LCOV - code coverage report
Current view: top level - lib/CodeGen/SelectionDAG - TargetLowering.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 1826 1922 95.0 %
Date: 2018-10-20 13:21:21 Functions: 59 61 96.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This implements the TargetLowering class.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "llvm/CodeGen/TargetLowering.h"
      15             : #include "llvm/ADT/BitVector.h"
      16             : #include "llvm/ADT/STLExtras.h"
      17             : #include "llvm/CodeGen/CallingConvLower.h"
      18             : #include "llvm/CodeGen/MachineFrameInfo.h"
      19             : #include "llvm/CodeGen/MachineFunction.h"
      20             : #include "llvm/CodeGen/MachineJumpTableInfo.h"
      21             : #include "llvm/CodeGen/MachineRegisterInfo.h"
      22             : #include "llvm/CodeGen/SelectionDAG.h"
      23             : #include "llvm/CodeGen/TargetRegisterInfo.h"
      24             : #include "llvm/CodeGen/TargetSubtargetInfo.h"
      25             : #include "llvm/IR/DataLayout.h"
      26             : #include "llvm/IR/DerivedTypes.h"
      27             : #include "llvm/IR/GlobalVariable.h"
      28             : #include "llvm/IR/LLVMContext.h"
      29             : #include "llvm/MC/MCAsmInfo.h"
      30             : #include "llvm/MC/MCExpr.h"
      31             : #include "llvm/Support/ErrorHandling.h"
      32             : #include "llvm/Support/KnownBits.h"
      33             : #include "llvm/Support/MathExtras.h"
      34             : #include "llvm/Target/TargetLoweringObjectFile.h"
      35             : #include "llvm/Target/TargetMachine.h"
      36             : #include <cctype>
      37             : using namespace llvm;
      38             : 
      39             : /// NOTE: The TargetMachine owns TLOF.
      40       41320 : TargetLowering::TargetLowering(const TargetMachine &tm)
      41       41320 :   : TargetLoweringBase(tm) {}
      42             : 
      43           0 : const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
      44           0 :   return nullptr;
      45             : }
      46             : 
      47     2471464 : bool TargetLowering::isPositionIndependent() const {
      48     2471464 :   return getTargetMachine().isPositionIndependent();
      49             : }
      50             : 
      51             : /// Check whether a given call node is in tail position within its function. If
      52             : /// so, it sets Chain to the input chain of the tail call.
      53        5092 : bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
      54             :                                           SDValue &Chain) const {
      55        5092 :   const Function &F = DAG.getMachineFunction().getFunction();
      56             : 
      57             :   // Conservatively require the attributes of the call to match those of
      58             :   // the return. Ignore NoAlias and NonNull because they don't affect the
      59             :   // call sequence.
      60        5092 :   AttributeList CallerAttrs = F.getAttributes();
      61       10184 :   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
      62        5092 :           .removeAttribute(Attribute::NoAlias)
      63        5092 :           .removeAttribute(Attribute::NonNull)
      64        5092 :           .hasAttributes())
      65             :     return false;
      66             : 
      67             :   // It's not safe to eliminate the sign / zero extension of the return value.
      68       10078 :   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
      69        5039 :       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
      70           0 :     return false;
      71             : 
      72             :   // Check if the only use is a function return node.
      73        5039 :   return isUsedByReturnOnly(Node, Chain);
      74             : }
      75             : 
      76        4307 : bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
      77             :     const uint32_t *CallerPreservedMask,
      78             :     const SmallVectorImpl<CCValAssign> &ArgLocs,
      79             :     const SmallVectorImpl<SDValue> &OutVals) const {
      80       11341 :   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
      81        7044 :     const CCValAssign &ArgLoc = ArgLocs[I];
      82        7044 :     if (!ArgLoc.isRegLoc())
      83             :       continue;
      84        6812 :     unsigned Reg = ArgLoc.getLocReg();
      85             :     // Only look at callee saved registers.
      86        6812 :     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
      87             :       continue;
      88             :     // Check that we pass the value used for the caller.
      89             :     // (We look for a CopyFromReg reading a virtual register that is used
      90             :     //  for the function live-in value of register Reg)
      91          16 :     SDValue Value = OutVals[I];
      92          16 :     if (Value->getOpcode() != ISD::CopyFromReg)
      93             :       return false;
      94          16 :     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
      95          16 :     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
      96             :       return false;
      97             :   }
      98             :   return true;
      99             : }
     100             : 
     101             : /// Set CallLoweringInfo attribute flags based on a call instruction
     102             : /// and called function attributes.
     103     4107668 : void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
     104             :                                                      unsigned ArgIdx) {
     105     4107668 :   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
     106     4107668 :   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
     107     4107668 :   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
     108     4107668 :   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
     109     4107668 :   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
     110     4107668 :   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
     111     4107668 :   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
     112     4107668 :   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
     113     4107668 :   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
     114     4107668 :   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
     115     4107668 :   Alignment  = CS->getParamAlignment(ArgIdx);
     116     4107668 : }
     117             : 
     118             : /// Generate a libcall taking the given operands as arguments and returning a
     119             : /// result of type RetVT.
     120             : std::pair<SDValue, SDValue>
     121        3140 : TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
     122             :                             ArrayRef<SDValue> Ops, bool isSigned,
     123             :                             const SDLoc &dl, bool doesNotReturn,
     124             :                             bool isReturnValueUsed) const {
     125             :   TargetLowering::ArgListTy Args;
     126        3140 :   Args.reserve(Ops.size());
     127             : 
     128             :   TargetLowering::ArgListEntry Entry;
     129        7498 :   for (SDValue Op : Ops) {
     130        4358 :     Entry.Node = Op;
     131        4358 :     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
     132        8716 :     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
     133        8716 :     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
     134        4358 :     Args.push_back(Entry);
     135             :   }
     136             : 
     137        3140 :   if (LC == RTLIB::UNKNOWN_LIBCALL)
     138           0 :     report_fatal_error("Unsupported library call operation!");
     139             :   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
     140        6280 :                                          getPointerTy(DAG.getDataLayout()));
     141             : 
     142        3140 :   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
     143        6279 :   TargetLowering::CallLoweringInfo CLI(DAG);
     144        3140 :   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
     145             :   CLI.setDebugLoc(dl)
     146        3140 :       .setChain(DAG.getEntryNode())
     147        3140 :       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
     148             :       .setNoReturn(doesNotReturn)
     149             :       .setDiscardResult(!isReturnValueUsed)
     150             :       .setSExtResult(signExtend)
     151        3140 :       .setZExtResult(!signExtend);
     152        3140 :   return LowerCallTo(CLI);
     153             : }
     154             : 
     155             : /// Soften the operands of a comparison. This code is shared among BR_CC,
     156             : /// SELECT_CC, and SETCC handlers.
     157         331 : void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
     158             :                                          SDValue &NewLHS, SDValue &NewRHS,
     159             :                                          ISD::CondCode &CCCode,
     160             :                                          const SDLoc &dl) const {
     161             :   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
     162             :          && "Unsupported setcc type!");
     163             : 
     164             :   // Expand into one or more soft-fp libcall(s).
     165             :   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
     166             :   bool ShouldInvertCC = false;
     167         331 :   switch (CCCode) {
     168             :   case ISD::SETEQ:
     169             :   case ISD::SETOEQ:
     170             :     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
     171             :           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
     172             :           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
     173          64 :     break;
     174             :   case ISD::SETNE:
     175             :   case ISD::SETUNE:
     176             :     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
     177             :           (VT == MVT::f64) ? RTLIB::UNE_F64 :
     178             :           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
     179          45 :     break;
     180             :   case ISD::SETGE:
     181             :   case ISD::SETOGE:
     182             :     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
     183             :           (VT == MVT::f64) ? RTLIB::OGE_F64 :
     184             :           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
     185          30 :     break;
     186             :   case ISD::SETLT:
     187             :   case ISD::SETOLT:
     188             :     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
     189             :           (VT == MVT::f64) ? RTLIB::OLT_F64 :
     190             :           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
     191          46 :     break;
     192             :   case ISD::SETLE:
     193             :   case ISD::SETOLE:
     194             :     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
     195             :           (VT == MVT::f64) ? RTLIB::OLE_F64 :
     196             :           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
     197          30 :     break;
     198             :   case ISD::SETGT:
     199             :   case ISD::SETOGT:
     200             :     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
     201             :           (VT == MVT::f64) ? RTLIB::OGT_F64 :
     202             :           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
     203          40 :     break;
     204             :   case ISD::SETUO:
     205             :     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
     206             :           (VT == MVT::f64) ? RTLIB::UO_F64 :
     207             :           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
     208          16 :     break;
     209             :   case ISD::SETO:
     210             :     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
     211             :           (VT == MVT::f64) ? RTLIB::O_F64 :
     212             :           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
     213           6 :     break;
     214             :   case ISD::SETONE:
     215             :     // SETONE = SETOLT | SETOGT
     216             :     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
     217             :           (VT == MVT::f64) ? RTLIB::OLT_F64 :
     218             :           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
     219             :     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
     220             :           (VT == MVT::f64) ? RTLIB::OGT_F64 :
     221             :           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
     222           5 :     break;
     223             :   case ISD::SETUEQ:
     224             :     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
     225             :           (VT == MVT::f64) ? RTLIB::UO_F64 :
     226             :           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
     227             :     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
     228             :           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
     229             :           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
     230          11 :     break;
     231          38 :   default:
     232             :     // Invert CC for unordered comparisons
     233             :     ShouldInvertCC = true;
     234             :     switch (CCCode) {
     235             :     case ISD::SETULT:
     236             :       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
     237             :             (VT == MVT::f64) ? RTLIB::OGE_F64 :
     238             :             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
     239           7 :       break;
     240             :     case ISD::SETULE:
     241             :       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
     242             :             (VT == MVT::f64) ? RTLIB::OGT_F64 :
     243             :             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
     244          14 :       break;
     245             :     case ISD::SETUGT:
     246             :       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
     247             :             (VT == MVT::f64) ? RTLIB::OLE_F64 :
     248             :             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
     249           8 :       break;
     250             :     case ISD::SETUGE:
     251             :       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
     252             :             (VT == MVT::f64) ? RTLIB::OLT_F64 :
     253             :             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
     254           9 :       break;
     255           0 :     default: llvm_unreachable("Do not know how to soften this setcc!");
     256             :     }
     257             :   }
     258             : 
     259             :   // Use the target specific return value for comparions lib calls.
     260         331 :   EVT RetVT = getCmpLibcallReturnType();
     261         331 :   SDValue Ops[2] = {NewLHS, NewRHS};
     262         331 :   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
     263         331 :                        dl).first;
     264         331 :   NewRHS = DAG.getConstant(0, dl, RetVT);
     265             : 
     266         331 :   CCCode = getCmpLibcallCC(LC1);
     267         331 :   if (ShouldInvertCC)
     268          38 :     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
     269             : 
     270         331 :   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
     271             :     SDValue Tmp = DAG.getNode(
     272             :         ISD::SETCC, dl,
     273          16 :         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
     274          16 :         NewLHS, NewRHS, DAG.getCondCode(CCCode));
     275          16 :     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
     276          16 :                          dl).first;
     277          16 :     NewLHS = DAG.getNode(
     278             :         ISD::SETCC, dl,
     279          16 :         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
     280          16 :         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
     281          32 :     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
     282          16 :     NewRHS = SDValue();
     283             :   }
     284         331 : }
     285             : 
     286             : /// Return the entry encoding for a jump table in the current function. The
     287             : /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
     288        3145 : unsigned TargetLowering::getJumpTableEncoding() const {
     289             :   // In non-pic modes, just use the address of a block.
     290        3145 :   if (!isPositionIndependent())
     291             :     return MachineJumpTableInfo::EK_BlockAddress;
     292             : 
     293             :   // In PIC mode, if the target supports a GPRel32 directive, use it.
     294         256 :   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
     295           6 :     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
     296             : 
     297             :   // Otherwise, use a label difference.
     298             :   return MachineJumpTableInfo::EK_LabelDifference32;
     299             : }
     300             : 
     301          15 : SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
     302             :                                                  SelectionDAG &DAG) const {
     303             :   // If our PIC model is GP relative, use the global offset table as the base.
     304          15 :   unsigned JTEncoding = getJumpTableEncoding();
     305             : 
     306          15 :   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
     307             :       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
     308          16 :     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
     309             : 
     310           7 :   return Table;
     311             : }
     312             : 
     313             : /// This returns the relocation base for the given PIC jumptable, the same as
     314             : /// getPICJumpTableRelocBase, but as an MCExpr.
     315             : const MCExpr *
     316        2114 : TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
     317             :                                              unsigned JTI,MCContext &Ctx) const{
     318             :   // The normal PIC reloc base is the label at the start of the jump table.
     319        2114 :   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
     320             : }
     321             : 
     322             : bool
     323      939431 : TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
     324      939431 :   const TargetMachine &TM = getTargetMachine();
     325      939431 :   const GlobalValue *GV = GA->getGlobal();
     326             : 
     327             :   // If the address is not even local to this DSO we will have to load it from
     328             :   // a got and then add the offset.
     329      939431 :   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
     330             :     return false;
     331             : 
     332             :   // If the code is position independent we will have to add a base register.
     333      933696 :   if (isPositionIndependent())
     334      907691 :     return false;
     335             : 
     336             :   // Otherwise we can do it.
     337             :   return true;
     338             : }
     339             : 
     340             : //===----------------------------------------------------------------------===//
     341             : //  Optimization Methods
     342             : //===----------------------------------------------------------------------===//
     343             : 
     344             : /// If the specified instruction has a constant integer operand and there are
     345             : /// bits set in that constant that are not demanded, then clear those bits and
     346             : /// return true.
     347      882711 : bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
     348             :                                             TargetLoweringOpt &TLO) const {
     349      882711 :   SelectionDAG &DAG = TLO.DAG;
     350             :   SDLoc DL(Op);
     351             :   unsigned Opcode = Op.getOpcode();
     352             : 
     353             :   // Do target-specific constant optimization.
     354      882711 :   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
     355       14750 :     return TLO.New.getNode();
     356             : 
     357             :   // FIXME: ISD::SELECT, ISD::SELECT_CC
     358      867961 :   switch (Opcode) {
     359             :   default:
     360             :     break;
     361      857903 :   case ISD::XOR:
     362             :   case ISD::AND:
     363             :   case ISD::OR: {
     364             :     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
     365             :     if (!Op1C)
     366             :       return false;
     367             : 
     368             :     // If this is a 'not' op, don't touch it because that's a canonical form.
     369      636050 :     const APInt &C = Op1C->getAPIntValue();
     370      644640 :     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
     371             :       return false;
     372             : 
     373      636050 :     if (!C.isSubsetOf(Demanded)) {
     374       10981 :       EVT VT = Op.getValueType();
     375       21962 :       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
     376       10981 :       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
     377       10981 :       return TLO.CombineTo(Op, NewOp);
     378             :     }
     379             : 
     380             :     break;
     381             :   }
     382             :   }
     383             : 
     384             :   return false;
     385             : }
     386             : 
     387             : /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
     388             : /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
     389             : /// generalized for targets with other types of implicit widening casts.
     390     3970338 : bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
     391             :                                       const APInt &Demanded,
     392             :                                       TargetLoweringOpt &TLO) const {
     393             :   assert(Op.getNumOperands() == 2 &&
     394             :          "ShrinkDemandedOp only supports binary operators!");
     395             :   assert(Op.getNode()->getNumValues() == 1 &&
     396             :          "ShrinkDemandedOp only supports nodes with one result!");
     397             : 
     398     3970338 :   SelectionDAG &DAG = TLO.DAG;
     399             :   SDLoc dl(Op);
     400             : 
     401             :   // Early return, as this function cannot handle vector types.
     402     7940676 :   if (Op.getValueType().isVector())
     403             :     return false;
     404             : 
     405             :   // Don't do this if the node has another user, which may require the
     406             :   // full value.
     407             :   if (!Op.getNode()->hasOneUse())
     408             :     return false;
     409             : 
     410             :   // Search for the smallest integer type with free casts to and from
     411             :   // Op's type. For expedience, just check power-of-2 integer types.
     412     2790383 :   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
     413             :   unsigned DemandedSize = Demanded.getActiveBits();
     414             :   unsigned SmallVTBits = DemandedSize;
     415             :   if (!isPowerOf2_32(SmallVTBits))
     416       97472 :     SmallVTBits = NextPowerOf2(SmallVTBits);
     417     3156145 :   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
     418      187223 :     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
     419      520332 :     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
     420      291772 :         TLI.isZExtFree(SmallVT, Op.getValueType())) {
     421             :       // We found a type with free casts.
     422             :       SDValue X = DAG.getNode(
     423             :           Op.getOpcode(), dl, SmallVT,
     424             :           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
     425        4342 :           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
     426             :       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
     427        4342 :       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
     428        4342 :       return TLO.CombineTo(Op, Z);
     429             :     }
     430             :   }
     431             :   return false;
     432             : }
     433             : 
     434             : bool
     435       12412 : TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
     436             :                                      const APInt &DemandedBits,
     437             :                                      DAGCombinerInfo &DCI,
     438             :                                      TargetLoweringOpt &TLO) const {
     439       24824 :   SDValue Op = User->getOperand(OpIdx);
     440       12412 :   KnownBits Known;
     441             : 
     442       12412 :   if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true))
     443             :     return false;
     444             : 
     445             : 
     446             :   // Old will not always be the same as Op.  For example:
     447             :   //
     448             :   // Demanded = 0xffffff
     449             :   // Op = i64 truncate (i32 and x, 0xffffff)
     450             :   // In this case simplify demand bits will want to replace the 'and' node
     451             :   // with the value 'x', which will give us:
     452             :   // Old = i32 and x, 0xffffff
     453             :   // New = x
     454         826 :   if (TLO.Old.hasOneUse()) {
     455             :     // For the one use case, we just commit the change.
     456         805 :     DCI.CommitTargetLoweringOpt(TLO);
     457         805 :     return true;
     458             :   }
     459             : 
     460             :   // If Old has more than one use then it must be Op, because the
     461             :   // AssumeSingleUse flag is not propogated to recursive calls of
     462             :   // SimplifyDemanded bits, so the only node with multiple use that
     463             :   // it will attempt to combine will be Op.
     464             :   assert(TLO.Old == Op);
     465             : 
     466             :   SmallVector <SDValue, 4> NewOps;
     467          63 :   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
     468          42 :     if (i == OpIdx) {
     469          21 :       NewOps.push_back(TLO.New);
     470          21 :       continue;
     471             :     }
     472          42 :     NewOps.push_back(User->getOperand(i));
     473             :   }
     474          42 :   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
     475             :   // Op has less users now, so we may be able to perform additional combines
     476             :   // with it.
     477          21 :   DCI.AddToWorklist(Op.getNode());
     478             :   // User's operands have been updated, so we may be able to do new combines
     479             :   // with it.
     480          21 :   DCI.AddToWorklist(User);
     481             :   return true;
     482             : }
     483             : 
     484       14103 : bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
     485             :                                           DAGCombinerInfo &DCI) const {
     486       14103 :   SelectionDAG &DAG = DCI.DAG;
     487       14103 :   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
     488       28206 :                         !DCI.isBeforeLegalizeOps());
     489       14103 :   KnownBits Known;
     490             : 
     491       14103 :   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
     492       14103 :   if (Simplified) {
     493        1271 :     DCI.AddToWorklist(Op.getNode());
     494        1271 :     DCI.CommitTargetLoweringOpt(TLO);
     495             :   }
     496       14103 :   return Simplified;
     497             : }
     498             : 
     499             : /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
     500             : /// result of Op are ever used downstream. If we can use this information to
     501             : /// simplify Op, create a new simplified DAG node and return true, returning the
     502             : /// original and new nodes in Old and New. Otherwise, analyze the expression and
     503             : /// return a mask of Known bits for the expression (used to simplify the
     504             : /// caller).  The Known bits may only be accurate for those bits in the
     505             : /// DemandedMask.
     506    14704887 : bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     507             :                                           const APInt &OriginalDemandedBits,
     508             :                                           KnownBits &Known,
     509             :                                           TargetLoweringOpt &TLO,
     510             :                                           unsigned Depth,
     511             :                                           bool AssumeSingleUse) const {
     512    14704887 :   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
     513             :   assert(Op.getScalarValueSizeInBits() == BitWidth &&
     514             :          "Mask size mismatches value type size!");
     515             :   APInt DemandedBits = OriginalDemandedBits;
     516             :   SDLoc dl(Op);
     517    14704887 :   auto &DL = TLO.DAG.getDataLayout();
     518             : 
     519             :   // Don't know anything.
     520    14704887 :   Known = KnownBits(BitWidth);
     521             : 
     522    29409774 :   if (Op.getOpcode() == ISD::Constant) {
     523             :     // We know all of the bits for a constant!
     524     6298986 :     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
     525     3149493 :     Known.Zero = ~Known.One;
     526     3149493 :     return false;
     527             :   }
     528             : 
     529             :   // Other users may use these bits.
     530    23110788 :   EVT VT = Op.getValueType();
     531     4601132 :   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
     532     4599399 :     if (Depth != 0) {
     533             :       // If not at the root, Just compute the Known bits to
     534             :       // simplify things downstream.
     535     3619540 :       TLO.DAG.computeKnownBits(Op, Known, Depth);
     536     3619540 :       return false;
     537             :     }
     538             :     // If this is the root being simplified, allow it to have multiple uses,
     539             :     // just set the DemandedBits to all bits.
     540     1959718 :     DemandedBits = APInt::getAllOnesValue(BitWidth);
     541     6955995 :   } else if (OriginalDemandedBits == 0) {
     542             :     // Not demanding any bits from Op.
     543        2882 :     if (!Op.isUndef())
     544        1860 :       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
     545             :     return false;
     546     6953113 :   } else if (Depth == 6) {        // Limit search depth.
     547             :     return false;
     548             :   }
     549             : 
     550     7892629 :   KnownBits Known2, KnownOut;
     551    15785258 :   switch (Op.getOpcode()) {
     552       64619 :   case ISD::BUILD_VECTOR:
     553             :     // Collect the known bits that are shared by every constant vector element.
     554       64619 :     Known.Zero.setAllBits(); Known.One.setAllBits();
     555      274158 :     for (SDValue SrcOp : Op->ops()) {
     556             :       if (!isa<ConstantSDNode>(SrcOp)) {
     557             :         // We can only handle all constant values - bail out with no known bits.
     558        3441 :         Known = KnownBits(BitWidth);
     559             :         return false;
     560             :       }
     561      419078 :       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
     562      209539 :       Known2.Zero = ~Known2.One;
     563             : 
     564             :       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
     565      209539 :       if (Known2.One.getBitWidth() != BitWidth) {
     566             :         assert(Known2.getBitWidth() > BitWidth &&
     567             :                "Expected BUILD_VECTOR implicit truncation");
     568       12388 :         Known2 = Known2.trunc(BitWidth);
     569             :       }
     570             : 
     571             :       // Known bits are the values that are shared by every element.
     572             :       // TODO: support per-element known bits.
     573             :       Known.One &= Known2.One;
     574             :       Known.Zero &= Known2.Zero;
     575             :     }
     576             :     return false;   // Don't fall through, will infinitely loop.
     577        2394 :   case ISD::CONCAT_VECTORS:
     578        2394 :     Known.Zero.setAllBits();
     579        2394 :     Known.One.setAllBits();
     580        8962 :     for (SDValue SrcOp : Op->ops()) {
     581        6570 :       if (SimplifyDemandedBits(SrcOp, DemandedBits, Known2, TLO, Depth + 1))
     582             :         return true;
     583             :       // Known bits are the values that are shared by every subvector.
     584             :       Known.One &= Known2.One;
     585             :       Known.Zero &= Known2.Zero;
     586           2 :     }
     587        2392 :     break;
     588      500580 :   case ISD::AND: {
     589      500580 :     SDValue Op0 = Op.getOperand(0);
     590      500580 :     SDValue Op1 = Op.getOperand(1);
     591             : 
     592             :     // If the RHS is a constant, check to see if the LHS would be zero without
     593             :     // using the bits from the RHS.  Below, we use knowledge about the RHS to
     594             :     // simplify the LHS, here we're using information from the LHS to simplify
     595             :     // the RHS.
     596      500580 :     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
     597      298332 :       KnownBits LHSKnown;
     598             :       // Do not increment Depth here; that can cause an infinite loop.
     599      408695 :       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
     600             :       // If the LHS already has zeros where RHSC does, this 'and' is dead.
