Line data Source code
1 : //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This pass lowers LLVM IR exception handling into something closer to what the
11 : // backend wants for functions using a personality function from a runtime
12 : // provided by MSVC. Functions with other personality functions are left alone
13 : // and may be prepared by other passes. In particular, all supported MSVC
14 : // personality functions require cleanup code to be outlined, and the C++
15 : // personality requires catch handler code to be outlined.
16 : //
17 : //===----------------------------------------------------------------------===//
18 :
19 : #include "llvm/ADT/DenseMap.h"
20 : #include "llvm/ADT/MapVector.h"
21 : #include "llvm/ADT/STLExtras.h"
22 : #include "llvm/Analysis/CFG.h"
23 : #include "llvm/Analysis/EHPersonalities.h"
24 : #include "llvm/Transforms/Utils/Local.h"
25 : #include "llvm/CodeGen/MachineBasicBlock.h"
26 : #include "llvm/CodeGen/Passes.h"
27 : #include "llvm/CodeGen/WinEHFuncInfo.h"
28 : #include "llvm/IR/Verifier.h"
29 : #include "llvm/MC/MCSymbol.h"
30 : #include "llvm/Pass.h"
31 : #include "llvm/Support/Debug.h"
32 : #include "llvm/Support/raw_ostream.h"
33 : #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 : #include "llvm/Transforms/Utils/Cloning.h"
35 : #include "llvm/Transforms/Utils/SSAUpdater.h"
36 :
37 : using namespace llvm;
38 :
39 : #define DEBUG_TYPE "winehprepare"
40 :
41 : static cl::opt<bool> DisableDemotion(
42 : "disable-demotion", cl::Hidden,
43 : cl::desc(
44 : "Clone multicolor basic blocks but do not demote cross scopes"),
45 : cl::init(false));
46 :
47 : static cl::opt<bool> DisableCleanups(
48 : "disable-cleanups", cl::Hidden,
49 : cl::desc("Do not remove implausible terminators or other similar cleanups"),
50 : cl::init(false));
51 :
52 : static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
53 : "demote-catchswitch-only", cl::Hidden,
54 : cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
55 :
56 : namespace {
57 :
58 : class WinEHPrepare : public FunctionPass {
59 : public:
60 : static char ID; // Pass identification, replacement for typeid.
61 662 : WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
62 1324 : : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
63 :
64 : bool runOnFunction(Function &Fn) override;
65 :
66 : bool doFinalization(Module &M) override;
67 :
68 : void getAnalysisUsage(AnalysisUsage &AU) const override;
69 :
70 0 : StringRef getPassName() const override {
71 0 : return "Windows exception handling preparation";
72 : }
73 :
74 : private:
75 : void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
76 : void
77 : insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
78 : SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
79 : AllocaInst *insertPHILoads(PHINode *PN, Function &F);
80 : void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
81 : DenseMap<BasicBlock *, Value *> &Loads, Function &F);
82 : bool prepareExplicitEH(Function &F);
83 : void colorFunclets(Function &F);
84 :
85 : void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
86 : void cloneCommonBlocks(Function &F);
87 : void removeImplausibleInstructions(Function &F);
88 : void cleanupPreparedFunclets(Function &F);
89 : void verifyPreparedFunclets(Function &F);
90 :
91 : bool DemoteCatchSwitchPHIOnly;
92 :
93 : // All fields are reset by runOnFunction.
94 : EHPersonality Personality = EHPersonality::Unknown;
95 :
96 : const DataLayout *DL = nullptr;
97 : DenseMap<BasicBlock *, ColorVector> BlockColors;
98 : MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
99 : };
100 :
101 : } // end anonymous namespace
102 :
103 : char WinEHPrepare::ID = 0;
104 103150 : INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
105 : false, false)
106 :
107 657 : FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
108 657 : return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
109 : }
110 :
111 2653 : bool WinEHPrepare::runOnFunction(Function &Fn) {
112 2653 : if (!Fn.hasPersonalityFn())
113 : return false;
114 :
115 : // Classify the personality to see what kind of preparation we need.
116 160 : Personality = classifyEHPersonality(Fn.getPersonalityFn());
117 :
118 : // Do nothing if this is not a scope-based personality.
