :     BranchProbability Prob;
     169             : 
     170             :     static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
     171             :                              MachineBasicBlock *MBB, BranchProbability Prob) {
     172             :       CaseCluster C;
     173       46766 :       C.Kind = CC_Range;
     174       46766 :       C.Low = Low;
     175       46766 :       C.High = High;
     176       46766 :       C.MBB = MBB;
     177       46766 :       C.Prob = Prob;
     178             :       return C;
     179             :     }
     180             : 
     181             :     static CaseCluster jumpTable(const ConstantInt *Low,
     182             :                                  const ConstantInt *High, unsigned JTCasesIndex,
     183             :                                  BranchProbability Prob) {
     184             :       CaseCluster C;
     185             :       C.Kind = CC_JumpTable;
     186             :       C.Low = Low;
     187             :       C.High = High;
     188             :       C.JTCasesIndex = JTCasesIndex;
     189             :       C.Prob = Prob;
     190             :       return C;
     191             :     }
     192             : 
     193             :     static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
     194             :                                 unsigned BTCasesIndex, BranchProbability Prob) {
     195             :       CaseCluster C;
     196             :       C.Kind = CC_BitTests;
     197             :       C.Low = Low;
     198             :       C.High = High;
     199             :       C.BTCasesIndex = BTCasesIndex;
     200             :       C.Prob = Prob;
     201             :       return C;
     202             :     }
     203             :   };
     204             : 
     205             :   using CaseClusterVector = std::vector<CaseCluster>;
     206             :   using CaseClusterIt = CaseClusterVector::iterator;
     207             : 
     208             :   struct CaseBits {
     209             :     uint64_t Mask = 0;
     210             :     MachineBasicBlock* BB = nullptr;
     211             :     unsigned Bits = 0;
     212             :     BranchProbability ExtraProb;
     213             : 
     214             :     CaseBits() = default;
     215             :     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
     216          65 :              BranchProbability Prob):
     217          65 :       Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) {}
     218             :   };
     219             : 
     220             :   using CaseBitsVector = std::vector<CaseBits>;
     221             : 
     222             :   /// Sort Clusters and merge adjacent cases.
     223             :   void sortAndRangeify(CaseClusterVector &Clusters);
     224             : 
     225             :   /// CaseBlock - This structure is used to communicate between
     226             :   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
     227             :   /// blocks needed by multi-case switch statements.
     228        1532 :   struct CaseBlock {
     229             :     // CC - the condition code to use for the case block's setcc node
     230             :     ISD::CondCode CC;
     231             : 
     232             :     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
     233             :     // Emit by default LHS op RHS. MHS is used for range comparisons:
     234             :     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
     235             :     const Value *CmpLHS, *CmpMHS, *CmpRHS;
     236             : 
     237             :     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
     238             :     MachineBasicBlock *TrueBB, *FalseBB;
     239             : 
     240             :     // ThisBB - the block into which to emit the code for the setcc and branches
     241             :     MachineBasicBlock *ThisBB;
     242             : 
     243             :     /// The debug location of the instruction this CaseBlock was
     244             :     /// produced from.
     245             :     SDLoc DL;
     246             : 
     247             :     // TrueProb/FalseProb - branch weights.
     248             :     BranchProbability TrueProb, FalseProb;
     249             : 
     250             :     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
     251             :               const Value *cmpmiddle, MachineBasicBlock *truebb,
     252             :               MachineBasicBlock *falsebb, MachineBasicBlock *me,
     253             :               SDLoc dl,
     254             :               BranchProbability trueprob = BranchProbability::getUnknown(),
     255             :               BranchProbability falseprob = BranchProbability::getUnknown())
     256       85621 :         : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
     257             :           TrueBB(truebb), FalseBB(falsebb), ThisBB(me), DL(dl),
     258      138622 :           TrueProb(trueprob), FalseProb(falseprob) {}
     259             :   };
     260             : 
     261             :   struct JumpTable {
     262             :     /// Reg - the virtual register containing the index of the jump table entry
     263             :     //. to jump to.
     264             :     unsigned Reg;
     265             :     /// JTI - the JumpTableIndex for this jump table in the function.
     266             :     unsigned JTI;
     267             :     /// MBB - the MBB into which to emit the code for the indirect jump.
     268             :     MachineBasicBlock *MBB;
     269             :     /// Default - the MBB of the default bb, which is a successor of the range
     270             :     /// check MBB.  This is when updating PHI nodes in successors.
