Line data Source code
1 : //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements the VirtRegMap class.
11 : //
12 : // It also contains implementations of the Spiller interface, which, given a
13 : // virtual register map and a machine function, eliminates all virtual
14 : // references by replacing them with physical register references - adding spill
15 : // code as necessary.
16 : //
17 : //===----------------------------------------------------------------------===//
18 :
19 : #include "llvm/CodeGen/VirtRegMap.h"
20 : #include "LiveDebugVariables.h"
21 : #include "llvm/ADT/SmallVector.h"
22 : #include "llvm/ADT/Statistic.h"
23 : #include "llvm/CodeGen/LiveInterval.h"
24 : #include "llvm/CodeGen/LiveIntervals.h"
25 : #include "llvm/CodeGen/LiveStacks.h"
26 : #include "llvm/CodeGen/MachineBasicBlock.h"
27 : #include "llvm/CodeGen/MachineFrameInfo.h"
28 : #include "llvm/CodeGen/MachineFunction.h"
29 : #include "llvm/CodeGen/MachineFunctionPass.h"
30 : #include "llvm/CodeGen/MachineInstr.h"
31 : #include "llvm/CodeGen/MachineOperand.h"
32 : #include "llvm/CodeGen/MachineRegisterInfo.h"
33 : #include "llvm/CodeGen/SlotIndexes.h"
34 : #include "llvm/CodeGen/TargetInstrInfo.h"
35 : #include "llvm/CodeGen/TargetOpcodes.h"
36 : #include "llvm/CodeGen/TargetRegisterInfo.h"
37 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 : #include "llvm/Config/llvm-config.h"
39 : #include "llvm/MC/LaneBitmask.h"
40 : #include "llvm/Pass.h"
41 : #include "llvm/Support/Compiler.h"
42 : #include "llvm/Support/Debug.h"
43 : #include "llvm/Support/raw_ostream.h"
44 : #include <cassert>
45 : #include <iterator>
46 : #include <utility>
47 :
48 : using namespace llvm;
49 :
50 : #define DEBUG_TYPE "regalloc"
51 :
52 : STATISTIC(NumSpillSlots, "Number of spill slots allocated");
53 : STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
54 :
55 : //===----------------------------------------------------------------------===//
56 : // VirtRegMap implementation
57 : //===----------------------------------------------------------------------===//
58 :
59 : char VirtRegMap::ID = 0;
60 :
61 212274 : INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
62 :
63 194001 : bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
64 194001 : MRI = &mf.getRegInfo();
65 194001 : TII = mf.getSubtarget().getInstrInfo();
66 194001 : TRI = mf.getSubtarget().getRegisterInfo();
67 194001 : MF = &mf;
68 :
69 : Virt2PhysMap.clear();
70 : Virt2StackSlotMap.clear();
71 : Virt2SplitMap.clear();
72 :
73 194001 : grow();
74 194001 : return false;
75 : }
76 :
77 502633 : void VirtRegMap::grow() {
78 502633 : unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
79 : Virt2PhysMap.resize(NumRegs);
80 : Virt2StackSlotMap.resize(NumRegs);
81 : Virt2SplitMap.resize(NumRegs);
82 502633 : }
83 :
84 1471460 : void VirtRegMap::assignVirt2Phys(unsigned virtReg, MCPhysReg physReg) {
85 : assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
86 : TargetRegisterInfo::isPhysicalRegister(physReg));
87 : assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
88 : "attempt to assign physical register to already mapped "
89 : "virtual register");
90 : assert(!getRegInfo().isReserved(physReg) &&
91 : "Attempt to map virtReg to a reserved physReg");
92 1471460 : Virt2PhysMap[virtReg] = physReg;
93 1471460 : }
94 :
95 14514 : unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
96 14514 : unsigned Size = TRI->getSpillSize(*RC);
97 : unsigned Align = TRI->getSpillAlignment(*RC);
98 14514 : int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align);
99 : ++NumSpillSlots;
100 14514 : return SS;
101 : }
102 :
103 741849 : bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
104 741849 : unsigned Hint = MRI->getSimpleHint(VirtReg);
105 741818 : if (!Hint)
106 : return false;
107 394082 : if (TargetRegisterInfo::isVirtualRegister(Hint))
108 : Hint = getPhys(Hint);
109 394082 : return getPhys(VirtReg) == Hint;
110 : }
111 :
112 1505169 : bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