     601      408695 :       if ((LHSKnown.Zero & DemandedBits) ==
     602      817390 :           (~RHSC->getAPIntValue() & DemandedBits))
     603      110363 :         return TLO.CombineTo(Op, Op0);
     604             : 
     605             :       // If any of the set bits in the RHS are known zero on the LHS, shrink
     606             :       // the constant.
     607      618906 :       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
     608             :         return true;
     609             : 
     610             :       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
     611             :       // constant, but if this 'and' is only clearing bits that were just set by
     612             :       // the xor, then this 'and' can be eliminated by shrinking the mask of
     613             :       // the xor. For example, for a 32-bit X:
     614             :       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
     615      300120 :       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
     616      300991 :           LHSKnown.One == ~RHSC->getAPIntValue()) {
     617          32 :         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
     618          16 :         return TLO.CombineTo(Op, Xor);
     619             :       }
     620             :     }
     621             : 
     622      390217 :     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
     623             :       return true;
     624             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     625     1170432 :     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, Known2, TLO,
     626             :                              Depth + 1))
     627             :       return true;
     628             :     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
     629             : 
     630             :     // If all of the demanded bits are known one on one side, return the other.
     631             :     // These bits cannot contribute to the result of the 'and'.
     632      744256 :     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
     633         280 :       return TLO.CombineTo(Op, Op0);
     634      371848 :     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
     635        2851 :       return TLO.CombineTo(Op, Op1);
     636             :     // If all of the demanded bits in the inputs are known zeros, return zero.
     637      368997 :     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
     638           4 :       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
     639             :     // If the RHS is a constant, see if we can simplify it.
     640      737986 :     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
     641             :       return true;
     642             :     // If the operation can be done in a smaller type, do so.
     643      368993 :     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
     644             :       return true;
     645             : 
     646             :     // Output known-1 bits are only known if set in both the LHS & RHS.
     647             :     Known.One &= Known2.One;
     648             :     // Output known-0 are known to be clear if zero in either the LHS | RHS.
     649             :     Known.Zero |= Known2.Zero;
     650      366115 :     break;
     651             :   }
     652      192628 :   case ISD::OR: {
     653      192628 :     SDValue Op0 = Op.getOperand(0);
     654      192628 :     SDValue Op1 = Op.getOperand(1);
     655             : 
     656      192628 :     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
     657       10872 :       return true;
     658             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     659      562539 :     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, Known2, TLO, Depth + 1))
     660             :       return true;
     661             :     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
     662             : 
     663             :     // If all of the demanded bits are known zero on one side, return the other.
     664             :     // These bits cannot contribute to the result of the 'or'.
     665      366710 :     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
     666         453 :       return TLO.CombineTo(Op, Op0);
     667      182902 :     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
     668        1003 :       return TLO.CombineTo(Op, Op1);
     669             :     // If the RHS is a constant, see if we can simplify it.
     670      181899 :     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
     671             :       return true;
     672             :     // If the operation can be done in a smaller type, do so.
     673      181861 :     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
     674             :       return true;
     675             : 
     676             :     // Output known-0 bits are only known if clear in both the LHS & RHS.
     677             :     Known.Zero &= Known2.Zero;
     678             :     // Output known-1 are known to be set if set in either the LHS | RHS.
     679             :     Known.One |= Known2.One;
     680      181756 :     break;
     681             :   }
     682      156312 :   case ISD::XOR: {
     683      156312 :     SDValue Op0 = Op.getOperand(0);
     684      156312 :     SDValue Op1 = Op.getOperand(1);
     685             : 
     686      156312 :     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
     687       11724 :       return true;
     688             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     689      156214 :     if (SimplifyDemandedBits(Op0, DemandedBits, Known2, TLO, Depth + 1))
     690             :       return true;
     691             :     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
     692             : 
     693             :     // If all of the demanded bits are known zero on one side, return the other.
     694             :     // These bits cannot contribute to the result of the 'xor'.
     695      312104 :     if (DemandedBits.isSubsetOf(Known.Zero))
     696          17 :       return TLO.CombineTo(Op, Op0);
     697      156035 :     if (DemandedBits.isSubsetOf(Known2.Zero))
     698           7 :       return TLO.CombineTo(Op, Op1);
     699             :     // If the operation can be done in a smaller type, do so.
     700      156028 :     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
     701             :       return true;
     702             : 
     703             :     // If all of the unknown bits are known to be zero on one side or the other
     704             :     // (but not both) turn this into an *inclusive* or.
     705             :     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
     706      155981 :     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
     707         144 :       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
     708             : 
     709             :     // Output known-0 bits are known if clear or set in both the LHS & RHS.
     710      311818 :     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
     711             :     // Output known-1 are known to be set if set in only one of the LHS, RHS.
     712      155909 :     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
     713             : 
     714      155909 :     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
     715             :       // If one side is a constant, and all of the known set bits on the other
     716             :       // side are also set in the constant, turn this into an AND, as we know
     717             :       // the bits will be cleared.
     718             :       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
     719             :       // NB: it is okay if more bits are known than are requested
     720      230532 :       if (C->getAPIntValue() == Known2.One) {
     721             :         SDValue ANDC =
     722          12 :             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
     723           8 :         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
     724             :       }
     725             : 
     726             :       // If the RHS is a constant, see if we can change it. Don't alter a -1
     727             :       // constant because that's a 'not' op, and that is better for combining
     728             :       // and codegen.
     729      115262 :       if (!C->isAllOnesValue()) {
     730       23477 :         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
     731             :           // We're flipping all demanded bits. Flip the undemanded bits too.
     732       11275 :           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
     733       11275 :           return TLO.CombineTo(Op, New);
     734             :         }
     735             :         // If we can't turn this into a 'not', try to shrink the constant.
     736       12202 :         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
     737             :           return true;
     738             :       }
     739             :     }
     740             : 
     741      144588 :     Known = std::move(KnownOut);
     742      144588 :     break;
     743             :   }
     744        5959 :   case ISD::SELECT:
     745       11918 :     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
     746             :                              Depth + 1))
     747             :       return true;
     748       11858 :     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
     749             :                              Depth + 1))
     750             :       return true;
     751             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     752             :     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
     753             : 
     754             :     // If the operands are constants, see if we can simplify them.
     755        5887 :     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
     756             :       return true;
     757             : 
     758             :     // Only known if known in both the LHS and RHS.
     759        5887 :     Known.One &= Known2.One;
     760        5887 :     Known.Zero &= Known2.Zero;
     761             :     break;
     762        3919 :   case ISD::SELECT_CC:
     763        7838 :     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
     764             :                              Depth + 1))
     765             :       return true;
     766        7838 :     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
     767             :                              Depth + 1))
     768             :       return true;
     769             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     770             :     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
     771             : 
     772             :     // If the operands are constants, see if we can simplify them.
     773        3919 :     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
     774             :       return true;
     775             : 
     776             :     // Only known if known in both the LHS and RHS.
     777        3919 :     Known.One &= Known2.One;
     778        3919 :     Known.Zero &= Known2.Zero;
     779             :     break;
     780       22383 :   case ISD::SETCC: {
     781       22383 :     SDValue Op0 = Op.getOperand(0);
     782       22383 :     SDValue Op1 = Op.getOperand(1);
     783       22383 :     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
     784             :     // If (1) we only need the sign-bit, (2) the setcc operands are the same
     785             :     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
     786             :     // -1, we may be able to bypass the setcc.
     787       12265 :     if (DemandedBits.isSignMask() &&
     788       22383 :         Op0.getScalarValueSizeInBits() == BitWidth &&
     789        1279 :         getBooleanContents(VT) ==
     790             :             BooleanContent::ZeroOrNegativeOneBooleanContent) {
     791             :       // If we're testing X < 0, then this compare isn't needed - just use X!
     792             :       // FIXME: We're limiting to integer types here, but this should also work
     793             :       // if we don't care about FP signed-zero. The use of SETLT with FP means
     794             :       // that we don't care about NaNs.
     795        1449 :       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
     796         174 :           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
     797          87 :         return TLO.CombineTo(Op, Op0);
     798             : 
     799             :       // TODO: Should we check for other forms of sign-bit comparisons?
     800             :       // Examples: X <= -1, X >= 0
     801             :     }
     802       22296 :     if (getBooleanContents(Op0.getValueType()) ==
     803       22296 :             TargetLowering::ZeroOrOneBooleanContent &&
     804             :         BitWidth > 1)
     805        7639 :       Known.Zero.setBitsFrom(1);
     806       22296 :     break;
     807             :   }
     808      235916 :   case ISD::SHL: {
     809      235916 :     SDValue Op0 = Op.getOperand(0);
     810      235916 :     SDValue Op1 = Op.getOperand(1);
     811             : 
     812      235916 :     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
     813             :       // If the shift count is an invalid immediate, don't do anything.
     814      675495 :       if (SA->getAPIntValue().uge(BitWidth))
     815             :         break;
     816             : 
     817      225149 :       unsigned ShAmt = SA->getZExtValue();
     818             : 
     819             :       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
     820             :       // single shift.  We can do this if the bottom bits (which are shifted
     821             :       // out) are never demanded.
     822      225149 :       if (Op0.getOpcode() == ISD::SRL) {
     823        9609 :         if (ShAmt &&
     824       46487 :             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
     825        1558 :           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
     826        3116 :             if (SA2->getAPIntValue().ult(BitWidth)) {
     827        1558 :               unsigned C1 = SA2->getZExtValue();
     828             :               unsigned Opc = ISD::SHL;
     829        1558 :               int Diff = ShAmt - C1;
     830        1558 :               if (Diff < 0) {
     831          87 :                 Diff = -Diff;
     832             :                 Opc = ISD::SRL;
     833             :               }
     834             : 
     835        3116 :               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
     836        1558 :               return TLO.CombineTo(
     837        1558 :                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
     838             :             }
     839             :           }
     840             :         }
     841             :       }
     842             : 
     843      447182 :       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), Known, TLO,
     844             :                                Depth + 1))
     845             :         return true;
     846             : 
     847             :       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
     848             :       // are not demanded. This will likely allow the anyext to be folded away.
     849      210354 :       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
     850       11635 :         SDValue InnerOp = Op0.getOperand(0);
     851       11635 :         EVT InnerVT = InnerOp.getValueType();
     852             :         unsigned InnerBits = InnerVT.getScalarSizeInBits();
     853       11669 :         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
     854          34 :             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
     855          18 :           EVT ShTy = getShiftAmountTy(InnerVT, DL);
     856          18 :           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
     857           0 :             ShTy = InnerVT;
     858             :           SDValue NarrowShl =
     859          18 :               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
     860          18 :                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
     861          18 :           return TLO.CombineTo(
     862          18 :               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
     863             :         }
     864             :         // Repeat the SHL optimization above in cases where an extension
     865             :         // intervenes: (shl (anyext (shr x, c1)), c2) to
     866             :         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
     867             :         // aren't demanded (as above) and that the shifted upper c1 bits of
     868             :         // x aren't demanded.
     869       11970 :         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
     870             :             InnerOp.hasOneUse()) {
     871         353 :           if (ConstantSDNode *SA2 =
     872         353 :                   isConstOrConstSplat(InnerOp.getOperand(1))) {
     873         333 :             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
     874         331 :             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
     875             :                 DemandedBits.getActiveBits() <=
     876         333 :                     (InnerBits - InnerShAmt + ShAmt) &&
     877           8 :                 DemandedBits.countTrailingZeros() >= ShAmt) {
     878           2 :               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
     879           2 :                                                   Op1.getValueType());
     880           2 :               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
     881           2 :                                                InnerOp.getOperand(0));
     882           2 :               return TLO.CombineTo(
     883           2 :                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
     884             :             }
     885             :           }
     886             :         }
     887             :       }
     888             : 
     889      210334 :       Known.Zero <<= ShAmt;
     890      210334 :       Known.One <<= ShAmt;
     891             :       // low bits known zero.
     892             :       Known.Zero.setLowBits(ShAmt);
     893             :     }
     894             :     break;
     895             :   }
     896      279974 :   case ISD::SRL: {
     897      279974 :     SDValue Op0 = Op.getOperand(0);
     898      279974 :     SDValue Op1 = Op.getOperand(1);
     899             : 
     900      279974 :     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
     901             :       // If the shift count is an invalid immediate, don't do anything.
     902      815403 :       if (SA->getAPIntValue().uge(BitWidth))
     903             :         break;
     904             : 
     905      271793 :       unsigned ShAmt = SA->getZExtValue();
     906             :       APInt InDemandedMask = (DemandedBits << ShAmt);
     907             : 
     908             :       // If the shift is exact, then it does demand the low bits (and knows that
     909             :       // they are zero).
     910      543586 :       if (Op->getFlags().hasExact())
     911             :         InDemandedMask.setLowBits(ShAmt);
     912             : 
     913             :       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
     914             :       // single shift.  We can do this if the top bits (which are shifted out)
     915             :       // are never demanded.
     916      271793 :       if (Op0.getOpcode() == ISD::SHL) {
     917        2123 :         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
     918        1563 :           if (ShAmt &&
     919        6542 :               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
     920        2546 :             if (SA2->getAPIntValue().ult(BitWidth)) {
     921        1273 :               unsigned C1 = SA2->getZExtValue();
     922             :               unsigned Opc = ISD::SRL;
     923        1273 :               int Diff = ShAmt - C1;
     924        1273 :               if (Diff < 0) {
     925           6 :                 Diff = -Diff;
     926             :                 Opc = ISD::SHL;
     927             :               }
     928             : 
     929        2546 :               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
     930        1273 :               return TLO.CombineTo(
     931        1273 :                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
     932             :             }
     933             :           }
     934             :         }
     935             :       }
     936             : 
     937             :       // Compute the new bits that are at the top now.
     938      270520 :       if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1))
     939             :         return true;
     940             :       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     941      258697 :       Known.Zero.lshrInPlace(ShAmt);
     942      258697 :       Known.One.lshrInPlace(ShAmt);
     943             : 
     944             :       Known.Zero.setHighBits(ShAmt); // High bits known zero.
     945             :     }
     946             :     break;
     947             :   }
     948       40302 :   case ISD::SRA: {
     949       40302 :     SDValue Op0 = Op.getOperand(0);
     950       40302 :     SDValue Op1 = Op.getOperand(1);
     951             : 
     952             :     // If this is an arithmetic shift right and only the low-bit is set, we can
     953             :     // always convert this into a logical shr, even if the shift amount is
     954             :     // variable.  The low bit of the shift cannot be an input sign bit unless
     955             :     // the shift amount is >= the size of the datatype, which is undefined.
     956       40302 :     if (DemandedBits.isOneValue())
     957          66 :       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
     958             : 
     959       40269 :     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
     960             :       // If the shift count is an invalid immediate, don't do anything.
     961      118377 :       if (SA->getAPIntValue().uge(BitWidth))
     962             :         break;
     963             : 
     964       39459 :       unsigned ShAmt = SA->getZExtValue();
     965             :       APInt InDemandedMask = (DemandedBits << ShAmt);
     966             : 
     967             :       // If the shift is exact, then it does demand the low bits (and knows that
     968             :       // they are zero).
     969       78918 :       if (Op->getFlags().hasExact())
     970             :         InDemandedMask.setLowBits(ShAmt);
     971             : 
     972             :       // If any of the demanded bits are produced by the sign extension, we also
     973             :       // demand the input sign bit.
     974       39459 :       if (DemandedBits.countLeadingZeros() < ShAmt)
     975       36509 :         InDemandedMask.setSignBit();
     976             : 
     977       39459 :       if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1))
     978             :         return true;
     979             :       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
     980       73774 :       Known.Zero.lshrInPlace(ShAmt);
     981       36887 :       Known.One.lshrInPlace(ShAmt);
     982             : 
     983             :       // If the input sign bit is known to be zero, or if none of the top bits
     984             :       // are demanded, turn this into an unsigned shift right.
     985       73774 :       if (Known.Zero[BitWidth - ShAmt - 1] ||
     986       36874 :           DemandedBits.countLeadingZeros() >= ShAmt) {
     987             :         SDNodeFlags Flags;
     988        5774 :         Flags.setExact(Op->getFlags().hasExact());
     989        2887 :         return TLO.CombineTo(
     990        2887 :             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
     991             :       }
     992             : 
     993       34000 :       int Log2 = DemandedBits.exactLogBase2();
     994       34000 :       if (Log2 >= 0) {
     995             :         // The bit must come from the sign.
     996             :         SDValue NewSA =
     997         314 :             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
     998         314 :         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
     999             :       }
    1000             : 
    1001       33843 :       if (Known.One[BitWidth - ShAmt - 1])
    1002             :         // New bits are known one.
    1003             :         Known.One.setHighBits(ShAmt);
    1004             :     }
    1005             :     break;
    1006             :   }
    1007       59003 :   case ISD::SIGN_EXTEND_INREG: {
    1008       59003 :     SDValue Op0 = Op.getOperand(0);
    1009       59003 :     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    1010             :     unsigned ExVTBits = ExVT.getScalarSizeInBits();
    1011             : 
    1012             :     // If we only care about the highest bit, don't bother shifting right.
    1013       59003 :     if (DemandedBits.isSignMask()) {
    1014             :       bool AlreadySignExtended =
    1015         245 :           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
    1016             :       // However if the input is already sign extended we expect the sign
    1017             :       // extension to be dropped altogether later and do not simplify.
    1018         245 :       if (!AlreadySignExtended) {
    1019             :         // Compute the correct shift amount type, which must be getShiftAmountTy
    1020             :         // for scalar types after legalization.
    1021         213 :         EVT ShiftAmtTy = VT;
    1022         421 :         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    1023          18 :           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
    1024             : 
    1025             :         SDValue ShiftAmt =
    1026         213 :             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
    1027         213 :         return TLO.CombineTo(Op,
    1028         213 :                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
    1029             :       }
    1030             :     }
    1031             : 
    1032             :     // If none of the extended bits are demanded, eliminate the sextinreg.
    1033       58790 :     if (DemandedBits.getActiveBits() <= ExVTBits)
    1034         404 :       return TLO.CombineTo(Op, Op0);
    1035             : 
    1036       58386 :     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
    1037             : 
    1038             :     // Since the sign extended bits are demanded, we know that the sign
    1039             :     // bit is demanded.
    1040       58386 :     InputDemandedBits.setBit(ExVTBits - 1);
    1041             : 
    1042       58386 :     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
    1043             :       return true;
    1044             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1045             : 
    1046             :     // If the sign bit of the input is known set or clear, then we know the
    1047             :     // top bits of the result.
    1048             : 
    1049             :     // If the input sign bit is known zero, convert this into a zero extension.
    1050       56236 :     if (Known.Zero[ExVTBits - 1])
    1051           0 :       return TLO.CombineTo(
    1052           0 :           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
    1053             : 
    1054       56236 :     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
    1055       56236 :     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
    1056           2 :       Known.One.setBitsFrom(ExVTBits);
    1057           2 :       Known.Zero &= Mask;
    1058             :     } else { // Input sign bit unknown
    1059       56234 :       Known.Zero &= Mask;
    1060       56234 :       Known.One &= Mask;
    1061             :     }
    1062             :     break;
    1063             :   }
    1064       14614 :   case ISD::BUILD_PAIR: {
    1065       29228 :     EVT HalfVT = Op.getOperand(0).getValueType();
    1066             :     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
    1067             : 
    1068       14614 :     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
    1069       29228 :     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
    1070             : 
    1071             :     KnownBits KnownLo, KnownHi;
    1072             : 
    1073       29228 :     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
    1074        1622 :       return true;
    1075             : 
    1076       28758 :     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
    1077             :       return true;
    1078             : 
    1079       25984 :     Known.Zero = KnownLo.Zero.zext(BitWidth) |
    1080       25984 :                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
    1081             : 
    1082       25984 :     Known.One = KnownLo.One.zext(BitWidth) |
    1083       25984 :                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
    1084       12992 :     break;
    1085             :   }
    1086       42681 :   case ISD::ZERO_EXTEND: {
    1087       42681 :     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
    1088             : 
    1089             :     // If none of the top bits are demanded, convert this into an any_extend.
    1090       42681 :     if (DemandedBits.getActiveBits() <= OperandBitWidth)
    1091        7826 :       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
    1092        3913 :                                                Op.getOperand(0)));
    1093             : 
    1094       38768 :     APInt InMask = DemandedBits.trunc(OperandBitWidth);
    1095       77536 :     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
    1096             :       return true;
    1097             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1098       37742 :     Known = Known.zext(BitWidth);
    1099       37742 :     Known.Zero.setBitsFrom(OperandBitWidth);
    1100             :     break;
    1101             :   }
    1102       17932 :   case ISD::SIGN_EXTEND: {
    1103       17932 :     SDValue Src = Op.getOperand(0);
    1104       17932 :     unsigned InBits = Src.getScalarValueSizeInBits();
    1105             : 
    1106             :     // If none of the top bits are demanded, convert this into an any_extend.
    1107       17932 :     if (DemandedBits.getActiveBits() <= InBits)
    1108        1674 :       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
    1109             : 
    1110             :     // Since some of the sign extended bits are demanded, we know that the sign
    1111             :     // bit is demanded.
    1112       17095 :     APInt InDemandedBits = DemandedBits.trunc(InBits);
    1113       17095 :     InDemandedBits.setBit(InBits - 1);
    1114             : 
    1115       17095 :     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
    1116             :       return true;
    1117             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1118             :     // If the sign bit is known one, the top bits match.
    1119       17031 :     Known = Known.sext(BitWidth);
    1120             : 
    1121             :     // If the sign bit is known zero, convert this to a zero extend.
    1122       17031 :     if (Known.isNonNegative())
    1123        4728 :       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
    1124             :     break;
    1125             :   }
    1126         444 :   case ISD::SIGN_EXTEND_VECTOR_INREG: {
    1127             :     // TODO - merge this with SIGN_EXTEND above?
    1128         444 :     SDValue Src = Op.getOperand(0);
    1129         444 :     unsigned InBits = Src.getScalarValueSizeInBits();
    1130             : 
    1131         444 :     APInt InDemandedBits = DemandedBits.trunc(InBits);
    1132             : 
    1133             :     // If some of the sign extended bits are demanded, we know that the sign
    1134             :     // bit is demanded.
    1135         444 :     if (InBits < DemandedBits.getActiveBits())
    1136         426 :       InDemandedBits.setBit(InBits - 1);
    1137             : 
    1138         444 :     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
    1139             :       return true;
    1140             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1141             :     // If the sign bit is known one, the top bits match.
    1142         442 :     Known = Known.sext(BitWidth);
    1143             :     break;
    1144             :   }
    1145      109539 :   case ISD::ANY_EXTEND: {
    1146      109539 :     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
    1147      109539 :     APInt InMask = DemandedBits.trunc(OperandBitWidth);
    1148      219078 :     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
    1149             :       return true;
    1150             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1151       97799 :     Known = Known.zext(BitWidth);
    1152             :     break;
    1153             :   }
    1154      900015 :   case ISD::TRUNCATE: {
    1155      900015 :     SDValue Src = Op.getOperand(0);
    1156             : 
    1157             :     // Simplify the input, using demanded bit information, and compute the known
    1158             :     // zero/one bits live out.
    1159      900015 :     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
    1160      900015 :     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
    1161      900015 :     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
    1162             :       return true;
    1163      885807 :     Known = Known.trunc(BitWidth);
    1164             : 
    1165             :     // If the input is only used by this truncate, see if we can shrink it based
    1166             :     // on the known demanded bits.
    1167      885807 :     if (Src.getNode()->hasOneUse()) {
    1168             :       switch (Src.getOpcode()) {
    1169             :       default:
    1170      785876 :         break;
    1171       43099 :       case ISD::SRL:
    1172             :         // Shrink SRL by a constant if none of the high bits shifted in are
    1173             :         // demanded.
    1174       43099 :         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
    1175             :           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
    1176             :           // undesirable.
    1177             :           break;
    1178       33838 :         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
    1179             :         if (!ShAmt)
    1180             :           break;
    1181       33652 :         SDValue Shift = Src.getOperand(1);
    1182       33652 :         if (TLO.LegalTypes()) {
    1183       30605 :           uint64_t ShVal = ShAmt->getZExtValue();
    1184       30605 :           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
    1185             :         }
    1186             : 
    1187       67304 :         if (ShAmt->getZExtValue() < BitWidth) {
    1188             :           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
    1189        3239 :                                                  OperandBitWidth - BitWidth);
    1190        6478 :           HighBits.lshrInPlace(ShAmt->getZExtValue());
    1191        6478 :           HighBits = HighBits.trunc(BitWidth);
    1192             : 
    1193        3239 :           if (!(HighBits & DemandedBits)) {
    1194             :             // None of the shifted in bits are needed.  Add a truncate of the
    1195             :             // shift input, then shift it.
