Line data Source code
1 : //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
15 : #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
16 :
17 : #include "StatepointLowering.h"
18 : #include "llvm/ADT/APInt.h"
19 : #include "llvm/ADT/ArrayRef.h"
20 : #include "llvm/ADT/DenseMap.h"
21 : #include "llvm/ADT/SmallVector.h"
22 : #include "llvm/Analysis/AliasAnalysis.h"
23 : #include "llvm/CodeGen/ISDOpcodes.h"
24 : #include "llvm/CodeGen/SelectionDAG.h"
25 : #include "llvm/CodeGen/SelectionDAGNodes.h"
26 : #include "llvm/CodeGen/TargetLowering.h"
27 : #include "llvm/CodeGen/ValueTypes.h"
28 : #include "llvm/IR/CallSite.h"
29 : #include "llvm/IR/DebugLoc.h"
30 : #include "llvm/IR/Instruction.h"
31 : #include "llvm/IR/Statepoint.h"
32 : #include "llvm/Support/BranchProbability.h"
33 : #include "llvm/Support/CodeGen.h"
34 : #include "llvm/Support/ErrorHandling.h"
35 : #include "llvm/Support/MachineValueType.h"
36 : #include <algorithm>
37 : #include <cassert>
38 : #include <cstdint>
39 : #include <utility>
40 : #include <vector>
41 :
42 : namespace llvm {
43 :
44 : class AllocaInst;
45 : class AtomicCmpXchgInst;
46 : class AtomicRMWInst;
47 : class BasicBlock;
48 : class BranchInst;
49 : class CallInst;
50 : class CatchPadInst;
51 : class CatchReturnInst;
52 : class CatchSwitchInst;
53 : class CleanupPadInst;
54 : class CleanupReturnInst;
55 : class Constant;
56 : class ConstantInt;
57 : class ConstrainedFPIntrinsic;
58 : class DbgValueInst;
59 : class DataLayout;
60 : class DIExpression;
61 : class DILocalVariable;
62 : class DILocation;
63 : class FenceInst;
64 : class FunctionLoweringInfo;
65 : class GCFunctionInfo;
66 : class GCRelocateInst;
67 : class GCResultInst;
68 : class IndirectBrInst;
69 : class InvokeInst;
70 : class LandingPadInst;
71 : class LLVMContext;
72 : class LoadInst;
73 : class MachineBasicBlock;
74 : class PHINode;
75 : class ResumeInst;
76 : class ReturnInst;
77 : class SDDbgValue;
78 : class StoreInst;
79 : class SwitchInst;
80 : class TargetLibraryInfo;
81 : class TargetMachine;
82 : class Type;
83 : class VAArgInst;
84 : class UnreachableInst;
85 : class Use;
86 : class User;
87 : class Value;
88 :
89 : //===----------------------------------------------------------------------===//
90 : /// SelectionDAGBuilder - This is the common target-independent lowering
91 : /// implementation that is parameterized by a TargetLowering object.
92 : ///
93 : class SelectionDAGBuilder {
94 : /// CurInst - The current instruction being visited
95 : const Instruction *CurInst = nullptr;
96 :
97 : DenseMap<const Value*, SDValue> NodeMap;
98 :
99 : /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
100 : /// to preserve debug information for incoming arguments.
101 : DenseMap<const Value*, SDValue> UnusedArgNodeMap;
102 :
103 : /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
104 25323 : class DanglingDebugInfo {
105 : const DbgValueInst* DI = nullptr;
106 : DebugLoc dl;
107 : unsigned SDNodeOrder = 0;
108 :
109 : public:
110 : DanglingDebugInfo() = default;
111 : DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
112 0 : : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
113 :
114 0 : const DbgValueInst* getDI() { return DI; }
115 : DebugLoc getdl() { return dl; }
116 0 : unsigned getSDNodeOrder() { return SDNodeOrder; }
117 : };
118 :
119 : /// DanglingDebugInfoVector - Helper type for DanglingDebugInfoMap.
120 : typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
121 :
122 : /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
123 : /// yet seen the referent. We defer handling these until we do see it.
124 : DenseMap<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
125 :
126 : public:
127 : /// PendingLoads - Loads are not emitted to the program immediately. We bunch
128 : /// them up and then emit token factor nodes when possible. This allows us to
129 : /// get simple disambiguation between loads without worrying about alias
130 : /// analysis.
131 : SmallVector<SDValue, 8> PendingLoads;
132 :
133 : /// State used while lowering a statepoint sequence (gc_statepoint,
134 : /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details.
135 : StatepointLoweringState StatepointLowering;
136 :
137 : private:
138 : /// PendingExports - CopyToReg nodes that copy values to virtual registers
139 : /// for export to other blocks need to be emitted before any terminator
140 : /// instruction, but they have no other ordering requirements. We bunch them
141 : /// up and the emit a single tokenfactor for them just before terminator
142 : /// instructions.
143 : SmallVector<SDValue, 8> PendingExports;
144 :
145 : /// SDNodeOrder - A unique monotonically increasing number used to order the
146 : /// SDNodes we create.
147 : unsigned SDNodeOrder;
148 :
149 : enum CaseClusterKind {
150 : /// A cluster of adjacent case labels with the same destination, or just one
151 : /// case.