119 : if (!isScopedEHPersonality(Personality))
120 : return false;
121 :
122 126 : DL = &Fn.getParent()->getDataLayout();
123 126 : return prepareExplicitEH(Fn);
124 : }
125 :
126 654 : bool WinEHPrepare::doFinalization(Module &M) { return false; }
127 :
128 659 : void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
129 :
130 : static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
131 : const BasicBlock *BB) {
132 : CxxUnwindMapEntry UME;
133 172 : UME.ToState = ToState;
134 : UME.Cleanup = BB;
135 209 : FuncInfo.CxxUnwindMap.push_back(UME);
136 : return FuncInfo.getLastStateNumber();
137 : }
138 :
139 86 : static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
140 : int TryHigh, int CatchHigh,
141 : ArrayRef<const CatchPadInst *> Handlers) {
142 : WinEHTryBlockMapEntry TBME;
143 86 : TBME.TryLow = TryLow;
144 86 : TBME.TryHigh = TryHigh;
145 86 : TBME.CatchHigh = CatchHigh;
146 : assert(TBME.TryLow <= TBME.TryHigh);
147 180 : for (const CatchPadInst *CPI : Handlers) {
148 : WinEHHandlerType HT;
149 94 : Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
150 94 : if (TypeInfo->isNullValue())
151 64 : HT.TypeDescriptor = nullptr;
152 : else
153 30 : HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
154 94 : HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
155 94 : HT.Handler = CPI->getParent();
156 : if (auto *AI =
157 : dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
158 10 : HT.CatchObj.Alloca = AI;
159 : else
160 84 : HT.CatchObj.Alloca = nullptr;
161 94 : TBME.HandlerArray.push_back(HT);
162 : }
163 86 : FuncInfo.TryBlockMap.push_back(TBME);
164 86 : }
165 :
166 64 : static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
167 86 : for (const User *U : CleanupPad->users())
168 : if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
169 : return CRI->getUnwindDest();
170 : return nullptr;
171 : }
172 :
173 135 : static void calculateStateNumbersForInvokes(const Function *Fn,
174 : WinEHFuncInfo &FuncInfo) {
175 : auto *F = const_cast<Function *>(Fn);
176 135 : DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
177 902 : for (BasicBlock &BB : *F) {
178 : auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
179 : if (!II)
180 : continue;
181 :
182 211 : auto &BBColors = BlockColors[&BB];
183 : assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
184 : BasicBlock *FuncletEntryBB = BBColors.front();
185 :
186 : BasicBlock *FuncletUnwindDest;
187 : auto *FuncletPad =
188 : dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
189 : assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
190 : if (!FuncletPad)
191 : FuncletUnwindDest = nullptr;
192 : else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
193 : FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
194 : else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
195 13 : FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
196 : else
197 0 : llvm_unreachable("unexpected funclet pad!");
198 :
199 : BasicBlock *InvokeUnwindDest = II->getUnwindDest();
200 : int BaseState = -1;
201 211 : if (FuncletUnwindDest == InvokeUnwindDest) {
202 21 : auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
203 21 : if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
204 14 : BaseState = BaseStateI->second;
205 : }
206 :
207 14 : if (BaseState != -1) {
208 14 : FuncInfo.InvokeStateMap[II] = BaseState;
209 : } else {
210 : Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
211 : assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
212 197 : FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
213 : }
214 : }
215 135 : }
216 :
217 : // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
218 : // to. If the unwind edge came from an invoke, return null.
219 239 : static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
220 : Value *ParentPad) {
221 239 : const Instruction *TI = BB->getTerminator();
222 239 : if (isa<InvokeInst>(TI))
223 : return nullptr;
224 : if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
225 31 : if (CatchSwitch->getParentPad() != ParentPad)
226 : return nullptr;
227 31 : return BB;
228 : }
229 : assert(!TI->isEHPad() && "unexpected EHPad!");
230 : auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
231 16 : if (CleanupPad->getParentPad() != ParentPad)
232 : return nullptr;
233 13 : return CleanupPad->getParent();
234 : }
235 :
236 124 : static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
237 : const Instruction *FirstNonPHI,
238 : int ParentState) {
239 124 : const BasicBlock *BB = FirstNonPHI->getParent();
240 : assert(BB->isEHPad() && "not a funclet!");
241 :
242 : if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
243 : assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
244 : "shouldn't revist catch funclets!");
245 :
246 : SmallVector<const CatchPadInst *, 2> Handlers;
247 180 : for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
248 94 : auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
249 94 : Handlers.push_back(CatchPad);
250 : }
251 : int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
252 86 : FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
253 187 : for (const BasicBlock *PredBlock : predecessors(BB))
254 101 : if ((PredBlock = getEHPadFromPredecessor(PredBlock,
255 : CatchSwitch->getParentPad())))
256 16 : calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
257 : TryLow);
258 : int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
259 :
260 : // catchpads are separate funclets in C++ EH due to the way rethrow works.
261 86 : int TryHigh = CatchLow - 1;
262 180 : for (const auto *CatchPad : Handlers) {
263 94 : FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
264 233 : for (const User *U : CatchPad->users()) {
265 : const auto *UserI = cast<Instruction>(U);
266 : if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
267 : BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
268 1 : if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
269 6 : calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
270 : }
271 : if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
272 5 : BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
273 : // If a nested cleanup pad reports a null unwind destination and the
274 : // enclosing catch pad doesn't it must be post-dominated by an
275 : // unreachable instruction.
276 8 : if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
277 5 : calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
278 : }
279 : }
280 : }
281 : int CatchHigh = FuncInfo.getLastStateNumber();
282 86 : addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
283 : LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
284 : LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
285 : << '\n');
286 : LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
287 : << '\n');
288 : } else {
289 : auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
290 :
291 : // It's possible for a cleanup to be visited twice: it might have multiple
292 : // cleanupret instructions.
293 75 : if (FuncInfo.EHPadStateMap.count(CleanupPad))
294 1 : return;
295 :
296 : int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
297 37 : FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
298 : LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
299 : << BB->getName() << '\n');
300 96 : for (const BasicBlock *PredBlock : predecessors(BB)) {
301 59 : if ((PredBlock = getEHPadFromPredecessor(PredBlock,
302 : CleanupPad->getParentPad()))) {
303 11 : calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
304 : CleanupState);
305 : }
306 : }
307 101 : for (const User *U : CleanupPad->users()) {
308 : const auto *UserI = cast<Instruction>(U);
309 : if (UserI->isEHPad())
310 0 : report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
311 : "contain exceptional actions");
312 : }
313 : }
314 : }
315 :
316 : static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
317 : const Function *Filter, const BasicBlock *Handler) {
318 49 : SEHUnwindMapEntry Entry;
319 49 : Entry.ToState = ParentState;
320 : Entry.IsFinally = false;
321 49 : Entry.Filter = Filter;
322 : Entry.Handler = Handler;
323 49 : FuncInfo.SEHUnwindMap.push_back(Entry);
324 49 : return FuncInfo.SEHUnwindMap.size() - 1;
325 : }
326 :
327 : static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
328 : const BasicBlock *Handler) {
329 14 : SEHUnwindMapEntry Entry;
330 14 : Entry.ToState = ParentState;
331 14 : Entry.IsFinally = true;
332 : Entry.Filter = nullptr;
333 : Entry.Handler = Handler;
334 14 : FuncInfo.SEHUnwindMap.push_back(Entry);
335 14 : return FuncInfo.SEHUnwindMap.size() - 1;
336 : }
337 :
338 64 : static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
339 : const Instruction *FirstNonPHI,
340 : int ParentState) {
341 64 : const BasicBlock *BB = FirstNonPHI->getParent();
342 : assert(BB->isEHPad() && "no a funclet!");
343 :
344 : if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
345 : assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
346 : "shouldn't revist catch funclets!");
347 :
348 : // Extract the filter function and the __except basic block and create a
349 : // state for them.