     271             :     MachineBasicBlock *Default;
     272             : 
     273             :     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
     274        3199 :               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
     275             :   };
     276        6398 :   struct JumpTableHeader {
     277             :     APInt First;
     278             :     APInt Last;
     279             :     const Value *SValue;
     280             :     MachineBasicBlock *HeaderBB;
     281             :     bool Emitted;
     282             : 
     283             :     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
     284             :                     bool E = false)
     285        3199 :         : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H),
     286        3199 :           Emitted(E) {}
     287             :   };
     288             :   using JumpTableBlock = std::pair<JumpTableHeader, JumpTable>;
     289             : 
     290             :   struct BitTestCase {
     291             :     uint64_t Mask;
     292             :     MachineBasicBlock *ThisBB;
     293             :     MachineBasicBlock *TargetBB;
     294             :     BranchProbability ExtraProb;
     295             : 
     296             :     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
     297          65 :                 BranchProbability Prob):
     298          65 :       Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) {}
     299             :   };
     300             : 
     301             :   using BitTestInfo = SmallVector<BitTestCase, 3>;
     302             : 
     303             :   struct BitTestBlock {
     304             :     APInt First;
     305             :     APInt Range;
     306             :     const Value *SValue;
     307             :     unsigned Reg;
     308             :     MVT RegVT;
     309             :     bool Emitted;
     310             :     bool ContiguousRange;
     311             :     MachineBasicBlock *Parent;
     312             :     MachineBasicBlock *Default;
     313             :     BitTestInfo Cases;
     314             :     BranchProbability Prob;
     315             :     BranchProbability DefaultProb;
     316             : 
     317             :     BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
     318             :                  bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
     319             :                  BitTestInfo C, BranchProbability Pr)
     320          49 :         : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg),
     321             :           RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D),
     322          98 :           Cases(std::move(C)), Prob(Pr) {}
     323             :   };
     324             : 
     325             :   /// Return the range of value in [First..Last].
     326             :   uint64_t getJumpTableRange(const CaseClusterVector &Clusters, unsigned First,
     327             :                              unsigned Last) const;
     328             : 
     329             :   /// Return the number of cases in [First..Last].
     330             :   uint64_t getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
     331             :                                 unsigned First, unsigned Last) const;
     332             : 
     333             :   /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
     334             :   /// decides it's not a good idea.
     335             :   bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First,
     336             :                       unsigned Last, const SwitchInst *SI,
     337             :                       MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
     338             : 
     339             :   /// Find clusters of cases suitable for jump table lowering.
     340             :   void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
     341             :                       MachineBasicBlock *DefaultMBB);
     342             : 
     343             :   /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
     344             :   /// decides it's not a good idea.
     345             :   bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
     346             :                      const SwitchInst *SI, CaseCluster &BTCluster);
     347             : 
     348             :   /// Find clusters of cases suitable for bit test lowering.
     349             :   void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);
     350             : 
     351             :   struct SwitchWorkListItem {
     352             :     MachineBasicBlock *MBB;
     353             :     CaseClusterIt FirstCluster;
     354             :     CaseClusterIt LastCluster;
     355             :     const ConstantInt *GE;
     356             :     const ConstantInt *LT;
     357             :     BranchProbability DefaultProb;
     358             :   };
     359             :   using SwitchWorkList = SmallVector<SwitchWorkListItem, 4>;
     360             : 
     361             :   /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
     362             :   /// than each cluster in the range, its rank is 0.
     363             :   static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
     364             :                                   CaseClusterIt Last);
     365             : 
     366             :   /// Emit comparison and split W into two subtrees.
     367             :   void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
     368             :                      Value *Cond, MachineBasicBlock *SwitchMBB);
     369             : 
     370             :   /// Lower W.
     371             :   void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
     372             :                      MachineBasicBlock *SwitchMBB,
     373             :                      MachineBasicBlock *DefaultMBB);
     374             : 
     375             :   /// Peel the top probability case if it exceeds the threshold
     376             :   MachineBasicBlock *peelDominantCaseCluster(const SwitchInst &SI,
     377             :                                              CaseClusterVector &Clusters,
     378             :                                              BranchProbability &PeeledCaseProb);
     379             : 
     380             :   /// A class which encapsulates all of the information needed to generate a
     381             :   /// stack protector check and signals to isel via its state being initialized
     382             :   /// that a stack protector needs to be generated.
     383             :   ///
     384             :   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
     385             :   /// Protector Generation. The reason that it is placed here is for a lack of
     386             :   /// other good places to stick it.
     387             :   ///
     388             :   /// High Level Overview of SelectionDAG Stack Protector Generation:
     389             :   ///
     390             :   /// Previously, generation of stack protectors was done exclusively in the
     391             :   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
     392             :   /// splitting basic blocks at the IR level to create the success/failure basic
     393             :   /// blocks in the tail of the basic block in question. As a result of this,
     394             :   /// calls that would have qualified for the sibling call optimization were no
     395             :   /// longer eligible for optimization since said calls were no longer right in
     396             :   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
     397             :   /// instruction).
     398             :   ///
     399             :   /// Then it was noticed that since the sibling call optimization causes the
     400             :   /// callee to reuse the caller's stack, if we could delay the generation of
     401             :   /// the stack protector check until later in CodeGen after the sibling call
     402             :   /// decision was made, we get both the tail call optimization and the stack
     403             :   /// protector check!
     404             :   ///
     405             :   /// A few goals in solving this problem were:
     406             :   ///
     407             :   ///   1. Preserve the architecture independence of stack protector generation.