152 : CC_Range,
153 : /// A cluster of cases suitable for jump table lowering.
154 : CC_JumpTable,
155 : /// A cluster of cases suitable for bit test lowering.
156 : CC_BitTests
157 : };
158 :
159 : /// A cluster of case labels.
160 : struct CaseCluster {
161 : CaseClusterKind Kind;
162 : const ConstantInt *Low, *High;
163 : union {
164 : MachineBasicBlock *MBB;
165 : unsigned JTCasesIndex;
166 : unsigned BTCasesIndex;
167 : };
168 : BranchProbability Prob;
169 :
170 : static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
171 : MachineBasicBlock *MBB, BranchProbability Prob) {
172 : CaseCluster C;
173 46766 : C.Kind = CC_Range;
174 46766 : C.Low = Low;
175 46766 : C.High = High;
176 46766 : C.MBB = MBB;
177 46766 : C.Prob = Prob;
178 : return C;
179 : }
180 :
181 : static CaseCluster jumpTable(const ConstantInt *Low,
182 : const ConstantInt *High, unsigned JTCasesIndex,
183 : BranchProbability Prob) {
184 : CaseCluster C;
185 : C.Kind = CC_JumpTable;
186 : C.Low = Low;
187 : C.High = High;
188 : C.JTCasesIndex = JTCasesIndex;
189 : C.Prob = Prob;
190 : return C;
191 : }
192 :
193 : static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
194 : unsigned BTCasesIndex, BranchProbability Prob) {
195 : CaseCluster C;
196 : C.Kind = CC_BitTests;
197 : C.Low = Low;
198 : C.High = High;
199 : C.BTCasesIndex = BTCasesIndex;
200 : C.Prob = Prob;
201 : return C;
202 : }
203 : };
204 :
205 : using CaseClusterVector = std::vector<CaseCluster>;
206 : using CaseClusterIt = CaseClusterVector::iterator;
207 :
208 : struct CaseBits {
209 : uint64_t Mask = 0;
210 : MachineBasicBlock* BB = nullptr;
211 : unsigned Bits = 0;
212 : BranchProbability ExtraProb;
213 :
214 : CaseBits() = default;
215 : CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
216 65 : BranchProbability Prob):
217 65 : Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) {}
218 : };
219 :
220 : using CaseBitsVector = std::vector<CaseBits>;
221 :
222 : /// Sort Clusters and merge adjacent cases.
223 : void sortAndRangeify(CaseClusterVector &Clusters);
224 :
225 : /// CaseBlock - This structure is used to communicate between
226 : /// SelectionDAGBuilder and SDISel for the code generation of additional basic
227 : /// blocks needed by multi-case switch statements.
228 1532 : struct CaseBlock {
229 : // CC - the condition code to use for the case block's setcc node
230 : ISD::CondCode CC;
231 :
232 : // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
233 : // Emit by default LHS op RHS. MHS is used for range comparisons:
234 : // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
235 : const Value *CmpLHS, *CmpMHS, *CmpRHS;
236 :
237 : // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
238 : MachineBasicBlock *TrueBB, *FalseBB;
239 :
240 : // ThisBB - the block into which to emit the code for the setcc and branches
241 : MachineBasicBlock *ThisBB;
242 :
243 : /// The debug location of the instruction this CaseBlock was
244 : /// produced from.
245 : SDLoc DL;
246 :
247 : // TrueProb/FalseProb - branch weights.
248 : BranchProbability TrueProb, FalseProb;
249 :
250 : CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
251 : const Value *cmpmiddle, MachineBasicBlock *truebb,
252 : MachineBasicBlock *falsebb, MachineBasicBlock *me,
253 : SDLoc dl,
254 : BranchProbability trueprob = BranchProbability::getUnknown(),
255 : BranchProbability falseprob = BranchProbability::getUnknown())
256 85621 : : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
257 : TrueBB(truebb), FalseBB(falsebb), ThisBB(me), DL(dl),
258 138622 : TrueProb(trueprob), FalseProb(falseprob) {}
259 : };
260 :
261 : struct JumpTable {
262 : /// Reg - the virtual register containing the index of the jump table entry
263 : //. to jump to.
264 : unsigned Reg;
265 : /// JTI - the JumpTableIndex for this jump table in the function.
266 : unsigned JTI;
267 : /// MBB - the MBB into which to emit the code for the indirect jump.
268 : MachineBasicBlock *MBB;
269 : /// Default - the MBB of the default bb, which is a successor of the range
270 : /// check MBB. This is when updating PHI nodes in successors.