350 : assert(CatchSwitch->getNumHandlers() == 1 &&
351 : "SEH doesn't have multiple handlers per __try");
352 : const auto *CatchPad =
353 49 : cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
354 49 : const BasicBlock *CatchPadBB = CatchPad->getParent();
355 : const Constant *FilterOrNull =
356 49 : cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
357 : const Function *Filter = dyn_cast<Function>(FilterOrNull);
358 : assert((Filter || FilterOrNull->isNullValue()) &&
359 : "unexpected filter value");
360 : int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
361 :
362 : // Everything in the __try block uses TryState as its parent state.
363 49 : FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
364 : LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
365 : << CatchPadBB->getName() << '\n');
366 110 : for (const BasicBlock *PredBlock : predecessors(BB))
367 61 : if ((PredBlock = getEHPadFromPredecessor(PredBlock,
368 : CatchSwitch->getParentPad())))
369 15 : calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
370 : TryState);
371 :
372 : // Everything in the __except block unwinds to ParentState, just like code
373 : // outside the __try.
374 115 : for (const User *U : CatchPad->users()) {
375 : const auto *UserI = cast<Instruction>(U);
376 : if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
377 : BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
378 0 : if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
379 0 : calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
380 : }
381 : if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
382 1 : BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
383 : // If a nested cleanup pad reports a null unwind destination and the
384 : // enclosing catch pad doesn't it must be post-dominated by an
385 : // unreachable instruction.
386 1 : if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
387 1 : calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
388 : }
389 : }
390 : } else {
391 : auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
392 :
393 : // It's possible for a cleanup to be visited twice: it might have multiple
394 : // cleanupret instructions.
395 29 : if (FuncInfo.EHPadStateMap.count(CleanupPad))
396 1 : return;
397 :
398 : int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
399 14 : FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
400 : LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
401 : << BB->getName() << '\n');
402 32 : for (const BasicBlock *PredBlock : predecessors(BB))
403 18 : if ((PredBlock =
404 18 : getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
405 2 : calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
406 : CleanupState);
407 39 : for (const User *U : CleanupPad->users()) {
408 : const auto *UserI = cast<Instruction>(U);
409 : if (UserI->isEHPad())
410 0 : report_fatal_error("Cleanup funclets for the SEH personality cannot "
411 : "contain exceptional actions");
412 : }
413 : }
414 : }
415 :
416 329 : static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
417 : if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
418 135 : return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
419 : CatchSwitch->unwindsToCaller();
420 : if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
421 96 : return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
422 45 : getCleanupRetUnwindDest(CleanupPad) == nullptr;
423 143 : if (isa<CatchPadInst>(EHPad))
424 : return false;
425 0 : llvm_unreachable("unexpected EHPad!");
426 : }
427 :
428 42 : void llvm::calculateSEHStateNumbers(const Function *Fn,
429 : WinEHFuncInfo &FuncInfo) {
430 : // Don't compute state numbers twice.
431 42 : if (!FuncInfo.SEHUnwindMap.empty())
432 : return;
433 :
434 272 : for (const BasicBlock &BB : *Fn) {
435 230 : if (!BB.isEHPad())
436 : continue;
437 112 : const Instruction *FirstNonPHI = BB.getFirstNonPHI();
438 112 : if (!isTopLevelPadForMSVC(FirstNonPHI))
439 : continue;
440 46 : ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
441 : }
442 :
443 42 : calculateStateNumbersForInvokes(Fn, FuncInfo);
444 : }
445 :
446 86 : void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
447 : WinEHFuncInfo &FuncInfo) {
448 : // Return if it's already been done.
449 86 : if (!FuncInfo.EHPadStateMap.empty())
450 : return;
451 :
452 564 : for (const BasicBlock &BB : *Fn) {
453 478 : if (!BB.isEHPad())
454 : continue;
455 217 : const Instruction *FirstNonPHI = BB.getFirstNonPHI();
456 217 : if (!isTopLevelPadForMSVC(FirstNonPHI))
457 : continue;
458 86 : calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
459 : }
460 :
461 86 : calculateStateNumbersForInvokes(Fn, FuncInfo);
462 : }
463 :
464 : static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
465 : int TryParentState, ClrHandlerType HandlerType,
466 : uint32_t TypeToken, const BasicBlock *Handler) {
467 : ClrEHUnwindMapEntry Entry;
468 19 : Entry.HandlerParentState = HandlerParentState;
469 19 : Entry.TryParentState = TryParentState;
470 : Entry.Handler = Handler;
471 19 : Entry.HandlerType = HandlerType;
472 19 : Entry.TypeToken = TypeToken;
473 19 : FuncInfo.ClrEHUnwindMap.push_back(Entry);
474 19 : return FuncInfo.ClrEHUnwindMap.size() - 1;
475 : }
476 :
477 7 : void llvm::calculateClrEHStateNumbers(const Function *Fn,
478 : WinEHFuncInfo &FuncInfo) {
479 : // Return if it's already been done.