113 1505169 : std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
114 1505169 : if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
115 : return true;
116 903999 : if (TargetRegisterInfo::isVirtualRegister(Hint.second))
117 149325 : return hasPhys(Hint.second);
118 : return false;
119 : }
120 :
121 14514 : int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
122 : assert(TargetRegisterInfo::isVirtualRegister(virtReg));
123 : assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
124 : "attempt to assign stack slot to already spilled register");
125 14514 : const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
126 14514 : return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
127 : }
128 :
129 9375 : void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
130 : assert(TargetRegisterInfo::isVirtualRegister(virtReg));
131 : assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
132 : "attempt to assign stack slot to already spilled register");
133 : assert((SS >= 0 ||
134 : (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
135 : "illegal fixed frame index");
136 9375 : Virt2StackSlotMap[virtReg] = SS;
137 9375 : }
138 :
139 0 : void VirtRegMap::print(raw_ostream &OS, const Module*) const {
140 0 : OS << "********** REGISTER MAP **********\n";
141 0 : for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
142 : unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
143 0 : if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
144 0 : OS << '[' << printReg(Reg, TRI) << " -> "
145 0 : << printReg(Virt2PhysMap[Reg], TRI) << "] "
146 0 : << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
147 : }
148 : }
149 :
150 0 : for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
151 : unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
152 0 : if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
153 0 : OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
154 0 : << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
155 : }
156 : }
157 : OS << '\n';
158 0 : }
159 :
160 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
161 : LLVM_DUMP_METHOD void VirtRegMap::dump() const {
162 : print(dbgs());
163 : }
164 : #endif
165 :
166 : //===----------------------------------------------------------------------===//
167 : // VirtRegRewriter
168 : //===----------------------------------------------------------------------===//
169 : //
170 : // The VirtRegRewriter is the last of the register allocator passes.
171 : // It rewrites virtual registers to physical registers as specified in the
172 : // VirtRegMap analysis. It also updates live-in information on basic blocks
173 : // according to LiveIntervals.
174 : //
175 : namespace {
176 :
177 : class VirtRegRewriter : public MachineFunctionPass {
178 : MachineFunction *MF;
179 : const TargetRegisterInfo *TRI;
180 : const TargetInstrInfo *TII;
181 : MachineRegisterInfo *MRI;
182 : SlotIndexes *Indexes;
183 : LiveIntervals *LIS;
184 : VirtRegMap *VRM;
185 :
186 : void rewrite();
187 : void addMBBLiveIns();
188 : bool readsUndefSubreg(const MachineOperand &MO) const;
189 : void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
190 : void handleIdentityCopy(MachineInstr &MI) const;
191 : void expandCopyBundle(MachineInstr &MI) const;
192 : bool subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const;
193 :
194 : public:
195 : static char ID;
196 :
197 19685 : VirtRegRewriter() : MachineFunctionPass(ID) {}
198 :
199 : void getAnalysisUsage(AnalysisUsage &AU) const override;
200 :
201 : bool runOnMachineFunction(MachineFunction&) override;
202 :
203 19532 : MachineFunctionProperties getSetProperties() const override {
204 19532 : return MachineFunctionProperties().set(
205 19532 : MachineFunctionProperties::Property::NoVRegs);
206 : }
207 : };
208 :
209 : } // end anonymous namespace
210 :
211 : char VirtRegRewriter::ID = 0;
212 :
213 : char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
214 :
215 31780 : INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