271 : MachineBasicBlock *Default;
272 :
273 : JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
274 3199 : MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
275 : };
276 6398 : struct JumpTableHeader {
277 : APInt First;
278 : APInt Last;
279 : const Value *SValue;
280 : MachineBasicBlock *HeaderBB;
281 : bool Emitted;
282 :
283 : JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
284 : bool E = false)
285 3199 : : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H),
286 3199 : Emitted(E) {}
287 : };
288 : using JumpTableBlock = std::pair<JumpTableHeader, JumpTable>;
289 :
290 : struct BitTestCase {
291 : uint64_t Mask;
292 : MachineBasicBlock *ThisBB;
293 : MachineBasicBlock *TargetBB;
294 : BranchProbability ExtraProb;
295 :
296 : BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
297 65 : BranchProbability Prob):
298 65 : Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) {}
299 : };
300 :
301 : using BitTestInfo = SmallVector<BitTestCase, 3>;
302 :
303 : struct BitTestBlock {
304 : APInt First;
305 : APInt Range;
306 : const Value *SValue;
307 : unsigned Reg;
308 : MVT RegVT;
309 : bool Emitted;
310 : bool ContiguousRange;
311 : MachineBasicBlock *Parent;
312 : MachineBasicBlock *Default;
313 : BitTestInfo Cases;
314 : BranchProbability Prob;
315 : BranchProbability DefaultProb;
316 :
317 : BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
318 : bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
319 : BitTestInfo C, BranchProbability Pr)
320 49 : : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg),
321 : RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D),
322 98 : Cases(std::move(C)), Prob(Pr) {}
323 : };
324 :
325 : /// Return the range of value in [First..Last].
326 : uint64_t getJumpTableRange(const CaseClusterVector &Clusters, unsigned First,
327 : unsigned Last) const;
328 :
329 : /// Return the number of cases in [First..Last].
330 : uint64_t getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
331 : unsigned First, unsigned Last) const;
332 :
333 : /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
334 : /// decides it's not a good idea.
335 : bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First,
336 : unsigned Last, const SwitchInst *SI,
337 : MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
338 :
339 : /// Find clusters of cases suitable for jump table lowering.
340 : void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
341 : MachineBasicBlock *DefaultMBB);
342 :
343 : /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
344 : /// decides it's not a good idea.
345 : bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
346 : const SwitchInst *SI, CaseCluster &BTCluster);
347 :
348 : /// Find clusters of cases suitable for bit test lowering.
349 : void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);
350 :
351 : struct SwitchWorkListItem {
352 : MachineBasicBlock *MBB;
353 : CaseClusterIt FirstCluster;
354 : CaseClusterIt LastCluster;
355 : const ConstantInt *GE;
356 : const ConstantInt *LT;
357 : BranchProbability DefaultProb;
358 : };
359 : using SwitchWorkList = SmallVector<SwitchWorkListItem, 4>;
360 :
361 : /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
362 : /// than each cluster in the range, its rank is 0.
363 : static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
364 : CaseClusterIt Last);
365 :
366 : /// Emit comparison and split W into two subtrees.
367 : void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
368 : Value *Cond, MachineBasicBlock *SwitchMBB);
369 :
370 : /// Lower W.
371 : void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
372 : MachineBasicBlock *SwitchMBB,
373 : MachineBasicBlock *DefaultMBB);
374 :
375 : /// Peel the top probability case if it exceeds the threshold
376 : MachineBasicBlock *peelDominantCaseCluster(const SwitchInst &SI,
377 : CaseClusterVector &Clusters,
378 : BranchProbability &PeeledCaseProb);
379 :
380 : /// A class which encapsulates all of the information needed to generate a
381 : /// stack protector check and signals to isel via its state being initialized
382 : /// that a stack protector needs to be generated.
383 : ///
384 : /// *NOTE* The following is a high level documentation of SelectionDAG Stack
385 : /// Protector Generation. The reason that it is placed here is for a lack of
386 : /// other good places to stick it.
387 : ///
388 : /// High Level Overview of SelectionDAG Stack Protector Generation:
389 : ///
390 : /// Previously, generation of stack protectors was done exclusively in the
391 : /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
392 : /// splitting basic blocks at the IR level to create the success/failure basic
393 : /// blocks in the tail of the basic block in question. As a result of this,
394 : /// calls that would have qualified for the sibling call optimization were no
395 : /// longer eligible for optimization since said calls were no longer right in
396 : /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
397 : /// instruction).
398 : ///
399 : /// Then it was noticed that since the sibling call optimization causes the
400 : /// callee to reuse the caller's stack, if we could delay the generation of
401 : /// the stack protector check until later in CodeGen after the sibling call
402 : /// decision was made, we get both the tail call optimization and the stack
403 : /// protector check!
404 : ///
405 : /// A few goals in solving this problem were:
406 : ///
407 : /// 1. Preserve the architecture independence of stack protector generation.
408 : ///
409 : /// 2. Preserve the normal IR level stack protector check for platforms like
410 : /// OpenBSD for which we support platform-specific stack protector
411 : /// generation.
412 : ///
413 : /// The main problem that guided the present solution is that one can not
414 : /// solve this problem in an architecture independent manner at the IR level
415 : /// only. This is because:
416 : ///
417 : /// 1. The decision on whether or not to perform a sibling call on certain
418 : /// platforms (for instance i386) requires lower level information
419 : /// related to available registers that can not be known at the IR level.
420 : ///
421 : /// 2. Even if the previous point were not true, the decision on whether to
422 : /// perform a tail call is done in LowerCallTo in SelectionDAG which
423 : /// occurs after the Stack Protector Pass. As a result, one would need to
424 : /// put the relevant callinst into the stack protector check success
425 : /// basic block (where the return inst is placed) and then move it back
426 : /// later at SelectionDAG/MI time before the stack protector check if the
427 : /// tail call optimization failed. The MI level option was nixed
428 : /// immediately since it would require platform-specific pattern
429 : /// matching. The SelectionDAG level option was nixed because
430 : /// SelectionDAG only processes one IR level basic block at a time
431 : /// implying one could not create a DAG Combine to move the callinst.