     408             :   ///
     409             :   ///   2. Preserve the normal IR level stack protector check for platforms like
     410             :   ///      OpenBSD for which we support platform-specific stack protector
     411             :   ///      generation.
     412             :   ///
     413             :   /// The main problem that guided the present solution is that one can not
     414             :   /// solve this problem in an architecture independent manner at the IR level
     415             :   /// only. This is because:
     416             :   ///
     417             :   ///   1. The decision on whether or not to perform a sibling call on certain
     418             :   ///      platforms (for instance i386) requires lower level information
     419             :   ///      related to available registers that can not be known at the IR level.
     420             :   ///
     421             :   ///   2. Even if the previous point were not true, the decision on whether to
     422             :   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
     423             :   ///      occurs after the Stack Protector Pass. As a result, one would need to
     424             :   ///      put the relevant callinst into the stack protector check success
     425             :   ///      basic block (where the return inst is placed) and then move it back
     426             :   ///      later at SelectionDAG/MI time before the stack protector check if the
     427             :   ///      tail call optimization failed. The MI level option was nixed
     428             :   ///      immediately since it would require platform-specific pattern
     429             :   ///      matching. The SelectionDAG level option was nixed because
     430             :   ///      SelectionDAG only processes one IR level basic block at a time
     431             :   ///      implying one could not create a DAG Combine to move the callinst.
     432             :   ///
     433             :   /// To get around this problem a few things were realized:
     434             :   ///
     435             :   ///   1. While one can not handle multiple IR level basic blocks at the
     436             :   ///      SelectionDAG Level, one can generate multiple machine basic blocks
     437             :   ///      for one IR level basic block. This is how we handle bit tests and
     438             :   ///      switches.
     439             :   ///
     440             :   ///   2. At the MI level, tail calls are represented via a special return
     441             :   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
     442             :   ///      wish to insert the stack protector check, we get the correct behavior
     443             :   ///      by always inserting the stack protector check right before the return
     444             :   ///      statement. This is a "magical transformation" since no matter where
     445             :   ///      the stack protector check intrinsic is, we always insert the stack
     446             :   ///      protector check code at the end of the BB.
     447             :   ///
     448             :   /// Given the aforementioned constraints, the following solution was devised:
     449             :   ///
     450             :   ///   1. On platforms that do not support SelectionDAG stack protector check
     451             :   ///      generation, allow for the normal IR level stack protector check
     452             :   ///      generation to continue.
     453             :   ///
     454             :   ///   2. On platforms that do support SelectionDAG stack protector check
     455             :   ///      generation:
     456             :   ///
     457             :   ///     a. Use the IR level stack protector pass to decide if a stack
     458             :   ///        protector is required/which BB we insert the stack protector check
     459             :   ///        in by reusing the logic already therein. If we wish to generate a
     460             :   ///        stack protector check in a basic block, we place a special IR
     461             :   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
     462             :   ///        returninst or if there is a callinst that could potentially be
     463             :   ///        sibling call optimized, before the call inst.
     464             :   ///
     465             :   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
     466             :   ///        normally via SelectBasicBlock. In said process, when we visit the
     467             :   ///        stack protector check, we do not actually emit anything into the
     468             :   ///        BB. Instead, we just initialize the stack protector descriptor
     469             :   ///        class (which involves stashing information/creating the success
     470             :   ///        mbbb and the failure mbb if we have not created one for this
     471             :   ///        function yet) and export the guard variable that we are going to
     472             :   ///        compare.
     473             :   ///
     474             :   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
     475             :   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
     476             :   ///        initialized, we produce the validation code with one of these
     477             :   ///        techniques:
     478             :   ///          1) with a call to a guard check function
     479             :   ///          2) with inlined instrumentation
     480             :   ///
     481             :   ///        1) We insert a call to the check function before the terminator.
     482             :   ///
     483             :   ///        2) We first find a splice point in the parent basic block
     484             :   ///        before the terminator and then splice the terminator of said basic
     485             :   ///        block into the success basic block. Then we code-gen a new tail for
     486             :   ///        the parent basic block consisting of the two loads, the comparison,
     487             :   ///        and finally two branches to the success/failure basic blocks. We
     488             :   ///        conclude by code-gening the failure basic block if we have not
     489             :   ///        code-gened it already (all stack protector checks we generate in
     490             :   ///        the same function, use the same failure basic block).
     491             :   class StackProtectorDescriptor {
     492             :   public:
     493       29262 :     StackProtectorDescriptor() = default;
     494             : 
     495             :     /// Returns true if all fields of the stack protector descriptor are
     496             :     /// initialized implying that we should/are ready to emit a stack protector.
     497             :     bool shouldEmitStackProtector() const {
     498     3217938 :       return ParentMBB && SuccessMBB && FailureMBB;
     499             :     }
     500             : 
     501             :     bool shouldEmitFunctionBasedCheckStackProtector() const {
     502     3218020 :       return ParentMBB && !SuccessMBB && !FailureMBB;
     503             :     }
     504             : 
     505             :     /// Initialize the stack protector descriptor structure for a new basic
     506             :     /// block.
