LCOV - code coverage report
Current view: top level - lib/CodeGen - TargetInstrInfo.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 398 453 87.9 %
Date: 2018-10-20 13:21:21 Functions: 42 49 85.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file implements the TargetInstrInfo class.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "llvm/CodeGen/TargetInstrInfo.h"
      15             : #include "llvm/CodeGen/MachineFrameInfo.h"
      16             : #include "llvm/CodeGen/MachineInstrBuilder.h"
      17             : #include "llvm/CodeGen/MachineMemOperand.h"
      18             : #include "llvm/CodeGen/MachineRegisterInfo.h"
      19             : #include "llvm/CodeGen/PseudoSourceValue.h"
      20             : #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
      21             : #include "llvm/CodeGen/StackMaps.h"
      22             : #include "llvm/CodeGen/TargetFrameLowering.h"
      23             : #include "llvm/CodeGen/TargetLowering.h"
      24             : #include "llvm/CodeGen/TargetRegisterInfo.h"
      25             : #include "llvm/CodeGen/TargetSchedule.h"
      26             : #include "llvm/IR/DataLayout.h"
      27             : #include "llvm/MC/MCAsmInfo.h"
      28             : #include "llvm/MC/MCInstrItineraries.h"
      29             : #include "llvm/Support/CommandLine.h"
      30             : #include "llvm/Support/ErrorHandling.h"
      31             : #include "llvm/Support/raw_ostream.h"
      32             : #include "llvm/Target/TargetMachine.h"
      33             : #include <cctype>
      34             : 
      35             : using namespace llvm;
      36             : 
      37             : static cl::opt<bool> DisableHazardRecognizer(
      38             :   "disable-sched-hazard", cl::Hidden, cl::init(false),
      39             :   cl::desc("Disable hazard detection during preRA scheduling"));
      40             : 
      41       34780 : TargetInstrInfo::~TargetInstrInfo() {
      42       34780 : }
      43           0 : 
      44           0 : const TargetRegisterClass*
      45       34780 : TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
      46       34780 :                              const TargetRegisterInfo *TRI,
      47             :                              const MachineFunction &MF) const {
      48             :   if (OpNum >= MCID.getNumOperands())
      49    80081788 :     return nullptr;
      50             : 
      51             :   short RegClass = MCID.OpInfo[OpNum].RegClass;
      52   160163576 :   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
      53             :     return TRI->getPointerRegClass(MF, RegClass);
      54             : 
      55    77851200 :   // Instructions like INSERT_SUBREG do not have fixed register classes.
      56    77851200 :   if (RegClass < 0)
      57     8594309 :     return nullptr;
      58             : 
      59             :   // Otherwise just look it up normally.
      60    69256891 :   return TRI->getRegClass(RegClass);
      61             : }
      62             : 
      63             : /// insertNoop - Insert a noop into the instruction stream at the specified
      64   110034386 : /// point.
      65             : void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
      66             :                                  MachineBasicBlock::iterator MI) const {
      67             :   llvm_unreachable("Target didn't implement insertNoop!");
      68             : }
      69           0 : 
      70             : static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
      71           0 :   return strncmp(Str, MAI.getCommentString().data(),
      72             :                  MAI.getCommentString().size()) == 0;
      73             : }
      74             : 
      75      116867 : /// Measure the specified inline asm to determine an approximation of its
      76             : /// length.
      77             : /// Comments (which run till the next SeparatorString or newline) do not
      78             : /// count as an instruction.
      79             : /// Any other non-whitespace text is considered an instruction, with
      80             : /// multiple instructions separated by SeparatorString or newlines.
      81             : /// Variable-length instructions are not handled here; this function
      82             : /// may be overloaded in the target code to do that.
      83             : /// We implement a special case of the .space directive which takes only a
      84             : /// single integer argument in base 10 that is the size in bytes. This is a
      85             : /// restricted form of the GAS directive in that we only interpret
      86             : /// simple--i.e. not a logical or arithmetic expression--size values without
      87             : /// the optional fill value. This is primarily used for creating arbitrary
      88             : /// sized inline asm blocks for testing purposes.
      89             : unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
      90             :                                              const MCAsmInfo &MAI) const {
      91             :   // Count the number of instructions in the asm.
      92             :   bool AtInsnStart = true;
      93      193522 :   unsigned Length = 0;
      94             :   for (; *Str; ++Str) {
      95             :     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
      96             :                                 strlen(MAI.getSeparatorString())) == 0) {
      97             :       AtInsnStart = true;
      98      311666 :     } else if (isAsmComment(Str, MAI)) {
      99      118144 :       // Stop counting as an instruction after a comment until the next
     100             :       // separator.
     101             :       AtInsnStart = false;
     102      116867 :     }
     103             : 
     104             :     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
     105             :       unsigned AddLength = MAI.getMaxInstLength();
     106             :       if (strncmp(Str, ".space", 6) == 0) {
     107             :         char *EStr;
     108      116614 :         int SpaceSize;
     109       20484 :         SpaceSize = strtol(Str + 6, &EStr, 10);
     110       20484 :         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
     111             :         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
     112             :           ++EStr;
     113         464 :         if (*EStr == '\0' || *EStr == '\n' ||
     114         464 :             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
     115         464 :           AddLength = SpaceSize;
     116           0 :       }
     117         464 :       Length += AddLength;
     118             :       AtInsnStart = false;
     119         464 :     }
     120             :   }
     121       20484 : 
     122             :   return Length;
     123             : }
     124             : 
     125             : /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
     126      193522 : /// after it, replacing it with an unconditional branch to NewDest.
     127             : void
     128             : TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
     129             :                                          MachineBasicBlock *NewDest) const {
     130             :   MachineBasicBlock *MBB = Tail->getParent();
     131             : 
     132       26347 :   // Remove all the old successors of MBB from the CFG.
     133             :   while (!MBB->succ_empty())
     134       26347 :     MBB->removeSuccessor(MBB->succ_begin());
     135             : 
     136             :   // Save off the debug loc before erasing the instruction.
     137       34280 :   DebugLoc DL = Tail->getDebugLoc();
     138        7933 : 
     139             :   // Remove all the dead instructions from the end of MBB.
     140             :   MBB->erase(Tail, MBB->end());
     141             : 
     142             :   // If MBB isn't immediately before MBB, insert a branch to it.