480 7 : if (!FuncInfo.EHPadStateMap.empty())
481 0 : return;
482 :
483 : // This numbering assigns one state number to each catchpad and cleanuppad.
484 : // It also computes two tree-like relations over states:
485 : // 1) Each state has a "HandlerParentState", which is the state of the next
486 : // outer handler enclosing this state's handler (same as nearest ancestor
487 : // per the ParentPad linkage on EH pads, but skipping over catchswitches).
488 : // 2) Each state has a "TryParentState", which:
489 : // a) for a catchpad that's not the last handler on its catchswitch, is
490 : // the state of the next catchpad on that catchswitch
491 : // b) for all other pads, is the state of the pad whose try region is the
492 : // next outer try region enclosing this state's try region. The "try
493 : // regions are not present as such in the IR, but will be inferred
494 : // based on the placement of invokes and pads which reach each other
495 : // by exceptional exits
496 : // Catchswitches do not get their own states, but each gets mapped to the
497 : // state of its first catchpad.
498 :
499 : // Step one: walk down from outermost to innermost funclets, assigning each
500 : // catchpad and cleanuppad a state number. Add an entry to the
501 : // ClrEHUnwindMap for each state, recording its HandlerParentState and
502 : // handler attributes. Record the TryParentState as well for each catchpad
503 : // that's not the last on its catchswitch, but initialize all other entries'
504 : // TryParentStates to a sentinel -1 value that the next pass will update.
505 :
506 : // Seed a worklist with pads that have no parent.
507 : SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
508 66 : for (const BasicBlock &BB : *Fn) {
509 59 : const Instruction *FirstNonPHI = BB.getFirstNonPHI();
510 : const Value *ParentPad;
511 : if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
512 : ParentPad = CPI->getParentPad();
513 : else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
514 : ParentPad = CSI->getParentPad();
515 : else
516 41 : continue;
517 18 : if (isa<ConstantTokenNone>(ParentPad))
518 9 : Worklist.emplace_back(FirstNonPHI, -1);
519 : }
520 :
521 : // Use the worklist to visit all pads, from outer to inner. Record
522 : // HandlerParentState for all pads. Record TryParentState only for catchpads
523 : // that aren't the last on their catchswitch (setting all other entries'
524 : // TryParentStates to an initial value of -1). This loop is also responsible
525 : // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
526 : // catchswitches.
527 25 : while (!Worklist.empty()) {
528 : const Instruction *Pad;
529 : int HandlerParentState;
530 : std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
531 :
532 : if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
533 : // Create the entry for this cleanup with the appropriate handler
534 : // properties. Finally and fault handlers are distinguished by arity.
535 : ClrHandlerType HandlerType =
536 8 : (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
537 : : ClrHandlerType::Finally);
538 8 : int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
539 8 : HandlerType, 0, Pad->getParent());
540 : // Queue any child EH pads on the worklist.
541 27 : for (const User *U : Cleanup->users())
542 19 : if (const auto *I = dyn_cast<Instruction>(U))
543 : if (I->isEHPad())
544 7 : Worklist.emplace_back(I, CleanupState);
545 : // Remember this pad's state.
546 8 : FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
547 : } else {
548 : // Walk the handlers of this catchswitch in reverse order since all but
549 : // the last need to set the following one as its TryParentState.
550 : const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
551 10 : int CatchState = -1, FollowerState = -1;
552 10 : SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
553 11 : for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
554 21 : CBI != CBE; ++CBI, FollowerState = CatchState) {
555 11 : const BasicBlock *CatchBlock = *CBI;
556 : // Create the entry for this catch with the appropriate handler
557 : // properties.
558 11 : const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
559 : uint32_t TypeToken = static_cast<uint32_t>(
560 22 : cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
561 11 : CatchState =
562 : addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
563 : ClrHandlerType::Catch, TypeToken, CatchBlock);
564 : // Queue any child EH pads on the worklist.
565 34 : for (const User *U : Catch->users())
566 23 : if (const auto *I = dyn_cast<Instruction>(U))
567 : if (I->isEHPad())
568 2 : Worklist.emplace_back(I, CatchState);
569 : // Remember this catch's state.
570 11 : FuncInfo.EHPadStateMap[Catch] = CatchState;
571 : }
572 : // Associate the catchswitch with the state of its first catch.
573 : assert(CatchSwitch->getNumHandlers());
574 10 : FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
575 : }
576 : }
577 :
578 : // Step two: record the TryParentState of each state. For cleanuppads that
579 : // don't have cleanuprets, we may need to infer this from their child pads,
580 : // so visit pads in descendant-most to ancestor-most order.
581 : for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
582 : End = FuncInfo.ClrEHUnwindMap.rend();
583 26 : Entry != End; ++Entry) {
584 : const Instruction *Pad =
585 19 : Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
586 : // For most pads, the TryParentState is the state associated with the
587 : // unwind dest of exceptional exits from it.
588 : const BasicBlock *UnwindDest;
589 : if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
590 : // If a catch is not the last in its catchswitch, its TryParentState is
591 : // the state associated with the next catch in the switch, even though
592 : // that's not the unwind dest of exceptions escaping the catch. Those
593 : // cases were already assigned a TryParentState in the first pass, so
594 : // skip them.
595 11 : if (Entry->TryParentState != -1)
596 : continue;
597 : // Otherwise, get the unwind dest from the catchswitch.
598 : UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
599 : } else {
600 : const auto *Cleanup = cast<CleanupPadInst>(Pad);
601 : UnwindDest = nullptr;
602 13 : for (const User *U : Cleanup->users()) {
603 : if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
604 : // Common and unambiguous case -- cleanupret indicates cleanup's
605 : // unwind dest.