    1196             :             SDValue NewTrunc =
    1197        3474 :                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
    1198        1158 :             return TLO.CombineTo(
    1199        1158 :                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
    1200             :           }
    1201             :         }
    1202             :         break;
    1203             :       }
    1204             :     }
    1205             : 
    1206             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1207             :     break;
    1208             :   }
    1209       55664 :   case ISD::AssertZext: {
    1210             :     // AssertZext demands all of the high bits, plus any of the low bits
    1211             :     // demanded by its users.
    1212       55664 :     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    1213       55664 :     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
    1214      222656 :     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
    1215             :                              Known, TLO, Depth+1))
    1216             :       return true;
    1217             :     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    1218             : 
    1219      111328 :     Known.Zero |= ~InMask;
    1220             :     break;
    1221             :   }
    1222      131125 :   case ISD::BITCAST: {
    1223      131125 :     SDValue Src = Op.getOperand(0);
    1224      131125 :     EVT SrcVT = Src.getValueType();
    1225      131125 :     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
    1226             : 
    1227             :     // If this is an FP->Int bitcast and if the sign bit is the only
    1228             :     // thing demanded, turn this into a FGETSIGN.
    1229       19600 :     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
    1230      146796 :         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
    1231         435 :         SrcVT.isFloatingPoint()) {
    1232             :       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
    1233             :       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
    1234         435 :       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
    1235             :           SrcVT != MVT::f128) {
    1236             :         // Cannot eliminate/lower SHL for f128 yet.
    1237           5 :         EVT Ty = OpVTLegal ? VT : MVT::i32;
    1238             :         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
    1239             :         // place.  We expect the SHL to be eliminated by other optimizations.
    1240          10 :         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
    1241           5 :         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
    1242           5 :         if (!OpVTLegal && OpVTSizeInBits > 32)
    1243           0 :           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
    1244           5 :         unsigned ShVal = Op.getValueSizeInBits() - 1;
    1245           5 :         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
    1246           5 :         return TLO.CombineTo(Op,
    1247           5 :                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
    1248             :       }
    1249             :     }
    1250             :     // If bitcast from a vector and the mask covers entire elements, see if we
    1251             :     // can use SimplifyDemandedVectorElts.
    1252             :     // TODO - bigendian once we have test coverage.
    1253             :     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
    1254      125270 :     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
    1255      252659 :         (BitWidth % NumSrcEltBits) == 0 &&
    1256      107977 :         TLO.DAG.getDataLayout().isLittleEndian()) {
    1257      107039 :       unsigned Scale = BitWidth / NumSrcEltBits;
    1258             :       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
    1259             :         DemandedSubElts = APInt::getNullValue(Scale);
    1260             :         for (unsigned i = 0; i != Scale; ++i) {
    1261             :           unsigned Offset = i * NumSrcEltBits;
    1262             :           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
    1263             :           if (Sub.isAllOnesValue())
    1264             :             DemandedSubElts.setBit(i);
    1265             :           else if (!Sub.isNullValue())
    1266             :             return false;
    1267             :         }
    1268             :         return true;
    1269      107039 :       };
    1270             : 
    1271             :       APInt DemandedSubElts;
    1272      107039 :       if (GetDemandedSubMask(DemandedSubElts)) {
    1273             :         unsigned NumSrcElts = SrcVT.getVectorNumElements();
    1274       97154 :         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
    1275             : 
    1276             :         APInt KnownUndef, KnownZero;
    1277       97154 :         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
    1278             :                                        TLO, Depth + 1))
    1279             :           return true;
    1280             :       }
    1281             :     }
    1282             :     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
    1283             :     // recursive call where Known may be useful to the caller.
    1284      129730 :     if (Depth > 0) {
    1285      123486 :       TLO.DAG.computeKnownBits(Op, Known, Depth);
    1286      123486 :       return false;
    1287             :     }
    1288        6244 :     break;
    1289             :   }
    1290     3275915 :   case ISD::ADD:
    1291             :   case ISD::MUL:
    1292             :   case ISD::SUB: {
    1293             :     // Add, Sub, and Mul don't demand any bits in positions beyond that
    1294             :     // of the highest bit demanded of them.
    1295     3275915 :     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
    1296     3275915 :     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
    1297     3275915 :     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
    1298     6545063 :     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
    1299     6539371 :         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
    1300             :         // See if the operation should be performed at a smaller bit width.
    1301     3263456 :         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
    1302       13771 :       SDNodeFlags Flags = Op.getNode()->getFlags();
    1303       13771 :       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
    1304             :         // Disable the nsw and nuw flags. We can no longer guarantee that we
    1305             :         // won't wrap after simplification.
    1306             :         Flags.setNoSignedWrap(false);
    1307             :         Flags.setNoUnsignedWrap(false);
    1308        1073 :         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
    1309        1073 :                                         Flags);
    1310        1073 :         return TLO.CombineTo(Op, NewOp);
    1311             :       }
    1312             :       return true;
    1313             :     }
    1314             : 
    1315             :     // If we have a constant operand, we may be able to turn it into -1 if we
    1316             :     // do not demand the high bits. This can make the constant smaller to
    1317             :     // encode, allow more general folding, or match specialized instruction
    1318             :     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
    1319             :     // is probably not useful (and could be detrimental).
    1320     3262144 :     ConstantSDNode *C = isConstOrConstSplat(Op1);
    1321     3262144 :     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
    1322    10923323 :     if (C && !C->isAllOnesValue() && !C->isOne() &&
    1323     7587472 :         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
    1324          21 :       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
    1325             :       // We can't guarantee that the new math op doesn't wrap, so explicitly
    1326             :       // clear those flags to prevent folding with a potential existing node
    1327             :       // that has those flags set.
    1328             :       SDNodeFlags Flags;
    1329             :       Flags.setNoSignedWrap(false);
    1330             :       Flags.setNoUnsignedWrap(false);
    1331          42 :       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
    1332          21 :       return TLO.CombineTo(Op, NewOp);
    1333             :     }
    1334             : 
    1335             :     LLVM_FALLTHROUGH;
    1336             :   }
    1337             :   default:
    1338             :     // Just use computeKnownBits to compute output bits.
    1339     5042834 :     TLO.DAG.computeKnownBits(Op, Known, Depth);
    1340     5042834 :     break;
    1341             :   }
    1342             : 
    1343             :   // If we know the value of all of the demanded bits, return this as a
    1344             :   // constant.
    1345    14917708 :   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
    1346             :     // Avoid folding to a constant if any OpaqueConstant is involved.
    1347        8608 :     const SDNode *N = Op.getNode();
    1348             :     for (SDNodeIterator I = SDNodeIterator::begin(N),
    1349             :                         E = SDNodeIterator::end(N);
    1350       24170 :          I != E; ++I) {
    1351             :       SDNode *Op = *I;
    1352             :       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
    1353        8975 :         if (C->isOpaque())
    1354             :           return false;
    1355             :     }
    1356        8584 :     return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
    1357             :   }
    1358             : 
    1359             :   return false;
    1360             : }
    1361             : 
    1362       76309 : bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
    1363             :                                                 const APInt &DemandedElts,
    1364             :                                                 APInt &KnownUndef,
    1365             :                                                 APInt &KnownZero,
    1366             :                                                 DAGCombinerInfo &DCI) const {
    1367       76309 :   SelectionDAG &DAG = DCI.DAG;
    1368       76309 :   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
    1369      152618 :                         !DCI.isBeforeLegalizeOps());
    1370             : 
    1371             :   bool Simplified =
    1372       76309 :       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
    1373       76309 :   if (Simplified) {
    1374          69 :     DCI.AddToWorklist(Op.getNode());
    1375          69 :     DCI.CommitTargetLoweringOpt(TLO);
    1376             :   }
    1377       76309 :   return Simplified;
    1378             : }
    1379             : 
    1380     1556390 : bool TargetLowering::SimplifyDemandedVectorElts(
    1381             :     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
    1382             :     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
    1383             :     bool AssumeSingleUse) const {
    1384     3112780 :   EVT VT = Op.getValueType();
    1385             :   APInt DemandedElts = DemandedEltMask;
    1386     1556390 :   unsigned NumElts = DemandedElts.getBitWidth();
    1387             :   assert(VT.isVector() && "Expected vector op");
    1388             :   assert(VT.getVectorNumElements() == NumElts &&
    1389             :          "Mask size mismatches value type element count!");
    1390             : 
    1391     3112780 :   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
    1392             : 
    1393             :   // Undef operand.
    1394     3112780 :   if (Op.isUndef()) {
    1395       89273 :     KnownUndef.setAllBits();
    1396       89273 :     return false;
    1397             :   }
    1398             : 
    1399             :   // If Op has other users, assume that all elements are needed.
    1400      550728 :   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
    1401      322343 :     DemandedElts.setAllBits();
    1402             : 
    1403             :   // Not demanding any elements from Op.
    1404     1467117 :   if (DemandedElts == 0) {
    1405        1055 :     KnownUndef.setAllBits();
    1406        1055 :     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
    1407             :   }
    1408             : 
    1409             :   // Limit search depth.
    1410     1466062 :   if (Depth >= 6)
    1411             :     return false;
    1412             : 
    1413             :   SDLoc DL(Op);
    1414             :   unsigned EltSizeInBits = VT.getScalarSizeInBits();
    1415             : 
    1416     2836202 :   switch (Op.getOpcode()) {
    1417             :   case ISD::SCALAR_TO_VECTOR: {
    1418       35853 :     if (!DemandedElts[0]) {
    1419           0 :       KnownUndef.setAllBits();
    1420           0 :       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
    1421             :     }
    1422       35853 :     KnownUndef.setHighBits(NumElts - 1);
    1423             :     break;
    1424             :   }
    1425      285947 :   case ISD::BITCAST: {
    1426      285947 :     SDValue Src = Op.getOperand(0);
    1427      285947 :     EVT SrcVT = Src.getValueType();
    1428             : 
    1429             :     // We only handle vectors here.
    1430             :     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
    1431      285947 :     if (!SrcVT.isVector())
    1432             :       break;
    1433             : 
    1434             :     // Fast handling of 'identity' bitcasts.
    1435             :     unsigned NumSrcElts = SrcVT.getVectorNumElements();
    1436      251379 :     if (NumSrcElts == NumElts)
    1437       22943 :       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
    1438       23855 :                                         KnownZero, TLO, Depth + 1);
    1439             : 
    1440             :     APInt SrcZero, SrcUndef;
    1441      228436 :     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
    1442             : 
    1443             :     // Bitcast from 'large element' src vector to 'small element' vector, we
    1444             :     // must demand a source element if any DemandedElt maps to it.
    1445      228436 :     if ((NumElts % NumSrcElts) == 0) {
    1446      145604 :       unsigned Scale = NumElts / NumSrcElts;
    1447     1847500 :       for (unsigned i = 0; i != NumElts; ++i)
    1448     1701896 :         if (DemandedElts[i])
    1449     1177854 :           SrcDemandedElts.setBit(i / Scale);
    1450             : 
    1451      145604 :       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
    1452             :                                      TLO, Depth + 1))
    1453             :         return true;
    1454             : 
    1455             :       // If the src element is zero/undef then all the output elements will be -
    1456             :       // only demanded elements are guaranteed to be correct.
    1457      672639 :       for (unsigned i = 0; i != NumSrcElts; ++i) {
    1458      527607 :         if (SrcDemandedElts[i]) {
    1459      424759 :           if (SrcZero[i])
    1460        2726 :             KnownZero.setBits(i * Scale, (i + 1) * Scale);
    1461      424759 :           if (SrcUndef[i])
    1462       12932 :             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
    1463             :         }
    1464             :       }
    1465             :     }
    1466             : 
    1467             :     // Bitcast from 'small element' src vector to 'large element' vector, we
    1468             :     // demand all smaller source elements covered by the larger demanded element
    1469             :     // of this vector.
    1470      227864 :     if ((NumSrcElts % NumElts) == 0) {
    1471       82832 :       unsigned Scale = NumSrcElts / NumElts;
    1472      365388 :       for (unsigned i = 0; i != NumElts; ++i)
    1473      282556 :         if (DemandedElts[i])
    1474      199109 :           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
    1475             : 
    1476       82832 :       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
    1477             :                                      TLO, Depth + 1))
    1478             :         return true;
    1479             : 
    1480             :       // If all the src elements covering an output element are zero/undef, then
    1481             :       // the output element will be as well, assuming it was demanded.
    1482      363855 :       for (unsigned i = 0; i != NumElts; ++i) {
    1483      281363 :         if (DemandedElts[i]) {
    1484      396934 :           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
    1485             :             KnownZero.setBit(i);
    1486      396934 :           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
    1487             :             KnownUndef.setBit(i);
    1488             :         }
    1489             :       }
    1490             :     }
    1491             :     break;
    1492             :   }
    1493             :   case ISD::BUILD_VECTOR: {
    1494             :     // Check all elements and simplify any unused elements with UNDEF.
    1495       54702 :     if (!DemandedElts.isAllOnesValue()) {
    1496             :       // Don't simplify BROADCASTS.
    1497       15681 :       if (llvm::any_of(Op->op_values(),
    1498           0 :                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
    1499       10260 :         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
    1500             :         bool Updated = false;
    1501       64045 :         for (unsigned i = 0; i != NumElts; ++i) {
    1502       53785 :           if (!DemandedElts[i] && !Ops[i].isUndef()) {
    1503        5412 :             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
    1504             :             KnownUndef.setBit(i);
    1505             :             Updated = true;
    1506             :           }
    1507             :         }
    1508       10260 :         if (Updated)
    1509        3622 :           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
    1510             :       }
    1511             :     }
    1512      549206 :     for (unsigned i = 0; i != NumElts; ++i) {
    1513      496315 :       SDValue SrcOp = Op.getOperand(i);
    1514      992630 :       if (SrcOp.isUndef()) {
    1515             :         KnownUndef.setBit(i);
    1516      905059 :       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
    1517      723737 :                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
    1518             :         KnownZero.setBit(i);
    1519             :       }
    1520             :     }
    1521             :     break;
    1522             :   }
    1523       20221 :   case ISD::CONCAT_VECTORS: {
    1524       40442 :     EVT SubVT = Op.getOperand(0).getValueType();
    1525             :     unsigned NumSubVecs = Op.getNumOperands();
    1526             :     unsigned NumSubElts = SubVT.getVectorNumElements();
    1527       78287 :     for (unsigned i = 0; i != NumSubVecs; ++i) {
    1528       58711 :       SDValue SubOp = Op.getOperand(i);
    1529       58711 :       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
    1530             :       APInt SubUndef, SubZero;
    1531       58711 :       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
    1532             :                                      Depth + 1))
    1533             :         return true;
    1534       58066 :       KnownUndef.insertBits(SubUndef, i * NumSubElts);
    1535       58066 :       KnownZero.insertBits(SubZero, i * NumSubElts);
    1536             :     }
    1537       19576 :     break;
    1538             :   }
    1539        9683 :   case ISD::INSERT_SUBVECTOR: {
    1540             :     if (!isa<ConstantSDNode>(Op.getOperand(2)))
    1541             :       break;
    1542        9683 :     SDValue Base = Op.getOperand(0);
    1543        9683 :     SDValue Sub = Op.getOperand(1);
    1544        9683 :     EVT SubVT = Sub.getValueType();
    1545             :     unsigned NumSubElts = SubVT.getVectorNumElements();
    1546        9683 :     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
    1547       19366 :     if (Idx.uge(NumElts - NumSubElts))
    1548             :       break;
    1549        7236 :     unsigned SubIdx = Idx.getZExtValue();
    1550        7236 :     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
    1551             :     APInt SubUndef, SubZero;
    1552        7236 :     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
    1553             :                                    Depth + 1))
    1554             :       return true;
    1555             :     APInt BaseElts = DemandedElts;
    1556        7235 :     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
    1557        7235 :     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
    1558             :                                    Depth + 1))
    1559             :       return true;
    1560        7235 :     KnownUndef.insertBits(SubUndef, SubIdx);
    1561        7235 :     KnownZero.insertBits(SubZero, SubIdx);
    1562             :     break;
    1563             :   }
    1564      122700 :   case ISD::EXTRACT_SUBVECTOR: {
    1565      122700 :     SDValue Src = Op.getOperand(0);
    1566             :     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    1567      122700 :     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
    1568      122700 :     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
    1569             :       // Offset the demanded elts by the subvector index.
    1570             :       uint64_t Idx = SubIdx->getZExtValue();
    1571      245400 :       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
    1572             :       APInt SrcUndef, SrcZero;
    1573      122700 :       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
    1574             :                                      Depth + 1))
    1575             :         return true;
    1576      122409 :       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
    1577      244818 :       KnownZero = SrcZero.extractBits(NumElts, Idx);
    1578             :     }
    1579      122409 :     break;
    1580             :   }
    1581       15798 :   case ISD::INSERT_VECTOR_ELT: {
    1582       15798 :     SDValue Vec = Op.getOperand(0);
    1583       15798 :     SDValue Scl = Op.getOperand(1);
    1584             :     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
    1585             : 
    1586             :     // For a legal, constant insertion index, if we don't need this insertion
    1587             :     // then strip it, else remove it from the demanded elts.
    1588       29062 :     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
    1589       14531 :       unsigned Idx = CIdx->getZExtValue();
    1590       14531 :       if (!DemandedElts[Idx])
    1591         356 :         return TLO.CombineTo(Op, Vec);
    1592             :       DemandedElts.clearBit(Idx);
    1593             : 
    1594       14445 :       if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef,
    1595             :                                      KnownZero, TLO, Depth + 1))
    1596             :         return true;
    1597             : 
    1598             :       KnownUndef.clearBit(Idx);
    1599       14183 :       if (Scl.isUndef())
    1600             :         KnownUndef.setBit(Idx);
    1601             : 
    1602             :       KnownZero.clearBit(Idx);
    1603       14183 :       if (isNullConstant(Scl) || isNullFPConstant(Scl))
    1604             :         KnownZero.setBit(Idx);
    1605       15442 :       break;
    1606             :     }
    1607             : 
    1608             :     APInt VecUndef, VecZero;
    1609        1267 :     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
    1610             :                                    Depth + 1))
    1611             :       return true;
    1612             :     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
    1613             :     break;
    1614             :   }
    1615             :   case ISD::VSELECT: {
    1616             :     // Try to transform the select condition based on the current demanded
    1617             :     // elements.
    1618             :     // TODO: If a condition element is undef, we can choose from one arm of the
    1619             :     //       select (and if one arm is undef, then we can propagate that to the
    1620             :     //       result).
    1621             :     // TODO - add support for constant vselect masks (see IR version of this).
    1622             :     APInt UnusedUndef, UnusedZero;
    1623       17762 :     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
    1624             :                                    UnusedZero, TLO, Depth + 1))
    1625             :       return true;
    1626             : 
    1627             :     // See if we can simplify either vselect operand.
    1628             :     APInt DemandedLHS(DemandedElts);
    1629             :     APInt DemandedRHS(DemandedElts);
    1630             :     APInt UndefLHS, ZeroLHS;
    1631             :     APInt UndefRHS, ZeroRHS;
    1632       17690 :     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
    1633             :                                    ZeroLHS, TLO, Depth + 1))
    1634             :       return true;
    1635       17666 :     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
    1636             :                                    ZeroRHS, TLO, Depth + 1))
    1637             :       return true;
    1638             : 
    1639        8828 :     KnownUndef = UndefLHS & UndefRHS;
    1640        8828 :     KnownZero = ZeroLHS & ZeroRHS;
    1641             :     break;
    1642             :   }
    1643             :   case ISD::VECTOR_SHUFFLE: {
    1644      114358 :     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
    1645             : 
    1646             :     // Collect demanded elements from shuffle operands..
    1647             :     APInt DemandedLHS(NumElts, 0);
    1648             :     APInt DemandedRHS(NumElts, 0);
    1649     1920241 :     for (unsigned i = 0; i != NumElts; ++i) {
    1650     1805883 :       int M = ShuffleMask[i];
    1651     3006432 :       if (M < 0 || !DemandedElts[i])
    1652             :         continue;
    1653             :       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
    1654     1188450 :       if (M < (int)NumElts)
    1655      937472 :         DemandedLHS.setBit(M);
    1656             :       else
    1657      250978 :         DemandedRHS.setBit(M - NumElts);
    1658             :     }
    1659             : 
    1660             :     // See if we can simplify either shuffle operand.
    1661             :     APInt UndefLHS, ZeroLHS;
    1662             :     APInt UndefRHS, ZeroRHS;
    1663      228716 :     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
    1664             :                                    ZeroLHS, TLO, Depth + 1))
    1665             :       return true;
    1666      225150 :     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
    1667             :                                    ZeroRHS, TLO, Depth + 1))
    1668             :       return true;
    1669             : 
    1670             :     // Simplify mask using undef elements from LHS/RHS.
    1671             :     bool Updated = false;
    1672             :     bool IdentityLHS = true, IdentityRHS = true;
    1673      111959 :     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
    1674     1889746 :     for (unsigned i = 0; i != NumElts; ++i) {
    1675     1777787 :       int &M = NewMask[i];
    1676     1777787 :       if (M < 0)
    1677             :         continue;
    1678     2103367 :       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
    1679      490924 :           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
    1680             :         Updated = true;
    1681       13369 :         M = -1;
    1682             :       }
    1683     1179225 :       IdentityLHS &= (M < 0) || (M == (int)i);
    1684     1179225 :       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
    1685             :     }
    1686             : 
    1687             :     // Update legal shuffle masks based on demanded elements if it won't reduce
    1688             :     // to Identity which can cause premature removal of the shuffle mask.
    1689      113068 :     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
    1690      113254 :         isShuffleMaskLegal(NewMask, VT))
    1691         923 :       return TLO.CombineTo(Op,
    1692         923 :                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
    1693         923 :                                                     Op.getOperand(1), NewMask));
    1694             : 
    1695             :     // Propagate undef/zero elements from LHS/RHS.
    1696     1881229 :     for (unsigned i = 0; i != NumElts; ++i) {
    1697     1770193 :       int M = ShuffleMask[i];
    1698     1770193 :       if (M < 0) {
    1699             :         KnownUndef.setBit(i);
    1700     1172461 :       } else if (M < (int)NumElts) {
    1701     1851338 :         if (UndefLHS[M])
    1702             :           KnownUndef.setBit(i);
    1703      925669 :         if (ZeroLHS[M])
    1704             :           KnownZero.setBit(i);
    1705             :       } else {
    1706      493584 :         if (UndefRHS[M - NumElts])
    1707             :           KnownUndef.setBit(i);
    1708      246792 :         if (ZeroRHS[M - NumElts])
    1709             :           KnownZero.setBit(i);
    1710             :       }
    1711             :     }
    1712             :     break;
    1713             :   }
    1714             :   case ISD::ADD:
    1715             :   case ISD::SUB:
    1716             :   case ISD::FADD:
    1717             :   case ISD::FSUB:
    1718             :   case ISD::FMUL:
    1719             :   case ISD::FDIV:
    1720             :   case ISD::FREM: {
    1721             :     APInt SrcUndef, SrcZero;
    1722       87166 :     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
    1723             :                                    SrcZero, TLO, Depth + 1))
    1724             :       return true;
    1725       86952 :     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
    1726             :                                    KnownZero, TLO, Depth + 1))
    1727             :       return true;
    1728             :     KnownZero &= SrcZero;
    1729             :     KnownUndef &= SrcUndef;
    1730             :     break;
    1731             :   }
    1732        3078 :   case ISD::TRUNCATE:
    1733        6156 :     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
    1734             :                                    KnownZero, TLO, Depth + 1))
    1735           7 :       return true;
    1736             :     break;
    1737      703297 :   default: {
    1738      703297 :     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
    1739      191892 :       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
    1740      191892 :                                                   KnownZero, TLO, Depth))
    1741         338 :         return true;
    1742             :     break;
    1743             :   }
    1744             :   }
    1745             : 
    1746             :   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
    1747             :   return false;
    1748             : }
    1749             : 
    1750             : /// Determine which of the bits specified in Mask are known to be either zero or
    1751             : /// one and return them in the Known.