     143             :   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
     144             :     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
     145             :   MBB->addSuccessor(NewDest);
     146             : }
     147       26347 : 
     148       51050 : MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
     149       26347 :                                                       bool NewMI, unsigned Idx1,
     150       26347 :                                                       unsigned Idx2) const {
     151             :   const MCInstrDesc &MCID = MI.getDesc();
     152      535556 :   bool HasDef = MCID.getNumDefs();
     153             :   if (HasDef && !MI.getOperand(0).isReg())
     154             :     // No idea how to commute this instruction. Target should implement its own.
     155      535556 :     return nullptr;
     156      535556 : 
     157      535556 :   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
     158             :   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
     159             :   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
     160             :          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
     161             :          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
     162             :   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
     163             :          "This only knows how to commute register operands so far");
     164             : 
     165             :   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
     166             :   unsigned Reg1 = MI.getOperand(Idx1).getReg();
     167             :   unsigned Reg2 = MI.getOperand(Idx2).getReg();
     168             :   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
     169      535556 :   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
     170     1071112 :   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
     171      535556 :   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
     172      535556 :   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
     173             :   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
     174             :   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
     175             :   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
     176             :   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
     177             :   // Avoid calling isRenamable for virtual registers since we assert that
     178             :   // renamable property is only queried/set for physical registers.
     179             :   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
     180             :                              ? MI.getOperand(Idx1).isRenamable()
     181             :                              : false;
     182             :   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
     183             :                              ? MI.getOperand(Idx2).isRenamable()
     184      535556 :                              : false;
     185             :   // If destination is tied to either of the commuted source register, then
     186             :   // it must be updated.
     187      535556 :   if (HasDef && Reg0 == Reg1 &&
     188             :       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
     189             :     Reg2IsKill = false;
     190             :     Reg0 = Reg2;
     191      535804 :     SubReg0 = SubReg2;
     192        2417 :   } else if (HasDef && Reg0 == Reg2 &&
     193             :              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
     194             :     Reg1IsKill = false;
     195             :     Reg0 = Reg1;
     196      535308 :     SubReg0 = SubReg1;
     197        2470 :   }
     198             : 
     199             :   MachineInstr *CommutedMI = nullptr;
     200             :   if (NewMI) {
     201             :     // Create a new instruction.
     202             :     MachineFunction &MF = *MI.getMF();
     203             :     CommutedMI = MF.CloneMachineInstr(&MI);
     204      535556 :   } else {
     205             :     CommutedMI = &MI;
     206             :   }
     207           0 : 
     208             :   if (HasDef) {
     209             :     CommutedMI->getOperand(0).setReg(Reg0);
     210             :     CommutedMI->getOperand(0).setSubReg(SubReg0);
     211             :   }
     212      535556 :   CommutedMI->getOperand(Idx2).setReg(Reg1);
     213      482380 :   CommutedMI->getOperand(Idx1).setReg(Reg2);
     214      482380 :   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
     215             :   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
     216     1071112 :   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
     217     1071112 :   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
     218      535556 :   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
     219      535556 :   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
     220      535556 :   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
     221      535556 :   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
     222      535556 :   // Avoid calling setIsRenamable for virtual registers since we assert that
     223      535556 :   // renamable property is only queried/set for physical registers.
     224      535556 :   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
     225      535556 :     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
     226             :   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
     227             :     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
     228      535556 :   return CommutedMI;
     229       23574 : }
     230      535556 : 
     231       23574 : MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
     232             :                                                   unsigned OpIdx1,
     233             :                                                   unsigned OpIdx2) const {
     234             :   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
     235      632207 :   // any commutable operand, which is done in findCommutedOpIndices() method
     236             :   // called below.
     237             :   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
     238             :       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
     239             :     assert(MI.isCommutable() &&
     240             :            "Precondition violation: MI must be commutable.");
     241     1193319 :     return nullptr;
     242      561112 :   }
     243             :   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
     244             : }
     245             : 
     246             : bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
     247      630252 :                                            unsigned &ResultIdx2,
     248             :                                            unsigned CommutableOpIdx1,
     249             :                                            unsigned CommutableOpIdx2) {
     250      668077 :   if (ResultIdx1 == CommuteAnyOperandIndex &&
     251             :       ResultIdx2 == CommuteAnyOperandIndex) {
     252             :     ResultIdx1 = CommutableOpIdx1;
     253             :     ResultIdx2 = CommutableOpIdx2;
     254      668077 :   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
     255      578165 :     if (ResultIdx2 == CommutableOpIdx1)
     256      578165 :       ResultIdx1 = CommutableOpIdx2;
     257      578165 :     else if (ResultIdx2 == CommutableOpIdx2)
     258       89912 :       ResultIdx1 = CommutableOpIdx1;
     259           0 :     else
     260           0 :       return false;
     261           0 :   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
     262           0 :     if (ResultIdx1 == CommutableOpIdx1)
     263             :       ResultIdx2 = CommutableOpIdx2;
     264             :     else if (ResultIdx1 == CommutableOpIdx2)
     265       89912 :       ResultIdx2 = CommutableOpIdx1;
     266       30936 :     else
     267       28795 :       return false;
     268        2141 :   } else
     269        1983 :     // Check that the result operand indices match the given commutable
     270             :     // operand indices.
     271             :     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
     272             :            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
     273             : 
     274             :   return true;
     275       58976 : }
     276       59022 : 
     277             : bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
     278             :                                             unsigned &SrcOpIdx1,
     279             :                                             unsigned &SrcOpIdx2) const {
     280             :   assert(!MI.isBundle() &&
     281      342845 :          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
     282             : 
     283             :   const MCInstrDesc &MCID = MI.getDesc();
     284             :   if (!MCID.isCommutable())
     285             :     return false;
     286             : 
     287      342845 :   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
     288      685690 :   // is not true, then the target must implement this.
     289             :   unsigned CommutableOpIdx1 = MCID.getNumDefs();
     290             :   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
     291             :   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
     292             :                             CommutableOpIdx1, CommutableOpIdx2))
     293      341992 :     return false;
     294      341992 : 
     295      341992 :   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
     296             :     // No idea.
     297             :     return false;
     298             :   return true;
     299      680436 : }
     300             : 
     301         141 : bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
     302             :   if (!MI.isTerminator()) return false;
     303             : 
     304             :   // Conditional branch is a special case.