432 : ///
433 : /// To get around this problem a few things were realized:
434 : ///
435 : /// 1. While one can not handle multiple IR level basic blocks at the
436 : /// SelectionDAG Level, one can generate multiple machine basic blocks
437 : /// for one IR level basic block. This is how we handle bit tests and
438 : /// switches.
439 : ///
440 : /// 2. At the MI level, tail calls are represented via a special return
441 : /// MIInst called "tcreturn". Thus if we know the basic block in which we
442 : /// wish to insert the stack protector check, we get the correct behavior
443 : /// by always inserting the stack protector check right before the return
444 : /// statement. This is a "magical transformation" since no matter where
445 : /// the stack protector check intrinsic is, we always insert the stack
446 : /// protector check code at the end of the BB.
447 : ///
448 : /// Given the aforementioned constraints, the following solution was devised:
449 : ///
450 : /// 1. On platforms that do not support SelectionDAG stack protector check
451 : /// generation, allow for the normal IR level stack protector check
452 : /// generation to continue.
453 : ///
454 : /// 2. On platforms that do support SelectionDAG stack protector check
455 : /// generation:
456 : ///
457 : /// a. Use the IR level stack protector pass to decide if a stack
458 : /// protector is required/which BB we insert the stack protector check
459 : /// in by reusing the logic already therein. If we wish to generate a
460 : /// stack protector check in a basic block, we place a special IR
461 : /// intrinsic called llvm.stackprotectorcheck right before the BB's
462 : /// returninst or if there is a callinst that could potentially be
463 : /// sibling call optimized, before the call inst.
464 : ///
465 : /// b. Then when a BB with said intrinsic is processed, we codegen the BB
466 : /// normally via SelectBasicBlock. In said process, when we visit the
467 : /// stack protector check, we do not actually emit anything into the
468 : /// BB. Instead, we just initialize the stack protector descriptor
469 : /// class (which involves stashing information/creating the success
470 : /// mbbb and the failure mbb if we have not created one for this
471 : /// function yet) and export the guard variable that we are going to
472 : /// compare.
473 : ///
474 : /// c. After we finish selecting the basic block, in FinishBasicBlock if
475 : /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
476 : /// initialized, we produce the validation code with one of these
477 : /// techniques:
478 : /// 1) with a call to a guard check function
479 : /// 2) with inlined instrumentation
480 : ///
481 : /// 1) We insert a call to the check function before the terminator.
482 : ///
483 : /// 2) We first find a splice point in the parent basic block
484 : /// before the terminator and then splice the terminator of said basic
485 : /// block into the success basic block. Then we code-gen a new tail for
486 : /// the parent basic block consisting of the two loads, the comparison,
487 : /// and finally two branches to the success/failure basic blocks. We
488 : /// conclude by code-gening the failure basic block if we have not
489 : /// code-gened it already (all stack protector checks we generate in
490 : /// the same function, use the same failure basic block).
491 : class StackProtectorDescriptor {
492 : public:
493 29262 : StackProtectorDescriptor() = default;
494 :
495 : /// Returns true if all fields of the stack protector descriptor are
496 : /// initialized implying that we should/are ready to emit a stack protector.
497 : bool shouldEmitStackProtector() const {
498 3217938 : return ParentMBB && SuccessMBB && FailureMBB;
499 : }
500 :
501 : bool shouldEmitFunctionBasedCheckStackProtector() const {
502 3218020 : return ParentMBB && !SuccessMBB && !FailureMBB;
503 : }
504 :
505 : /// Initialize the stack protector descriptor structure for a new basic
506 : /// block.
507 340 : void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
508 : bool FunctionBasedInstrumentation) {
509 : // Make sure we are not initialized yet.
510 : assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
511 : "already initialized!");
512 340 : ParentMBB = MBB;
513 340 : if (!FunctionBasedInstrumentation) {
514 258 : SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
515 258 : FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
516 : }
517 340 : }
518 :
519 : /// Reset state that changes when we handle different basic blocks.
520 : ///
521 : /// This currently includes:
522 : ///
523 : /// 1. The specific basic block we are generating a
524 : /// stack protector for (ParentMBB).
525 : ///
526 : /// 2. The successor machine basic block that will contain the tail of
527 : /// parent mbb after we create the stack protector check (SuccessMBB). This
528 : /// BB is visited only on stack protector check success.
529 0 : void resetPerBBState() {
530 340 : ParentMBB = nullptr;
531 340 : SuccessMBB = nullptr;
532 0 : }
533 :
534 : /// Reset state that only changes when we switch functions.
535 : ///
536 : /// This currently includes:
537 : ///
538 : /// 1. FailureMBB since we reuse the failure code path for all stack
539 : /// protector checks created in an individual function.
540 : ///
541 : /// 2.The guard variable since the guard variable we are checking against is
542 : /// always the same.
543 0 : void resetPerFunctionState() {
544 405212 : FailureMBB = nullptr;
545 0 : }
546 :
547 0 : MachineBasicBlock *getParentMBB() { return ParentMBB; }
548 0 : MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
549 0 : MachineBasicBlock *getFailureMBB() { return FailureMBB; }
550 :
551 : private:
552 : /// The basic block for which we are generating the stack protector.