    1752      122936 : void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
    1753             :                                                    KnownBits &Known,
    1754             :                                                    const APInt &DemandedElts,
    1755             :                                                    const SelectionDAG &DAG,
    1756             :                                                    unsigned Depth) const {
    1757             :   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
    1758             :           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
    1759             :           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
    1760             :           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
    1761             :          "Should use MaskedValueIsZero if you don't know whether Op"
    1762             :          " is a target node!");
    1763             :   Known.resetAll();
    1764      122936 : }
    1765             : 
    1766     1396852 : void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
    1767             :                                                    KnownBits &Known,
    1768             :                                                    const APInt &DemandedElts,
    1769             :                                                    const SelectionDAG &DAG,
    1770             :                                                    unsigned Depth) const {
    1771             :   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
    1772             : 
    1773     1396852 :   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
    1774             :     // The low bits are known zero if the pointer is aligned.
    1775     1396852 :     Known.Zero.setLowBits(Log2_32(Align));
    1776             :   }
    1777     1396852 : }
    1778             : 
    1779             : /// This method can be implemented by targets that want to expose additional
    1780             : /// information about sign bits to the DAG Combiner.
    1781        3559 : unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
    1782             :                                                          const APInt &,
    1783             :                                                          const SelectionDAG &,
    1784             :                                                          unsigned Depth) const {
    1785             :   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
    1786             :           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
    1787             :           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
    1788             :           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
    1789             :          "Should use ComputeNumSignBits if you don't know whether Op"
    1790             :          " is a target node!");
    1791        3559 :   return 1;
    1792             : }
    1793             : 
    1794        7580 : bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
    1795             :     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
    1796             :     TargetLoweringOpt &TLO, unsigned Depth) const {
    1797             :   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
    1798             :           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
    1799             :           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
    1800             :           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
    1801             :          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
    1802             :          " is a target node!");
    1803        7580 :   return false;
    1804             : }
    1805             : 
    1806           0 : bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
    1807             :                                                   const SelectionDAG &DAG,
    1808             :                                                   bool SNaN,
    1809             :                                                   unsigned Depth) const {
    1810             :   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
    1811             :           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
    1812             :           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
    1813             :           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
    1814             :          "Should use isKnownNeverNaN if you don't know whether Op"
    1815             :          " is a target node!");
    1816           0 :   return false;
    1817             : }
    1818             : 
    1819             : // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
    1820             : // work with truncating build vectors and vectors with elements of less than
    1821             : // 8 bits.
    1822      116384 : bool TargetLowering::isConstTrueVal(const SDNode *N) const {
    1823      116384 :   if (!N)
    1824             :     return false;
    1825             : 
    1826             :   APInt CVal;
    1827             :   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
    1828      158114 :     CVal = CN->getAPIntValue();
    1829             :   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
    1830        8366 :     auto *CN = BV->getConstantSplatNode();
    1831        8366 :     if (!CN)
    1832             :       return false;
    1833             : 
    1834             :     // If this is a truncating build vector, truncate the splat value.
    1835             :     // Otherwise, we may fail to match the expected values below.
    1836       16226 :     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
    1837       16226 :     CVal = CN->getAPIntValue();
    1838        8113 :     if (BVEltWidth < CVal.getBitWidth())
    1839        1032 :       CVal = CVal.trunc(BVEltWidth);
    1840             :   } else {
    1841             :     return false;
    1842             :   }
    1843             : 
    1844      174340 :   switch (getBooleanContents(N->getValueType(0))) {
    1845             :   case UndefinedBooleanContent:
    1846         726 :     return CVal[0];
    1847             :   case ZeroOrOneBooleanContent:
    1848             :     return CVal.isOneValue();
    1849             :   case ZeroOrNegativeOneBooleanContent:
    1850             :     return CVal.isAllOnesValue();
    1851             :   }
    1852             : 
    1853           0 :   llvm_unreachable("Invalid boolean contents");
    1854             : }
    1855             : 
    1856         487 : bool TargetLowering::isConstFalseVal(const SDNode *N) const {
    1857         487 :   if (!N)
    1858             :     return false;
    1859             : 
    1860             :   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
    1861             :   if (!CN) {
    1862             :     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
    1863             :     if (!BV)
    1864             :       return false;
    1865             : 
    1866             :     // Only interested in constant splats, we don't care about undef
    1867             :     // elements in identifying boolean constants and getConstantSplatNode
    1868             :     // returns NULL if all ops are undef;
    1869           0 :     CN = BV->getConstantSplatNode();
    1870           0 :     if (!CN)
    1871             :       return false;
    1872             :   }
    1873             : 
    1874         970 :   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
    1875           0 :     return !CN->getAPIntValue()[0];
    1876             : 
    1877         485 :   return CN->isNullValue();
    1878             : }
    1879             : 
    1880           8 : bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
    1881             :                                        bool SExt) const {
    1882             :   if (VT == MVT::i1)
    1883           0 :     return N->isOne();
    1884             : 
    1885           8 :   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
    1886           8 :   switch (Cnt) {
    1887           0 :   case TargetLowering::ZeroOrOneBooleanContent:
    1888             :     // An extended value of 1 is always true, unless its original type is i1,
    1889             :     // in which case it will be sign extended to -1.
    1890           0 :     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
    1891           8 :   case TargetLowering::UndefinedBooleanContent:
    1892             :   case TargetLowering::ZeroOrNegativeOneBooleanContent:
    1893          16 :     return N->isAllOnesValue() && SExt;
    1894             :   }
    1895           0 :   llvm_unreachable("Unexpected enumeration.");
    1896             : }
    1897             : 
    1898             : /// This helper function of SimplifySetCC tries to optimize the comparison when
    1899             : /// either operand of the SetCC node is a bitwise-and instruction.
    1900      261347 : SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
    1901             :                                              ISD::CondCode Cond,
    1902             :                                              DAGCombinerInfo &DCI,
    1903             :                                              const SDLoc &DL) const {
    1904             :   // Match these patterns in any of their permutations:
    1905             :   // (X & Y) == Y
    1906             :   // (X & Y) != Y
    1907      261347 :   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
    1908             :     std::swap(N0, N1);
    1909             : 
    1910      261347 :   EVT OpVT = N0.getValueType();
    1911      261347 :   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
    1912       15617 :       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
    1913      245730 :     return SDValue();
    1914             : 
    1915       15617 :   SDValue X, Y;
    1916       15617 :   if (N0.getOperand(0) == N1) {
    1917         177 :     X = N0.getOperand(1);
    1918         177 :     Y = N0.getOperand(0);
    1919       15440 :   } else if (N0.getOperand(1) == N1) {
    1920         387 :     X = N0.getOperand(0);
    1921         387 :     Y = N0.getOperand(1);
    1922             :   } else {
    1923       15053 :     return SDValue();
    1924             :   }
    1925             : 
    1926         564 :   SelectionDAG &DAG = DCI.DAG;
    1927         564 :   SDValue Zero = DAG.getConstant(0, DL, OpVT);
    1928         564 :   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
    1929             :     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
    1930             :     // Note that where Y is variable and is known to have at most one bit set
    1931             :     // (for example, if it is Z & 1) we cannot do this; the expressions are not
    1932             :     // equivalent when Y == 0.
    1933         190 :     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
    1934         380 :     if (DCI.isBeforeLegalizeOps() ||
    1935             :         isCondCodeLegal(Cond, N0.getSimpleValueType()))
    1936         190 :       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
    1937         374 :   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
    1938             :     // If the target supports an 'and-not' or 'and-complement' logic operation,
    1939             :     // try to use that to make a comparison operation more efficient.
    1940             :     // But don't do this transform if the mask is a single bit because there are
    1941             :     // more efficient ways to deal with that case (for example, 'bt' on x86 or
    1942             :     // 'rlwinm' on PPC).
    1943             : 
    1944             :     // Bail out if the compare operand that we want to turn into a zero is
    1945             :     // already a zero (otherwise, infinite loop).
    1946             :     auto *YConst = dyn_cast<ConstantSDNode>(Y);
    1947          40 :     if (YConst && YConst->isNullValue())
    1948           0 :       return SDValue();
    1949             : 
    1950             :     // Transform this into: ~X & Y == 0.
    1951         156 :     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
    1952          78 :     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
    1953          78 :     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
    1954             :   }
    1955             : 
    1956         296 :   return SDValue();
    1957             : }
    1958             : 
    1959             : /// There are multiple IR patterns that could be checking whether certain
    1960             : /// truncation of a signed number would be lossy or not. The pattern which is
    1961             : /// best at IR level, may not lower optimally. Thus, we want to unfold it.
    1962             : /// We are looking for the following pattern: (KeptBits is a constant)
    1963             : ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
    1964             : /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
    1965             : /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
    1966             : /// We will unfold it into the natural trunc+sext pattern:
    1967             : ///   ((%x << C) a>> C) dstcond %x
    1968             : /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
    1969      230495 : SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
    1970             :     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
    1971             :     const SDLoc &DL) const {
    1972             :   // We must be comparing with a constant.
    1973             :   ConstantSDNode *C1;
    1974             :   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
    1975           0 :     return SDValue();
    1976             : 
    1977             :   // N0 should be:  add %x, (1 << (KeptBits-1))
    1978      230495 :   if (N0->getOpcode() != ISD::ADD)
    1979      211796 :     return SDValue();
    1980             : 
    1981             :   // And we must be 'add'ing a constant.
    1982             :   ConstantSDNode *C01;
    1983       18699 :   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
    1984         665 :     return SDValue();
    1985             : 
    1986       18034 :   SDValue X = N0->getOperand(0);
    1987       18034 :   EVT XVT = X.getValueType();
    1988             : 
    1989             :   // Validate constants ...
    1990             : 
    1991       18034 :   APInt I1 = C1->getAPIntValue();
    1992             : 
    1993             :   ISD::CondCode NewCond;
    1994       18034 :   if (Cond == ISD::CondCode::SETULT) {
    1995             :     NewCond = ISD::CondCode::SETEQ;
    1996        9444 :   } else if (Cond == ISD::CondCode::SETULE) {
    1997             :     NewCond = ISD::CondCode::SETEQ;
    1998             :     // But need to 'canonicalize' the constant.
    1999         285 :     I1 += 1;
    2000        9159 :   } else if (Cond == ISD::CondCode::SETUGT) {
    2001             :     NewCond = ISD::CondCode::SETNE;
    2002             :     // But need to 'canonicalize' the constant.
    2003        3969 :     I1 += 1;
    2004        5190 :   } else if (Cond == ISD::CondCode::SETUGE) {
    2005             :     NewCond = ISD::CondCode::SETNE;
    2006             :   } else
    2007        4954 :     return SDValue();
    2008             : 
    2009       13080 :   APInt I01 = C01->getAPIntValue();
    2010             : 
    2011             :   auto checkConstants = [&I1, &I01]() -> bool {
    2012             :     // Both of them must be power-of-two, and the constant from setcc is bigger.
    2013             :     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
    2014             :   };
    2015             : 
    2016       13080 :   if (checkConstants()) {
    2017             :     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
    2018             :   } else {
    2019             :     // What if we invert constants? (and the target predicate)
    2020             :     I1.negate();
    2021             :     I01.negate();
    2022       12448 :     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
    2023       12448 :     if (!checkConstants())
    2024       12364 :       return SDValue();
    2025             :     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
    2026             :   }
    2027             : 
    2028             :   // They are power-of-two, so which bit is set?
    2029             :   const unsigned KeptBits = I1.logBase2();
    2030             :   const unsigned KeptBitsMinusOne = I01.logBase2();
    2031             : 
    2032             :   // Magic!
    2033         716 :   if (KeptBits != (KeptBitsMinusOne + 1))
    2034         416 :     return SDValue();
    2035             :   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
    2036             : 
    2037             :   // We don't want to do this in every single case.
    2038         300 :   SelectionDAG &DAG = DCI.DAG;
    2039         300 :   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
    2040         300 :           XVT, KeptBits))
    2041         128 :     return SDValue();
    2042             : 
    2043         172 :   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
    2044             :   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
    2045             : 
    2046             :   // Unfold into:  ((%x << C) a>> C) cond %x
    2047             :   // Where 'cond' will be either 'eq' or 'ne'.
    2048         172 :   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
    2049         172 :   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
    2050         172 :   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
    2051         172 :   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
    2052             : 
    2053         172 :   return T2;
    2054             : }
    2055             : 
    2056             : /// Try to simplify a setcc built with the specified operands and cc. If it is
    2057             : /// unable to simplify it, return a null SDValue.
    2058      397495 : SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
    2059             :                                       ISD::CondCode Cond, bool foldBooleans,
    2060             :                                       DAGCombinerInfo &DCI,
    2061             :                                       const SDLoc &dl) const {
    2062      397495 :   SelectionDAG &DAG = DCI.DAG;
    2063      397495 :   EVT OpVT = N0.getValueType();
    2064             : 
    2065             :   // These setcc operations always fold.
    2066      397495 :   switch (Cond) {
    2067             :   default: break;
    2068           0 :   case ISD::SETFALSE:
    2069           0 :   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
    2070           0 :   case ISD::SETTRUE:
    2071           0 :   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
    2072             :   }
    2073             : 
    2074             :   // Ensure that the constant occurs on the RHS and fold constant comparisons.
    2075             :   // TODO: Handle non-splat vector constants. All undef causes trouble.
    2076      397495 :   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
    2077      397495 :   if (isConstOrConstSplat(N0) &&
    2078        2034 :       (DCI.isBeforeLegalizeOps() ||
    2079             :        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
    2080         845 :     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
    2081             : 
    2082             :   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
    2083      238947 :     const APInt &C1 = N1C->getAPIntValue();
    2084             : 
    2085             :     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
    2086             :     // equality comparison, then we're just comparing whether X itself is
    2087             :     // zero.
    2088      239716 :     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
    2089      239438 :         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
    2090           0 :         N0.getOperand(1).getOpcode() == ISD::Constant) {
    2091             :       const APInt &ShAmt
    2092           0 :         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
    2093           0 :       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
    2094           0 :           ShAmt == Log2_32(N0.getValueSizeInBits())) {
    2095           0 :         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
    2096             :           // (srl (ctlz x), 5) == 0  -> X != 0
    2097             :           // (srl (ctlz x), 5) != 1  -> X != 0
    2098             :           Cond = ISD::SETNE;
    2099             :         } else {
    2100             :           // (srl (ctlz x), 5) != 0  -> X == 0
    2101             :           // (srl (ctlz x), 5) == 1  -> X == 0
    2102             :           Cond = ISD::SETEQ;
    2103             :         }
    2104           0 :         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
    2105           0 :         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
    2106           0 :                             Zero, Cond);
    2107             :       }
    2108             :     }
    2109             : 
    2110      238947 :     SDValue CTPOP = N0;
    2111             :     // Look through truncs that don't change the value of a ctpop.
    2112      238947 :     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
    2113       11709 :       CTPOP = N0.getOperand(0);
    2114             : 
    2115      238947 :     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
    2116          10 :         (N0 == CTPOP ||
    2117           4 :          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
    2118           8 :       EVT CTVT = CTPOP.getValueType();
    2119           4 :       SDValue CTOp = CTPOP.getOperand(0);
    2120             : 
    2121             :       // (ctpop x) u< 2 -> (x & x-1) == 0
    2122             :       // (ctpop x) u> 1 -> (x & x-1) != 0
    2123           4 :       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
    2124             :         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
    2125           4 :                                   DAG.getConstant(1, dl, CTVT));
    2126           4 :         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
    2127           4 :         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
    2128           4 :         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
    2129             :       }
    2130             : 
    2131             :       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
    2132             :     }
    2133             : 
    2134             :     // (zext x) == C --> x == (trunc C)
    2135             :     // (sext x) == C --> x == (trunc C)
    2136      423591 :     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
    2137      238943 :         DCI.isBeforeLegalize() && N0->hasOneUse()) {
    2138       63138 :       unsigned MinBits = N0.getValueSizeInBits();
    2139       63138 :       SDValue PreExt;
    2140             :       bool Signed = false;
    2141      126276 :       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
    2142             :         // ZExt
    2143        1142 :         MinBits = N0->getOperand(0).getValueSizeInBits();
    2144         571 :         PreExt = N0->getOperand(0);
    2145       62567 :       } else if (N0->getOpcode() == ISD::AND) {
    2146             :         // DAGCombine turns costly ZExts into ANDs
    2147        7039 :         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
    2148       11258 :           if ((C->getAPIntValue()+1).isPowerOf2()) {
    2149        4274 :             MinBits = C->getAPIntValue().countTrailingOnes();
    2150        4274 :             PreExt = N0->getOperand(0);
    2151             :           }
    2152       55528 :       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
    2153             :         // SExt
    2154         296 :         MinBits = N0->getOperand(0).getValueSizeInBits();
    2155         148 :         PreExt = N0->getOperand(0);
    2156             :         Signed = true;
    2157             :       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
    2158             :         // ZEXTLOAD / SEXTLOAD
    2159       20064 :         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
    2160           0 :           MinBits = LN0->getMemoryVT().getSizeInBits();
    2161           0 :           PreExt = N0;
    2162       20064 :         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
    2163             :           Signed = true;
    2164          97 :           MinBits = LN0->getMemoryVT().getSizeInBits();
    2165          97 :           PreExt = N0;
    2166             :         }
    2167             :       }
    2168             : 
    2169             :       // Figure out how many bits we need to preserve this constant.
    2170         245 :       unsigned ReqdBits = Signed ?
    2171         245 :         C1.getBitWidth() - C1.getNumSignBits() + 1 :
    2172             :         C1.getActiveBits();
    2173             : 
    2174             :       // Make sure we're not losing bits from the constant.
    2175       63138 :       if (MinBits > 0 &&
    2176       63138 :           MinBits < C1.getBitWidth() &&
    2177             :           MinBits >= ReqdBits) {
    2178        4999 :         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
    2179        4999 :         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
    2180             :           // Will get folded away.
    2181         216 :           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
    2182         216 :           if (MinBits == 1 && C1 == 1)
    2183             :             // Invert the condition.
    2184             :             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
    2185           0 :                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
    2186         216 :           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
    2187         216 :           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
    2188             :         }
    2189             : 
    2190             :         // If truncating the setcc operands is not desirable, we can still
    2191             :         // simplify the expression in some cases:
    2192             :         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
    2193             :         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
    2194             :         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
    2195             :         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
    2196             :         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
    2197             :         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
    2198        4783 :         SDValue TopSetCC = N0->getOperand(0);
    2199        4783 :         unsigned N0Opc = N0->getOpcode();
    2200        4783 :         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
    2201        5166 :         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
    2202         205 :             TopSetCC.getOpcode() == ISD::SETCC &&
    2203         410 :             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
    2204         213 :             (isConstFalseVal(N1C) ||
    2205          16 :              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
    2206             : 
    2207         404 :           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
    2208           5 :                          (!N1C->isNullValue() && Cond == ISD::SETNE);
    2209             : 
    2210             :           if (!Inverse)
    2211          99 :             return TopSetCC;
    2212             : 
    2213         103 :           ISD::CondCode InvCond = ISD::getSetCCInverse(
    2214             :               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
    2215         206 :               TopSetCC.getOperand(0).getValueType().isInteger());
    2216             :           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
    2217             :                                       TopSetCC.getOperand(1),
    2218         103 :                                       InvCond);
    2219             :         }
    2220             :       }
    2221             :     }
    2222             : 
    2223             :     // If the LHS is '(and load, const)', the RHS is 0, the test is for
    2224             :     // equality or unsigned, and all 1 bits of the const are in the same
    2225             :     // partial word, see if we can shorten the load.
    2226      130397 :     if (DCI.isBeforeLegalize() &&
    2227      122949 :         !ISD::isSignedIntSetCC(Cond) &&
    2228      122949 :         N0.getOpcode() == ISD::AND && C1 == 0 &&
    2229        6697 :         N0.getNode()->hasOneUse() &&
    2230             :         isa<LoadSDNode>(N0.getOperand(0)) &&
    2231      238525 :         N0.getOperand(0).getNode()->hasOneUse() &&
    2232             :         isa<ConstantSDNode>(N0.getOperand(1))) {
    2233             :       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
    2234             :       APInt bestMask;
    2235             :       unsigned bestWidth = 0, bestOffset = 0;
    2236        1938 :       if (!Lod->isVolatile() && Lod->isUnindexed()) {
    2237        1938 :         unsigned origWidth = N0.getValueSizeInBits();
    2238             :         unsigned maskWidth = origWidth;
    2239             :         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
    2240             :         // 8 bits, but have to be careful...
    2241        1938 :         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
    2242           0 :           origWidth = Lod->getMemoryVT().getSizeInBits();
    2243             :         const APInt &Mask =
    2244        3876 :           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
    2245        2566 :         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
    2246         628 :           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
    2247         803 :           for (unsigned offset=0; offset<origWidth/width; offset++) {
    2248         790 :             if (Mask.isSubsetOf(newMask)) {
    2249         615 :               if (DAG.getDataLayout().isLittleEndian())
    2250         597 :                 bestOffset = (uint64_t)offset * (width/8);
    2251             :               else
    2252          18 :                 bestOffset = (origWidth/width - offset - 1) * (width/8);
    2253         615 :               bestMask = Mask.lshr(offset * (width/8) * 8);
    2254             :               bestWidth = width;
    2255         615 :               break;
    2256             :             }
    2257         175 :             newMask <<= width;
    2258             :           }
    2259             :         }
    2260             :       }
    2261        1938 :       if (bestWidth) {
    2262         334 :         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
    2263             :         if (newVT.isRound()) {
    2264         333 :           EVT PtrType = Lod->getOperand(1).getValueType();
    2265         333 :           SDValue Ptr = Lod->getBasePtr();
    2266         333 :           if (bestOffset != 0)
    2267          89 :             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
    2268          89 :                               DAG.getConstant(bestOffset, dl, PtrType));
    2269         333 :           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
    2270             :           SDValue NewLoad = DAG.getLoad(
    2271             :               newVT, dl, Lod->getChain(), Ptr,
    2272         666 :               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
    2273             :           return DAG.getSetCC(dl, VT,
    2274             :                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
    2275         333 :                                       DAG.getConstant(bestMask.trunc(bestWidth),
    2276             :                                                       dl, newVT)),
    2277         999 :                               DAG.getConstant(0LL, dl, newVT), Cond);
    2278             :         }
    2279             :       }
    2280             :     }
    2281             : 
    2282             :     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
    2283      476384 :     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
    2284         755 :       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
    2285             : 
    2286             :       // If the comparison constant has bits in the upper part, the
    2287             :       // zero-extended value could never match.
    2288         755 :       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
    2289         755 :                                               C1.getBitWidth() - InSize))) {
    2290          27 :         switch (Cond) {
    2291           9 :         case ISD::SETUGT:
    2292             :         case ISD::SETUGE:
    2293             :         case ISD::SETEQ:
    2294           9 :           return DAG.getConstant(0, dl, VT);
    2295          12 :         case ISD::SETULT:
    2296             :         case ISD::SETULE:
    2297             :         case ISD::SETNE:
    2298          12 :           return DAG.getConstant(1, dl, VT);
    2299           1 :         case ISD::SETGT:
    2300             :         case ISD::SETGE:
    2301             :           // True if the sign bit of C1 is set.
    2302           1 :           return DAG.getConstant(C1.isNegative(), dl, VT);
    2303             :         case ISD::SETLT:
    2304             :         case ISD::SETLE:
    2305             :           // True if the sign bit of C1 isn't set.
    2306           5 :           return DAG.getConstant(C1.isNonNegative(), dl, VT);
    2307             :         default:
    2308             :           break;
    2309             :         }
    2310             :       }
    2311             : 
    2312             :       // Otherwise, we can perform the comparison with the low bits.
    2313             :       switch (Cond) {
    2314         686 :       case ISD::SETEQ:
    2315             :       case ISD::SETNE:
    2316             :       case ISD::SETUGT:
    2317             :       case ISD::SETUGE:
    2318             :       case ISD::SETULT:
    2319             :       case ISD::SETULE: {
    2320        1372 :         EVT newVT = N0.getOperand(0).getValueType();
    2321        1372 :         if (DCI.isBeforeLegalizeOps() ||
    2322          30 :             (isOperationLegal(ISD::SETCC, newVT) &&
    2323             :              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
    2324             :           EVT NewSetCCVT =
    2325         668 :               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
    2326         668 :           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
    2327             : 
    2328         668 :           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
    2329         668 :                                           NewConst, Cond);
    2330        1336 :           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
    2331             :         }
    2332          18 :         break;
    2333             :       }
    2334             :       default:
    2335             :         break;   // todo, be more careful with signed comparisons
    2336             :       }
    2337      237437 :     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
    2338             :                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
    2339          46 :       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
    2340          46 :       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
    2341          46 :       EVT ExtDstTy = N0.getValueType();
    2342          46 :       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
    2343             : 
    2344             :       // If the constant doesn't fit into the number of bits for the source of
    2345             :       // the sign extension, it is impossible for both sides to be equal.