606 : UnwindDest = CleanupRet->getUnwindDest();
607 1 : break;
608 : }
609 :
610 : // Get an unwind dest for the user
611 : const BasicBlock *UserUnwindDest = nullptr;
612 : if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
613 : UserUnwindDest = Invoke->getUnwindDest();
614 : } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
615 : UserUnwindDest = CatchSwitch->getUnwindDest();
616 : } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
617 4 : int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
618 : int UserUnwindState =
619 4 : FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
620 4 : if (UserUnwindState != -1)
621 3 : UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
622 : .Handler.get<const BasicBlock *>();
623 : }
624 :
625 : // Not having an unwind dest for this user might indicate that it
626 : // doesn't unwind, so can't be taken as proof that the cleanup itself
627 : // may unwind to caller (see e.g. SimplifyUnreachable and
628 : // RemoveUnwindEdge).
629 7 : if (!UserUnwindDest)
630 2 : continue;
631 :
632 : // Now we have an unwind dest for the user, but we need to see if it
633 : // unwinds all the way out of the cleanup or if it stays within it.
634 7 : const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
635 : const Value *UserUnwindParent;
636 : if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
637 : UserUnwindParent = CSI->getParentPad();
638 : else
639 : UserUnwindParent =
640 : cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
641 :
642 : // The unwind stays within the cleanup iff it targets a child of the
643 : // cleanup.
644 7 : if (UserUnwindParent == Cleanup)
645 : continue;
646 :
647 : // This unwind exits the cleanup, so its dest is the cleanup's dest.
648 : UnwindDest = UserUnwindDest;
649 : break;
650 : }
651 : }
652 :
653 : // Record the state of the unwind dest as the TryParentState.
654 : int UnwindDestState;
655 :
656 : // If UnwindDest is null at this point, either the pad in question can
657 : // be exited by unwind to caller, or it cannot be exited by unwind. In
658 : // either case, reporting such cases as unwinding to caller is correct.
659 : // This can lead to EH tables that "look strange" -- if this pad's is in
660 : // a parent funclet which has other children that do unwind to an enclosing
661 : // pad, the try region for this pad will be missing the "duplicate" EH
662 : // clause entries that you'd expect to see covering the whole parent. That
663 : // should be benign, since the unwind never actually happens. If it were
664 : // an issue, we could add a subsequent pass that pushes unwind dests down
665 : // from parents that have them to children that appear to unwind to caller.
666 9 : if (!UnwindDest) {
667 : UnwindDestState = -1;
668 : } else {
669 8 : UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
670 : }
671 :
672 18 : Entry->TryParentState = UnwindDestState;
673 : }
674 :
675 : // Step three: transfer information from pads to invokes.
676 7 : calculateStateNumbersForInvokes(Fn, FuncInfo);
677 : }
678 :
679 126 : void WinEHPrepare::colorFunclets(Function &F) {
680 252 : BlockColors = colorEHFunclets(F);
681 :
682 : // Invert the map from BB to colors to color to BBs.
683 907 : for (BasicBlock &BB : F) {
684 781 : ColorVector &Colors = BlockColors[&BB];
685 1587 : for (BasicBlock *Color : Colors)
686 806 : FuncletBlocks[Color].push_back(&BB);
687 : }
688 126 : }
689 :
690 123 : void WinEHPrepare::demotePHIsOnFunclets(Function &F,
691 : bool DemoteCatchSwitchPHIOnly) {
692 : // Strip PHI nodes off of EH pads.
693 : SmallVector<PHINode *, 16> PHINodes;
694 901 : for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
695 : BasicBlock *BB = &*FI++;
696 778 : if (!BB->isEHPad())
697 : continue;
698 356 : if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI()))
699 : continue;
700 :
701 333 : for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
702 : Instruction *I = &*BI++;
703 333 : auto *PN = dyn_cast<PHINode>(I);
704 : // Stop at the first non-PHI.
705 333 : if (!PN)
706 : break;
707 :
708 9 : AllocaInst *SpillSlot = insertPHILoads(PN, F);
709 9 : if (SpillSlot)
710 8 : insertPHIStores(PN, SpillSlot);
711 :
712 9 : PHINodes.push_back(PN);
713 : }
714 : }
715 :
716 132 : for (auto *PN : PHINodes) {
717 : // There may be lingering uses on other EH PHIs being removed
718 9 : PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
719 9 : PN->eraseFromParent();
720 : }
721 123 : }
722 :
723 126 : void WinEHPrepare::cloneCommonBlocks(Function &F) {
724 : // We need to clone all blocks which belong to multiple funclets. Values are
725 : // remapped throughout the funclet to propagate both the new instructions
726 : // *and* the new basic blocks themselves.
727 596 : for (auto &Funclets : FuncletBlocks) {
728 470 : BasicBlock *FuncletPadBB = Funclets.first;
729 470 : std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
730 : Value *FuncletToken;
731 470 : if (FuncletPadBB == &F.getEntryBlock())
732 126 : FuncletToken = ConstantTokenNone::get(F.getContext());
733 : else
734 344 : FuncletToken = FuncletPadBB->getFirstNonPHI();
735 :
736 : std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
737 17 : ValueToValueMapTy VMap;
738 1276 : for (BasicBlock *BB : BlocksInFunclet) {
739 806 : ColorVector &ColorsForBB = BlockColors[BB];
740 : // We don't need to do anything if the block is monochromatic.
741 : size_t NumColorsForBB = ColorsForBB.size();
742 46 : if (NumColorsForBB == 1)
743 781 : continue;
744 :
745 : DEBUG_WITH_TYPE("winehprepare-coloring",
746 : dbgs() << " Cloning block \'" << BB->getName()
747 : << "\' for funclet \'" << FuncletPadBB->getName()
748 : << "\'.\n");
749 :
750 : // Create a new basic block and copy instructions into it!