553 : ///
554 : /// As a result of stack protector generation, we will splice the
555 : /// terminators of this basic block into the successor mbb SuccessMBB and
556 : /// replace it with a compare/branch to the successor mbbs
557 : /// SuccessMBB/FailureMBB depending on whether or not the stack protector
558 : /// was violated.
559 : MachineBasicBlock *ParentMBB = nullptr;
560 :
561 : /// A basic block visited on stack protector check success that contains the
562 : /// terminators of ParentMBB.
563 : MachineBasicBlock *SuccessMBB = nullptr;
564 :
565 : /// This basic block visited on stack protector check failure that will
566 : /// contain a call to __stack_chk_fail().
567 : MachineBasicBlock *FailureMBB = nullptr;
568 :
569 : /// Add a successor machine basic block to ParentMBB. If the successor mbb
570 : /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
571 : /// block will be created. Assign a large weight if IsLikely is true.
572 : MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
573 : MachineBasicBlock *ParentMBB,
574 : bool IsLikely,
575 : MachineBasicBlock *SuccMBB = nullptr);
576 : };
577 :
578 : private:
579 : const TargetMachine &TM;
580 :
581 : public:
582 : /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
583 : /// nodes without a corresponding SDNode.
584 : static const unsigned LowestSDNodeOrder = 1;
585 :
586 : SelectionDAG &DAG;
587 : const DataLayout *DL = nullptr;
588 : AliasAnalysis *AA = nullptr;
589 : const TargetLibraryInfo *LibInfo;
590 :
591 : /// SwitchCases - Vector of CaseBlock structures used to communicate
592 : /// SwitchInst code generation information.
593 : std::vector<CaseBlock> SwitchCases;
594 :
595 : /// JTCases - Vector of JumpTable structures used to communicate
596 : /// SwitchInst code generation information.
597 : std::vector<JumpTableBlock> JTCases;
598 :
599 : /// BitTestCases - Vector of BitTestBlock structures used to communicate
600 : /// SwitchInst code generation information.
601 : std::vector<BitTestBlock> BitTestCases;
602 :
603 : /// A StackProtectorDescriptor structure used to communicate stack protector
604 : /// information in between SelectBasicBlock and FinishBasicBlock.
605 : StackProtectorDescriptor SPDescriptor;
606 :
607 : // Emit PHI-node-operand constants only once even if used by multiple
608 : // PHI nodes.
609 : DenseMap<const Constant *, unsigned> ConstantsOut;
610 :
611 : /// FuncInfo - Information about the function as a whole.
612 : ///
613 : FunctionLoweringInfo &FuncInfo;
614 :
615 : /// GFI - Garbage collection metadata for the function.
616 : GCFunctionInfo *GFI;
617 :
618 : /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
619 : DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
620 :
621 : /// HasTailCall - This is set to true if a call in the current
622 : /// block has been translated as a tail call. In this case,
623 : /// no subsequent DAG nodes should be created.
624 : bool HasTailCall = false;
625 :
626 : LLVMContext *Context;
627 :
628 29262 : SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
629 : CodeGenOpt::Level ol)
630 58524 : : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
631 87786 : FuncInfo(funcinfo) {}
632 :
633 : void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
634 : const TargetLibraryInfo *li);
635 :
636 : /// Clear out the current SelectionDAG and the associated state and prepare
637 : /// this SelectionDAGBuilder object to be used for a new block. This doesn't
638 : /// clear out information about additional blocks that are needed to complete
639 : /// switch lowering or PHI node updating; that information is cleared out as
640 : /// it is consumed.
641 : void clear();
642 :
643 : /// Clear the dangling debug information map. This function is separated from
644 : /// the clear so that debug information that is dangling in a basic block can
645 : /// be properly resolved in a different basic block. This allows the
646 : /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
647 : void clearDanglingDebugInfo();
648 :
649 : /// Return the current virtual root of the Selection DAG, flushing any
650 : /// PendingLoad items. This must be done before emitting a store or any other
651 : /// node that may need to be ordered after any prior load instructions.
652 : SDValue getRoot();
653 :
654 : /// Similar to getRoot, but instead of flushing all the PendingLoad items,
655 : /// flush all the PendingExports items. It is necessary to do this before
656 : /// emitting a terminator instruction.
657 : SDValue getControlRoot();
658 :
659 0 : SDLoc getCurSDLoc() const {
660 18676021 : return SDLoc(CurInst, SDNodeOrder);
661 : }
662 :
663 0 : DebugLoc getCurDebugLoc() const {
664 0 : return CurInst ? CurInst->getDebugLoc() : DebugLoc();
665 : }
666 :
667 : void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
668 :
669 : void visit(const Instruction &I);
670 :
671 : void visit(unsigned Opcode, const User &I);
672 :
673 : /// getCopyFromRegs - If there was virtual register allocated for the value V
674 : /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
675 : SDValue getCopyFromRegs(const Value *V, Type *Ty);
676 :
677 : /// If we have dangling debug info that describes \p Variable, or an
678 : /// overlapping part of variable considering the \p Expr, then this method
679 : /// weill drop that debug info as it isn't valid any longer.
680 : void dropDanglingDebugInfo(const DILocalVariable *Variable,
681 : const DIExpression *Expr);
682 :
683 : // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
684 : // generate the debug data structures now that we've seen its definition.