    2346          46 :       if (C1.getMinSignedBits() > ExtSrcTyBits)
    2347           2 :         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
    2348             : 
    2349          44 :       SDValue ZextOp;
    2350          88 :       EVT Op0Ty = N0.getOperand(0).getValueType();
    2351           0 :       if (Op0Ty == ExtSrcTy) {
    2352           0 :         ZextOp = N0.getOperand(0);
    2353             :       } else {
    2354          44 :         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
    2355          44 :         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
    2356          44 :                               DAG.getConstant(Imm, dl, Op0Ty));
    2357             :       }
    2358          44 :       if (!DCI.isCalledByLegalizer())
    2359          44 :         DCI.AddToWorklist(ZextOp.getNode());
    2360             :       // Otherwise, make this a use of a zext.
    2361             :       return DAG.getSetCC(dl, VT, ZextOp,
    2362          88 :                           DAG.getConstant(C1 & APInt::getLowBitsSet(
    2363             :                                                               ExtDstTyBits,
    2364             :                                                               ExtSrcTyBits),
    2365             :                                           dl, ExtDstTy),
    2366          44 :                           Cond);
    2367      571975 :     } else if ((N1C->isNullValue() || N1C->isOne()) &&
    2368             :                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
    2369             :       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
    2370             :       if (N0.getOpcode() == ISD::SETCC &&
    2371      149115 :           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
    2372         181 :         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
    2373         181 :         if (TrueWhenTrue)
    2374          98 :           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
    2375             :         // Invert the condition.
    2376          83 :         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
    2377          83 :         CC = ISD::getSetCCInverse(CC,
    2378         166 :                                   N0.getOperand(0).getValueType().isInteger());
    2379         166 :         if (DCI.isBeforeLegalizeOps() ||
    2380          20 :             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
    2381         166 :           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
    2382             :       }
    2383             : 
    2384      148554 :       if ((N0.getOpcode() == ISD::XOR ||
    2385       14025 :            (N0.getOpcode() == ISD::AND &&
    2386       14025 :             N0.getOperand(0).getOpcode() == ISD::XOR &&
    2387         348 :             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
    2388      148659 :           isa<ConstantSDNode>(N0.getOperand(1)) &&
    2389         105 :           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
    2390             :         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
    2391             :         // can only do this if the top bits are known zero.
    2392          26 :         unsigned BitWidth = N0.getValueSizeInBits();
    2393          26 :         if (DAG.MaskedValueIsZero(N0,
    2394          52 :                                   APInt::getHighBitsSet(BitWidth,
    2395             :                                                         BitWidth-1))) {
    2396             :           // Okay, get the un-inverted input value.
    2397          18 :           SDValue Val;
    2398          36 :           if (N0.getOpcode() == ISD::XOR) {
    2399          18 :             Val = N0.getOperand(0);
    2400             :           } else {
    2401             :             assert(N0.getOpcode() == ISD::AND &&
    2402             :                     N0.getOperand(0).getOpcode() == ISD::XOR);
    2403             :             // ((X^1)&1)^1 -> X & 1
    2404           0 :             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
    2405           0 :                               N0.getOperand(0).getOperand(0),
    2406           0 :                               N0.getOperand(1));
    2407             :           }
    2408             : 
    2409             :           return DAG.getSetCC(dl, VT, Val, N1,
    2410          23 :                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
    2411             :         }
    2412      297056 :       } else if (N1C->isOne() &&
    2413        4098 :                  (VT == MVT::i1 ||
    2414        8196 :                   getBooleanContents(N0->getValueType(0)) ==
    2415             :                       ZeroOrOneBooleanContent)) {
    2416       14998 :         SDValue Op0 = N0;
    2417       14998 :         if (Op0.getOpcode() == ISD::TRUNCATE)
    2418        6724 :           Op0 = Op0.getOperand(0);
    2419             : 
    2420          16 :         if ((Op0.getOpcode() == ISD::XOR) &&
    2421       14998 :             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
    2422           4 :             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
    2423             :           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
    2424           4 :           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
    2425             :           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
    2426        6757 :                               Cond);
    2427             :         }
    2428             :         if (Op0.getOpcode() == ISD::AND &&
    2429       15479 :             isa<ConstantSDNode>(Op0.getOperand(1)) &&
    2430         485 :             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
    2431             :           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
    2432         406 :           if (Op0.getValueType().bitsGT(VT))
    2433          54 :             Op0 = DAG.getNode(ISD::AND, dl, VT,
    2434             :                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
    2435          54 :                           DAG.getConstant(1, dl, VT));
    2436         352 :           else if (Op0.getValueType().bitsLT(VT))
    2437           1 :             Op0 = DAG.getNode(ISD::AND, dl, VT,
    2438             :                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
    2439           1 :                         DAG.getConstant(1, dl, VT));
    2440             : 
    2441             :           return DAG.getSetCC(dl, VT, Op0,
    2442             :                               DAG.getConstant(0, dl, Op0.getValueType()),
    2443         796 :                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
    2444             :         }
    2445       14588 :         if (Op0.getOpcode() == ISD::AssertZext &&
    2446       14588 :             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
    2447             :           return DAG.getSetCC(dl, VT, Op0,
    2448             :                               DAG.getConstant(0, dl, Op0.getValueType()),
    2449       12693 :                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
    2450             :       }
    2451             :     }
    2452             : 
    2453      230495 :     if (SDValue V =
    2454      230495 :             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
    2455         172 :       return V;
    2456             :   }
    2457             : 
    2458             :   // These simplifications apply to splat vectors as well.
    2459             :   // TODO: Handle more splat vector cases.
    2460      388026 :   if (auto *N1C = isConstOrConstSplat(N1)) {
    2461      238483 :     const APInt &C1 = N1C->getAPIntValue();
    2462             : 
    2463             :     APInt MinVal, MaxVal;
    2464      476966 :     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
    2465      238483 :     if (ISD::isSignedIntSetCC(Cond)) {
    2466       16827 :       MinVal = APInt::getSignedMinValue(OperandBitSize);
    2467       33654 :       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
    2468             :     } else {
    2469      443312 :       MinVal = APInt::getMinValue(OperandBitSize);
    2470      221656 :       MaxVal = APInt::getMaxValue(OperandBitSize);
    2471             :     }
    2472             : 
    2473             :     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
    2474      238483 :     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
    2475             :       // X >= MIN --> true
    2476        2277 :       if (C1 == MinVal)
    2477          55 :         return DAG.getBoolConstant(true, dl, VT, OpVT);
    2478             : 
    2479        2222 :       if (!VT.isVector()) { // TODO: Support this for vectors.
    2480             :         // X >= C0 --> X > (C0 - 1)
    2481        2175 :         APInt C = C1 - 1;
    2482        2175 :         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
    2483        2175 :         if ((DCI.isBeforeLegalizeOps() ||
    2484        2175 :              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
    2485        2188 :             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
    2486          26 :                                   isLegalICmpImmediate(C.getSExtValue())))) {
    2487             :           return DAG.getSetCC(dl, VT, N0,
    2488             :                               DAG.getConstant(C, dl, N1.getValueType()),
    2489        2162 :                               NewCC);
    2490             :         }
    2491             :       }
    2492             :     }
    2493             : 
    2494      236266 :     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
    2495             :       // X <= MAX --> true
    2496        5997 :       if (C1 == MaxVal)
    2497           7 :         return DAG.getBoolConstant(true, dl, VT, OpVT);
    2498             : 
    2499             :       // X <= C0 --> X < (C0 + 1)
    2500        5990 :       if (!VT.isVector()) { // TODO: Support this for vectors.
    2501        5913 :         APInt C = C1 + 1;
    2502        5913 :         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
    2503        5913 :         if ((DCI.isBeforeLegalizeOps() ||
    2504        5913 :              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
    2505        5973 :             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
    2506         120 :                                   isLegalICmpImmediate(C.getSExtValue())))) {
    2507             :           return DAG.getSetCC(dl, VT, N0,
    2508             :                               DAG.getConstant(C, dl, N1.getValueType()),
    2509        5853 :                               NewCC);
    2510             :         }
    2511             :       }
    2512             :     }
    2513             : 
    2514      230406 :     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
    2515       28307 :       if (C1 == MinVal)
    2516          77 :         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
    2517             : 
    2518             :       // TODO: Support this for vectors after legalize ops.
    2519       28230 :       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
    2520             :         // Canonicalize setlt X, Max --> setne X, Max
    2521       28210 :         if (C1 == MaxVal)
    2522          24 :           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
    2523             : 
    2524             :         // If we have setult X, 1, turn it into seteq X, 0
    2525       28186 :         if (C1 == MinVal+1)
    2526             :           return DAG.getSetCC(dl, VT, N0,
    2527             :                               DAG.getConstant(MinVal, dl, N0.getValueType()),
    2528         480 :                               ISD::SETEQ);
    2529             :       }
    2530             :     }
    2531             : 
    2532      230065 :     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
    2533       18080 :       if (C1 == MaxVal)
    2534          13 :         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
    2535             : 
    2536             :       // TODO: Support this for vectors after legalize ops.
    2537       18067 :       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
    2538             :         // Canonicalize setgt X, Min --> setne X, Min
    2539       18046 :         if (C1 == MinVal)
    2540         147 :           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
    2541             : 
    2542             :         // If we have setugt X, Max-1, turn it into seteq X, Max
    2543       17899 :         if (C1 == MaxVal-1)
    2544             :           return DAG.getSetCC(dl, VT, N0,
    2545             :                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
    2546          10 :                               ISD::SETEQ);
    2547             :       }
    2548             :     }
    2549             : 
    2550             :     // If we have "setcc X, C0", check to see if we can shrink the immediate
    2551             :     // by changing cc.
    2552             :     // TODO: Support this for vectors after legalize ops.
    2553      229900 :     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
    2554             :       // SETUGT X, SINTMAX  -> SETLT X, 0
    2555      238849 :       if (Cond == ISD::SETUGT &&
    2556      250319 :           C1 == APInt::getSignedMaxValue(OperandBitSize))
    2557             :         return DAG.getSetCC(dl, VT, N0,
    2558             :                             DAG.getConstant(0, dl, N1.getValueType()),
    2559           6 :                             ISD::SETLT);
    2560             : 
    2561             :       // SETULT X, SINTMIN  -> SETGT X, -1
    2562      247394 :       if (Cond == ISD::SETULT &&
    2563      267337 :           C1 == APInt::getSignedMinValue(OperandBitSize)) {
    2564             :         SDValue ConstMinusOne =
    2565          84 :             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
    2566          84 :                             N1.getValueType());
    2567          84 :         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
    2568             :       }
    2569             :     }
    2570             :   }
    2571             : 
    2572             :   // Back to non-vector simplifications.
    2573             :   // TODO: Can we do these for vector splats?
    2574             :   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
    2575      221692 :     const APInt &C1 = N1C->getAPIntValue();
    2576             : 
    2577             :     // Fold bit comparisons when we can.
    2578           0 :     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
    2579      176519 :         (VT == N0.getValueType() ||
    2580      322804 :          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
    2581             :         N0.getOpcode() == ISD::AND) {
    2582        9811 :       auto &DL = DAG.getDataLayout();
    2583        9811 :       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
    2584             :         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
    2585       15698 :                                        !DCI.isBeforeLegalize());
    2586        7849 :         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
    2587             :           // Perform the xform if the AND RHS is a single bit.
    2588        2704 :           if (AndRHS->getAPIntValue().isPowerOf2()) {
    2589             :             return DAG.getNode(ISD::TRUNCATE, dl, VT,
    2590             :                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
    2591             :                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
    2592         961 :                                    ShiftTy)));
    2593             :           }
    2594       12847 :         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
    2595             :           // (X & 8) == 8  -->  (X & 8) >> 3
    2596             :           // Perform the xform if C1 is a single bit.
    2597          55 :           if (C1.isPowerOf2()) {
    2598             :             return DAG.getNode(ISD::TRUNCATE, dl, VT,
    2599             :                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
    2600             :                                       DAG.getConstant(C1.logBase2(), dl,
    2601           0 :                                                       ShiftTy)));
    2602             :           }
    2603             :         }
    2604             :       }
    2605             :     }
    2606             : 
    2607      441425 :     if (C1.getMinSignedBits() <= 64 &&
    2608      441388 :         !isLegalICmpImmediate(C1.getSExtValue())) {
    2609             :       // (X & -256) == 256 -> (X >> 8) == 1
    2610         290 :       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
    2611        1103 :           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
    2612          17 :         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
    2613          17 :           const APInt &AndRHSC = AndRHS->getAPIntValue();
    2614          53 :           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
    2615          12 :             unsigned ShiftBits = AndRHSC.countTrailingZeros();
    2616          12 :             auto &DL = DAG.getDataLayout();
    2617             :             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
    2618          24 :                                            !DCI.isBeforeLegalize());
    2619          24 :             EVT CmpTy = N0.getValueType();
    2620          12 :             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
    2621             :                                         DAG.getConstant(ShiftBits, dl,
    2622          12 :                                                         ShiftTy));
    2623          12 :             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
    2624          12 :             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
    2625             :           }
    2626             :         }
    2627        1086 :       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
    2628        1086 :                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
    2629         342 :         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
    2630             :         // X <  0x100000000 -> (X >> 32) <  1
    2631             :         // X >= 0x100000000 -> (X >> 32) >= 1
    2632             :         // X <= 0x0ffffffff -> (X >> 32) <  1
    2633             :         // X >  0x0ffffffff -> (X >> 32) >= 1
    2634             :         unsigned ShiftBits;
    2635             :         APInt NewC = C1;
    2636             :         ISD::CondCode NewCond = Cond;
    2637         342 :         if (AdjOne) {
    2638             :           ShiftBits = C1.countTrailingOnes();
    2639         194 :           NewC = NewC + 1;
    2640         194 :           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
    2641             :         } else {
    2642         148 :           ShiftBits = C1.countTrailingZeros();
    2643             :         }
    2644             :         NewC.lshrInPlace(ShiftBits);
    2645         528 :         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
    2646         372 :           isLegalICmpImmediate(NewC.getSExtValue())) {
    2647         142 :           auto &DL = DAG.getDataLayout();
    2648             :           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
    2649         284 :                                          !DCI.isBeforeLegalize());
    2650         284 :           EVT CmpTy = N0.getValueType();
    2651             :           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
    2652         142 :                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
    2653         142 :           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
    2654         142 :           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
    2655             :         }
    2656             :       }
    2657             :     }
    2658             :   }
    2659             : 
    2660      378238 :   if (isa<ConstantFPSDNode>(N0.getNode())) {
    2661             :     // Constant fold or commute setcc.
    2662         143 :     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
    2663         143 :     if (O.getNode()) return O;
    2664             :   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
    2665             :     // If the RHS of an FP comparison is a constant, simplify it away in
    2666             :     // some cases.
    2667       14062 :     if (CFP->getValueAPF().isNaN()) {
    2668             :       // If an operand is known to be a nan, we can fold it.
    2669           1 :       switch (ISD::getUnorderedFlavor(Cond)) {
    2670           0 :       default: llvm_unreachable("Unknown flavor!");
    2671           0 :       case 0:  // Known false.
    2672           0 :         return DAG.getBoolConstant(false, dl, VT, OpVT);
    2673           1 :       case 1:  // Known true.
    2674           1 :         return DAG.getBoolConstant(true, dl, VT, OpVT);
    2675           0 :       case 2:  // Undefined.
    2676           0 :         return DAG.getUNDEF(VT);
    2677             :       }
    2678             :     }
    2679             : 
    2680             :     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
    2681             :     // constant if knowing that the operand is non-nan is enough.  We prefer to
    2682             :     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
    2683             :     // materialize 0.0.
    2684        7030 :     if (Cond == ISD::SETO || Cond == ISD::SETUO)
    2685         107 :       return DAG.getSetCC(dl, VT, N0, N0, Cond);
    2686             : 
    2687             :     // setcc (fneg x), C -> setcc swap(pred) x, -C
    2688        6923 :     if (N0.getOpcode() == ISD::FNEG) {
    2689          61 :       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
    2690         122 :       if (DCI.isBeforeLegalizeOps() ||
    2691             :           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
    2692         122 :         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
    2693         122 :         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
    2694             :       }
    2695             :     }
    2696             : 
    2697             :     // If the condition is not legal, see if we can find an equivalent one
    2698             :     // which is legal.
    2699        6862 :     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
    2700             :       // If the comparison was an awkward floating-point == or != and one of
    2701             :       // the comparison operands is infinity or negative infinity, convert the
    2702             :       // condition to a less-awkward <= or >=.
    2703        1828 :       if (CFP->getValueAPF().isInfinity()) {
    2704         258 :         if (CFP->getValueAPF().isNegative()) {
    2705           7 :           if (Cond == ISD::SETOEQ &&
    2706             :               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
    2707           2 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
    2708           5 :           if (Cond == ISD::SETUEQ &&
    2709             :               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
    2710           0 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
    2711           5 :           if (Cond == ISD::SETUNE &&
    2712             :               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
    2713           5 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
    2714           0 :           if (Cond == ISD::SETONE &&
    2715             :               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
    2716           0 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
    2717             :         } else {
    2718         251 :           if (Cond == ISD::SETOEQ &&
    2719             :               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
    2720         135 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
    2721         116 :           if (Cond == ISD::SETUEQ &&
    2722             :               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
    2723           0 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
    2724         116 :           if (Cond == ISD::SETUNE &&
    2725             :               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
    2726         116 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
    2727           0 :           if (Cond == ISD::SETONE &&
    2728             :               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
    2729           0 :             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
    2730             :         }
    2731             :       }
    2732             :     }
    2733             :   }
    2734             : 
    2735      377810 :   if (N0 == N1) {
    2736             :     // The sext(setcc()) => setcc() optimization relies on the appropriate
    2737             :     // constant being emitted.
    2738             : 
    2739             :     bool EqTrue = ISD::isTrueWhenEqual(Cond);
    2740             : 
    2741             :     // We can always fold X == X for integer setcc's.
    2742        1044 :     if (N0.getValueType().isInteger())
    2743         109 :       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
    2744             : 
    2745             :     unsigned UOF = ISD::getUnorderedFlavor(Cond);
    2746         935 :     if (UOF == 2)   // FP operators that are undefined on NaNs.
    2747           0 :       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
    2748         935 :     if (UOF == unsigned(EqTrue))
    2749          19 :       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
    2750             :     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
    2751             :     // if it is not already.
    2752         916 :     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
    2753         916 :     if (NewCond != Cond &&
    2754         224 :         (DCI.isBeforeLegalizeOps() ||
    2755             :          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
    2756          46 :       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
    2757             :   }
    2758             : 
    2759      377636 :   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
    2760      639490 :       N0.getValueType().isInteger()) {
    2761      261465 :     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
    2762             :         N0.getOpcode() == ISD::XOR) {
    2763             :       // Simplify (X+Y) == (X+Z) -->  Y == Z
    2764        6357 :       if (N0.getOpcode() == N1.getOpcode()) {
    2765          26 :         if (N0.getOperand(0) == N1.getOperand(0))
    2766           4 :           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
    2767          22 :         if (N0.getOperand(1) == N1.getOperand(1))
    2768           0 :           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
    2769          22 :         if (isCommutativeBinOp(N0.getOpcode())) {
    2770             :           // If X op Y == Y op X, try other combinations.
    2771          32 :           if (N0.getOperand(0) == N1.getOperand(1))
    2772             :             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
    2773           0 :                                 Cond);
    2774          16 :           if (N0.getOperand(1) == N1.getOperand(0))
    2775             :             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
    2776           0 :                                 Cond);
    2777             :         }
    2778             :       }
    2779             : 
    2780             :       // If RHS is a legal immediate value for a compare instruction, we need
    2781             :       // to be careful about increasing register pressure needlessly.
    2782             :       bool LegalRHSImm = false;
    2783             : 
    2784             :       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
    2785        4810 :         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
    2786             :           // Turn (X+C1) == C2 --> X == C2-C1
    2787        3215 :           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
    2788          53 :             return DAG.getSetCC(dl, VT, N0.getOperand(0),
    2789         159 :                                 DAG.getConstant(RHSC->getAPIntValue()-
    2790             :                                                 LHSR->getAPIntValue(),
    2791         106 :                                 dl, N0.getValueType()), Cond);
    2792             :           }
    2793             : 
    2794             :           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
    2795        3162 :           if (N0.getOpcode() == ISD::XOR)
    2796             :             // If we know that all of the inverted bits are zero, don't bother
    2797             :             // performing the inversion.
    2798         356 :             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
    2799             :               return
    2800          18 :                 DAG.getSetCC(dl, VT, N0.getOperand(0),
    2801          54 :                              DAG.getConstant(LHSR->getAPIntValue() ^
    2802             :                                                RHSC->getAPIntValue(),
    2803             :                                              dl, N0.getValueType()),
    2804          36 :                              Cond);
    2805             :         }
    2806             : 
    2807             :         // Turn (C1-X) == C2 --> X == C1-C2
    2808        4739 :         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
    2809          59 :           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
    2810             :             return
    2811           3 :               DAG.getSetCC(dl, VT, N0.getOperand(1),
    2812           9 :                            DAG.getConstant(SUBC->getAPIntValue() -
    2813             :                                              RHSC->getAPIntValue(),
    2814             :                                            dl, N0.getValueType()),
    2815           6 :                            Cond);
    2816             :           }
    2817             :         }
    2818             : 
    2819             :         // Could RHSC fold directly into a compare?
    2820        9472 :         if (RHSC->getValueType(0).getSizeInBits() <= 64)
    2821        9472 :           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
    2822             :       }
    2823             : 
    2824             :       // Simplify (X+Z) == X -->  Z == 0
    2825             :       // Don't do this if X is an immediate that can fold into a cmp
    2826             :       // instruction and X+Z has other uses. It could be an induction variable
    2827             :       // chain, and the transform would increase register pressure.
    2828        4736 :       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
    2829        4360 :         if (N0.getOperand(0) == N1)
    2830          32 :           return DAG.getSetCC(dl, VT, N0.getOperand(1),
    2831          64 :                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
    2832        2148 :         if (N0.getOperand(1) == N1) {
    2833          28 :           if (isCommutativeBinOp(N0.getOpcode()))
    2834           2 :             return DAG.getSetCC(dl, VT, N0.getOperand(0),
    2835             :                                 DAG.getConstant(0, dl, N0.getValueType()),
    2836           4 :                                 Cond);
    2837          12 :           if (N0.getNode()->hasOneUse()) {
    2838             :             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
    2839           2 :             auto &DL = DAG.getDataLayout();
    2840             :             // (Z-X) == X  --> Z == X<<1
    2841             :             SDValue SH = DAG.getNode(
    2842             :                 ISD::SHL, dl, N1.getValueType(), N1,
    2843             :                 DAG.getConstant(1, dl,
    2844             :                                 getShiftAmountTy(N1.getValueType(), DL,
    2845           4 :                                                  !DCI.isBeforeLegalize())));
    2846           2 :             if (!DCI.isCalledByLegalizer())
    2847           2 :               DCI.AddToWorklist(SH.getNode());
    2848           4 :             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
    2849             :           }
    2850             :         }
    2851             :       }
    2852             :     }
    2853             : 
    2854      261351 :     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
    2855             :         N1.getOpcode() == ISD::XOR) {
    2856             :       // Simplify  X == (X+Z) -->  Z == 0
    2857        3932 :       if (N1.getOperand(0) == N0)
    2858             :         return DAG.getSetCC(dl, VT, N1.getOperand(1),
    2859           1 :                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
    2860        3931 :       if (N1.getOperand(1) == N0) {
    2861          15 :         if (isCommutativeBinOp(N1.getOpcode()))
    2862             :           return DAG.getSetCC(dl, VT, N1.getOperand(0),
    2863           0 :                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
    2864             :         if (N1.getNode()->hasOneUse()) {
    2865             :           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
    2866           3 :           auto &DL = DAG.getDataLayout();
    2867             :           // X == (Z-X)  --> X<<1 == Z
    2868             :           SDValue SH = DAG.getNode(
    2869             :               ISD::SHL, dl, N1.getValueType(), N0,
    2870             :               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
    2871           6 :                                                       !DCI.isBeforeLegalize())));
    2872           3 :           if (!DCI.isCalledByLegalizer())
    2873           3 :             DCI.AddToWorklist(SH.getNode());
    2874           3 :           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
    2875             :         }
    2876             :       }
    2877             :     }
    2878             : 
    2879      261347 :     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
    2880         268 :       return V;
    2881             :   }
    2882             : 
    2883             :   // Fold away ALL boolean setcc's.