     507         340 :     void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
     508             :                     bool FunctionBasedInstrumentation) {
     509             :       // Make sure we are not initialized yet.
     510             :       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
     511             :              "already initialized!");
     512         340 :       ParentMBB = MBB;
     513         340 :       if (!FunctionBasedInstrumentation) {
     514         258 :         SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
     515         258 :         FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
     516             :       }
     517         340 :     }
     518             : 
     519             :     /// Reset state that changes when we handle different basic blocks.
     520             :     ///
     521             :     /// This currently includes:
     522             :     ///
     523             :     /// 1. The specific basic block we are generating a
     524             :     /// stack protector for (ParentMBB).
     525             :     ///
     526             :     /// 2. The successor machine basic block that will contain the tail of
     527             :     /// parent mbb after we create the stack protector check (SuccessMBB). This
     528             :     /// BB is visited only on stack protector check success.
     529           0 :     void resetPerBBState() {
     530         340 :       ParentMBB = nullptr;
     531         340 :       SuccessMBB = nullptr;
     532           0 :     }
     533             : 
     534             :     /// Reset state that only changes when we switch functions.
     535             :     ///
     536             :     /// This currently includes:
     537             :     ///
     538             :     /// 1. FailureMBB since we reuse the failure code path for all stack
     539             :     /// protector checks created in an individual function.
     540             :     ///
     541             :     /// 2.The guard variable since the guard variable we are checking against is
     542             :     /// always the same.
     543           0 :     void resetPerFunctionState() {
     544      405212 :       FailureMBB = nullptr;
     545           0 :     }
     546             : 
     547           0 :     MachineBasicBlock *getParentMBB() { return ParentMBB; }
     548           0 :     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
     549           0 :     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
     550             : 
     551             :   private:
     552             :     /// The basic block for which we are generating the stack protector.
     553             :     ///
     554             :     /// As a result of stack protector generation, we will splice the
     555             :     /// terminators of this basic block into the successor mbb SuccessMBB and
     556             :     /// replace it with a compare/branch to the successor mbbs
     557             :     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
     558             :     /// was violated.
     559             :     MachineBasicBlock *ParentMBB = nullptr;
     560             : 
     561             :     /// A basic block visited on stack protector check success that contains the
     562             :     /// terminators of ParentMBB.
     563             :     MachineBasicBlock *SuccessMBB = nullptr;
     564             : 
     565             :     /// This basic block visited on stack protector check failure that will
     566             :     /// contain a call to __stack_chk_fail().
     567             :     MachineBasicBlock *FailureMBB = nullptr;
     568             : 
     569             :     /// Add a successor machine basic block to ParentMBB. If the successor mbb
     570             :     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
     571             :     /// block will be created. Assign a large weight if IsLikely is true.
     572             :     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
     573             :                                        MachineBasicBlock *ParentMBB,
     574             :                                        bool IsLikely,
     575             :                                        MachineBasicBlock *SuccMBB = nullptr);
     576             :   };
     577             : 
     578             : private:
     579             :   const TargetMachine &TM;
     580             : 
     581             : public:
     582             :   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
     583             :   /// nodes without a corresponding SDNode.
     584             :   static const unsigned LowestSDNodeOrder = 1;
     585             : 
     586             :   SelectionDAG &DAG;
     587             :   const DataLayout *DL = nullptr;
     588             :   AliasAnalysis *AA = nullptr;
     589             :   const TargetLibraryInfo *LibInfo;
     590             : 
     591             :   /// SwitchCases - Vector of CaseBlock structures used to communicate
     592             :   /// SwitchInst code generation information.
     593             :   std::vector<CaseBlock> SwitchCases;
     594             : 
     595             :   /// JTCases - Vector of JumpTable structures used to communicate
     596             :   /// SwitchInst code generation information.
     597             :   std::vector<JumpTableBlock> JTCases;
     598             : 
     599             :   /// BitTestCases - Vector of BitTestBlock structures used to communicate
     600             :   /// SwitchInst code generation information.
     601             :   std::vector<BitTestBlock> BitTestCases;
     602             : 
     603             :   /// A StackProtectorDescriptor structure used to communicate stack protector
     604             :   /// information in between SelectBasicBlock and FinishBasicBlock.
     605             :   StackProtectorDescriptor SPDescriptor;
     606             : 
     607             :   // Emit PHI-node-operand constants only once even if used by multiple
     608             :   // PHI nodes.
     609             :   DenseMap<const Constant *, unsigned> ConstantsOut;
     610             : 
     611             :   /// FuncInfo - Information about the function as a whole.
     612             :   ///
     613             :   FunctionLoweringInfo &FuncInfo;
     614             : 
     615             :   /// GFI - Garbage collection metadata for the function.
     616             :   GCFunctionInfo *GFI;
     617             : 
     618             :   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
     619             :   DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
     620             : 
     621             :   /// HasTailCall - This is set to true if a call in the current
     622             :   /// block has been translated as a tail call. In this case,
     623             :   /// no subsequent DAG nodes should be created.