685 : void resolveDanglingDebugInfo(const Value *V, SDValue Val);
686 :
687 : SDValue getValue(const Value *V);
688 : bool findValue(const Value *V) const;
689 :
690 : /// Return the SDNode for the specified IR value if it exists.
691 157138 : SDNode *getNodeForIRValue(const Value *V) {
692 157138 : if (NodeMap.find(V) == NodeMap.end())
693 : return nullptr;
694 157065 : return NodeMap[V].getNode();
695 : }
696 :
697 : SDValue getNonRegisterValue(const Value *V);
698 : SDValue getValueImpl(const Value *V);
699 :
700 : void setValue(const Value *V, SDValue NewN) {
701 7744966 : SDValue &N = NodeMap[V];
702 : assert(!N.getNode() && "Already set a value for this node!");
703 7230910 : N = NewN;
704 : }
705 :
706 : void setUnusedArgValue(const Value *V, SDValue NewN) {
707 49561 : SDValue &N = UnusedArgNodeMap[V];
708 : assert(!N.getNode() && "Already set a value for this node!");
709 49561 : N = NewN;
710 : }
711 :
712 : void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
713 : MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
714 : MachineBasicBlock *SwitchBB,
715 : Instruction::BinaryOps Opc, BranchProbability TProb,
716 : BranchProbability FProb, bool InvertCond);
717 : void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
718 : MachineBasicBlock *FBB,
719 : MachineBasicBlock *CurBB,
720 : MachineBasicBlock *SwitchBB,
721 : BranchProbability TProb, BranchProbability FProb,
722 : bool InvertCond);
723 : bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
724 : bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
725 : void CopyToExportRegsIfNeeded(const Value *V);
726 : void ExportFromCurrentBlock(const Value *V);
727 : void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
728 : const BasicBlock *EHPadBB = nullptr);
729 :
730 : // Lower range metadata from 0 to N to assert zext to an integer of nearest
731 : // floor power of two.
732 : SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
733 : SDValue Op);
734 :
735 : void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
736 : ImmutableCallSite CS, unsigned ArgIdx,
737 : unsigned NumArgs, SDValue Callee,
738 : Type *ReturnTy, bool IsPatchPoint);
739 :
740 : std::pair<SDValue, SDValue>
741 : lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
742 : const BasicBlock *EHPadBB = nullptr);
743 :
744 : /// UpdateSplitBlock - When an MBB was split during scheduling, update the
745 : /// references that need to refer to the last resulting block.
746 : void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
747 :
748 : /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
749 : /// of lowering into a STATEPOINT node.
750 : struct StatepointLoweringInfo {
751 : /// Bases[i] is the base pointer for Ptrs[i]. Together they denote the set
752 : /// of gc pointers this STATEPOINT has to relocate.
753 : SmallVector<const Value *, 16> Bases;
754 : SmallVector<const Value *, 16> Ptrs;
755 :
756 : /// The set of gc.relocate calls associated with this gc.statepoint.
757 : SmallVector<const GCRelocateInst *, 16> GCRelocates;
758 :
759 : /// The full list of gc arguments to the gc.statepoint being lowered.
760 : ArrayRef<const Use> GCArgs;
761 :
762 : /// The gc.statepoint instruction.
763 : const Instruction *StatepointInstr = nullptr;
764 :
765 : /// The list of gc transition arguments present in the gc.statepoint being
766 : /// lowered.
767 : ArrayRef<const Use> GCTransitionArgs;
768 :
769 : /// The ID that the resulting STATEPOINT instruction has to report.
770 : unsigned ID = -1;
771 :
772 : /// Information regarding the underlying call instruction.
773 : TargetLowering::CallLoweringInfo CLI;
774 :
775 : /// The deoptimization state associated with this gc.statepoint call, if
776 : /// any.
777 : ArrayRef<const Use> DeoptState;
778 :
779 : /// Flags associated with the meta arguments being lowered.
780 : uint64_t StatepointFlags = -1;
781 :
782 : /// The number of patchable bytes the call needs to get lowered into.
783 : unsigned NumPatchBytes = -1;
784 :
785 : /// The exception handling unwind destination, in case this represents an
786 : /// invoke of gc.statepoint.
787 : const BasicBlock *EHPadBB = nullptr;
788 :
789 210 : explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
790 : };
791 :
792 : /// Lower \p SLI into a STATEPOINT instruction.
793 : SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
794 :
795 : // This function is responsible for the whole statepoint lowering process.
796 : // It uniformly handles invoke and call statepoints.
797 : void LowerStatepoint(ImmutableStatepoint ISP,
798 : const BasicBlock *EHPadBB = nullptr);
799 :
800 : void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee,
801 : const BasicBlock *EHPadBB);
802 :
803 : void LowerDeoptimizeCall(const CallInst *CI);
804 : void LowerDeoptimizingReturn();
805 :
806 : void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee,
807 : const BasicBlock *EHPadBB,
808 : bool VarArgDisallowed,
809 : bool ForceVoidReturnTy);
810 :
811 : /// Returns the type of FrameIndex and TargetFrameIndex nodes.
812 0 : MVT getFrameIndexTy() {
813 132 : return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
814 : }
815 :
816 : private:
817 : // Terminator instructions.