    2884      377250 :   SDValue Temp;
    2885      757006 :   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
    2886         133 :     EVT OpVT = N0.getValueType();
    2887         133 :     switch (Cond) {
    2888           0 :     default: llvm_unreachable("Unknown integer setcc!");
    2889             :     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
    2890          44 :       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
    2891          44 :       N0 = DAG.getNOT(dl, Temp, OpVT);
    2892          44 :       if (!DCI.isCalledByLegalizer())
    2893          44 :         DCI.AddToWorklist(Temp.getNode());
    2894             :       break;
    2895             :     case ISD::SETNE:  // X != Y   -->  (X^Y)
    2896          38 :       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
    2897          38 :       break;
    2898          15 :     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
    2899             :     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
    2900          15 :       Temp = DAG.getNOT(dl, N0, OpVT);
    2901          15 :       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
    2902          15 :       if (!DCI.isCalledByLegalizer())
    2903          15 :         DCI.AddToWorklist(Temp.getNode());
    2904             :       break;
    2905          18 :     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
    2906             :     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
    2907          18 :       Temp = DAG.getNOT(dl, N1, OpVT);
    2908          18 :       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
    2909          18 :       if (!DCI.isCalledByLegalizer())
    2910          18 :         DCI.AddToWorklist(Temp.getNode());
    2911             :       break;
    2912           9 :     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
    2913             :     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
    2914           9 :       Temp = DAG.getNOT(dl, N0, OpVT);
    2915           9 :       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
    2916           9 :       if (!DCI.isCalledByLegalizer())
    2917           9 :         DCI.AddToWorklist(Temp.getNode());
    2918             :       break;
    2919           9 :     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
    2920             :     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
    2921           9 :       Temp = DAG.getNOT(dl, N1, OpVT);
    2922           9 :       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
    2923           9 :       break;
    2924             :     }
    2925         133 :     if (VT.getScalarType() != MVT::i1) {
    2926           6 :       if (!DCI.isCalledByLegalizer())
    2927           6 :         DCI.AddToWorklist(N0.getNode());
    2928             :       // FIXME: If running after legalize, we probably can't do this.
    2929           6 :       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
    2930           6 :       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
    2931             :     }
    2932         133 :     return N0;
    2933             :   }
    2934             : 
    2935             :   // Could not fold it.
    2936      377117 :   return SDValue();
    2937             : }
    2938             : 
    2939             : /// Returns true (and the GlobalValue and the offset) if the node is a
    2940             : /// GlobalAddress + offset.
    2941    22333204 : bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
    2942             :                                     int64_t &Offset) const {
    2943             :   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
    2944     2814866 :     GA = GASD->getGlobal();
    2945     2814866 :     Offset += GASD->getOffset();
    2946     2814866 :     return true;
    2947             :   }
    2948             : 
    2949    19518338 :   if (N->getOpcode() == ISD::ADD) {
    2950     8583611 :     SDValue N1 = N->getOperand(0);
    2951     8583611 :     SDValue N2 = N->getOperand(1);
    2952     8583611 :     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
    2953             :       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
    2954     1933819 :         Offset += V->getSExtValue();
    2955     1933819 :         return true;
    2956             :       }
    2957     6639692 :     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
    2958             :       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
    2959           0 :         Offset += V->getSExtValue();
    2960           0 :         return true;
    2961             :       }
    2962             :     }
    2963             :   }
    2964             : 
    2965             :   return false;
    2966             : }
    2967             : 
    2968       44070 : SDValue TargetLowering::PerformDAGCombine(SDNode *N,
    2969             :                                           DAGCombinerInfo &DCI) const {
    2970             :   // Default implementation: no optimization.
    2971       44070 :   return SDValue();
    2972             : }
    2973             : 
    2974             : //===----------------------------------------------------------------------===//
    2975             : //  Inline Assembler Implementation Methods
    2976             : //===----------------------------------------------------------------------===//
    2977             : 
    2978             : TargetLowering::ConstraintType
    2979      478537 : TargetLowering::getConstraintType(StringRef Constraint) const {
    2980      478537 :   unsigned S = Constraint.size();
    2981             : 
    2982      478537 :   if (S == 1) {
    2983       30682 :     switch (Constraint[0]) {
    2984             :     default: break;
    2985             :     case 'r': return C_RegisterClass;
    2986             :     case 'm':    // memory
    2987             :     case 'o':    // offsetable
    2988             :     case 'V':    // not offsetable
    2989             :       return C_Memory;
    2990             :     case 'i':    // Simple Integer or Relocatable Constant
    2991             :     case 'n':    // Simple Integer
    2992             :     case 'E':    // Floating Point Constant
    2993             :     case 'F':    // Floating Point Constant
    2994             :     case 's':    // Relocatable Constant
    2995             :     case 'p':    // Address.
    2996             :     case 'X':    // Allow ANY value.
    2997             :     case 'I':    // Target registers.
    2998             :     case 'J':
    2999             :     case 'K':
    3000             :     case 'L':
    3001             :     case 'M':
    3002             :     case 'N':
    3003             :     case 'O':
    3004             :     case 'P':
    3005             :     case '<':
    3006             :     case '>':
    3007             :       return C_Other;
    3008             :     }
    3009             :   }
    3010             : 
    3011      449135 :   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
    3012      450770 :     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
    3013             :       return C_Memory;
    3014      444657 :     return C_Register;
    3015             :   }
    3016             :   return C_Unknown;
    3017             : }
    3018             : 
    3019             : /// Try to replace an X constraint, which matches anything, with another that
    3020             : /// has more specific requirements based on the type of the corresponding
    3021             : /// operand.
    3022         123 : const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
    3023         123 :   if (ConstraintVT.isInteger())
    3024             :     return "r";
    3025          39 :   if (ConstraintVT.isFloatingPoint())
    3026          36 :     return "f";      // works for many targets
    3027             :   return nullptr;
    3028             : }
    3029             : 
    3030             : /// Lower the specified operand into the Ops vector.
    3031             : /// If it is invalid, don't add anything to Ops.
    3032         221 : void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
    3033             :                                                   std::string &Constraint,
    3034             :                                                   std::vector<SDValue> &Ops,
    3035             :                                                   SelectionDAG &DAG) const {
    3036             : 
    3037         221 :   if (Constraint.length() > 1) return;
    3038             : 
    3039         221 :   char ConstraintLetter = Constraint[0];
    3040         221 :   switch (ConstraintLetter) {
    3041             :   default: break;
    3042          24 :   case 'X':     // Allows any operand; labels (basic block) use this.
    3043          48 :     if (Op.getOpcode() == ISD::BasicBlock) {
    3044           2 :       Ops.push_back(Op);
    3045           2 :       return;
    3046             :     }
    3047             :     LLVM_FALLTHROUGH;
    3048             :   case 'i':    // Simple Integer or Relocatable Constant
    3049             :   case 'n':    // Simple Integer
    3050             :   case 's': {  // Relocatable Constant
    3051             :     // These operands are interested in values of the form (GV+C), where C may
    3052             :     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
    3053             :     // is possible and fine if either GV or C are missing.
    3054             :     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
    3055             :     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
    3056             : 
    3057             :     // If we have "(add GV, C)", pull out GV/C
    3058         165 :     if (Op.getOpcode() == ISD::ADD) {
    3059             :       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    3060             :       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
    3061           4 :       if (!C || !GA) {
    3062             :         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
    3063             :         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
    3064             :       }
    3065           4 :       if (!C || !GA) {
    3066             :         C = nullptr;
    3067             :         GA = nullptr;
    3068             :       }
    3069             :     }
    3070             : 
    3071             :     // If we find a valid operand, map to the TargetXXX version so that the
    3072             :     // value itself doesn't get selected.
    3073         165 :     if (GA) {   // Either &GV   or   &GV+C
    3074          22 :       if (ConstraintLetter != 'n') {
    3075          21 :         int64_t Offs = GA->getOffset();
    3076          25 :         if (C) Offs += C->getZExtValue();
    3077          21 :         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
    3078          42 :                                                  C ? SDLoc(C) : SDLoc(),
    3079          42 :                                                  Op.getValueType(), Offs));
    3080             :       }
    3081          22 :       return;
    3082             :     }
    3083         143 :     if (C) {   // just C, no GV.
    3084             :       // Simple constants are not allowed for 's'.
    3085         125 :       if (ConstraintLetter != 's') {
    3086             :         // gcc prints these as sign extended.  Sign extend value to 64 bits
    3087             :         // now; without this it would get ZExt'd later in
    3088             :         // ScheduleDAGSDNodes::EmitNode, which is very generic.
    3089         250 :         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
    3090         250 :                                             SDLoc(C), MVT::i64));
    3091             :       }
    3092         125 :       return;
    3093             :     }
    3094             :     break;
    3095             :   }
    3096             :   }
    3097             : }
    3098             : 
    3099             : std::pair<unsigned, const TargetRegisterClass *>
    3100      103952 : TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
    3101             :                                              StringRef Constraint,
    3102             :                                              MVT VT) const {
    3103      103952 :   if (Constraint.empty() || Constraint[0] != '{')
    3104         141 :     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
    3105             :   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
    3106             : 
    3107             :   // Remove the braces from around the name.
    3108      103811 :   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
    3109             : 
    3110             :   std::pair<unsigned, const TargetRegisterClass*> R =
    3111             :     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
    3112             : 
    3113             :   // Figure out which register class contains this reg.
    3114    10793168 :   for (const TargetRegisterClass *RC : RI->regclasses()) {
    3115             :     // If none of the value types for this register class are valid, we
    3116             :     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
    3117    10690261 :     if (!isLegalRC(*RI, *RC))
    3118             :       continue;
    3119             : 
    3120    82981260 :     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
    3121    82981260 :          I != E; ++I) {
    3122   148557767 :       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
    3123             :         std::pair<unsigned, const TargetRegisterClass*> S =
    3124      513957 :           std::make_pair(*I, RC);
    3125             : 
    3126             :         // If this register class has the requested value type, return it,
    3127             :         // otherwise keep searching and return the first class found
    3128             :         // if no other is found which explicitly has the requested type.
    3129      513957 :         if (RI->isTypeLegalForClass(*RC, VT))
    3130         904 :           return S;
    3131      513053 :         if (!R.second)
    3132             :           R = S;
    3133             :       }
    3134             :     }
    3135             :   }
    3136             : 
    3137      102907 :   return R;
    3138             : }
    3139             : 
    3140             : //===----------------------------------------------------------------------===//
    3141             : // Constraint Selection.
    3142             : 
    3143             : /// Return true of this is an input operand that is a matching constraint like
    3144             : /// "4".
    3145      211041 : bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
    3146             :   assert(!ConstraintCode.empty() && "No known constraint!");
    3147      211041 :   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
    3148             : }
    3149             : 
    3150             : /// If this is an input matching constraint, this method returns the output
    3151             : /// operand it matches.
    3152        1485 : unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
    3153             :   assert(!ConstraintCode.empty() && "No known constraint!");
    3154        1485 :   return atoi(ConstraintCode.c_str());
    3155             : }
    3156             : 
    3157             : /// Split up the constraint string from the inline assembly value into the
    3158             : /// specific constraints and their prefixes, and also tie in the associated
    3159             : /// operand values.
    3160             : /// If this returns an empty vector, and if the constraint string itself
    3161             : /// isn't empty, there was an error parsing.
    3162             : TargetLowering::AsmOperandInfoVector
    3163       47955 : TargetLowering::ParseConstraints(const DataLayout &DL,
    3164             :                                  const TargetRegisterInfo *TRI,
    3165             :                                  ImmutableCallSite CS) const {
    3166             :   /// Information about all of the constraints.
    3167             :   AsmOperandInfoVector ConstraintOperands;
    3168             :   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
    3169             :   unsigned maCount = 0; // Largest number of multiple alternative constraints.
    3170             : 
    3171             :   // Do a prepass over the constraints, canonicalizing them, and building up the
    3172             :   // ConstraintOperands list.
    3173             :   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
    3174             :   unsigned ResNo = 0;   // ResNo - The result number of the next output.
    3175             : 
    3176      251586 :   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
    3177      203631 :     ConstraintOperands.emplace_back(std::move(CI));
    3178             :     AsmOperandInfo &OpInfo = ConstraintOperands.back();
    3179             : 
    3180             :     // Update multiple alternative constraint count.
    3181      407262 :     if (OpInfo.multipleAlternatives.size() > maCount)
    3182         509 :       maCount = OpInfo.multipleAlternatives.size();
    3183             : 
    3184      203631 :     OpInfo.ConstraintVT = MVT::Other;
    3185             : 
    3186             :     // Compute the value type for each operand.
    3187      203631 :     switch (OpInfo.Type) {
    3188       12827 :     case InlineAsm::isOutput:
    3189             :       // Indirect outputs just consume an argument.
    3190       12827 :       if (OpInfo.isIndirect) {
    3191         832 :         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
    3192         832 :         break;
    3193             :       }
    3194             : 
    3195             :       // The return value of the call is this value.  As such, there is no
    3196             :       // corresponding argument.
    3197             :       assert(!CS.getType()->isVoidTy() &&
    3198             :              "Bad inline asm!");
    3199             :       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
    3200             :         OpInfo.ConstraintVT =
    3201        1874 :             getSimpleValueType(DL, STy->getElementType(ResNo));
    3202             :       } else {
    3203             :         assert(ResNo == 0 && "Asm only has one result!");
    3204       10121 :         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
    3205             :       }
    3206       11995 :       ++ResNo;
    3207       11995 :       break;
    3208       33330 :     case InlineAsm::isInput:
    3209       33330 :       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
    3210       33330 :       break;
    3211             :     case InlineAsm::isClobber:
    3212             :       // Nothing to do.
    3213             :       break;
    3214             :     }
    3215             : 
    3216      203631 :     if (OpInfo.CallOperandVal) {
    3217       34162 :       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
    3218       34162 :       if (OpInfo.isIndirect) {
    3219             :         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
    3220             :         if (!PtrTy)
    3221           0 :           report_fatal_error("Indirect operand for inline asm not a pointer!");
    3222        9320 :         OpTy = PtrTy->getElementType();
    3223             :       }
    3224             : 
    3225             :       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
    3226             :       if (StructType *STy = dyn_cast<StructType>(OpTy))
    3227          45 :         if (STy->getNumElements() == 1)
    3228          26 :           OpTy = STy->getElementType(0);
    3229             : 
    3230             :       // If OpTy is not a single value, it may be a struct/union that we
    3231             :       // can tile with integers.
    3232       34162 :       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
    3233          59 :         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
    3234          59 :         switch (BitSize) {
    3235             :         default: break;
    3236          32 :         case 1:
    3237             :         case 8:
    3238             :         case 16:
    3239             :         case 32:
    3240             :         case 64:
    3241             :         case 128:
    3242             :           OpInfo.ConstraintVT =
    3243          32 :             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
    3244          32 :           break;
    3245             :         }
    3246             :       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
    3247             :         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
    3248        1425 :         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
    3249             :       } else {
    3250       32678 :         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
    3251             :       }
    3252             :     }
    3253             :   }
    3254             : 
    3255             :   // If we have multiple alternative constraints, select the best alternative.
    3256       47955 :   if (!ConstraintOperands.empty()) {
    3257       31761 :     if (maCount) {
    3258             :       unsigned bestMAIndex = 0;
    3259             :       int bestWeight = -1;
    3260             :       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
    3261             :       int weight = -1;
    3262             :       unsigned maIndex;
    3263             :       // Compute the sums of the weights for each alternative, keeping track
    3264             :       // of the best (highest weight) one so far.
    3265        1581 :       for (maIndex = 0; maIndex < maCount; ++maIndex) {
    3266             :         int weightSum = 0;
    3267        5003 :         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
    3268        3931 :             cIndex != eIndex; ++cIndex) {
    3269        3128 :           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
    3270        3128 :           if (OpInfo.Type == InlineAsm::isClobber)
    3271             :             continue;
    3272             : 
    3273             :           // If this is an output operand with a matching input operand,
    3274             :           // look up the matching input. If their types mismatch, e.g. one
    3275             :           // is an integer, the other is floating point, or their sizes are
    3276             :           // different, flag it as an maCantMatch.
    3277        1935 :           if (OpInfo.hasMatchingInput()) {
    3278         156 :             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
    3279         156 :             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
    3280             :               if ((OpInfo.ConstraintVT.isInteger() !=
    3281           8 :                    Input.ConstraintVT.isInteger()) ||
    3282           8 :                   (OpInfo.ConstraintVT.getSizeInBits() !=
    3283           8 :                    Input.ConstraintVT.getSizeInBits())) {
    3284             :                 weightSum = -1;  // Can't match.
    3285             :                 break;
    3286             :               }
    3287             :             }
    3288             :           }
    3289        1927 :           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
    3290        1927 :           if (weight == -1) {
    3291             :             weightSum = -1;
    3292             :             break;
    3293             :           }
    3294        1666 :           weightSum += weight;
    3295             :         }
    3296             :         // Update best.
    3297        1072 :         if (weightSum > bestWeight) {
    3298             :           bestWeight = weightSum;
    3299             :           bestMAIndex = maIndex;
    3300             :         }
    3301             :       }
    3302             : 
    3303             :       // Now select chosen alternative in each constraint.
    3304        2876 :       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
    3305        2367 :           cIndex != eIndex; ++cIndex) {
    3306        1858 :         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
    3307        1858 :         if (cInfo.Type == InlineAsm::isClobber)
    3308             :           continue;
    3309        1001 :         cInfo.selectAlternative(bestMAIndex);
    3310             :       }
    3311             :     }
    3312             :   }
    3313             : 
    3314             :   // Check and hook up tied operands, choose constraint code to use.
    3315      299541 :   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
    3316      251586 :       cIndex != eIndex; ++cIndex) {
    3317      203631 :     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
    3318             : 
    3319             :     // If this is an output operand with a matching input operand, look up the
    3320             :     // matching input. If their types mismatch, e.g. one is an integer, the
    3321             :     // other is floating point, or their sizes are different, flag it as an
    3322             :     // error.
    3323      203631 :     if (OpInfo.hasMatchingInput()) {
    3324        1004 :       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
    3325             : 
    3326        1004 :       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
    3327             :         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
    3328             :             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
    3329          78 :                                          OpInfo.ConstraintVT);
    3330             :         std::pair<unsigned, const TargetRegisterClass *> InputRC =
    3331             :             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
    3332          78 :                                          Input.ConstraintVT);
    3333          39 :         if ((OpInfo.ConstraintVT.isInteger() !=
    3334          78 :              Input.ConstraintVT.isInteger()) ||
    3335          39 :             (MatchRC.second != InputRC.second)) {
    3336           0 :           report_fatal_error("Unsupported asm: input constraint"
    3337             :                              " with a matching output constraint of"
    3338             :                              " incompatible type!");
    3339             :         }
    3340             :       }
    3341             :     }
    3342             :   }
    3343             : 
    3344       47955 :   return ConstraintOperands;
    3345             : }
    3346             : 
    3347             : /// Return an integer indicating how general CT is.
    3348             : static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
    3349             :   switch (CT) {
    3350             :   case TargetLowering::C_Other:
    3351             :   case TargetLowering::C_Unknown:
    3352             :     return 0;
    3353             :   case TargetLowering::C_Register:
    3354             :     return 1;
    3355             :   case TargetLowering::C_RegisterClass:
    3356             :     return 2;
    3357             :   case TargetLowering::C_Memory:
    3358             :     return 3;
    3359             :   }
    3360           0 :   llvm_unreachable("Invalid constraint type");
    3361             : }
    3362             : 
    3363             : /// Examine constraint type and operand type and determine a weight value.
    3364             : /// This object must already have been set up with the operand type
    3365             : /// and the current alternative constraint selected.
    3366             : TargetLowering::ConstraintWeight
    3367        1927 :   TargetLowering::getMultipleConstraintMatchWeight(
    3368             :     AsmOperandInfo &info, int maIndex) const {
    3369             :   InlineAsm::ConstraintCodeVector *rCodes;
    3370        3854 :   if (maIndex >= (int)info.multipleAlternatives.size())
    3371          77 :     rCodes = &info.Codes;
    3372             :   else
    3373        3700 :     rCodes = &info.multipleAlternatives[maIndex].Codes;
    3374             :   ConstraintWeight BestWeight = CW_Invalid;
    3375             : 
    3376             :   // Loop over the options, keeping track of the most general one.
    3377        5994 :   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
    3378             :     ConstraintWeight weight =
    3379        4280 :       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
    3380        2140 :     if (weight > BestWeight)
    3381             :       BestWeight = weight;
    3382             :   }
    3383             : 
    3384        1927 :   return BestWeight;
    3385             : }
    3386             : 
    3387             : /// Examine constraint type and operand type and determine a weight value.
    3388             : /// This object must already have been set up with the operand type
    3389             : /// and the current alternative constraint selected.
    3390             : TargetLowering::ConstraintWeight
    3391        1516 :   TargetLowering::getSingleConstraintMatchWeight(
    3392             :     AsmOperandInfo &info, const char *constraint) const {
    3393             :   ConstraintWeight weight = CW_Invalid;
    3394        1516 :   Value *CallOperandVal = info.CallOperandVal;
    3395             :     // If we don't have a value, we can't do a match,
    3396             :     // but allow it at the lowest weight.
    3397        1516 :   if (!CallOperandVal)
    3398             :     return CW_Default;
    3399             :   // Look at the constraint type.
    3400        1426 :   switch (*constraint) {
    3401         111 :     case 'i': // immediate integer.
    3402             :     case 'n': // immediate integer with a known value.
    3403         111 :       if (isa<ConstantInt>(CallOperandVal))
    3404             :         weight = CW_Constant;
    3405             :       break;
    3406           0 :     case 's': // non-explicit intregal immediate.
    3407             :       if (isa<GlobalValue>(CallOperandVal))
    3408             :         weight = CW_Constant;
    3409             :       break;
    3410           0 :     case 'E': // immediate float if host format.
    3411             :     case 'F': // immediate float.
    3412           0 :       if (isa<ConstantFP>(CallOperandVal))
    3413             :         weight = CW_Constant;
    3414             :       break;
    3415             :     case '<': // memory operand with autodecrement.
    3416             :     case '>': // memory operand with autoincrement.
    3417             :     case 'm': // memory operand.
    3418             :     case 'o': // offsettable memory operand
    3419             :     case 'V': // non-offsettable memory operand
    3420             :       weight = CW_Memory;
    3421             :       break;
    3422         664 :     case 'r': // general register.
    3423             :     case 'g': // general register, memory operand or immediate integer.
    3424             :               // note: Clang converts "g" to "imr".
    3425        1328 :       if (CallOperandVal->getType()->isIntegerTy())
    3426             :         weight = CW_Register;
    3427             :       break;
    3428         221 :     case 'X': // any operand.
    3429             :     default:
    3430             :       weight = CW_Default;
    3431         221 :       break;
    3432             :   }
    3433             :   return weight;
    3434             : }
    3435             : 
    3436             : /// If there are multiple different constraints that we could pick for this
    3437             : /// operand (e.g. "imr") try to pick the 'best' one.
    3438             : /// This is somewhat tricky: constraints fall into four classes:
    3439             : ///    Other         -> immediates and magic values
    3440             : ///    Register      -> one specific register
    3441             : ///    RegisterClass -> a group of regs
    3442             : ///    Memory        -> memory
    3443             : /// Ideally, we would pick the most specific constraint possible: if we have
    3444             : /// something that fits into a register, we would pick it.  The problem here
    3445             : /// is that if we have something that could either be in a register or in
    3446             : /// memory that use of the register could cause selection of *other*
    3447             : /// operands to fail: they might only succeed if we pick memory.  Because of
    3448             : /// this the heuristic we use is:
    3449             : ///
    3450             : ///  1) If there is an 'other' constraint, and if the operand is valid for
    3451             : ///     that constraint, use it.  This makes us take advantage of 'i'
    3452             : ///     constraints when available.
    3453             : ///  2) Otherwise, pick the most general constraint present.  This prefers
    3454             : ///     'm' over 'r', for example.
    3455             : ///
    3456        9768 : static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
    3457             :                              const TargetLowering &TLI,
    3458             :                              SDValue Op, SelectionDAG *DAG) {
    3459             :   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
    3460             :   unsigned BestIdx = 0;
    3461             :   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
    3462             :   int BestGenerality = -1;
    3463             : 
    3464             :   // Loop over the options, keeping track of the most general one.