     624             :   bool HasTailCall = false;
     625             : 
     626             :   LLVMContext *Context;
     627             : 
     628       29262 :   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
     629             :                       CodeGenOpt::Level ol)
     630       58524 :     : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
     631       87786 :       FuncInfo(funcinfo) {}
     632             : 
     633             :   void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
     634             :             const TargetLibraryInfo *li);
     635             : 
     636             :   /// Clear out the current SelectionDAG and the associated state and prepare
     637             :   /// this SelectionDAGBuilder object to be used for a new block. This doesn't
     638             :   /// clear out information about additional blocks that are needed to complete
     639             :   /// switch lowering or PHI node updating; that information is cleared out as
     640             :   /// it is consumed.
     641             :   void clear();
     642             : 
     643             :   /// Clear the dangling debug information map. This function is separated from
     644             :   /// the clear so that debug information that is dangling in a basic block can
     645             :   /// be properly resolved in a different basic block. This allows the
     646             :   /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
     647             :   void clearDanglingDebugInfo();
     648             : 
     649             :   /// Return the current virtual root of the Selection DAG, flushing any
     650             :   /// PendingLoad items. This must be done before emitting a store or any other
     651             :   /// node that may need to be ordered after any prior load instructions.
     652             :   SDValue getRoot();
     653             : 
     654             :   /// Similar to getRoot, but instead of flushing all the PendingLoad items,
     655             :   /// flush all the PendingExports items. It is necessary to do this before
     656             :   /// emitting a terminator instruction.
     657             :   SDValue getControlRoot();
     658             : 
     659           0 :   SDLoc getCurSDLoc() const {
     660    18676021 :     return SDLoc(CurInst, SDNodeOrder);
     661             :   }
     662             : 
     663           0 :   DebugLoc getCurDebugLoc() const {
     664           0 :     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
     665             :   }
     666             : 
     667             :   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
     668             : 
     669             :   void visit(const Instruction &I);
     670             : 
     671             :   void visit(unsigned Opcode, const User &I);
     672             : 
     673             :   /// getCopyFromRegs - If there was virtual register allocated for the value V
     674             :   /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
     675             :   SDValue getCopyFromRegs(const Value *V, Type *Ty);
     676             : 
     677             :   /// If we have dangling debug info that describes \p Variable, or an
     678             :   /// overlapping part of variable considering the \p Expr, then this method
     679             :   /// weill drop that debug info as it isn't valid any longer.
     680             :   void dropDanglingDebugInfo(const DILocalVariable *Variable,
     681             :                              const DIExpression *Expr);
     682             : 
     683             :   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
     684             :   // generate the debug data structures now that we've seen its definition.
     685             :   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
     686             : 
     687             :   SDValue getValue(const Value *V);
     688             :   bool findValue(const Value *V) const;
     689             : 
     690             :   /// Return the SDNode for the specified IR value if it exists.
     691      157138 :   SDNode *getNodeForIRValue(const Value *V) {
     692      157138 :     if (NodeMap.find(V) == NodeMap.end())
     693             :       return nullptr;
     694      157065 :     return NodeMap[V].getNode();
     695             :   }
     696             : 
     697             :   SDValue getNonRegisterValue(const Value *V);
     698             :   SDValue getValueImpl(const Value *V);
     699             : 
     700             :   void setValue(const Value *V, SDValue NewN) {
     701     7744966 :     SDValue &N = NodeMap[V];
     702             :     assert(!N.getNode() && "Already set a value for this node!");
     703     7230910 :     N = NewN;
     704             :   }
     705             : 
     706             :   void setUnusedArgValue(const Value *V, SDValue NewN) {
     707       49561 :     SDValue &N = UnusedArgNodeMap[V];
     708             :     assert(!N.getNode() && "Already set a value for this node!");
     709       49561 :     N = NewN;
     710             :   }
     711             : 
     712             :   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
     713             :                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
     714             :                             MachineBasicBlock *SwitchBB,
     715             :                             Instruction::BinaryOps Opc, BranchProbability TProb,
     716             :                             BranchProbability FProb, bool InvertCond);
     717             :   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
     718             :                                     MachineBasicBlock *FBB,
     719             :                                     MachineBasicBlock *CurBB,
     720             :                                     MachineBasicBlock *SwitchBB,
     721             :                                     BranchProbability TProb, BranchProbability FProb,
     722             :                                     bool InvertCond);
     723             :   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
     724             :   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
     725             :   void CopyToExportRegsIfNeeded(const Value *V);
     726             :   void ExportFromCurrentBlock(const Value *V);
     727             :   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
     728             :                    const BasicBlock *EHPadBB = nullptr);
     729             : 
     730             :   // Lower range metadata from 0 to N to assert zext to an integer of nearest
     731             :   // floor power of two.