216 : "Virtual Register Rewriter", false, false)
217 31780 : INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
218 31780 : INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 31780 : INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
220 31780 : INITIALIZE_PASS_DEPENDENCY(LiveStacks)
221 31780 : INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
222 85147 : INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
223 : "Virtual Register Rewriter", false, false)
224 :
225 19529 : void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
226 19529 : AU.setPreservesCFG();
227 : AU.addRequired<LiveIntervals>();
228 : AU.addRequired<SlotIndexes>();
229 : AU.addPreserved<SlotIndexes>();
230 : AU.addRequired<LiveDebugVariables>();
231 : AU.addRequired<LiveStacks>();
232 : AU.addPreserved<LiveStacks>();
233 : AU.addRequired<VirtRegMap>();
234 19529 : MachineFunctionPass::getAnalysisUsage(AU);
235 19529 : }
236 :
237 193975 : bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
238 193975 : MF = &fn;
239 193975 : TRI = MF->getSubtarget().getRegisterInfo();
240 193975 : TII = MF->getSubtarget().getInstrInfo();
241 193975 : MRI = &MF->getRegInfo();
242 193975 : Indexes = &getAnalysis<SlotIndexes>();
243 193975 : LIS = &getAnalysis<LiveIntervals>();
244 193975 : VRM = &getAnalysis<VirtRegMap>();
245 : LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
246 : << "********** Function: " << MF->getName() << '\n');
247 : LLVM_DEBUG(VRM->dump());
248 :
249 : // Add kill flags while we still have virtual registers.
250 193975 : LIS->addKillFlags(VRM);
251 :
252 : // Live-in lists on basic blocks are required for physregs.
253 193975 : addMBBLiveIns();
254 :
255 : // Rewrite virtual registers.
256 193975 : rewrite();
257 :
258 : // Write out new DBG_VALUE instructions.
259 193975 : getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
260 :
261 : // All machine operands and other references to virtual registers have been
262 : // replaced. Remove the virtual registers and release all the transient data.
263 193975 : VRM->clearAllVirt();
264 193975 : MRI->clearVirtRegs();
265 193975 : return true;
266 : }
267 :
268 0 : void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
269 : unsigned PhysReg) const {
270 : assert(!LI.empty());
271 : assert(LI.hasSubRanges());
272 :
273 : using SubRangeIteratorPair =
274 : std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
275 :
276 : SmallVector<SubRangeIteratorPair, 4> SubRanges;
277 : SlotIndex First;
278 : SlotIndex Last;
279 0 : for (const LiveInterval::SubRange &SR : LI.subranges()) {
280 0 : SubRanges.push_back(std::make_pair(&SR, SR.begin()));
281 0 : if (!First.isValid() || SR.segments.front().start < First)
282 0 : First = SR.segments.front().start;
283 0 : if (!Last.isValid() || SR.segments.back().end > Last)
284 0 : Last = SR.segments.back().end;
285 : }
286 :
287 : // Check all mbb start positions between First and Last while
288 : // simulatenously advancing an iterator for each subrange.
289 0 : for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
290 0 : MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
291 : SlotIndex MBBBegin = MBBI->first;
292 : // Advance all subrange iterators so that their end position is just
293 : // behind MBBBegin (or the iterator is at the end).
294 : LaneBitmask LaneMask;
295 0 : for (auto &RangeIterPair : SubRanges) {
296 0 : const LiveInterval::SubRange *SR = RangeIterPair.first;
297 : LiveInterval::const_iterator &SRI = RangeIterPair.second;
298 0 : while (SRI != SR->end() && SRI->end <= MBBBegin)
299 0 : ++SRI;
300 0 : if (SRI == SR->end())
301 0 : continue;
302 0 : if (SRI->start <= MBBBegin)
303 : LaneMask |= SR->LaneMask;
304 : }
305 0 : if (LaneMask.none())
306 : continue;
307 0 : MachineBasicBlock *MBB = MBBI->second;
308 0 : MBB->addLiveIn(PhysReg, LaneMask);
309 : }
310 0 : }
311 :
312 : // Compute MBB live-in lists from virtual register live ranges and their
313 : // assignments.