751 : BasicBlock *CBB =
752 25 : CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
753 : // Insert the clone immediately after the original to ensure determinism
754 : // and to keep the same relative ordering of any funclet's blocks.
755 43 : CBB->insertInto(&F, BB->getNextNode());
756 :
757 : // Add basic block mapping.
758 25 : VMap[BB] = CBB;
759 :
760 : // Record delta operations that we need to perform to our color mappings.
761 25 : Orig2Clone.emplace_back(BB, CBB);
762 : }
763 :
764 : // If nothing was cloned, we're done cloning in this funclet.
765 470 : if (Orig2Clone.empty())
766 453 : continue;
767 :
768 : // Update our color mappings to reflect that one block has lost a color and
769 : // another has gained a color.
770 42 : for (auto &BBMapping : Orig2Clone) {
771 25 : BasicBlock *OldBlock = BBMapping.first;
772 25 : BasicBlock *NewBlock = BBMapping.second;
773 :
774 25 : BlocksInFunclet.push_back(NewBlock);
775 25 : ColorVector &NewColors = BlockColors[NewBlock];
776 : assert(NewColors.empty() && "A new block should only have one color!");
777 25 : NewColors.push_back(FuncletPadBB);
778 :
779 : DEBUG_WITH_TYPE("winehprepare-coloring",
780 : dbgs() << " Assigned color \'" << FuncletPadBB->getName()
781 : << "\' to block \'" << NewBlock->getName()
782 : << "\'.\n");
783 :
784 : BlocksInFunclet.erase(
785 25 : std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
786 : BlocksInFunclet.end());
787 : ColorVector &OldColors = BlockColors[OldBlock];
788 25 : OldColors.erase(
789 : std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
790 : OldColors.end());
791 :
792 : DEBUG_WITH_TYPE("winehprepare-coloring",
793 : dbgs() << " Removed color \'" << FuncletPadBB->getName()
794 : << "\' from block \'" << OldBlock->getName()
795 : << "\'.\n");
796 : }
797 :
798 : // Loop over all of the instructions in this funclet, fixing up operand
799 : // references as we go. This uses VMap to do all the hard work.
800 66 : for (BasicBlock *BB : BlocksInFunclet)
801 : // Loop over all instructions, fixing each one as we find it...
802 131 : for (Instruction &I : *BB)
803 82 : RemapInstruction(&I, VMap,
804 : RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
805 :
806 : // Catchrets targeting cloned blocks need to be updated separately from
807 : // the loop above because they are not in the current funclet.
808 : SmallVector<CatchReturnInst *, 2> FixupCatchrets;
809 42 : for (auto &BBMapping : Orig2Clone) {
810 25 : BasicBlock *OldBlock = BBMapping.first;
811 25 : BasicBlock *NewBlock = BBMapping.second;
812 :
813 : FixupCatchrets.clear();
814 64 : for (BasicBlock *Pred : predecessors(OldBlock))
815 39 : if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
816 8 : if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
817 1 : FixupCatchrets.push_back(CatchRet);
818 :
819 26 : for (CatchReturnInst *CatchRet : FixupCatchrets)
820 : CatchRet->setSuccessor(NewBlock);
821 : }
822 :
823 : auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
824 : unsigned NumPreds = PN->getNumIncomingValues();
825 : for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
826 : ++PredIdx) {
827 : BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
828 : bool EdgeTargetsFunclet;
829 : if (auto *CRI =
830 : dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
831 : EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
832 : } else {
833 : ColorVector &IncomingColors = BlockColors[IncomingBlock];
834 : assert(!IncomingColors.empty() && "Block not colored!");
835 : assert((IncomingColors.size() == 1 ||
836 : llvm::all_of(IncomingColors,
837 : [&](BasicBlock *Color) {
838 : return Color != FuncletPadBB;
839 : })) &&
840 : "Cloning should leave this funclet's blocks monochromatic");
841 : EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
842 : }
843 : if (IsForOldBlock != EdgeTargetsFunclet)
844 : continue;
845 : PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
846 : // Revisit the next entry.
847 : --PredIdx;
848 : --PredEnd;
849 : }
850 17 : };
851 :
852 42 : for (auto &BBMapping : Orig2Clone) {
853 25 : BasicBlock *OldBlock = BBMapping.first;
854 25 : BasicBlock *NewBlock = BBMapping.second;
855 53 : for (PHINode &OldPN : OldBlock->phis()) {
856 3 : UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
857 : }
858 53 : for (PHINode &NewPN : NewBlock->phis()) {
859 3 : UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
860 : }
861 : }
862 :
863 : // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
864 : // the PHI nodes for NewBB now.
865 42 : for (auto &BBMapping : Orig2Clone) {
866 25 : BasicBlock *OldBlock = BBMapping.first;
867 25 : BasicBlock *NewBlock = BBMapping.second;
868 64 : for (BasicBlock *SuccBB : successors(NewBlock)) {
869 29 : for (PHINode &SuccPN : SuccBB->phis()) {
870 : // Ok, we have a PHI node. Figure out what the incoming value was for
871 : // the OldBlock.
872 3 : int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
873 3 : if (OldBlockIdx == -1)
874 : break;
875 1 : Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
876 :
877 : // Remap the value if necessary.
878 : if (auto *Inst = dyn_cast<Instruction>(IV)) {
879 1 : ValueToValueMapTy::iterator I = VMap.find(Inst);
880 1 : if (I != VMap.end())
881 : IV = I->second;
882 : }
883 :
884 1 : SuccPN.addIncoming(IV, NewBlock);
885 : }
886 : }
887 : }
888 :
889 139 : for (ValueToValueMapTy::value_type VT : VMap) {
890 : // If there were values defined in BB that are used outside the funclet,
891 : // then we now have to update all uses of the value to use either the
892 : // original value, the cloned value, or some PHI derived value. This can
893 : // require arbitrary PHI insertion, of which we are prepared to do, clean
894 : // these up now.