     732             :   SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
     733             :                                  SDValue Op);
     734             : 
     735             :   void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
     736             :                                 ImmutableCallSite CS, unsigned ArgIdx,
     737             :                                 unsigned NumArgs, SDValue Callee,
     738             :                                 Type *ReturnTy, bool IsPatchPoint);
     739             : 
     740             :   std::pair<SDValue, SDValue>
     741             :   lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
     742             :                  const BasicBlock *EHPadBB = nullptr);
     743             : 
     744             :   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
     745             :   /// references that need to refer to the last resulting block.
     746             :   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
     747             : 
     748             :   /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
     749             :   /// of lowering into a STATEPOINT node.
     750             :   struct StatepointLoweringInfo {
     751             :     /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
     752             :     /// of gc pointers this STATEPOINT has to relocate.
     753             :     SmallVector<const Value *, 16> Bases;
     754             :     SmallVector<const Value *, 16> Ptrs;
     755             : 
     756             :     /// The set of gc.relocate calls associated with this gc.statepoint.
     757             :     SmallVector<const GCRelocateInst *, 16> GCRelocates;
     758             : 
     759             :     /// The full list of gc arguments to the gc.statepoint being lowered.
     760             :     ArrayRef<const Use> GCArgs;
     761             : 
     762             :     /// The gc.statepoint instruction.
     763             :     const Instruction *StatepointInstr = nullptr;
     764             : 
     765             :     /// The list of gc transition arguments present in the gc.statepoint being
     766             :     /// lowered.
     767             :     ArrayRef<const Use> GCTransitionArgs;
     768             : 
     769             :     /// The ID that the resulting STATEPOINT instruction has to report.
     770             :     unsigned ID = -1;
     771             : 
     772             :     /// Information regarding the underlying call instruction.
     773             :     TargetLowering::CallLoweringInfo CLI;
     774             : 
     775             :     /// The deoptimization state associated with this gc.statepoint call, if
     776             :     /// any.
     777             :     ArrayRef<const Use> DeoptState;
     778             : 
     779             :     /// Flags associated with the meta arguments being lowered.
     780             :     uint64_t StatepointFlags = -1;
     781             : 
     782             :     /// The number of patchable bytes the call needs to get lowered into.
     783             :     unsigned NumPatchBytes = -1;
     784             : 
     785             :     /// The exception handling unwind destination, in case this represents an
     786             :     /// invoke of gc.statepoint.
     787             :     const BasicBlock *EHPadBB = nullptr;
     788             : 
     789         210 :     explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
     790             :   };
     791             : 
     792             :   /// Lower \p SLI into a STATEPOINT instruction.
     793             :   SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
     794             : 
     795             :   // This function is responsible for the whole statepoint lowering process.
     796             :   // It uniformly handles invoke and call statepoints.
     797             :   void LowerStatepoint(ImmutableStatepoint ISP,
     798             :                        const BasicBlock *EHPadBB = nullptr);
     799             : 
     800             :   void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee,
     801             :                                     const BasicBlock *EHPadBB);
     802             : 
     803             :   void LowerDeoptimizeCall(const CallInst *CI);
     804             :   void LowerDeoptimizingReturn();
     805             : 
     806             :   void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee,
     807             :                                         const BasicBlock *EHPadBB,
     808             :                                         bool VarArgDisallowed,
     809             :                                         bool ForceVoidReturnTy);
     810             : 
     811             :   /// Returns the type of FrameIndex and TargetFrameIndex nodes.
     812           0 :   MVT getFrameIndexTy() {
     813         132 :     return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
     814             :   }
     815             : 
     816             : private:
     817             :   // Terminator instructions.
     818             :   void visitRet(const ReturnInst &I);
     819             :   void visitBr(const BranchInst &I);
     820             :   void visitSwitch(const SwitchInst &I);
     821             :   void visitIndirectBr(const IndirectBrInst &I);
     822             :   void visitUnreachable(const UnreachableInst &I);
     823             :   void visitCleanupRet(const CleanupReturnInst &I);
     824             :   void visitCatchSwitch(const CatchSwitchInst &I);
     825             :   void visitCatchRet(const CatchReturnInst &I);
     826             :   void visitCatchPad(const CatchPadInst &I);
     827             :   void visitCleanupPad(const CleanupPadInst &CPI);
     828             : 
     829             :   BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
     830             :                                        const MachineBasicBlock *Dst) const;
     831             :   void addSuccessorWithProb(
     832             :       MachineBasicBlock *Src, MachineBasicBlock *Dst,
     833             :       BranchProbability Prob = BranchProbability::getUnknown());
     834             : 
     835             : public:
     836             :   void visitSwitchCase(CaseBlock &CB,
     837             :                        MachineBasicBlock *SwitchBB);
     838             :   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
     839             :                                MachineBasicBlock *ParentBB);
     840             :   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
     841             :   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
     842             :   void visitBitTestCase(BitTestBlock &BB,
     843             :                         MachineBasicBlock* NextMBB,
     844             :                         BranchProbability BranchProbToNext,
     845             :                         unsigned Reg,
     846             :                         BitTestCase &B,
     847             :                         MachineBasicBlock *SwitchBB);
     848             :   void visitJumpTable(JumpTable &JT);
     849             :   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
     850             :                             MachineBasicBlock *SwitchBB);
     851             : 
     852             : private:
     853             :   // These all get lowered before this pass.