     305     1534457 :   if (MI.isBranch() && !MI.isBarrier())
     306     1534457 :     return true;
     307             :   if (!MI.isPredicable())
     308             :     return true;
     309      924172 :   return !isPredicated(MI);
     310             : }
     311      569471 : 
     312             : bool TargetInstrInfo::PredicateInstruction(
     313       31030 :     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
     314             :   bool MadeChange = false;
     315             : 
     316           0 :   assert(!MI.isBundle() &&
     317             :          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
     318             : 
     319             :   const MCInstrDesc &MCID = MI.getDesc();
     320             :   if (!MI.isPredicable())
     321             :     return false;
     322             : 
     323           0 :   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
     324           0 :     if (MCID.OpInfo[i].isPredicate()) {
     325             :       MachineOperand &MO = MI.getOperand(i);
     326             :       if (MO.isReg()) {
     327           0 :         MO.setReg(Pred[j].getReg());
     328           0 :         MadeChange = true;
     329           0 :       } else if (MO.isImm()) {
     330           0 :         MO.setImm(Pred[j].getImm());
     331           0 :         MadeChange = true;
     332             :       } else if (MO.isMBB()) {
     333           0 :         MO.setMBB(Pred[j].getMBB());
     334           0 :         MadeChange = true;
     335             :       }
     336           0 :       ++j;
     337           0 :     }
     338             :   }
     339             :   return MadeChange;
     340           0 : }
     341             : 
     342             : bool TargetInstrInfo::hasLoadFromStackSlot(
     343             :     const MachineInstr &MI,
     344             :     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
     345             :   size_t StartSize = Accesses.size();
     346     2041922 :   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
     347             :                                   oe = MI.memoperands_end();
     348             :        o != oe; ++o) {
     349     2041922 :     if ((*o)->isLoad() &&
     350      569482 :         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
     351             :       Accesses.push_back(*o);
     352     2611404 :   }
     353     1440804 :   return Accesses.size() != StartSize;
     354             : }
     355       69333 : 
     356             : bool TargetInstrInfo::hasStoreToStackSlot(
     357     2041922 :     const MachineInstr &MI,
     358             :     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
     359             :   size_t StartSize = Accesses.size();
     360     2012321 :   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
     361             :                                   oe = MI.memoperands_end();
     362             :        o != oe; ++o) {
     363     2012321 :     if ((*o)->isStore() &&
     364      539423 :         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
     365             :       Accesses.push_back(*o);
     366     2551744 :   }
     367     1335591 :   return Accesses.size() != StartSize;
     368             : }
     369       47319 : 
     370             : bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
     371     2012321 :                                         unsigned SubIdx, unsigned &Size,
     372             :                                         unsigned &Offset,
     373             :                                         const MachineFunction &MF) const {
     374        1723 :   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
     375             :   if (!SubIdx) {
     376             :     Size = TRI->getSpillSize(*RC);
     377             :     Offset = 0;
     378        1723 :     return true;
     379        1723 :   }
     380        1685 :   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
     381        1685 :   // Convert bit size to byte size.
     382        1685 :   if (BitSize % 8)
     383             :     return false;
     384          38 : 
     385             :   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
     386          38 :   if (BitOffset < 0 || BitOffset % 8)
     387             :     return false;
     388             : 
     389          38 :   Size = BitSize /= 8;
     390          38 :   Offset = (unsigned)BitOffset / 8;
     391             : 
     392             :   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
     393          38 : 
     394          38 :   if (!MF.getDataLayout().isLittleEndian()) {
     395             :     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
     396             :   }
     397             :   return true;
     398          38 : }
     399           3 : 
     400             : void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
     401             :                                     MachineBasicBlock::iterator I,
     402             :                                     unsigned DestReg, unsigned SubIdx,
     403             :                                     const MachineInstr &Orig,
     404        8546 :                                     const TargetRegisterInfo &TRI) const {
     405             :   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
     406             :   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
     407             :   MBB.insert(I, MI);
     408             : }
     409        8546 : 
     410        8546 : bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
     411             :                                        const MachineInstr &MI1,
     412        8546 :                                        const MachineRegisterInfo *MRI) const {
     413             :   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
     414      269163 : }
     415             : 
     416             : MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
     417      269163 :     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
     418             :   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
     419             :   MachineFunction &MF = *MBB.getParent();
     420        9356 :   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
     421             : }
     422             : 
     423        9356 : // If the COPY instruction in MI can be folded to a stack operation, return
     424        9356 : // the register class to use.
     425             : static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
     426             :                                               unsigned FoldIdx) {
     427             :   assert(MI.isCopy() && "MI must be a COPY instruction");
     428             :   if (MI.getNumOperands() != 2)
     429       19003 :     return nullptr;
     430             :   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
     431             : 
     432       19003 :   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
     433             :   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
     434             : 
     435             :   if (FoldOp.getSubReg() || LiveOp.getSubReg())
     436       19003 :     return nullptr;
     437       19003 : 
     438             :   unsigned FoldReg = FoldOp.getReg();
     439       19003 :   unsigned LiveReg = LiveOp.getReg();
     440             : 
     441             :   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
     442       18785 :          "Cannot fold physregs");
     443       18785 : 
     444             :   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
     445             :   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
     446             : 
     447             :   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
     448       18785 :     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
     449             : 
     450             :   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
     451       37570 :     return RC;
     452        6743 : 
     453             :   // FIXME: Allow folding when register classes are memory compatible.
     454       24084 :   return nullptr;
     455       11878 : }
     456             : 
     457             : void TargetInstrInfo::getNoop(MCInst &NopInst) const {
     458             :   llvm_unreachable("Not implemented");
     459             : }
     460             : 
     461           0 : static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
     462           0 :                                     ArrayRef<unsigned> Ops, int FrameIndex,
     463             :                                     const TargetInstrInfo &TII) {
     464             :   unsigned StartIdx = 0;
     465         256 :   switch (MI.getOpcode()) {
     466             :   case TargetOpcode::STACKMAP: {
     467             :     // StackMapLiveValues are foldable
     468             :     StartIdx = StackMapOpers(&MI).getVarIdx();
     469         512 :     break;
     470          38 :   }
     471             :   case TargetOpcode::PATCHPOINT: {
     472          38 :     // For PatchPoint, the call args are not foldable (even if reported in the
     473          38 :     // stackmap e.g. via anyregcc).
     474             :     StartIdx = PatchPointOpers(&MI).getVarIdx();
     475         195 :     break;
     476             :   }
     477             :   case TargetOpcode::STATEPOINT: {
     478         195 :     // For statepoints, fold deopt and gc arguments, but not call arguments.