895 : SmallVector<Use *, 16> UsesToRename;
896 :
897 122 : auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
898 : if (!OldI)
899 : continue;
900 : auto *NewI = cast<Instruction>(VT.second);
901 : // Scan all uses of this instruction to see if it is used outside of its
902 : // funclet, and if so, record them in UsesToRename.
903 61 : for (Use &U : OldI->uses()) {
904 14 : Instruction *UserI = cast<Instruction>(U.getUser());
905 14 : BasicBlock *UserBB = UserI->getParent();
906 14 : ColorVector &ColorsForUserBB = BlockColors[UserBB];
907 : assert(!ColorsForUserBB.empty());
908 12 : if (ColorsForUserBB.size() > 1 ||
909 14 : *ColorsForUserBB.begin() != FuncletPadBB)
910 14 : UsesToRename.push_back(&U);
911 : }
912 :
913 : // If there are no uses outside the block, we're done with this
914 : // instruction.
915 47 : if (UsesToRename.empty())
916 : continue;
917 :
918 : // We found a use of OldI outside of the funclet. Rename all uses of OldI
919 : // that are outside its funclet to be uses of the appropriate PHI node
920 : // etc.
921 22 : SSAUpdater SSAUpdate;
922 11 : SSAUpdate.Initialize(OldI->getType(), OldI->getName());
923 11 : SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
924 11 : SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
925 :
926 25 : while (!UsesToRename.empty())
927 14 : SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
928 : }
929 : }
930 126 : }
931 :
932 0 : void WinEHPrepare::removeImplausibleInstructions(Function &F) {
933 : // Remove implausible terminators and replace them with UnreachableInst.
934 0 : for (auto &Funclet : FuncletBlocks) {
935 0 : BasicBlock *FuncletPadBB = Funclet.first;
936 : std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
937 : Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
938 : auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
939 : auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
940 : auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
941 :
942 0 : for (BasicBlock *BB : BlocksInFunclet) {
943 0 : for (Instruction &I : *BB) {
944 : CallSite CS(&I);
945 0 : if (!CS)
946 0 : continue;
947 :
948 : Value *FuncletBundleOperand = nullptr;
949 0 : if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
950 0 : FuncletBundleOperand = BU->Inputs.front();
951 :
952 0 : if (FuncletBundleOperand == FuncletPad)
953 0 : continue;
954 :
955 : // Skip call sites which are nounwind intrinsics or inline asm.
956 : auto *CalledFn =
957 : dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
958 0 : if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
959 : CS.isInlineAsm()))
960 0 : continue;
961 :
962 : // This call site was not part of this funclet, remove it.
963 : if (CS.isInvoke()) {
964 : // Remove the unwind edge if it was an invoke.
965 0 : removeUnwindEdge(BB);
966 : // Get a pointer to the new call.
967 : BasicBlock::iterator CallI =
968 0 : std::prev(BB->getTerminator()->getIterator());
969 : auto *CI = cast<CallInst>(&*CallI);
970 0 : changeToUnreachable(CI, /*UseLLVMTrap=*/false);
971 : } else {
972 0 : changeToUnreachable(&I, /*UseLLVMTrap=*/false);
973 : }
974 :
975 : // There are no more instructions in the block (except for unreachable),
976 : // we are done.
977 0 : break;
978 : }
979 :
980 : Instruction *TI = BB->getTerminator();
981 : // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
982 0 : bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
983 : // The token consumed by a CatchReturnInst must match the funclet token.
984 : bool IsUnreachableCatchret = false;
985 : if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
986 0 : IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
987 : // The token consumed by a CleanupReturnInst must match the funclet token.
988 : bool IsUnreachableCleanupret = false;
989 : if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
990 0 : IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
991 0 : if (IsUnreachableRet || IsUnreachableCatchret ||
992 : IsUnreachableCleanupret) {
993 0 : changeToUnreachable(TI, /*UseLLVMTrap=*/false);
994 0 : } else if (isa<InvokeInst>(TI)) {
995 0 : if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
996 : // Invokes within a cleanuppad for the MSVC++ personality never
997 : // transfer control to their unwind edge: the personality will
998 : // terminate the program.
999 0 : removeUnwindEdge(BB);
1000 : }
1001 : }
1002 : }
1003 : }
1004 0 : }
1005 :
1006 0 : void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1007 : // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1008 : // branches, etc.
1009 0 : for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
1010 : BasicBlock *BB = &*FI++;
1011 0 : SimplifyInstructionsInBlock(BB);
1012 0 : ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
1013 0 : MergeBlockIntoPredecessor(BB);
1014 : }
1015 :
1016 : // We might have some unreachable blocks after cleaning up some impossible
1017 : // control flow.
1018 0 : removeUnreachableBlocks(F);
1019 0 : }
1020 :
1021 : #ifndef NDEBUG
1022 : void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1023 : for (BasicBlock &BB : F) {
1024 : size_t NumColors = BlockColors[&BB].size();
1025 : assert(NumColors == 1 && "Expected monochromatic BB!");
1026 : if (NumColors == 0)
1027 : report_fatal_error("Uncolored BB!");
1028 : if (NumColors > 1)
1029 : report_fatal_error("Multicolor BB!");
1030 : assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1031 : "EH Pad still has a PHI!");
1032 : }
1033 : }
1034 : #endif
1035 :
1036 126 : bool WinEHPrepare::prepareExplicitEH(Function &F) {
1037 : // Remove unreachable blocks. It is not valuable to assign them a color and
1038 : // their existence can trick us into thinking values are alive when they are
1039 : // not.