314 193974 : void VirtRegRewriter::addMBBLiveIns() {
315 3196577 : for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
316 : unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
317 3002602 : if (MRI->reg_nodbg_empty(VirtReg))
318 : continue;
319 1407663 : LiveInterval &LI = LIS->getInterval(VirtReg);
320 1407663 : if (LI.empty() || LIS->intervalIsInOneMBB(LI))
321 1255625 : continue;
322 : // This is a virtual register that is live across basic blocks. Its
323 : // assigned PhysReg must be marked as live-in to those blocks.
324 152038 : unsigned PhysReg = VRM->getPhys(VirtReg);
325 : assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
326 :
327 152038 : if (LI.hasSubRanges()) {
328 1180 : addLiveInsForSubRanges(LI, PhysReg);
329 : } else {
330 : // Go over MBB begin positions and see if we have segments covering them.
331 : // The following works because segments and the MBBIndex list are both
332 : // sorted by slot indexes.
333 150858 : SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
334 645361 : for (const auto &Seg : LI) {
335 494503 : I = Indexes->advanceMBBIndex(I, Seg.start);
336 1650844 : for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
337 661838 : MachineBasicBlock *MBB = I->second;
338 661838 : MBB->addLiveIn(PhysReg);
339 : }
340 : }
341 : }
342 : }
343 :
344 : // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
345 : // each MBB's LiveIns set before calling addLiveIn on them.
346 651895 : for (MachineBasicBlock &MBB : *MF)
347 457920 : MBB.sortUniqueLiveIns();
348 193975 : }
349 :
350 : /// Returns true if the given machine operand \p MO only reads undefined lanes.
351 : /// The function only works for use operands with a subregister set.
352 0 : bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
353 : // Shortcut if the operand is already marked undef.
354 0 : if (MO.isUndef())
355 0 : return true;
356 :
357 0 : unsigned Reg = MO.getReg();
358 0 : const LiveInterval &LI = LIS->getInterval(Reg);
359 0 : const MachineInstr &MI = *MO.getParent();
360 0 : SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
361 : // This code is only meant to handle reading undefined subregisters which
362 : // we couldn't properly detect before.
363 : assert(LI.liveAt(BaseIndex) &&
364 : "Reads of completely dead register should be marked undef already");
365 : unsigned SubRegIdx = MO.getSubReg();
366 : assert(SubRegIdx != 0 && LI.hasSubRanges());
367 0 : LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
368 : // See if any of the relevant subregister liveranges is defined at this point.
369 0 : for (const LiveInterval::SubRange &SR : LI.subranges()) {
370 0 : if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
371 0 : return false;
372 : }
373 : return true;
374 : }
375 :
376 0 : void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
377 : if (!MI.isIdentityCopy())
378 0 : return;
379 : LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
380 : ++NumIdCopies;
381 :
382 : // Copies like:
383 : // %r0 = COPY undef %r0
384 : // %al = COPY %al, implicit-def %eax
385 : // give us additional liveness information: The target (super-)register
386 : // must not be valid before this point. Replace the COPY with a KILL
387 : // instruction to maintain this information.
388 0 : if (MI.getOperand(0).isUndef() || MI.getNumOperands() > 2) {
389 0 : MI.setDesc(TII->get(TargetOpcode::KILL));
390 : LLVM_DEBUG(dbgs() << " replace by: " << MI);
391 0 : return;
392 : }
393 :
394 0 : if (Indexes)
395 0 : Indexes->removeSingleMachineInstrFromMaps(MI);
396 0 : MI.eraseFromBundle();
397 : LLVM_DEBUG(dbgs() << " deleted.\n");
398 : }
399 :
400 : /// The liverange splitting logic sometimes produces bundles of copies when
401 : /// subregisters are involved. Expand these into a sequence of copy instructions
402 : /// after processing the last in the bundle. Does not update LiveIntervals
403 : /// which we shouldn't need for this instruction anymore.