     479         195 :     StartIdx = StatepointOpers(&MI).getVarIdx();
     480             :     break;
     481             :   }
     482             :   default:
     483             :     llvm_unreachable("unexpected stackmap opcode");
     484          23 :   }
     485             : 
     486           0 :   // Return false if any operands requested for folding are not foldable (not
     487           0 :   // part of the stackmap's live values).
     488             :   for (unsigned Op : Ops) {
     489             :     if (Op < StartIdx)
     490             :       return nullptr;
     491             :   }
     492         390 : 
     493         256 :   MachineInstr *NewMI =
     494             :       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
     495             :   MachineInstrBuilder MIB(MF, NewMI);
     496             : 
     497             :   // No need to fold return, the meta data, and function arguments
     498         402 :   for (unsigned i = 0; i < StartIdx; ++i)
     499             :     MIB.add(MI.getOperand(i));
     500             : 
     501             :   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
     502        1068 :     MachineOperand &MO = MI.getOperand(i);
     503         934 :     if (is_contained(Ops, i)) {
     504             :       unsigned SpillSize;
     505        4830 :       unsigned SpillOffset;
     506        4696 :       // Compute the spill slot size and offset.
     507        4696 :       const TargetRegisterClass *RC =
     508             :         MF.getRegInfo().getRegClass(MO.getReg());
     509             :       bool Valid =
     510             :           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
     511             :       if (!Valid)
     512         134 :         report_fatal_error("cannot spill patchpoint subregister operand");
     513             :       MIB.addImm(StackMaps::IndirectMemRefOp);
     514         268 :       MIB.addImm(SpillSize);
     515         134 :       MIB.addFrameIndex(FrameIndex);
     516           0 :       MIB.addImm(SpillOffset);
     517             :     }
     518         134 :     else
     519             :       MIB.add(MO);
     520         134 :   }
     521             :   return NewMI;
     522             : }
     523             : 
     524             : MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
     525         134 :                                                  ArrayRef<unsigned> Ops, int FI,
     526             :                                                  LiveIntervals *LIS) const {
     527             :   auto Flags = MachineMemOperand::MONone;
     528       38320 :   for (unsigned OpIdx : Ops)
     529             :     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
     530             :                                           : MachineMemOperand::MOLoad;
     531             : 
     532       76832 :   MachineBasicBlock *MBB = MI.getParent();
     533       38512 :   assert(MBB && "foldMemoryOperand needs an inserted instruction");
     534       38512 :   MachineFunction &MF = *MBB->getParent();
     535             : 
     536       38320 :   // If we're not folding a load into a subreg, the size of the load is the
     537             :   // size of the spill slot. But if we are, we need to figure out what the
     538       38320 :   // actual load size is.
     539             :   int64_t MemSize = 0;
     540             :   const MachineFrameInfo &MFI = MF.getFrameInfo();
     541             :   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
     542             : 
     543       38320 :   if (Flags & MachineMemOperand::MOStore) {
     544       38320 :     MemSize = MFI.getObjectSize(FI);
     545       38320 :   } else {
     546             :     for (unsigned OpIdx : Ops) {
     547       76640 :       int64_t OpSize = MFI.getObjectSize(FI);
     548       15577 : 
     549             :       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
     550       45668 :         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
     551       22925 :         if (SubRegSize > 0 && !(SubRegSize % 8))
     552             :           OpSize = SubRegSize / 8;
     553       45850 :       }
     554         440 : 
     555         440 :       MemSize = std::max(MemSize, OpSize);
     556         440 :     }
     557             :   }
     558             : 
     559       22925 :   assert(MemSize && "Did not expect a zero-sized stack slot");
     560             : 
     561             :   MachineInstr *NewMI = nullptr;
     562             : 
     563             :   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
     564             :       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
     565             :       MI.getOpcode() == TargetOpcode::STATEPOINT) {
     566             :     // Fold stackmap/patchpoint.
     567       38320 :     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
     568       76499 :     if (NewMI)
     569             :       MBB->insert(MI, NewMI);
     570             :   } else {
     571         141 :     // Ask the target to do the actual folding.
     572         141 :     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
     573             :   }
     574             : 
     575             :   if (NewMI) {
     576       76358 :     NewMI->setMemRefs(MF, MI.memoperands());
     577             :     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
     578             :     assert((!(Flags & MachineMemOperand::MOStore) ||
     579       38320 :             NewMI->mayStore()) &&
     580        6913 :            "Folded a def to a non-store!");
     581             :     assert((!(Flags & MachineMemOperand::MOLoad) ||
     582             :             NewMI->mayLoad()) &&
     583             :            "Folded a use to a non-load!");
     584             :     assert(MFI.getObjectOffset(FI) != -1);
     585             :     MachineMemOperand *MMO = MF.getMachineMemOperand(
     586             :         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
     587             :         MFI.getObjectAlignment(FI));
     588             :     NewMI->addMemOperand(MF, MMO);
     589        6913 : 
     590             :     return NewMI;
     591             :   }
     592        6913 : 
     593             :   // Straight COPY may fold as load/store.
     594        6913 :   if (!MI.isCopy() || Ops.size() != 1)
     595             :     return nullptr;
     596             : 
     597             :   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
     598       31407 :   if (!RC)
     599             :     return nullptr;
     600             : 
     601       19003 :   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
     602       19003 :   MachineBasicBlock::iterator Pos = MI;
     603             : 
     604             :   if (Flags == MachineMemOperand::MOStore)
     605       18595 :     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
     606             :   else
     607             :     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
     608       18595 :   return &*--Pos;
     609       17850 : }
     610             : 
     611        9670 : MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
     612       18595 :                                                  ArrayRef<unsigned> Ops,
     613             :                                                  MachineInstr &LoadMI,
     614             :                                                  LiveIntervals *LIS) const {
     615      140674 :   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
     616             : #ifndef NDEBUG
     617             :   for (unsigned OpIdx : Ops)
     618             :     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
     619             : #endif
     620             : 
     621             :   MachineBasicBlock &MBB = *MI.getParent();
     622             :   MachineFunction &MF = *MBB.getParent();
     623             : 
     624             :   // Ask the target to do the actual folding.
     625      140674 :   MachineInstr *NewMI = nullptr;
     626      140674 :   int FrameIndex = 0;
     627             : 
     628             :   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
     629             :        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
     630      140674 :        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
     631             :       isLoadFromStackSlot(LoadMI, FrameIndex)) {
     632      140674 :     // Fold stackmap/patchpoint.