     854             :   void visitInvoke(const InvokeInst &I);
     855             :   void visitResume(const ResumeInst &I);
     856             : 
     857             :   void visitBinary(const User &I, unsigned Opcode);
     858             :   void visitShift(const User &I, unsigned Opcode);
     859      364245 :   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
     860       14213 :   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
     861       16234 :   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
     862             :   void visitFSub(const User &I);
     863       11198 :   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
     864       10520 :   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
     865        2469 :   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
     866         972 :   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
     867         140 :   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
     868        3578 :   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
     869             :   void visitSDiv(const User &I);
     870        4704 :   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
     871       22677 :   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
     872       12152 :   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
     873       20244 :   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
     874       12041 :   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
     875        9868 :   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
     876        4260 :   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
     877             :   void visitICmp(const User &I);
     878             :   void visitFCmp(const User &I);
     879             :   // Visit the conversion instructions
     880             :   void visitTrunc(const User &I);
     881             :   void visitZExt(const User &I);
     882             :   void visitSExt(const User &I);
     883             :   void visitFPTrunc(const User &I);
     884             :   void visitFPExt(const User &I);
     885             :   void visitFPToUI(const User &I);
     886             :   void visitFPToSI(const User &I);
     887             :   void visitUIToFP(const User &I);
     888             :   void visitSIToFP(const User &I);
     889             :   void visitPtrToInt(const User &I);
     890             :   void visitIntToPtr(const User &I);
     891             :   void visitBitCast(const User &I);
     892             :   void visitAddrSpaceCast(const User &I);
     893             : 
     894             :   void visitExtractElement(const User &I);
     895             :   void visitInsertElement(const User &I);
     896             :   void visitShuffleVector(const User &I);
     897             : 
     898             :   void visitExtractValue(const User &I);
     899             :   void visitInsertValue(const User &I);
     900             :   void visitLandingPad(const LandingPadInst &LP);
     901             : 
     902             :   void visitGetElementPtr(const User &I);
     903             :   void visitSelect(const User &I);
     904             : 
     905             :   void visitAlloca(const AllocaInst &I);
     906             :   void visitLoad(const LoadInst &I);
     907             :   void visitStore(const StoreInst &I);
     908             :   void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
     909             :   void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
     910             :   void visitMaskedGather(const CallInst &I);
     911             :   void visitMaskedScatter(const CallInst &I);
     912             :   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
     913             :   void visitAtomicRMW(const AtomicRMWInst &I);
     914             :   void visitFence(const FenceInst &I);
     915             :   void visitPHI(const PHINode &I);
     916             :   void visitCall(const CallInst &I);
     917             :   bool visitMemCmpCall(const CallInst &I);
     918             :   bool visitMemPCpyCall(const CallInst &I);
     919             :   bool visitMemChrCall(const CallInst &I);
     920             :   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
     921             :   bool visitStrCmpCall(const CallInst &I);
     922             :   bool visitStrLenCall(const CallInst &I);
     923             :   bool visitStrNLenCall(const CallInst &I);
     924             :   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
     925             :   bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
     926             :   void visitAtomicLoad(const LoadInst &I);
     927             :   void visitAtomicStore(const StoreInst &I);
     928             :   void visitLoadFromSwiftError(const LoadInst &I);
     929             :   void visitStoreToSwiftError(const StoreInst &I);
     930             : 
     931             :   void visitInlineAsm(ImmutableCallSite CS);
     932             :   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
     933             :   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
     934             :   void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
     935             : 
     936             :   void visitVAStart(const CallInst &I);
     937             :   void visitVAArg(const VAArgInst &I);
     938             :   void visitVAEnd(const CallInst &I);
     939             :   void visitVACopy(const CallInst &I);
     940             :   void visitStackmap(const CallInst &I);
     941             :   void visitPatchpoint(ImmutableCallSite CS,
     942             :                        const BasicBlock *EHPadBB = nullptr);
     943             : 
     944             :   // These two are implemented in StatepointLowering.cpp
     945             :   void visitGCRelocate(const GCRelocateInst &Relocate);
     946             :   void visitGCResult(const GCResultInst &I);
     947             : 
     948             :   void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
     949             : 
     950           0 :   void visitUserOp1(const Instruction &I) {
     951           0 :     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
     952             :   }
     953           0 :   void visitUserOp2(const Instruction &I) {
     954           0 :     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
     955             :   }
     956             : 
     957             :   void processIntegerCallValue(const Instruction &I,
     958             :                                SDValue Value, bool IsSigned);
     959             : 
     960             :   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
     961             : 
     962             :   void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);
     963             : 
     964             :   /// If V is an function argument then create corresponding DBG_VALUE machine
     965             :   /// instruction for it now. At the end of instruction selection, they will be
     966             :   /// inserted to the entry BB.