404 3992790 : void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
405 3992790 : if (!MI.isCopy())
406 : return;
407 :
408 836825 : if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
409 6 : SmallVector<MachineInstr *, 2> MIs({&MI});
410 :
411 : // Only do this when the complete bundle is made out of COPYs.
412 6 : MachineBasicBlock &MBB = *MI.getParent();
413 : for (MachineBasicBlock::reverse_instr_iterator I =
414 6 : std::next(MI.getReverseIterator()), E = MBB.instr_rend();
415 13 : I != E && I->isBundledWithSucc(); ++I) {
416 7 : if (!I->isCopy())
417 : return;
418 7 : MIs.push_back(&*I);
419 : }
420 6 : MachineInstr *FirstMI = MIs.back();
421 :
422 : auto anyRegsAlias = [](const MachineInstr *Dst,
423 : ArrayRef<MachineInstr *> Srcs,
424 : const TargetRegisterInfo *TRI) {
425 : for (const MachineInstr *Src : Srcs)
426 : if (Src != Dst)
427 : if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
428 : Src->getOperand(1).getReg()))
429 : return true;
430 : return false;
431 : };
432 :
433 : // If any of the destination registers in the bundle of copies alias any of
434 : // the source registers, try to schedule the instructions to avoid any
435 : // clobbering.
436 11 : for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
437 19 : for (int I = E; I--; )
438 34 : if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
439 9 : if (I + 1 != E)
440 3 : std::swap(MIs[I], MIs[E - 1]);
441 9 : --E;
442 : }
443 6 : if (PrevE == E) {
444 1 : MF->getFunction().getContext().emitError(
445 : "register rewriting failed: cycle in copy bundle");
446 1 : break;
447 : }
448 : }
449 :
450 : MachineInstr *BundleStart = FirstMI;
451 19 : for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
452 : // If instruction is in the middle of the bundle, move it before the
453 : // bundle starts, otherwise, just unbundle it. When we get to the last
454 : // instruction, the bundle will have been completely undone.
455 13 : if (BundledMI != BundleStart) {
456 3 : BundledMI->removeFromBundle();
457 : MBB.insert(FirstMI, BundledMI);
458 10 : } else if (BundledMI->isBundledWithSucc()) {
459 4 : BundledMI->unbundleFromSucc();
460 4 : BundleStart = &*std::next(BundledMI->getIterator());
461 : }
462 :
463 13 : if (Indexes && BundledMI != FirstMI)
464 7 : Indexes->insertMachineInstrInMaps(*BundledMI);
465 : }
466 : }
467 : }
468 :
469 : /// Check whether (part of) \p SuperPhysReg is live through \p MI.
470 : /// \pre \p MI defines a subregister of a virtual register that
471 : /// has been assigned to \p SuperPhysReg.
472 0 : bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
473 : unsigned SuperPhysReg) const {
474 0 : SlotIndex MIIndex = LIS->getInstructionIndex(MI);
475 0 : SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
476 0 : SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
477 0 : for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
478 0 : const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
479 : // If the regunit is live both before and after MI,
480 : // we assume it is live through.
481 : // Generally speaking, this is not true, because something like
482 : // "RU = op RU" would match that description.
483 : // However, we know that we are trying to assess whether
484 : // a def of a virtual reg, vreg, is live at the same time of RU.
485 : // If we are in the "RU = op RU" situation, that means that vreg
486 : // is defined at the same time as RU (i.e., "vreg, RU = op RU").