     633      140582 :     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
     634      140789 :     if (NewMI)
     635         115 :       NewMI = &*MBB.insert(MI, NewMI);
     636             :   } else {
     637         115 :     // Ask the target to do the actual folding.
     638         115 :     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
     639             :   }
     640             : 
     641             :   if (!NewMI)
     642      281118 :     return nullptr;
     643             : 
     644             :   // Copy the memoperands from the load to the folded instruction.
     645      140674 :   if (MI.memoperands_empty()) {
     646             :     NewMI->setMemRefs(MF, LoadMI.memoperands());
     647             :   } else {
     648             :     // Handle the rare case of folding multiple loads.
     649        6834 :     NewMI->setMemRefs(MF, MI.memoperands());
     650        6771 :     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
     651             :                                     E = LoadMI.memoperands_end();
     652             :          I != E; ++I) {
     653          63 :       NewMI->addMemOperand(MF, *I);
     654          63 :     }
     655             :   }
     656         126 :   return NewMI;
     657          63 : }
     658             : 
     659             : bool TargetInstrInfo::hasReassociableOperands(
     660             :     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
     661             :   const MachineOperand &Op1 = Inst.getOperand(1);
     662             :   const MachineOperand &Op2 = Inst.getOperand(2);
     663       41552 :   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
     664             : 
     665       41552 :   // We need virtual register definitions for the operands that we will
     666             :   // reassociate.
     667       41552 :   MachineInstr *MI1 = nullptr;
     668             :   MachineInstr *MI2 = nullptr;
     669             :   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
     670             :     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
     671             :   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
     672             :     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
     673       41552 : 
     674       41552 :   // And they need to be in the trace (otherwise, they won't have a depth).
     675       41552 :   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
     676       41552 : }
     677             : 
     678             : bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
     679       41552 :                                              bool &Commuted) const {
     680             :   const MachineBasicBlock *MBB = Inst.getParent();
     681             :   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
     682       34812 :   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
     683             :   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
     684       34812 :   unsigned AssocOpcode = Inst.getOpcode();
     685       34812 : 
     686       34812 :   // If only one operand has the same opcode and it's the second source operand,
     687       34812 :   // the operands must be commuted.
     688       34812 :   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
     689             :   if (Commuted)
     690             :     std::swap(MI1, MI2);
     691             : 
     692       69624 :   // 1. The previous instruction must be the same type as Inst.
     693       34812 :   // 2. The previous instruction must have virtual register definitions for its
     694             :   //    operands in the same basic block as Inst.
     695             :   // 3. The previous instruction's result must only be used by Inst.
     696             :   return MI1->getOpcode() == AssocOpcode &&
     697             :          hasReassociableOperands(*MI1, MBB) &&
     698             :          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
     699             : }
     700       39734 : 
     701       39655 : // 1. The operation must be associative and commutative.
     702        4843 : // 2. The instruction must have virtual register definitions for its
     703             : //    operands in the same basic block.
     704             : // 3. The instruction must have a reassociable sibling.
     705             : bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
     706             :                                                bool &Commuted) const {
     707             :   return isAssociativeAndCommutative(Inst) &&
     708             :          hasReassociableOperands(Inst, Inst.getParent()) &&
     709     3484520 :          hasReassociableSibling(Inst, Commuted);
     710             : }
     711     3521626 : 
     712     3519332 : // The concept of the reassociation pass is that these operations can benefit
     713       34812 : // from this kind of transformation:
     714             : //
     715             : // A = ? op ?
     716             : // B = A op X (Prev)
     717             : // C = B op Y (Root)
     718             : // -->
     719             : // A = ? op ?
     720             : // B = X op Y
     721             : // C = A op B
     722             : //
     723             : // breaking the dependency between A and B, allowing them to be executed in
     724             : // parallel (or back-to-back in a pipeline) instead of depending on each other.
     725             : 
     726             : // FIXME: This has the potential to be expensive (compile time) while not
     727             : // improving the code at all. Some ways to limit the overhead:
     728             : // 1. Track successful transforms; bail out if hit rate gets too low.
     729             : // 2. Only enable at -O3 or some other non-default optimization level.
     730             : // 3. Pre-screen pattern candidates here: if an operand of the previous
     731             : //    instruction is known to not increase the critical path, then don't match
     732             : //    that pattern.
     733             : bool TargetInstrInfo::getMachineCombinerPatterns(
     734             :     MachineInstr &Root,
     735             :     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
     736             :   bool Commute;
     737     3484520 :   if (isReassociationCandidate(Root, Commute)) {
     738             :     // We found a sequence of instructions that may be suitable for a
     739             :     // reassociation of operands to increase ILP. Specify each commutation
     740             :     // possibility for the Prev instruction in the sequence and let the
     741     3484520 :     // machine combiner decide if changing the operands is worthwhile.
     742             :     if (Commute) {
     743             :       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
     744             :       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
     745             :     } else {
     746        2671 :       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
     747         445 :       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
     748         445 :     }
     749             :     return true;
     750        2226 :   }
     751        2226 : 
     752             :   return false;
     753        2671 : }
     754             : 
     755             : /// Return true when a code sequence can improve loop throughput.
     756             : bool
     757             : TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
     758             :   return false;
     759             : }
     760             : 
     761          15 : /// Attempt the reassociation transformation to reduce critical path length.
     762          15 : /// See the above comments before getMachineCombinerPatterns().
     763             : void TargetInstrInfo::reassociateOps(
     764             :     MachineInstr &Root, MachineInstr &Prev,
     765             :     MachineCombinerPattern Pattern,
     766             :     SmallVectorImpl<MachineInstr *> &InsInstrs,
     767        3366 :     SmallVectorImpl<MachineInstr *> &DelInstrs,
     768             :     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
     769             :   MachineFunction *MF = Root.getMF();
     770             :   MachineRegisterInfo &MRI = MF->getRegInfo();
     771             :   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
     772             :   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
     773             :   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
     774        3366 : 
     775        3366 :   // This array encodes the operand index for each parameter because the
     776        3366 :   // operands may be commuted. Each row corresponds to a pattern value,
     777        3366 :   // and each column specifies the index of A, B, X, Y.