    3465      165364 :   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
    3466             :     TargetLowering::ConstraintType CType =
    3467      291792 :       TLI.getConstraintType(OpInfo.Codes[i]);
    3468             : 
    3469             :     // If this is an 'other' constraint, see if the operand is valid for it.
    3470             :     // For example, on X86 we might have an 'rI' constraint.  If the operand
    3471             :     // is an integer in the range [0..31] we want to use I (saving a load
    3472             :     // of a register), otherwise we must use 'r'.
    3473      145896 :     if (CType == TargetLowering::C_Other && Op.getNode()) {
    3474             :       assert(OpInfo.Codes[i].size() == 1 &&
    3475             :              "Unhandled multi-letter 'other' constraint");
    3476             :       std::vector<SDValue> ResultOps;
    3477         187 :       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
    3478         187 :                                        ResultOps, *DAG);
    3479         187 :       if (!ResultOps.empty()) {
    3480             :         BestType = CType;
    3481             :         BestIdx = i;
    3482             :         break;
    3483             :       }
    3484             :     }
    3485             : 
    3486             :     // Things with matching constraints can only be registers, per gcc
    3487             :     // documentation.  This mainly affects "g" constraints.
    3488      145828 :     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
    3489             :       continue;
    3490             : 
    3491             :     // This constraint letter is more general than the previous one, use it.
    3492      145795 :     int Generality = getConstraintGenerality(CType);
    3493      145795 :     if (Generality > BestGenerality) {
    3494             :       BestType = CType;
    3495             :       BestIdx = i;
    3496             :       BestGenerality = Generality;
    3497             :     }
    3498             :   }
    3499             : 
    3500       19536 :   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
    3501        9768 :   OpInfo.ConstraintType = BestType;
    3502        9768 : }
    3503             : 
    3504             : /// Determines the constraint code and constraint type to use for the specific
    3505             : /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
    3506      256814 : void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
    3507             :                                             SDValue Op,
    3508             :                                             SelectionDAG *DAG) const {
    3509             :   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
    3510             : 
    3511             :   // Single-letter constraints ('r') are very common.
    3512      513628 :   if (OpInfo.Codes.size() == 1) {
    3513      247046 :     OpInfo.ConstraintCode = OpInfo.Codes[0];
    3514      494092 :     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
    3515             :   } else {
    3516        9768 :     ChooseConstraint(OpInfo, *this, Op, DAG);
    3517             :   }
    3518             : 
    3519             :   // 'X' matches anything.
    3520      256814 :   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
    3521             :     // Labels and constants are handled elsewhere ('X' is the only thing
    3522             :     // that matches labels).  For Functions, the type here is the type of
    3523             :     // the result, which is not what we want to look at; leave them alone.
    3524             :     Value *v = OpInfo.CallOperandVal;
    3525         266 :     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
    3526             :       OpInfo.CallOperandVal = v;
    3527             :       return;
    3528             :     }
    3529             : 
    3530             :     // Otherwise, try to resolve it to something we know about by looking at
    3531             :     // the actual operand type.
    3532         388 :     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
    3533             :       OpInfo.ConstraintCode = Repl;
    3534         382 :       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
    3535             :     }
    3536             :   }
    3537             : }
    3538             : 
    3539             : /// Given an exact SDIV by a constant, create a multiplication
    3540             : /// with the multiplicative inverse of the constant.
    3541        3488 : static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
    3542             :                               const SDLoc &dl, SelectionDAG &DAG,
    3543             :                               SmallVectorImpl<SDNode *> &Created) {
    3544        3488 :   SDValue Op0 = N->getOperand(0);
    3545        3488 :   SDValue Op1 = N->getOperand(1);
    3546        3488 :   EVT VT = N->getValueType(0);
    3547        3488 :   EVT SVT = VT.getScalarType();
    3548        3488 :   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
    3549        3488 :   EVT ShSVT = ShVT.getScalarType();
    3550             : 
    3551        3488 :   bool UseSRA = false;
    3552             :   SmallVector<SDValue, 16> Shifts, Factors;
    3553             : 
    3554             :   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
    3555             :     if (C->isNullValue())
    3556             :       return false;
    3557             :     APInt Divisor = C->getAPIntValue();
    3558             :     unsigned Shift = Divisor.countTrailingZeros();
    3559             :     if (Shift) {
    3560             :       Divisor.ashrInPlace(Shift);
    3561             :       UseSRA = true;
    3562             :     }
    3563             :     // Calculate the multiplicative inverse, using Newton's method.
    3564             :     APInt t;
    3565             :     APInt Factor = Divisor;
    3566             :     while ((t = Divisor * Factor) != 1)
    3567             :       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
    3568             :     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
    3569             :     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
    3570             :     return true;
    3571             :   };
    3572             : 
    3573             :   // Collect all magic values from the build vector.
    3574        6976 :   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
    3575           0 :     return SDValue();
    3576             : 
    3577        3488 :   SDValue Shift, Factor;
    3578        3488 :   if (VT.isVector()) {
    3579          12 :     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
    3580          12 :     Factor = DAG.getBuildVector(VT, dl, Factors);
    3581             :   } else {
    3582        3476 :     Shift = Shifts[0];
    3583        3476 :     Factor = Factors[0];
    3584             :   }
    3585             : 
    3586        3488 :   SDValue Res = Op0;
    3587             : 
    3588             :   // Shift the value upfront if it is even, so the LSB is one.
    3589        3488 :   if (UseSRA) {
    3590             :     // TODO: For UDIV use SRL instead of SRA.
    3591             :     SDNodeFlags Flags;
    3592             :     Flags.setExact(true);
    3593        3482 :     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
    3594        3482 :     Created.push_back(Res.getNode());
    3595             :   }
    3596             : 
    3597        3488 :   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
    3598             : }
    3599             : 
    3600         454 : SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
    3601             :                                      SelectionDAG &DAG,
    3602             :                                      SmallVectorImpl<SDNode *> &Created) const {
    3603         454 :   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
    3604         454 :   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    3605         908 :   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
    3606           6 :     return SDValue(N,0); // Lower SDIV as SDIV
    3607         448 :   return SDValue();
    3608             : }
    3609             : 
    3610             : /// Given an ISD::SDIV node expressing a divide by constant,
    3611             : /// return a DAG expression to select that will generate the same value by
    3612             : /// multiplying by a magic number.
    3613             : /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
    3614        3991 : SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
    3615             :                                   bool IsAfterLegalization,
    3616             :                                   SmallVectorImpl<SDNode *> &Created) const {
    3617             :   SDLoc dl(N);
    3618        3991 :   EVT VT = N->getValueType(0);
    3619        3991 :   EVT SVT = VT.getScalarType();
    3620        3991 :   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
    3621        3991 :   EVT ShSVT = ShVT.getScalarType();
    3622             :   unsigned EltBits = VT.getScalarSizeInBits();
    3623             : 
    3624             :   // Check to see if we can do this.
    3625             :   // FIXME: We should be more aggressive here.
    3626        3991 :   if (!isTypeLegal(VT))
    3627          65 :     return SDValue();
    3628             : 
    3629             :   // If the sdiv has an 'exact' bit we can use a simpler lowering.
    3630        3926 :   if (N->getFlags().hasExact())
    3631        3488 :     return BuildExactSDIV(*this, N, dl, DAG, Created);
    3632             : 
    3633             :   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
    3634             : 
    3635             :   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
    3636             :     if (C->isNullValue())
    3637             :       return false;
    3638             : 
    3639             :     const APInt &Divisor = C->getAPIntValue();
    3640             :     APInt::ms magics = Divisor.magic();
    3641             :     int NumeratorFactor = 0;
    3642             :     int ShiftMask = -1;
    3643             : 
    3644             :     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
    3645             :       // If d is +1/-1, we just multiply the numerator by +1/-1.
    3646             :       NumeratorFactor = Divisor.getSExtValue();
    3647             :       magics.m = 0;
    3648             :       magics.s = 0;
    3649             :       ShiftMask = 0;
    3650             :     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
    3651             :       // If d > 0 and m < 0, add the numerator.
    3652             :       NumeratorFactor = 1;
    3653             :     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
    3654             :       // If d < 0 and m > 0, subtract the numerator.
    3655             :       NumeratorFactor = -1;
    3656             :     }
    3657             : 
    3658             :     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
    3659             :     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
    3660             :     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
    3661             :     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
    3662             :     return true;
    3663             :   };
    3664             : 
    3665         438 :   SDValue N0 = N->getOperand(0);
    3666         438 :   SDValue N1 = N->getOperand(1);
    3667             : 
    3668             :   // Collect the shifts / magic values from each element.
    3669         876 :   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
    3670           0 :     return SDValue();
    3671             : 
    3672         438 :   SDValue MagicFactor, Factor, Shift, ShiftMask;
    3673         438 :   if (VT.isVector()) {
    3674         147 :     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
    3675         147 :     Factor = DAG.getBuildVector(VT, dl, Factors);
    3676         147 :     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
    3677         147 :     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
    3678             :   } else {
    3679         291 :     MagicFactor = MagicFactors[0];
    3680         291 :     Factor = Factors[0];
    3681         291 :     Shift = Shifts[0];
    3682         291 :     ShiftMask = ShiftMasks[0];
    3683             :   }
    3684             : 
    3685             :   // Multiply the numerator (operand 0) by the magic value.
    3686             :   // FIXME: We should support doing a MUL in a wider type.
    3687         438 :   SDValue Q;
    3688         438 :   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
    3689             :                           : isOperationLegalOrCustom(ISD::MULHS, VT))
    3690         185 :     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
    3691         253 :   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
    3692             :                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
    3693             :     SDValue LoHi =
    3694         222 :         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
    3695         222 :     Q = SDValue(LoHi.getNode(), 1);
    3696             :   } else
    3697          31 :     return SDValue(); // No mulhs or equivalent.
    3698         407 :   Created.push_back(Q.getNode());
    3699             : 
    3700             :   // (Optionally) Add/subtract the numerator using Factor.
    3701         407 :   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
    3702         407 :   Created.push_back(Factor.getNode());
    3703         407 :   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
    3704         407 :   Created.push_back(Q.getNode());
    3705             : 
    3706             :   // Shift right algebraic by shift value.
    3707         407 :   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
    3708         407 :   Created.push_back(Q.getNode());
    3709             : 
    3710             :   // Extract the sign bit, mask it and add it to the quotient.
    3711         407 :   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
    3712         407 :   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
    3713         407 :   Created.push_back(T.getNode());
    3714         407 :   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
    3715         407 :   Created.push_back(T.getNode());
    3716         407 :   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
    3717             : }
    3718             : 
    3719             : /// Given an ISD::UDIV node expressing a divide by constant,
    3720             : /// return a DAG expression to select that will generate the same value by
    3721             : /// multiplying by a magic number.
    3722             : /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
    3723         925 : SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
    3724             :                                   bool IsAfterLegalization,
    3725             :                                   SmallVectorImpl<SDNode *> &Created) const {
    3726             :   SDLoc dl(N);
    3727         925 :   EVT VT = N->getValueType(0);
    3728         925 :   EVT SVT = VT.getScalarType();
    3729         925 :   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
    3730         925 :   EVT ShSVT = ShVT.getScalarType();
    3731         925 :   unsigned EltBits = VT.getScalarSizeInBits();
    3732             : 
    3733             :   // Check to see if we can do this.
    3734             :   // FIXME: We should be more aggressive here.
    3735         925 :   if (!isTypeLegal(VT))
    3736          73 :     return SDValue();
    3737             : 
    3738         852 :   bool UseNPQ = false;
    3739             :   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
    3740             : 
    3741             :   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
    3742             :     if (C->isNullValue())
    3743             :       return false;
    3744             :     // FIXME: We should use a narrower constant when the upper
    3745             :     // bits are known to be zero.
    3746             :     APInt Divisor = C->getAPIntValue();
    3747             :     APInt::mu magics = Divisor.magicu();
    3748             :     unsigned PreShift = 0, PostShift = 0;
    3749             : 
    3750             :     // If the divisor is even, we can avoid using the expensive fixup by
    3751             :     // shifting the divided value upfront.
    3752             :     if (magics.a != 0 && !Divisor[0]) {
    3753             :       PreShift = Divisor.countTrailingZeros();
    3754             :       // Get magic number for the shifted divisor.
    3755             :       magics = Divisor.lshr(PreShift).magicu(PreShift);
    3756             :       assert(magics.a == 0 && "Should use cheap fixup now");
    3757             :     }
    3758             : 
    3759             :     APInt Magic = magics.m;
    3760             : 
    3761             :     unsigned SelNPQ;
    3762             :     if (magics.a == 0 || Divisor.isOneValue()) {
    3763             :       assert(magics.s < Divisor.getBitWidth() &&
    3764             :              "We shouldn't generate an undefined shift!");
    3765             :       PostShift = magics.s;
    3766             :       SelNPQ = false;
    3767             :     } else {
    3768             :       PostShift = magics.s - 1;
    3769             :       SelNPQ = true;
    3770             :     }
    3771             : 
    3772             :     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
    3773             :     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
    3774             :     NPQFactors.push_back(
    3775             :         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
    3776             :                                : APInt::getNullValue(EltBits),
    3777             :                         dl, SVT));
    3778             :     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
    3779             :     UseNPQ |= SelNPQ;
    3780             :     return true;
    3781             :   };
    3782             : 
    3783         852 :   SDValue N0 = N->getOperand(0);
    3784         852 :   SDValue N1 = N->getOperand(1);
    3785             : 
    3786             :   // Collect the shifts/magic values from each element.
    3787        1704 :   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
    3788           0 :     return SDValue();
    3789             : 
    3790         852 :   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
    3791         852 :   if (VT.isVector()) {
    3792         201 :     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
    3793         201 :     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
    3794         201 :     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
    3795         201 :     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
    3796             :   } else {
    3797         651 :     PreShift = PreShifts[0];
    3798         651 :     MagicFactor = MagicFactors[0];
    3799         651 :     PostShift = PostShifts[0];
    3800             :   }
    3801             : 
    3802         852 :   SDValue Q = N0;
    3803         852 :   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
    3804         852 :   Created.push_back(Q.getNode());
    3805             : 
    3806             :   // FIXME: We should support doing a MUL in a wider type.
    3807             :   auto GetMULHU = [&](SDValue X, SDValue Y) {
    3808             :     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
    3809             :                             : isOperationLegalOrCustom(ISD::MULHU, VT))
    3810             :       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
    3811             :     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
    3812             :                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
    3813             :       SDValue LoHi =
    3814             :           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
    3815             :       return SDValue(LoHi.getNode(), 1);
    3816             :     }
    3817             :     return SDValue(); // No mulhu or equivalent
    3818         852 :   };
    3819             : 
    3820             :   // Multiply the numerator (operand 0) by the magic value.
    3821         852 :   Q = GetMULHU(Q, MagicFactor);
    3822         852 :   if (!Q)
    3823          40 :     return SDValue();
    3824             : 
    3825         812 :   Created.push_back(Q.getNode());
    3826             : 
    3827         812 :   if (UseNPQ) {
    3828         284 :     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
    3829         284 :     Created.push_back(NPQ.getNode());
    3830             : 
    3831             :     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
    3832             :     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
    3833         284 :     if (VT.isVector())
    3834          95 :       NPQ = GetMULHU(NPQ, NPQFactor);
    3835             :     else
    3836         189 :       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
    3837             : 
    3838         284 :     Created.push_back(NPQ.getNode());
    3839             : 
    3840         284 :     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
    3841         284 :     Created.push_back(Q.getNode());
    3842             :   }
    3843             : 
    3844         812 :   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
    3845         812 :   Created.push_back(Q.getNode());
    3846             : 
    3847         812 :   SDValue One = DAG.getConstant(1, dl, VT);
    3848         812 :   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
    3849         812 :   return DAG.getSelect(dl, VT, IsOne, N0, Q);
    3850             : }
    3851             : 
    3852          68 : bool TargetLowering::
    3853             : verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
    3854          68 :   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
    3855           0 :     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
    3856             :                                 "be a constant integer");
    3857           0 :     return true;
    3858             :   }
    3859             : 
    3860             :   return false;
    3861             : }
    3862             : 
    3863             : //===----------------------------------------------------------------------===//
    3864             : // Legalization Utilities
    3865             : //===----------------------------------------------------------------------===//
    3866             : 
    3867        2566 : bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
    3868             :                                     SDValue LHS, SDValue RHS,
    3869             :                                     SmallVectorImpl<SDValue> &Result,
    3870             :                                     EVT HiLoVT, SelectionDAG &DAG,
    3871             :                                     MulExpansionKind Kind, SDValue LL,
    3872             :                                     SDValue LH, SDValue RL, SDValue RH) const {
    3873             :   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
    3874             :          Opcode == ISD::SMUL_LOHI);
    3875             : 
    3876        2566 :   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
    3877        2566 :                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
    3878        2566 :   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
    3879        2566 :                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
    3880        2566 :   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
    3881        2566 :                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
    3882        2566 :   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
    3883        2566 :                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
    3884             : 
    3885        2566 :   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
    3886             :     return false;
    3887             : 
    3888             :   unsigned OuterBitSize = VT.getScalarSizeInBits();
    3889             :   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
    3890        2199 :   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
    3891        2199 :   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
    3892             : 
    3893             :   // LL, LH, RL, and RH must be either all NULL or all set to a value.
    3894             :   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
    3895             :          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
    3896             : 
    3897        2199 :   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
    3898             :   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
    3899             :                           bool Signed) -> bool {
    3900             :     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
    3901             :       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
    3902             :       Hi = SDValue(Lo.getNode(), 1);
    3903             :       return true;
    3904             :     }
    3905             :     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
    3906             :       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
    3907             :       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
    3908             :       return true;
    3909             :     }
    3910             :     return false;
    3911        2199 :   };
    3912             : 
    3913        2199 :   SDValue Lo, Hi;
    3914             : 
    3915        2199 :   if (!LL.getNode() && !RL.getNode() &&
    3916             :       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
    3917         706 :     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
    3918         706 :     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
    3919             :   }
    3920             : 
    3921        2199 :   if (!LL.getNode())
    3922             :     return false;
    3923             : 
    3924        2199 :   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
    3925        3631 :   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
    3926        1432 :       DAG.MaskedValueIsZero(RHS, HighMask)) {
    3927             :     // The inputs are both zero-extended.
    3928        1429 :     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
    3929        1429 :       Result.push_back(Lo);
    3930        1429 :       Result.push_back(Hi);
    3931        1429 :       if (Opcode != ISD::MUL) {
    3932           0 :         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
    3933           0 :         Result.push_back(Zero);
    3934           0 :         Result.push_back(Zero);
    3935             :       }
    3936        1429 :       return true;
    3937             :     }
    3938             :   }
    3939             : 
    3940         770 :   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
    3941             :       RHSSB > InnerBitSize) {
    3942             :     // The input values are both sign-extended.
    3943             :     // TODO non-MUL case?
    3944         211 :     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
    3945         211 :       Result.push_back(Lo);
    3946         211 :       Result.push_back(Hi);
    3947         211 :       return true;
    3948             :     }
    3949             :   }
    3950             : 
    3951         559 :   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
    3952         559 :   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
    3953         559 :   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
    3954             :     // FIXME getShiftAmountTy does not always return a sensible result when VT
    3955             :     // is an illegal type, and so the type may be too small to fit the shift
    3956             :     // amount. Override it with i32. The shift will have to be legalized.
    3957           0 :     ShiftAmountTy = MVT::i32;
    3958             :   }
    3959         559 :   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
    3960             : 
    3961         271 :   if (!LH.getNode() && !RH.getNode() &&
    3962         559 :       isOperationLegalOrCustom(ISD::SRL, VT) &&
    3963             :       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
    3964         271 :     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
    3965         271 :     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
    3966         271 :     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
    3967         271 :     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
    3968             :   }
    3969             : 
    3970         559 :   if (!LH.getNode())
    3971             :     return false;
    3972             : 
    3973         559 :   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
    3974             :     return false;
    3975             : 
    3976         559 :   Result.push_back(Lo);
    3977             : 
    3978         559 :   if (Opcode == ISD::MUL) {
    3979         445 :     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
    3980         445 :     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
    3981         445 :     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
    3982         445 :     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
    3983         445 :     Result.push_back(Hi);
    3984         445 :     return true;
    3985             :   }
    3986             : 
    3987             :   // Compute the full width result.
    3988             :   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
    3989             :     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
    3990             :     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
    3991             :     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
    3992             :     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
    3993         114 :   };
    3994             : 
    3995         114 :   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
    3996         114 :   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
    3997             :     return false;
    3998             : 
    3999             :   // This is effectively the add part of a multiply-add of half-sized operands,
    4000             :   // so it cannot overflow.
    4001         114 :   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
    4002             : 
    4003         114 :   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
    4004             :     return false;
    4005             : 
    4006         114 :   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
    4007         114 :                      Merge(Lo, Hi));
    4008             : 
    4009         114 :   SDValue Carry = Next.getValue(1);
    4010         114 :   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
    4011         114 :   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
    4012             : 
    4013         114 :   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
    4014             :     return false;
    4015             : 
    4016         114 :   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
    4017         114 :   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
    4018         114 :                    Carry);
    4019         114 :   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
    4020             : 
    4021         114 :   if (Opcode == ISD::SMUL_LOHI) {
    4022             :     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
    4023           0 :                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
    4024           0 :     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
    4025             : 
    4026           0 :     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
    4027           0 :                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
    4028           0 :     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
    4029             :   }
    4030             : 
    4031         114 :   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
    4032         114 :   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
    4033         114 :   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
    4034         114 :   return true;
    4035             : }
    4036             : 
    4037        2452 : bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
    4038             :                                SelectionDAG &DAG, MulExpansionKind Kind,
    4039             :                                SDValue LL, SDValue LH, SDValue RL,
    4040             :                                SDValue RH) const {
    4041             :   SmallVector<SDValue, 2> Result;
    4042        7356 :   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
    4043        2452 :                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
    4044             :                            DAG, Kind, LL, LH, RL, RH);
    4045        2452 :   if (Ok) {
    4046             :     assert(Result.size() == 2);
    4047        2085 :     Lo = Result[0];
    4048        2085 :     Hi = Result[1];
    4049             :   }
    4050        2452 :   return Ok;
    4051             : }
    4052             : 
    4053          75 : bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
    4054             :                                SelectionDAG &DAG) const {
    4055          75 :   EVT VT = Node->getOperand(0).getValueType();
    4056         150 :   EVT NVT = Node->getValueType(0);
    4057             :   SDLoc dl(SDValue(Node, 0));
    4058             : 
    4059             :   // FIXME: Only f32 to i64 conversions are supported.