487 : // Thus, vreg and RU interferes and vreg cannot be assigned to
488 : // SuperPhysReg. Therefore, this situation cannot happen.
489 0 : if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
490 0 : return true;
491 : }
492 0 : return false;
493 : }
494 :
495 193974 : void VirtRegRewriter::rewrite() {
496 193974 : bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
497 : SmallVector<unsigned, 8> SuperDeads;
498 : SmallVector<unsigned, 8> SuperDefs;
499 : SmallVector<unsigned, 8> SuperKills;
500 :
501 193974 : for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
502 651893 : MBBI != MBBE; ++MBBI) {
503 : LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
504 3992790 : for (MachineBasicBlock::instr_iterator
505 4450709 : MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
506 : MachineInstr *MI = &*MII;
507 : ++MII;
508 :
509 17231297 : for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
510 21224087 : MOE = MI->operands_end(); MOI != MOE; ++MOI) {
511 : MachineOperand &MO = *MOI;
512 :
513 : // Make sure MRI knows about registers clobbered by regmasks.
514 17231297 : if (MO.isRegMask())
515 137962 : MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
516 :
517 17231297 : if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
518 12701894 : continue;
519 : unsigned VirtReg = MO.getReg();
520 9058806 : unsigned PhysReg = VRM->getPhys(VirtReg);
521 : assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
522 : "Instruction uses unmapped VirtReg");
523 : assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
524 :
525 : // Preserve semantics of sub-register operands.
526 : unsigned SubReg = MO.getSubReg();
527 4529403 : if (SubReg != 0) {
528 329965 : if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
529 : // A virtual register kill refers to the whole register, so we may
530 : // have to add implicit killed operands for the super-register. A
531 : // partial redef always kills and redefines the super-register.
532 102201 : if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
533 30807 : (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
534 52943 : SuperKills.push_back(PhysReg);
535 :
536 102201 : if (MO.isDef()) {
537 : // Also add implicit defs for the super-register.
538 42568 : if (MO.isDead())
539 108 : SuperDeads.push_back(PhysReg);
540 : else
541 42460 : SuperDefs.push_back(PhysReg);
542 : }
543 : } else {
544 227764 : if (MO.isUse()) {
545 104220 : if (readsUndefSubreg(MO))
546 : // We need to add an <undef> flag if the subregister is
547 : // completely undefined (and we are not adding super-register
548 : // defs).
549 : MO.setIsUndef(true);
550 : } else if (!MO.isDead()) {
551 : assert(MO.isDef());
552 : }
553 : }
554 :
555 : // The def undef and def internal flags only make sense for
556 : // sub-register defs, and we are substituting a full physreg. An
557 : // implicit killed operand from the SuperKills list will represent the
558 : // partial read of the super-register.
559 329965 : if (MO.isDef()) {
560 : MO.setIsUndef(false);
561 : MO.setIsInternalRead(false);
562 : }
563 :
564 : // PhysReg operands cannot have subregister indexes.
565 329965 : PhysReg = TRI->getSubReg(PhysReg, SubReg);
566 : assert(PhysReg && "Invalid SubReg for physical register");
567 : MO.setSubReg(0);
568 : }
569 : // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
570 : // we need the inlining here.
571 4529403 : MO.setReg(PhysReg);
572 4529403 : MO.setIsRenamable(true);
573 : }
574 :
575 : // Add any missing super-register kills after rewriting the whole
576 : // instruction.
577 4045733 : while (!SuperKills.empty())
578 105886 : MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
579 :
580 3992898 : while (!SuperDeads.empty())
581 216 : MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
582 :
583 4035250 : while (!SuperDefs.empty())
584 84920 : MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
585 :
586 : LLVM_DEBUG(dbgs() << "> " << *MI);
587 :
588 3992790 : expandCopyBundle(*MI);
589 :
590 : // We can remove identity copies right now.
591 3992790 : handleIdentityCopy(*MI);
592 : }
593 : }
594 193974 : }
|