     778             :   unsigned OpIdx[4][4] = {
     779             :     { 1, 1, 2, 2 },
     780             :     { 1, 2, 2, 1 },
     781             :     { 2, 1, 1, 2 },
     782        3366 :     { 2, 2, 1, 1 }
     783             :   };
     784             : 
     785             :   int Row;
     786             :   switch (Pattern) {
     787             :   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
     788             :   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
     789             :   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
     790             :   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
     791             :   default: llvm_unreachable("unexpected MachineCombinerPattern");
     792             :   }
     793             : 
     794             :   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
     795           0 :   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
     796             :   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
     797             :   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
     798        3366 :   MachineOperand &OpC = Root.getOperand(0);
     799        3366 : 
     800        3366 :   unsigned RegA = OpA.getReg();
     801        3366 :   unsigned RegB = OpB.getReg();
     802             :   unsigned RegX = OpX.getReg();
     803             :   unsigned RegY = OpY.getReg();
     804        3366 :   unsigned RegC = OpC.getReg();
     805        3366 : 
     806        3366 :   if (TargetRegisterInfo::isVirtualRegister(RegA))
     807        3366 :     MRI.constrainRegClass(RegA, RC);
     808        3366 :   if (TargetRegisterInfo::isVirtualRegister(RegB))
     809             :     MRI.constrainRegClass(RegB, RC);
     810        3366 :   if (TargetRegisterInfo::isVirtualRegister(RegX))
     811        3366 :     MRI.constrainRegClass(RegX, RC);
     812        3366 :   if (TargetRegisterInfo::isVirtualRegister(RegY))
     813        3366 :     MRI.constrainRegClass(RegY, RC);
     814        3366 :   if (TargetRegisterInfo::isVirtualRegister(RegC))
     815        3366 :     MRI.constrainRegClass(RegC, RC);
     816        3366 : 
     817        3366 :   // Create a new virtual register for the result of (X op Y) instead of
     818        3366 :   // recycling RegB because the MachineCombiner's computation of the critical
     819        3366 :   // path requires a new register definition rather than an existing one.
     820             :   unsigned NewVR = MRI.createVirtualRegister(RC);
     821             :   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
     822             : 
     823             :   unsigned Opcode = Root.getOpcode();
     824        3366 :   bool KillA = OpA.isKill();
     825        3366 :   bool KillX = OpX.isKill();
     826             :   bool KillY = OpY.isKill();
     827        3366 : 
     828             :   // Create new instructions for insertion.
     829             :   MachineInstrBuilder MIB1 =
     830             :       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
     831             :           .addReg(RegX, getKillRegState(KillX))
     832             :           .addReg(RegY, getKillRegState(KillY));
     833             :   MachineInstrBuilder MIB2 =
     834        6732 :       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
     835        3366 :           .addReg(RegA, getKillRegState(KillA))
     836        3366 :           .addReg(NewVR, getKillRegState(true));
     837             : 
     838        6732 :   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
     839        3366 : 
     840        3366 :   // Record new instructions for insertion and old instructions for deletion.
     841             :   InsInstrs.push_back(MIB1);
     842        3366 :   InsInstrs.push_back(MIB2);
     843             :   DelInstrs.push_back(&Prev);
     844             :   DelInstrs.push_back(&Root);
     845        3366 : }
     846        3366 : 
     847        3366 : void TargetInstrInfo::genAlternativeCodeSequence(
     848        3366 :     MachineInstr &Root, MachineCombinerPattern Pattern,
     849        3366 :     SmallVectorImpl<MachineInstr *> &InsInstrs,
     850             :     SmallVectorImpl<MachineInstr *> &DelInstrs,
     851        3366 :     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
     852             :   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
     853             : 
     854             :   // Select the previous instruction in the sequence based on the input pattern.
     855             :   MachineInstr *Prev = nullptr;
     856        3366 :   switch (Pattern) {
     857             :   case MachineCombinerPattern::REASSOC_AX_BY:
     858             :   case MachineCombinerPattern::REASSOC_XA_BY:
     859             :     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
     860        3366 :     break;
     861        2464 :   case MachineCombinerPattern::REASSOC_AX_YB:
     862             :   case MachineCombinerPattern::REASSOC_XA_YB:
     863        2464 :     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
     864        2464 :     break;
     865         902 :   default:
     866             :     break;
     867         902 :   }
     868         902 : 
     869             :   assert(Prev && "Unknown pattern for machine combiner");
     870             : 
     871             :   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
     872             : }
     873             : 
     874             : bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
     875        3366 :     const MachineInstr &MI, AliasAnalysis *AA) const {
     876        3366 :   const MachineFunction &MF = *MI.getMF();
     877             :   const MachineRegisterInfo &MRI = MF.getRegInfo();
     878      294556 : 
     879             :   // Remat clients assume operand 0 is the defined register.
     880      294556 :   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
     881      294556 :     return false;
     882             :   unsigned DefReg = MI.getOperand(0).getReg();
     883             : 
     884      294556 :   // A sub-register definition can only be rematerialized if the instruction
     885             :   // doesn't read the other parts of the register.  Otherwise it is really a
     886      294556 :   // read-modify-write operation on the full virtual register which cannot be
     887             :   // moved safely.
     888             :   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
     889             :       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
     890             :     return false;
     891             : 
     892      294556 :   // A load from a fixed stack slot can be rematerialized. This may be
     893      307617 :   // redundant with subsequent checks, but it's target-independent,
     894             :   // simple, and a common case.
     895             :   int FrameIdx = 0;
     896             :   if (isLoadFromStackSlot(MI, FrameIdx) &&
     897             :       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
     898             :     return true;
     899      288052 : 
     900      321588 :   // Avoid instructions obviously unsafe for remat.
     901       33951 :   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
     902             :     return false;
     903             : 
     904             :   // Don't remat inline asm. We have no idea how expensive it is
     905      269801 :   // even if it's side effect free.
     906          22 :   if (MI.isInlineAsm())
     907             :     return false;
     908             : 
     909             :   // Avoid instructions which load from potentially varying memory.
     910      269779 :   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
     911             :     return false;
     912             : 
     913             :   // If any of the registers accessed are non-constant, conservatively assume
     914      269779 :   // the instruction is not rematerializable.
     915             :   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
     916             :     const MachineOperand &MO = MI.getOperand(i);
     917             :     if (!MO.isReg()) continue;
     918             :     unsigned Reg = MO.getReg();
     919      842357 :     if (Reg == 0)
     920      725211 :       continue;
     921      725211 : 
     922      503602 :     // Check for a well-behaved physical register.