     967             :   bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
     968             :                                 DIExpression *Expr, DILocation *DL,
     969             :                                 bool IsDbgDeclare, const SDValue &N);
     970             : 
     971             :   /// Return the next block after MBB, or nullptr if there is none.
     972             :   MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
     973             : 
     974             :   /// Update the DAG and DAG builder with the relevant information after
     975             :   /// a new root node has been created which could be a tail call.
     976             :   void updateDAGForMaybeTailCall(SDValue MaybeTC);
     977             : 
     978             :   /// Return the appropriate SDDbgValue based on N.
     979             :   SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
     980             :                           DIExpression *Expr, const DebugLoc &dl,
     981             :                           unsigned DbgSDNodeOrder);
     982             : };
     983             : 
     984             : /// RegsForValue - This struct represents the registers (physical or virtual)
     985             : /// that a particular set of values is assigned, and the type information about
     986             : /// the value. The most common situation is to represent one value at a time,
     987             : /// but struct or array values are handled element-wise as multiple values.  The
     988             : /// splitting of aggregates is performed recursively, so that we never have
     989             : /// aggregate-typed registers. The values at this point do not necessarily have
     990             : /// legal types, so each value may require one or more registers of some legal
     991             : /// type.
     992             : ///
     993             : struct RegsForValue {
     994             :   /// The value types of the values, which may not be legal, and
     995             :   /// may need be promoted or synthesized from one or more registers.
     996             :   SmallVector<EVT, 4> ValueVTs;
     997             : 
     998             :   /// The value types of the registers. This is the same size as ValueVTs and it
     999             :   /// records, for each value, what the type of the assigned register or
    1000             :   /// registers are. (Individual values are never synthesized from more than one
    1001             :   /// type of register.)
    1002             :   ///
    1003             :   /// With virtual registers, the contents of RegVTs is redundant with TLI's
    1004             :   /// getRegisterType member function, however when with physical registers
    1005             :   /// it is necessary to have a separate record of the types.
    1006             :   SmallVector<MVT, 4> RegVTs;
    1007             : 
    1008             :   /// This list holds the registers assigned to the values.
    1009             :   /// Each legal or promoted value requires one register, and each
    1010             :   /// expanded value requires multiple registers.
    1011             :   SmallVector<unsigned, 4> Regs;
    1012             : 
    1013             :   /// This list holds the number of registers for each value.
    1014             :   SmallVector<unsigned, 4> RegCount;
    1015             : 
    1016             :   /// Records if this value needs to be treated in an ABI dependant manner,
    1017             :   /// different to normal type legalization.
    1018             :   Optional<CallingConv::ID> CallConv;
    1019             : 
    1020             :   RegsForValue() = default;
    1021             :   RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt,
    1022             :                Optional<CallingConv::ID> CC = None);
    1023             :   RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
    1024             :                const DataLayout &DL, unsigned Reg, Type *Ty,
    1025             :                Optional<CallingConv::ID> CC);
    1026             : 
    1027             :   bool isABIMangled() const {
    1028     5301966 :     return CallConv.hasValue();
    1029             :   }
    1030             : 
    1031             :   /// Add the specified values to this one.
    1032        3985 :   void append(const RegsForValue &RHS) {
    1033        7970 :     ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    1034        7970 :     RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    1035        7970 :     Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    1036        3985 :     RegCount.push_back(RHS.Regs.size());
    1037        3985 :   }
    1038             : 
    1039             :   /// Emit a series of CopyFromReg nodes that copies from this value and returns
    1040             :   /// the result as a ValueVTs value. This uses Chain/Flag as the input and
    1041             :   /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
    1042             :   /// flag is used.
    1043             :   SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
    1044             :                           const SDLoc &dl, SDValue &Chain, SDValue *Flag,
    1045             :                           const Value *V = nullptr) const;
    1046             : 
    1047             :   /// Emit a series of CopyToReg nodes that copies the specified value into the
    1048             :   /// registers specified by this object. This uses Chain/Flag as the input and
    1049             :   /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
    1050             :   /// flag is used. If V is not nullptr, then it is used in printing better
    1051             :   /// diagnostic messages on error.
    1052             :   void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
    1053             :                      SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
    1054             :                      ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
    1055             : 
    1056             :   /// Add this value to the specified inlineasm node operand list. This adds the
    1057             :   /// code marker, matching input operand index (if applicable), and includes
    1058             :   /// the number of values added into it.
    1059             :   void AddInlineAsmOperands(unsigned Code, bool HasMatching,
    1060             :                             unsigned MatchingIdx, const SDLoc &dl,
    1061             :                             SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
    1062             : 
    1063             :   /// Check if the total RegCount is greater than one.
    1064             :   bool occupiesMultipleRegs() const {
    1065             :     return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
    1066             :   }
    1067             : 
    1068             :   /// Return a list of registers and their sizes.
    1069             :   SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
    1070             : };
    1071             : 
    1072             : } // end namespace llvm
    1073             : 
    1074             : #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H

Generated by: LCOV version 1.13