818 : void visitRet(const ReturnInst &I);
819 : void visitBr(const BranchInst &I);
820 : void visitSwitch(const SwitchInst &I);
821 : void visitIndirectBr(const IndirectBrInst &I);
822 : void visitUnreachable(const UnreachableInst &I);
823 : void visitCleanupRet(const CleanupReturnInst &I);
824 : void visitCatchSwitch(const CatchSwitchInst &I);
825 : void visitCatchRet(const CatchReturnInst &I);
826 : void visitCatchPad(const CatchPadInst &I);
827 : void visitCleanupPad(const CleanupPadInst &CPI);
828 :
829 : BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
830 : const MachineBasicBlock *Dst) const;
831 : void addSuccessorWithProb(
832 : MachineBasicBlock *Src, MachineBasicBlock *Dst,
833 : BranchProbability Prob = BranchProbability::getUnknown());
834 :
835 : public:
836 : void visitSwitchCase(CaseBlock &CB,
837 : MachineBasicBlock *SwitchBB);
838 : void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
839 : MachineBasicBlock *ParentBB);
840 : void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
841 : void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
842 : void visitBitTestCase(BitTestBlock &BB,
843 : MachineBasicBlock* NextMBB,
844 : BranchProbability BranchProbToNext,
845 : unsigned Reg,
846 : BitTestCase &B,
847 : MachineBasicBlock *SwitchBB);
848 : void visitJumpTable(JumpTable &JT);
849 : void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
850 : MachineBasicBlock *SwitchBB);
851 :
852 : private:
853 : // These all get lowered before this pass.
854 : void visitInvoke(const InvokeInst &I);
855 : void visitResume(const ResumeInst &I);
856 :
857 : void visitBinary(const User &I, unsigned Opcode);
858 : void visitShift(const User &I, unsigned Opcode);
859 364245 : void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
860 14213 : void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
861 16234 : void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
862 : void visitFSub(const User &I);
863 11198 : void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
864 10520 : void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
865 2469 : void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
866 972 : void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
867 140 : void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
868 3578 : void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
869 : void visitSDiv(const User &I);
870 4704 : void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
871 22677 : void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
872 12152 : void visitOr (const User &I) { visitBinary(I, ISD::OR); }
873 20244 : void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
874 12041 : void visitShl (const User &I) { visitShift(I, ISD::SHL); }
875 9868 : void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
876 4260 : void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
877 : void visitICmp(const User &I);
878 : void visitFCmp(const User &I);
879 : // Visit the conversion instructions
880 : void visitTrunc(const User &I);
881 : void visitZExt(const User &I);
882 : void visitSExt(const User &I);
883 : void visitFPTrunc(const User &I);
884 : void visitFPExt(const User &I);
885 : void visitFPToUI(const User &I);
886 : void visitFPToSI(const User &I);
887 : void visitUIToFP(const User &I);
888 : void visitSIToFP(const User &I);
889 : void visitPtrToInt(const User &I);
890 : void visitIntToPtr(const User &I);
891 : void visitBitCast(const User &I);
892 : void visitAddrSpaceCast(const User &I);
893 :
894 : void visitExtractElement(const User &I);
895 : void visitInsertElement(const User &I);
896 : void visitShuffleVector(const User &I);
897 :
898 : void visitExtractValue(const User &I);
899 : void visitInsertValue(const User &I);
900 : void visitLandingPad(const LandingPadInst &LP);
901 :
902 : void visitGetElementPtr(const User &I);
903 : void visitSelect(const User &I);
904 :
905 : void visitAlloca(const AllocaInst &I);
906 : void visitLoad(const LoadInst &I);
907 : void visitStore(const StoreInst &I);
908 : void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
909 : void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
910 : void visitMaskedGather(const CallInst &I);
911 : void visitMaskedScatter(const CallInst &I);
912 : void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
913 : void visitAtomicRMW(const AtomicRMWInst &I);
914 : void visitFence(const FenceInst &I);
915 : void visitPHI(const PHINode &I);
916 : void visitCall(const CallInst &I);
917 : bool visitMemCmpCall(const CallInst &I);
918 : bool visitMemPCpyCall(const CallInst &I);
919 : bool visitMemChrCall(const CallInst &I);
920 : bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
921 : bool visitStrCmpCall(const CallInst &I);
922 : bool visitStrLenCall(const CallInst &I);
923 : bool visitStrNLenCall(const CallInst &I);
924 : bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
925 : bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
926 : void visitAtomicLoad(const LoadInst &I);
927 : void visitAtomicStore(const StoreInst &I);
928 : void visitLoadFromSwiftError(const LoadInst &I);
929 : void visitStoreToSwiftError(const StoreInst &I);
930 :
931 : void visitInlineAsm(ImmutableCallSite CS);
932 : const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
933 : void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
934 : void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
935 :
936 : void visitVAStart(const CallInst &I);
937 : void visitVAArg(const VAArgInst &I);
938 : void visitVAEnd(const CallInst &I);
939 : void visitVACopy(const CallInst &I);
940 : void visitStackmap(const CallInst &I);
941 : void visitPatchpoint(ImmutableCallSite CS,
942 : const BasicBlock *EHPadBB = nullptr);
943 :
944 : // These two are implemented in StatepointLowering.cpp
945 : void visitGCRelocate(const GCRelocateInst &Relocate);
946 : void visitGCResult(const GCResultInst &I);
947 :
948 : void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
949 :
950 0 : void visitUserOp1(const Instruction &I) {
951 0 : llvm_unreachable("UserOp1 should not exist at instruction selection time!");
952 : }
953 0 : void visitUserOp2(const Instruction &I) {
954 0 : llvm_unreachable("UserOp2 should not exist at instruction selection time!");
955 : }
956 :
957 : void processIntegerCallValue(const Instruction &I,
958 : SDValue Value, bool IsSigned);
959 :
960 : void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
961 :
962 : void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);
963 :
964 : /// If V is an function argument then create corresponding DBG_VALUE machine
965 : /// instruction for it now. At the end of instruction selection, they will be
966 : /// inserted to the entry BB.