     923      503602 :     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
     924             :       if (MO.isUse()) {
     925             :         // If the physreg has no defs anywhere, it's just an ambient register
     926             :         // and we can freely move its uses. Alternatively, if it's allocatable,
     927      312140 :         // it could get allocated to something with a def during allocation.
     928       88628 :         if (!MRI.isConstantPhysReg(Reg))
     929             :           return false;
     930             :       } else {
     931             :         // A physreg def. We can't remat it.
     932       88628 :         return false;
     933             :       }
     934             :       continue;
     935             :     }
     936             : 
     937             :     // Only allow one virtual-register def.  There may be multiple defs of the
     938             :     // same virtual register, though.
     939             :     if (MO.isDef() && Reg != DefReg)
     940             :       return false;
     941             : 
     942             :     // Don't allow any virtual-register uses. Rematting an instruction with
     943      223512 :     // virtual register uses would length the live ranges of the uses, which
     944             :     // is not necessarily a good idea, certainly not "trivial".
     945             :     if (MO.isUse())
     946             :       return false;
     947             :   }
     948             : 
     949      223512 :   // Everything checked out.
     950             :   return true;
     951             : }
     952             : 
     953             : int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
     954             :   const MachineFunction *MF = MI.getMF();
     955             :   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
     956             :   bool StackGrowsDown =
     957        1874 :     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
     958        1874 : 
     959        1874 :   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
     960             :   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
     961        1874 : 
     962             :   if (!isFrameInstr(MI))
     963        1874 :     return 0;
     964        1874 : 
     965             :   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
     966             : 
     967             :   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
     968             :       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
     969         100 :     SPAdj = -SPAdj;
     970             : 
     971         100 :   return SPAdj;
     972         100 : }
     973          50 : 
     974             : /// isSchedulingBoundary - Test if the given instruction should be
     975             : /// considered a scheduling boundary. This primarily includes labels
     976             : /// and terminators.
     977             : bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
     978             :                                            const MachineBasicBlock *MBB,
     979             :                                            const MachineFunction &MF) const {
     980             :   // Terminators and labels can't be scheduled around.
     981     4785995 :   if (MI.isTerminator() || MI.isPosition())
     982             :     return true;
     983             : 
     984             :   // Don't attempt to schedule around any instruction that defines
     985     4785995 :   // a stack-oriented pointer, as it's unlikely to be profitable. This
     986             :   // saves compile time, because it doesn't require every single
     987             :   // stack slot reference to depend on the instruction that does the
     988             :   // modification.
     989             :   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
     990             :   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
     991             :   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
     992             : }
     993     4063643 : 
     994     4063643 : // Provide a global flag for disabling the PreRA hazard recognizer that targets
     995     4063643 : // may choose to honor.
     996             : bool TargetInstrInfo::usePreRAHazardRecognizer() const {
     997             :   return !DisableHazardRecognizer;
     998             : }
     999             : 
    1000       11322 : // Default implementation of CreateTargetRAHazardRecognizer.
    1001       11322 : ScheduleHazardRecognizer *TargetInstrInfo::
    1002             : CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    1003             :                              const ScheduleDAG *DAG) const {
    1004             :   // Dummy hazard recognizer allows all instructions to issue.
    1005       15899 :   return new ScheduleHazardRecognizer();
    1006             : }
    1007             : 
    1008             : // Default implementation of CreateTargetMIHazardRecognizer.
    1009       15899 : ScheduleHazardRecognizer *TargetInstrInfo::
    1010             : CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
    1011             :                                const ScheduleDAG *DAG) const {
    1012             :   return (ScheduleHazardRecognizer *)
    1013      340371 :     new ScoreboardHazardRecognizer(II, DAG, "misched");
    1014             : }
    1015             : 
    1016             : // Default implementation of CreateTargetPostRAHazardRecognizer.
    1017      340371 : ScheduleHazardRecognizer *TargetInstrInfo::
    1018             : CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    1019             :                                    const ScheduleDAG *DAG) const {
    1020             :   return (ScheduleHazardRecognizer *)
    1021        8671 :     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
    1022             : }
    1023             : 
    1024             : //===----------------------------------------------------------------------===//
    1025        8671 : //  SelectionDAG latency interface.
    1026             : //===----------------------------------------------------------------------===//
    1027             : 
    1028             : int
    1029             : TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
    1030             :                                    SDNode *DefNode, unsigned DefIdx,
    1031             :                                    SDNode *UseNode, unsigned UseIdx) const {
    1032             :   if (!ItinData || ItinData->isEmpty())
    1033       98820 :     return -1;
    1034             : 
    1035             :   if (!DefNode->isMachineOpcode())
    1036       98820 :     return -1;
    1037             : 
    1038             :   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
    1039           0 :   if (!UseNode->isMachineOpcode())
    1040             :     return ItinData->getOperandCycle(DefClass, DefIdx);
    1041             :   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
    1042           0 :   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
    1043           0 : }
    1044             : 
    1045           0 : int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
    1046           0 :                                      SDNode *N) const {
    1047             :   if (!ItinData || ItinData->isEmpty())
    1048             :     return 1;
    1049           0 : 
    1050             :   if (!N->isMachineOpcode())
    1051           0 :     return 1;
    1052             : 
    1053             :   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
    1054           0 : }
    1055             : 
    1056             : //===----------------------------------------------------------------------===//
    1057           0 : //  MachineInstr latency interface.
    1058             : //===----------------------------------------------------------------------===//
    1059             : 
    1060             : unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
    1061             :                                          const MachineInstr &MI) const {
    1062             :   if (!ItinData || ItinData->isEmpty())
    1063             :     return 1;
    1064           0 : 
    1065             :   unsigned Class = MI.getDesc().getSchedClass();
    1066           0 :   int UOps = ItinData->Itineraries[Class].NumMicroOps;
    1067             :   if (UOps >= 0)
    1068             :     return UOps;
    1069           0 : 
    1070           0 :   // The # of u-ops is dynamically determined. The specific target should
    1071           0 :   // override this function to return the right number.
    1072           0 :   return 1;
    1073             : }
    1074             : 
    1075             : /// Return the default expected latency for a def based on it's opcode.