    4060          75 :   if (VT != MVT::f32 || NVT != MVT::i64)
    4061           0 :     return false;
    4062             : 
    4063             :   // Expand f32 -> i64 conversion
    4064             :   // This algorithm comes from compiler-rt's implementation of fixsfdi:
    4065             :   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
    4066          75 :   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
    4067          75 :                                 VT.getSizeInBits());
    4068          75 :   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
    4069          75 :   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
    4070          75 :   SDValue Bias = DAG.getConstant(127, dl, IntVT);
    4071          75 :   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
    4072          75 :                                      IntVT);
    4073          75 :   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
    4074          75 :   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
    4075             : 
    4076         150 :   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
    4077             : 
    4078          75 :   auto &DL = DAG.getDataLayout();
    4079             :   SDValue ExponentBits = DAG.getNode(
    4080             :       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
    4081          75 :       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
    4082          75 :   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
    4083             : 
    4084             :   SDValue Sign = DAG.getNode(
    4085             :       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
    4086          75 :       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
    4087          75 :   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
    4088             : 
    4089             :   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
    4090             :       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
    4091          75 :       DAG.getConstant(0x00800000, dl, IntVT));
    4092             : 
    4093          75 :   R = DAG.getZExtOrTrunc(R, dl, NVT);
    4094             : 
    4095          75 :   R = DAG.getSelectCC(
    4096             :       dl, Exponent, ExponentLoBit,
    4097             :       DAG.getNode(ISD::SHL, dl, NVT, R,
    4098             :                   DAG.getZExtOrTrunc(
    4099             :                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
    4100             :                       dl, getShiftAmountTy(IntVT, DL))),
    4101             :       DAG.getNode(ISD::SRL, dl, NVT, R,
    4102             :                   DAG.getZExtOrTrunc(
    4103             :                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
    4104             :                       dl, getShiftAmountTy(IntVT, DL))),
    4105          75 :       ISD::SETGT);
    4106             : 
    4107             :   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
    4108             :       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
    4109          75 :       Sign);
    4110             : 
    4111          75 :   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
    4112          75 :       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
    4113          75 :   return true;
    4114             : }
    4115             : 
    4116        1767 : SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
    4117             :                                             SelectionDAG &DAG) const {
    4118             :   SDLoc SL(LD);
    4119        1767 :   SDValue Chain = LD->getChain();
    4120        1767 :   SDValue BasePTR = LD->getBasePtr();
    4121        1767 :   EVT SrcVT = LD->getMemoryVT();
    4122             :   ISD::LoadExtType ExtType = LD->getExtensionType();
    4123             : 
    4124             :   unsigned NumElem = SrcVT.getVectorNumElements();
    4125             : 
    4126        1767 :   EVT SrcEltVT = SrcVT.getScalarType();
    4127        3534 :   EVT DstEltVT = LD->getValueType(0).getScalarType();
    4128             : 
    4129        1767 :   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
    4130             :   assert(SrcEltVT.isByteSized());
    4131             : 
    4132             :   SmallVector<SDValue, 8> Vals;
    4133             :   SmallVector<SDValue, 8> LoadChains;
    4134             : 
    4135        9127 :   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
    4136             :     SDValue ScalarLoad =
    4137             :         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
    4138        7360 :                        LD->getPointerInfo().getWithOffset(Idx * Stride),
    4139        7360 :                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
    4140       14720 :                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
    4141             : 
    4142        7360 :     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
    4143             : 
    4144        7360 :     Vals.push_back(ScalarLoad.getValue(0));
    4145        7360 :     LoadChains.push_back(ScalarLoad.getValue(1));
    4146             :   }
    4147             : 
    4148        1767 :   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
    4149        3534 :   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
    4150             : 
    4151        3534 :   return DAG.getMergeValues({ Value, NewChain }, SL);
    4152             : }
    4153             : 
    4154        1739 : SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
    4155             :                                              SelectionDAG &DAG) const {
    4156             :   SDLoc SL(ST);
    4157             : 
    4158        1739 :   SDValue Chain = ST->getChain();
    4159        1739 :   SDValue BasePtr = ST->getBasePtr();
    4160        1739 :   SDValue Value = ST->getValue();
    4161        1739 :   EVT StVT = ST->getMemoryVT();
    4162             : 
    4163             :   // The type of the data we want to save
    4164        1739 :   EVT RegVT = Value.getValueType();
    4165        1739 :   EVT RegSclVT = RegVT.getScalarType();
    4166             : 
    4167             :   // The type of data as saved in memory.
    4168        1739 :   EVT MemSclVT = StVT.getScalarType();
    4169             : 
    4170        1739 :   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
    4171             :   unsigned NumElem = StVT.getVectorNumElements();
    4172             : 
    4173             :   // A vector must always be stored in memory as-is, i.e. without any padding
    4174             :   // between the elements, since various code depend on it, e.g. in the
    4175             :   // handling of a bitcast of a vector type to int, which may be done with a
    4176             :   // vector store followed by an integer load. A vector that does not have
    4177             :   // elements that are byte-sized must therefore be stored as an integer
    4178             :   // built out of the extracted vector elements.
    4179        1739 :   if (!MemSclVT.isByteSized()) {
    4180         247 :     unsigned NumBits = StVT.getSizeInBits();
    4181         247 :     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
    4182             : 
    4183         247 :     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
    4184             : 
    4185        2661 :     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
    4186             :       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
    4187        2414 :                                 DAG.getConstant(Idx, SL, IdxVT));
    4188        2414 :       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
    4189        2414 :       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
    4190             :       unsigned ShiftIntoIdx =
    4191        2414 :           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
    4192             :       SDValue ShiftAmount =
    4193        2414 :           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
    4194             :       SDValue ShiftedElt =
    4195        2414 :           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
    4196        2414 :       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
    4197             :     }
    4198             : 
    4199         247 :     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
    4200         247 :                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
    4201         494 :                         ST->getAAInfo());
    4202             :   }
    4203             : 
    4204             :   // Store Stride in bytes
    4205        1492 :   unsigned Stride = MemSclVT.getSizeInBits() / 8;
    4206             :   assert (Stride && "Zero stride!");
    4207             :   // Extract each of the elements from the original vector and save them into
    4208             :   // memory individually.
    4209             :   SmallVector<SDValue, 8> Stores;
    4210        9336 :   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
    4211             :     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
    4212        7844 :                               DAG.getConstant(Idx, SL, IdxVT));
    4213             : 
    4214        7844 :     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
    4215             : 
    4216             :     // This scalar TruncStore may be illegal, but we legalize it later.
    4217             :     SDValue Store = DAG.getTruncStore(
    4218        7844 :         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
    4219        7844 :         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
    4220       15688 :         ST->getMemOperand()->getFlags(), ST->getAAInfo());
    4221             : 
    4222        7844 :     Stores.push_back(Store);
    4223             :   }
    4224             : 
    4225        1492 :   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
    4226             : }
    4227             : 
    4228             : std::pair<SDValue, SDValue>
    4229        1041 : TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
    4230             :   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
    4231             :          "unaligned indexed loads not implemented!");
    4232        1041 :   SDValue Chain = LD->getChain();
    4233        1041 :   SDValue Ptr = LD->getBasePtr();
    4234        1041 :   EVT VT = LD->getValueType(0);
    4235        1041 :   EVT LoadedVT = LD->getMemoryVT();
    4236             :   SDLoc dl(LD);
    4237        1041 :   auto &MF = DAG.getMachineFunction();
    4238             : 
    4239        2007 :   if (VT.isFloatingPoint() || VT.isVector()) {
    4240          87 :     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
    4241          65 :     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
    4242           6 :       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
    4243             :           LoadedVT.isVector()) {
    4244             :         // Scalarize the load and let the individual components be handled.
    4245           0 :         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
    4246           0 :         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
    4247           0 :           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
    4248             :         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
    4249             :       }
    4250             : 
    4251             :       // Expand to a (misaligned) integer load of the same size,
    4252             :       // then bitconvert to floating point or vector.
    4253             :       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
    4254          65 :                                     LD->getMemOperand());
    4255          65 :       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
    4256          65 :       if (LoadedVT != VT)
    4257           0 :         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
    4258           0 :                              ISD::ANY_EXTEND, dl, VT, Result);
    4259             : 
    4260          65 :       return std::make_pair(Result, newLoad.getValue(1));
    4261             :     }
    4262             : 
    4263             :     // Copy the value to a (aligned) stack slot using (unaligned) integer
    4264             :     // loads and stores, then do a (aligned) load from the stack slot.
    4265          22 :     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
    4266             :     unsigned LoadedBytes = LoadedVT.getStoreSize();
    4267          22 :     unsigned RegBytes = RegVT.getSizeInBits() / 8;
    4268          22 :     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
    4269             : 
    4270             :     // Make sure the stack slot is also aligned for the register type.
    4271          22 :     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
    4272          22 :     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
    4273             :     SmallVector<SDValue, 8> Stores;
    4274          22 :     SDValue StackPtr = StackBase;
    4275             :     unsigned Offset = 0;
    4276             : 
    4277          22 :     EVT PtrVT = Ptr.getValueType();
    4278          22 :     EVT StackPtrVT = StackPtr.getValueType();
    4279             : 
    4280          22 :     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
    4281          22 :     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
    4282             : 
    4283             :     // Do all but one copies using the full register width.
    4284          43 :     for (unsigned i = 1; i < NumRegs; i++) {
    4285             :       // Load one integer register's worth from the original location.
    4286             :       SDValue Load = DAG.getLoad(
    4287          21 :           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
    4288          42 :           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
    4289          42 :           LD->getAAInfo());
    4290             :       // Follow the load with a store to the stack slot.  Remember the store.
    4291          21 :       Stores.push_back(DAG.getStore(
    4292             :           Load.getValue(1), dl, Load, StackPtr,
    4293          21 :           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
    4294             :       // Increment the pointers.
    4295          21 :       Offset += RegBytes;
    4296             : 
    4297          21 :       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
    4298          21 :       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
    4299             :     }
    4300             : 
    4301             :     // The last copy may be partial.  Do an extending load.
    4302          22 :     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
    4303          22 :                                   8 * (LoadedBytes - Offset));
    4304             :     SDValue Load =
    4305             :         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
    4306          22 :                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
    4307          22 :                        MinAlign(LD->getAlignment(), Offset),
    4308          44 :                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
    4309             :     // Follow the load with a store to the stack slot.  Remember the store.
    4310             :     // On big-endian machines this requires a truncating store to ensure
    4311             :     // that the bits end up in the right place.
    4312          22 :     Stores.push_back(DAG.getTruncStore(
    4313             :         Load.getValue(1), dl, Load, StackPtr,
    4314          44 :         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
    4315             : 
    4316             :     // The order of the stores doesn't matter - say it with a TokenFactor.
    4317          22 :     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
    4318             : 
    4319             :     // Finally, perform the original load only redirected to the stack slot.
    4320          22 :     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
    4321             :                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
    4322          22 :                           LoadedVT);
    4323             : 
    4324             :     // Callers expect a MERGE_VALUES node.
    4325             :     return std::make_pair(Load, TF);
    4326             :   }
    4327             : 
    4328             :   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
    4329             :          "Unaligned load of unsupported type.");
    4330             : 
    4331             :   // Compute the new VT that is half the size of the old one.  This is an
    4332             :   // integer MVT.
    4333         954 :   unsigned NumBits = LoadedVT.getSizeInBits();
    4334             :   EVT NewLoadedVT;
    4335         954 :   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
    4336         954 :   NumBits >>= 1;
    4337             : 
    4338         954 :   unsigned Alignment = LD->getAlignment();
    4339         954 :   unsigned IncrementSize = NumBits / 8;
    4340             :   ISD::LoadExtType HiExtType = LD->getExtensionType();
    4341             : 
    4342             :   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
    4343         954 :   if (HiExtType == ISD::NON_EXTLOAD)
    4344             :     HiExtType = ISD::ZEXTLOAD;
    4345             : 
    4346             :   // Load the value in two parts
    4347         954 :   SDValue Lo, Hi;
    4348         954 :   if (DAG.getDataLayout().isLittleEndian()) {
    4349         880 :     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
    4350         880 :                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
    4351        2640 :                         LD->getAAInfo());
    4352             : 
    4353         880 :     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
    4354         880 :     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
    4355             :                         LD->getPointerInfo().getWithOffset(IncrementSize),
    4356         880 :                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
    4357        3520 :                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
    4358             :   } else {
    4359          74 :     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
    4360          74 :                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
    4361         222 :                         LD->getAAInfo());
    4362             : 
    4363          74 :     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
    4364          74 :     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
    4365             :                         LD->getPointerInfo().getWithOffset(IncrementSize),
    4366          74 :                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
    4367         296 :                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
    4368             :   }
    4369             : 
    4370             :   // aggregate the two parts
    4371             :   SDValue ShiftAmount =
    4372             :       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
    4373         954 :                                                     DAG.getDataLayout()));
    4374         954 :   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
    4375         954 :   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
    4376             : 
    4377             :   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
    4378         954 :                              Hi.getValue(1));
    4379             : 
    4380         954 :   return std::make_pair(Result, TF);
    4381             : }
    4382             : 
    4383         972 : SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
    4384             :                                              SelectionDAG &DAG) const {
    4385             :   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
    4386             :          "unaligned indexed stores not implemented!");
    4387         972 :   SDValue Chain = ST->getChain();
    4388         972 :   SDValue Ptr = ST->getBasePtr();
    4389         972 :   SDValue Val = ST->getValue();
    4390         972 :   EVT VT = Val.getValueType();
    4391         972 :   int Alignment = ST->getAlignment();
    4392         972 :   auto &MF = DAG.getMachineFunction();
    4393         972 :   EVT MemVT = ST->getMemoryVT();
    4394             : 
    4395             :   SDLoc dl(ST);
    4396        1886 :   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
    4397          91 :     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
    4398             :     if (isTypeLegal(intVT)) {
    4399          24 :       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
    4400             :           MemVT.isVector()) {
    4401             :         // Scalarize the store and let the individual components be handled.
    4402          18 :         SDValue Result = scalarizeVectorStore(ST, DAG);
    4403             : 
    4404          18 :         return Result;
    4405             :       }
    4406             :       // Expand to a bitconvert of the value to the integer type of the
    4407             :       // same size, then a (misaligned) int store.
    4408             :       // FIXME: Does not handle truncating floating point stores!
    4409          50 :       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
    4410          50 :       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
    4411         100 :                             Alignment, ST->getMemOperand()->getFlags());
    4412          50 :       return Result;
    4413             :     }
    4414             :     // Do a (aligned) store to a stack slot, then copy from the stack slot
    4415             :     // to the final destination using (unaligned) integer loads and stores.
    4416          23 :     EVT StoredVT = ST->getMemoryVT();
    4417             :     MVT RegVT =
    4418          23 :       getRegisterType(*DAG.getContext(),
    4419          23 :                       EVT::getIntegerVT(*DAG.getContext(),
    4420          23 :                                         StoredVT.getSizeInBits()));
    4421          23 :     EVT PtrVT = Ptr.getValueType();
    4422             :     unsigned StoredBytes = StoredVT.getStoreSize();
    4423          23 :     unsigned RegBytes = RegVT.getSizeInBits() / 8;
    4424          23 :     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
    4425             : 
    4426             :     // Make sure the stack slot is also aligned for the register type.
    4427          23 :     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
    4428          23 :     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
    4429             : 
    4430             :     // Perform the original store, only redirected to the stack slot.
    4431             :     SDValue Store = DAG.getTruncStore(
    4432             :         Chain, dl, Val, StackPtr,
    4433          23 :         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
    4434             : 
    4435          23 :     EVT StackPtrVT = StackPtr.getValueType();
    4436             : 
    4437          23 :     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
    4438          23 :     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
    4439             :     SmallVector<SDValue, 8> Stores;
    4440             :     unsigned Offset = 0;
    4441             : 
    4442             :     // Do all but one copies using the full register width.
    4443          46 :     for (unsigned i = 1; i < NumRegs; i++) {
    4444             :       // Load one integer register's worth from the stack slot.
    4445             :       SDValue Load = DAG.getLoad(
    4446             :           RegVT, dl, Store, StackPtr,
    4447          23 :           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
    4448             :       // Store it to the final location.  Remember the store.
    4449          23 :       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
    4450          23 :                                     ST->getPointerInfo().getWithOffset(Offset),
    4451          23 :                                     MinAlign(ST->getAlignment(), Offset),
    4452          23 :                                     ST->getMemOperand()->getFlags()));
    4453             :       // Increment the pointers.
    4454          23 :       Offset += RegBytes;
    4455          23 :       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
    4456          23 :       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
    4457             :     }
    4458             : 
    4459             :     // The last store may be partial.  Do a truncating store.  On big-endian
    4460             :     // machines this requires an extending load from the stack slot to ensure
    4461             :     // that the bits are in the right place.
    4462          23 :     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
    4463          23 :                                   8 * (StoredBytes - Offset));
    4464             : 
    4465             :     // Load from the stack slot.
    4466             :     SDValue Load = DAG.getExtLoad(
    4467             :         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
    4468          23 :         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
    4469             : 
    4470          23 :     Stores.push_back(
    4471          23 :         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
    4472          23 :                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
    4473          23 :                           MinAlign(ST->getAlignment(), Offset),
    4474          69 :                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
    4475             :     // The order of the stores doesn't matter - say it with a TokenFactor.
    4476          23 :     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
    4477          23 :     return Result;
    4478             :   }
    4479             : 
    4480             :   assert(ST->getMemoryVT().isInteger() &&
    4481             :          !ST->getMemoryVT().isVector() &&
    4482             :          "Unaligned store of unknown type.");
    4483             :   // Get the half-size VT
    4484         881 :   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
    4485         881 :   int NumBits = NewStoredVT.getSizeInBits();
    4486         881 :   int IncrementSize = NumBits / 8;
    4487             : 
    4488             :   // Divide the stored value in two parts.
    4489             :   SDValue ShiftAmount =
    4490             :       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
    4491         881 :                                                     DAG.getDataLayout()));
    4492         881 :   SDValue Lo = Val;
    4493         881 :   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
    4494             : 
    4495             :   // Store the two parts
    4496             :   SDValue Store1, Store2;
    4497         881 :   Store1 = DAG.getTruncStore(Chain, dl,
    4498         881 :                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
    4499             :                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
    4500        1762 :                              ST->getMemOperand()->getFlags());
    4501             : 
    4502         881 :   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
    4503             :   Alignment = MinAlign(Alignment, IncrementSize);
    4504         881 :   Store2 = DAG.getTruncStore(
    4505         881 :       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
    4506             :       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
    4507        3524 :       ST->getMemOperand()->getFlags(), ST->getAAInfo());
    4508             : 
    4509             :   SDValue Result =
    4510         881 :     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
    4511         881 :   return Result;
    4512             : }
    4513             : 
    4514             : SDValue
    4515          36 : TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
    4516             :                                        const SDLoc &DL, EVT DataVT,
    4517             :                                        SelectionDAG &DAG,
    4518             :                                        bool IsCompressedMemory) const {
    4519          36 :   SDValue Increment;
    4520          36 :   EVT AddrVT = Addr.getValueType();
    4521          36 :   EVT MaskVT = Mask.getValueType();
    4522             :   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
    4523             :          "Incompatible types of Data and Mask");
    4524          36 :   if (IsCompressedMemory) {
    4525             :     // Incrementing the pointer according to number of '1's in the mask.
    4526           8 :     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
    4527           8 :     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
    4528           8 :     if (MaskIntVT.getSizeInBits() < 32) {
    4529           8 :       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
    4530           8 :       MaskIntVT = MVT::i32;
    4531             :     }
    4532             : 
    4533             :     // Count '1's with POPCNT.
    4534           8 :     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
    4535           8 :     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
    4536             :     // Scale is an element size in bytes.
    4537           8 :     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
    4538           8 :                                     AddrVT);
    4539           8 :     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
    4540             :   } else
    4541          28 :     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
    4542             : 
    4543          36 :   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
    4544             : }
    4545             : 
    4546        2052 : static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
    4547             :                                        SDValue Idx,
    4548             :                                        EVT VecVT,
    4549             :                                        const SDLoc &dl) {
    4550             :   if (isa<ConstantSDNode>(Idx))
    4551         994 :     return Idx;
    4552             : 
    4553        1058 :   EVT IdxVT = Idx.getValueType();
    4554             :   unsigned NElts = VecVT.getVectorNumElements();
    4555             :   if (isPowerOf2_32(NElts)) {
    4556             :     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
    4557        1058 :                                      Log2_32(NElts));
    4558             :     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
    4559        1058 :                        DAG.getConstant(Imm, dl, IdxVT));
    4560             :   }
    4561             : 
    4562             :   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
    4563           0 :                      DAG.getConstant(NElts - 1, dl, IdxVT));
    4564             : }
    4565             : 
    4566        2052 : SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
    4567             :                                                 SDValue VecPtr, EVT VecVT,
    4568             :                                                 SDValue Index) const {
    4569             :   SDLoc dl(Index);
    4570             :   // Make sure the index type is big enough to compute in.
    4571        4104 :   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
    4572             : 
    4573        2052 :   EVT EltVT = VecVT.getVectorElementType();
    4574             : 
    4575             :   // Calculate the element offset and add it to the pointer.
    4576        2052 :   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
    4577             :   assert(EltSize * 8 == EltVT.getSizeInBits() &&
    4578             :          "Converting bits to bytes lost precision");
    4579             : 
    4580        2052 :   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
    4581             : 
    4582        2052 :   EVT IdxVT = Index.getValueType();
    4583             : 
    4584        2052 :   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
    4585        2052 :                       DAG.getConstant(EltSize, dl, IdxVT));
    4586        2052 :   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
    4587             : }
    4588             : 
    4589             : //===----------------------------------------------------------------------===//
    4590             : // Implementation of Emulated TLS Model
    4591             : //===----------------------------------------------------------------------===//
    4592             : 
    4593         330 : SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
    4594             :                                                 SelectionDAG &DAG) const {
    4595             :   // Access to address of TLS varialbe xyz is lowered to a function call:
    4596             :   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
    4597         330 :   EVT PtrVT = getPointerTy(DAG.getDataLayout());
    4598         330 :   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
    4599             :   SDLoc dl(GA);
    4600             : 
    4601             :   ArgListTy Args;
    4602             :   ArgListEntry Entry;
    4603         330 :   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
    4604         330 :   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
    4605             :   StringRef EmuTlsVarName(NameString);
    4606             :   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
    4607             :   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
    4608         330 :   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
    4609         330 :   Entry.Ty = VoidPtrType;
    4610         330 :   Args.push_back(Entry);
    4611             : 
    4612         330 :   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
    4613             : 
    4614         330 :   TargetLowering::CallLoweringInfo CLI(DAG);
    4615         330 :   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
    4616         330 :   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
    4617         330 :   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    4618             : 
    4619             :   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
    4620             :   // At last for X86 targets, maybe good for other targets too?
    4621         330 :   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
    4622             :   MFI.setAdjustsStack(true);  // Is this only for X86 target?
    4623             :   MFI.setHasCalls(true);
    4624             : 
    4625             :   assert((GA->getOffset() == 0) &&
    4626             :          "Emulated TLS must have zero offset in GlobalAddressSDNode");
    4627         330 :   return CallResult.first;
    4628             : }
    4629             : 
    4630          25 : SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
    4631             :                                                 SelectionDAG &DAG) const {
    4632             :   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
    4633          25 :   if (!isCtlzFast())
    4634           0 :     return SDValue();
    4635          25 :   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    4636             :   SDLoc dl(Op);
    4637             :   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    4638          46 :     if (C->isNullValue() && CC == ISD::SETEQ) {
    4639           7 :       EVT VT = Op.getOperand(0).getValueType();
    4640           7 :       SDValue Zext = Op.getOperand(0);
    4641           7 :       if (VT.bitsLT(MVT::i32)) {
    4642           0 :         VT = MVT::i32;
    4643           0 :         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
    4644             :       }
    4645           7 :       unsigned Log2b = Log2_32(VT.getSizeInBits());
    4646           7 :       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
    4647             :       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
    4648           7 :                                 DAG.getConstant(Log2b, dl, MVT::i32));
    4649           7 :       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
    4650             :     }
    4651             :   }
    4652          18 :   return SDValue();
    4653             : }
    4654             : 
    4655             : SDValue
    4656          14 : TargetLowering::getExpandedSignedSaturationAddition(SDNode *Node,
    4657             :                                                     SelectionDAG &DAG) const {
    4658             :   assert(Node->getOpcode() == ISD::SADDSAT &&
    4659             :          "Expected method to receive SADDSAT node.");
    4660             :   assert(Node->getNumOperands() == 2 &&
    4661             :          "Expected SADDSAT node to have 2 operands.");
    4662             : 
    4663             :   SDLoc dl(Node);
    4664          14 :   SDValue LHS = Node->getOperand(0);
    4665          14 :   SDValue RHS = Node->getOperand(1);
    4666             :   assert(LHS.getValueType().isScalarInteger() &&
    4667             :          "Expected operands to be integers. Vector of int arguments should "
    4668             :          "already be unrolled.");
    4669             :   assert(RHS.getValueType().isScalarInteger() &&
    4670             :          "Expected operands to be integers. Vector of int arguments should "
    4671             :          "already be unrolled.");
    4672             :   assert(LHS.getValueType() == RHS.getValueType() &&
    4673             :          "Expected both operands of SADDSAT to be the same type");
    4674             : 
    4675          14 :   unsigned BitWidth = LHS.getValueSizeInBits();
    4676          14 :   EVT ResultType = LHS.getValueType();
    4677             :   EVT BoolVT =
    4678          14 :       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
    4679             :   SDValue Result =
    4680          14 :       DAG.getNode(ISD::SADDO, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
    4681          14 :   SDValue Sum = Result.getValue(0);
    4682          14 :   SDValue Overflow = Result.getValue(1);
    4683             : 
    4684             :   // SatMax -> Overflow && Sum < 0
    4685             :   // SatMin -> Overflow && Sum > 0
    4686          28 :   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
    4687             : 
    4688          14 :   SDValue SumNeg = DAG.getSetCC(dl, BoolVT, Sum, Zero, ISD::SETLT);
    4689          14 :   APInt MinVal = APInt::getSignedMinValue(BitWidth);
    4690          14 :   APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
    4691          14 :   SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
    4692          14 :   SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
    4693             : 
    4694          14 :   Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
    4695          14 :   return DAG.getSelect(dl, ResultType, Overflow, Result, Sum);
    4696             : }

Generated by: LCOV version 1.13