967 : bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
968 : DIExpression *Expr, DILocation *DL,
969 : bool IsDbgDeclare, const SDValue &N);
970 :
971 : /// Return the next block after MBB, or nullptr if there is none.
972 : MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
973 :
974 : /// Update the DAG and DAG builder with the relevant information after
975 : /// a new root node has been created which could be a tail call.
976 : void updateDAGForMaybeTailCall(SDValue MaybeTC);
977 :
978 : /// Return the appropriate SDDbgValue based on N.
979 : SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
980 : DIExpression *Expr, const DebugLoc &dl,
981 : unsigned DbgSDNodeOrder);
982 : };
983 :
984 : /// RegsForValue - This struct represents the registers (physical or virtual)
985 : /// that a particular set of values is assigned, and the type information about
986 : /// the value. The most common situation is to represent one value at a time,
987 : /// but struct or array values are handled element-wise as multiple values. The
988 : /// splitting of aggregates is performed recursively, so that we never have
989 : /// aggregate-typed registers. The values at this point do not necessarily have
990 : /// legal types, so each value may require one or more registers of some legal
991 : /// type.
992 : ///
993 : struct RegsForValue {
994 : /// The value types of the values, which may not be legal, and
995 : /// may need be promoted or synthesized from one or more registers.
996 : SmallVector<EVT, 4> ValueVTs;
997 :
998 : /// The value types of the registers. This is the same size as ValueVTs and it
999 : /// records, for each value, what the type of the assigned register or
1000 : /// registers are. (Individual values are never synthesized from more than one
1001 : /// type of register.)
1002 : ///
1003 : /// With virtual registers, the contents of RegVTs is redundant with TLI's
1004 : /// getRegisterType member function, however when with physical registers
1005 : /// it is necessary to have a separate record of the types.
1006 : SmallVector<MVT, 4> RegVTs;
1007 :
1008 : /// This list holds the registers assigned to the values.
1009 : /// Each legal or promoted value requires one register, and each
1010 : /// expanded value requires multiple registers.
1011 : SmallVector<unsigned, 4> Regs;
1012 :
1013 : /// This list holds the number of registers for each value.
1014 : SmallVector<unsigned, 4> RegCount;
1015 :
1016 : /// Records if this value needs to be treated in an ABI dependant manner,
1017 : /// different to normal type legalization.
1018 : Optional<CallingConv::ID> CallConv;
1019 :
1020 : RegsForValue() = default;
1021 : RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt,
1022 : Optional<CallingConv::ID> CC = None);
1023 : RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
1024 : const DataLayout &DL, unsigned Reg, Type *Ty,
1025 : Optional<CallingConv::ID> CC);
1026 :
1027 : bool isABIMangled() const {
1028 5301966 : return CallConv.hasValue();
1029 : }
1030 :
1031 : /// Add the specified values to this one.
1032 3985 : void append(const RegsForValue &RHS) {
1033 7970 : ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
1034 7970 : RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
1035 7970 : Regs.append(RHS.Regs.begin(), RHS.Regs.end());
1036 3985 : RegCount.push_back(RHS.Regs.size());
1037 3985 : }
1038 :
1039 : /// Emit a series of CopyFromReg nodes that copies from this value and returns
1040 : /// the result as a ValueVTs value. This uses Chain/Flag as the input and
1041 : /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
1042 : /// flag is used.
1043 : SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
1044 : const SDLoc &dl, SDValue &Chain, SDValue *Flag,
1045 : const Value *V = nullptr) const;
1046 :
1047 : /// Emit a series of CopyToReg nodes that copies the specified value into the
1048 : /// registers specified by this object. This uses Chain/Flag as the input and
1049 : /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
1050 : /// flag is used. If V is not nullptr, then it is used in printing better
1051 : /// diagnostic messages on error.
1052 : void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
1053 : SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
1054 : ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
1055 :
1056 : /// Add this value to the specified inlineasm node operand list. This adds the
1057 : /// code marker, matching input operand index (if applicable), and includes
1058 : /// the number of values added into it.
1059 : void AddInlineAsmOperands(unsigned Code, bool HasMatching,
1060 : unsigned MatchingIdx, const SDLoc &dl,
1061 : SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
1062 :
1063 : /// Check if the total RegCount is greater than one.
1064 : bool occupiesMultipleRegs() const {
1065 : return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
1066 : }
1067 :
1068 : /// Return a list of registers and their sizes.
1069 : SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
1070 : };
1071 :
1072 : } // end namespace llvm
1073 :
1074 : #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
|