    1076             : unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
    1077             :                                             const MachineInstr &DefMI) const {
    1078             :   if (DefMI.isTransient())
    1079             :     return 0;
    1080     4559496 :   if (DefMI.mayLoad())
    1081             :     return SchedModel.LoadLatency;
    1082             :   if (isHighLatencyDef(DefMI.getOpcode()))
    1083             :     return SchedModel.HighLatency;
    1084     3617675 :   return 1;
    1085     1379813 : }
    1086     4475724 : 
    1087        1788 : unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
    1088             :   return 0;
    1089             : }
    1090             : 
    1091       33999 : unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
    1092       33999 :                                           const MachineInstr &MI,
    1093             :                                           unsigned *PredCost) const {
    1094             :   // Default to one cycle for no itinerary. However, an "empty" itinerary may
    1095       17305 :   // still have a MinLatency property, which getStageLatency checks.
    1096             :   if (!ItinData)
    1097             :     return MI.mayLoad() ? 2 : 1;
    1098             : 
    1099             :   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
    1100       17305 : }
    1101        8333 : 
    1102             : bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
    1103       17944 :                                        const MachineInstr &DefMI,
    1104             :                                        unsigned DefIdx) const {
    1105             :   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
    1106       24937 :   if (!ItinData || ItinData->isEmpty())
    1107             :     return false;
    1108             : 
    1109             :   unsigned DefClass = DefMI.getDesc().getSchedClass();
    1110         163 :   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
    1111             :   return (DefCycle != -1 && DefCycle <= 1);
    1112             : }
    1113         163 : 
    1114             : /// Both DefMI and UseMI must be valid.  By default, call directly to the
    1115         163 : /// itinerary. This may be overriden by the target.
    1116             : int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
    1117             :                                        const MachineInstr &DefMI,
    1118             :                                        unsigned DefIdx,
    1119             :                                        const MachineInstr &UseMI,
    1120      307257 :                                        unsigned UseIdx) const {
    1121             :   unsigned DefClass = DefMI.getDesc().getSchedClass();
    1122             :   unsigned UseClass = UseMI.getDesc().getSchedClass();
    1123             :   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
    1124             : }
    1125      307257 : 
    1126      307257 : /// If we can determine the operand latency from the def only, without itinerary
    1127      307257 : /// lookup, do so. Otherwise return -1.
    1128             : int TargetInstrInfo::computeDefOperandLatency(
    1129             :     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
    1130             : 
    1131             :   // Let the target hook getInstrLatency handle missing itineraries.
    1132           0 :   if (!ItinData)
    1133             :     return getInstrLatency(ItinData, DefMI);
    1134             : 
    1135             :   if(ItinData->isEmpty())
    1136           0 :     return defaultDefLatency(ItinData->SchedModel, DefMI);
    1137           0 : 
    1138             :   // ...operand lookup required
    1139           0 :   return -1;
    1140           0 : }
    1141             : 
    1142             : bool TargetInstrInfo::getRegSequenceInputs(
    1143             :     const MachineInstr &MI, unsigned DefIdx,
    1144             :     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
    1145             :   assert((MI.isRegSequence() ||
    1146      244956 :           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
    1147             : 
    1148             :   if (!MI.isRegSequence())
    1149             :     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
    1150             : 
    1151             :   // We are looking at:
    1152      244956 :   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
    1153        1595 :   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
    1154             :   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
    1155             :        OpIdx += 2) {
    1156             :     const MachineOperand &MOReg = MI.getOperand(OpIdx);
    1157             :     if (MOReg.isUndef())
    1158      945267 :       continue;
    1159      701906 :     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
    1160      701906 :     assert(MOSubIdx.isImm() &&
    1161      701906 :            "One of the subindex of the reg_sequence is not an immediate");
    1162             :     // Record Reg:SubReg, SubIdx.
    1163      701906 :     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
    1164             :                                             (unsigned)MOSubIdx.getImm()));
    1165             :   }
    1166             :   return true;
    1167     1403812 : }
    1168      701906 : 
    1169             : bool TargetInstrInfo::getExtractSubregInputs(
    1170             :     const MachineInstr &MI, unsigned DefIdx,
    1171             :     RegSubRegPairAndIdx &InputReg) const {
    1172             :   assert((MI.isExtractSubreg() ||
    1173        3121 :       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
    1174             : 
    1175             :   if (!MI.isExtractSubreg())
    1176             :     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
    1177             : 
    1178             :   // We are looking at:
    1179        3121 :   // Def = EXTRACT_SUBREG v0.sub1, sub0.
    1180        3121 :   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
    1181             :   const MachineOperand &MOReg = MI.getOperand(1);
    1182             :   if (MOReg.isUndef())
    1183             :     return false;
    1184             :   const MachineOperand &MOSubIdx = MI.getOperand(2);
    1185           0 :   assert(MOSubIdx.isImm() &&
    1186           0 :          "The subindex of the extract_subreg is not an immediate");
    1187             : 
    1188             :   InputReg.Reg = MOReg.getReg();
    1189             :   InputReg.SubReg = MOReg.getSubReg();
    1190             :   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
    1191             :   return true;
    1192           0 : }
    1193           0 : 
    1194           0 : bool TargetInstrInfo::getInsertSubregInputs(
    1195           0 :     const MachineInstr &MI, unsigned DefIdx,
    1196             :     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
    1197             :   assert((MI.isInsertSubreg() ||
    1198       28764 :       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
    1199             : 
    1200             :   if (!MI.isInsertSubreg())
    1201             :     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
    1202             : 
    1203             :   // We are looking at:
    1204       28764 :   // Def = INSERT_SEQUENCE v0, v1, sub0.
    1205         193 :   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
    1206             :   const MachineOperand &MOBaseReg = MI.getOperand(1);
    1207             :   const MachineOperand &MOInsertedReg = MI.getOperand(2);
    1208             :   if (MOInsertedReg.isUndef())
    1209             :     return false;
    1210       28571 :   const MachineOperand &MOSubIdx = MI.getOperand(3);
    1211             :   assert(MOSubIdx.isImm() &&
    1212       28571 :          "One of the subindex of the reg_sequence is not an immediate");
    1213             :   BaseReg.Reg = MOBaseReg.getReg();
    1214             :   BaseReg.SubReg = MOBaseReg.getSubReg();
    1215             : 
    1216             :   InsertedReg.Reg = MOInsertedReg.getReg();
    1217       28571 :   InsertedReg.SubReg = MOInsertedReg.getSubReg();
    1218       28571 :   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
    1219             :   return true;
    1220       28571 : }

Generated by: LCOV version 1.13