1040 126 : removeUnreachableBlocks(F);
1041 :
1042 : // Determine which blocks are reachable from which funclet entries.
1043 126 : colorFunclets(F);
1044 :
1045 126 : cloneCommonBlocks(F);
1046 :
1047 126 : if (!DisableDemotion)
1048 128 : demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1049 : DemoteCatchSwitchPHIOnlyOpt);
1050 :
1051 126 : if (!DisableCleanups) {
1052 : LLVM_DEBUG(verifyFunction(F));
1053 123 : removeImplausibleInstructions(F);
1054 :
1055 : LLVM_DEBUG(verifyFunction(F));
1056 123 : cleanupPreparedFunclets(F);
1057 : }
1058 :
1059 : LLVM_DEBUG(verifyPreparedFunclets(F));
1060 : // Recolor the CFG to verify that all is well.
1061 : LLVM_DEBUG(colorFunclets(F));
1062 : LLVM_DEBUG(verifyPreparedFunclets(F));
1063 :
1064 126 : BlockColors.clear();
1065 : FuncletBlocks.clear();
1066 :
1067 126 : return true;
1068 : }
1069 :
1070 : // TODO: Share loads when one use dominates another, or when a catchpad exit
1071 : // dominates uses (needs dominators).
1072 9 : AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1073 9 : BasicBlock *PHIBlock = PN->getParent();
1074 9 : AllocaInst *SpillSlot = nullptr;
1075 : Instruction *EHPad = PHIBlock->getFirstNonPHI();
1076 :
1077 9 : if (!EHPad->isTerminator()) {
1078 : // If the EHPad isn't a terminator, then we can insert a load in this block
1079 : // that will dominate all uses.
1080 2 : SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1081 1 : Twine(PN->getName(), ".wineh.spillslot"),
1082 1 : &F.getEntryBlock().front());
1083 1 : Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
1084 1 : &*PHIBlock->getFirstInsertionPt());
1085 1 : PN->replaceAllUsesWith(V);
1086 1 : return SpillSlot;
1087 : }
1088 :
1089 : // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1090 : // loads of the slot before every use.
1091 : DenseMap<BasicBlock *, Value *> Loads;
1092 : for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1093 17 : UI != UE;) {
1094 : Use &U = *UI++;
1095 9 : auto *UsingInst = cast<Instruction>(U.getUser());
1096 9 : if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1097 : // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1098 : // stores for it separately.
1099 : continue;
1100 : }
1101 7 : replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1102 : }
1103 8 : return SpillSlot;
1104 : }
1105 :
1106 : // TODO: improve store placement. Inserting at def is probably good, but need
1107 : // to be careful not to introduce interfering stores (needs liveness analysis).
1108 : // TODO: identify related phi nodes that can share spill slots, and share them
1109 : // (also needs liveness).
1110 0 : void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1111 : AllocaInst *SpillSlot) {
1112 : // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1113 : // stored to the spill slot by the end of the given Block.
1114 : SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1115 :
1116 0 : Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1117 :
1118 0 : while (!Worklist.empty()) {
1119 : BasicBlock *EHBlock;
1120 : Value *InVal;
1121 0 : std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1122 :
1123 : PHINode *PN = dyn_cast<PHINode>(InVal);
1124 0 : if (PN && PN->getParent() == EHBlock) {
1125 : // The value is defined by another PHI we need to remove, with no room to
1126 : // insert a store after the PHI, so each predecessor needs to store its
1127 : // incoming value.
1128 0 : for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1129 : Value *PredVal = PN->getIncomingValue(i);
1130 :
1131 : // Undef can safely be skipped.
1132 0 : if (isa<UndefValue>(PredVal))
1133 : continue;
1134 :
1135 0 : insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1136 : }
1137 : } else {
1138 : // We need to store InVal, which dominates EHBlock, but can't put a store
1139 : // in EHBlock, so need to put stores in each predecessor.
1140 0 : for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1141 0 : insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1142 : }
1143 : }
1144 : }
1145 0 : }
1146 :
1147 0 : void WinEHPrepare::insertPHIStore(
1148 : BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1149 : SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1150 :
1151 0 : if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1152 : // Pred is unsplittable, so we need to queue it on the worklist.
1153 0 : Worklist.push_back({PredBlock, PredVal});
1154 0 : return;
1155 : }
1156 :
1157 : // Otherwise, insert the store at the end of the basic block.
1158 0 : new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1159 : }
1160 :
1161 7 : void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1162 : DenseMap<BasicBlock *, Value *> &Loads,
1163 : Function &F) {
1164 : // Lazilly create the spill slot.
1165 7 : if (!SpillSlot)
1166 14 : SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1167 14 : Twine(V->getName(), ".wineh.spillslot"),
1168 7 : &F.getEntryBlock().front());
1169 :
1170 7 : auto *UsingInst = cast<Instruction>(U.getUser());
1171 : if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1172 : // If this is a PHI node, we can't insert a load of the value before
1173 : // the use. Instead insert the load in the predecessor block
1174 : // corresponding to the incoming value.
1175 : //
1176 : // Note that if there are multiple edges from a basic block to this
1177 : // PHI node that we cannot have multiple loads. The problem is that
1178 : // the resulting PHI node will have multiple values (from each load)
1179 : // coming in from the same block, which is illegal SSA form.
1180 : // For this reason, we keep track of and reuse loads we insert.
1181 1 : BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1182 : if (auto *CatchRet =
1183 : dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1184 : // Putting a load above a catchret and use on the phi would still leave
1185 : // a cross-funclet def/use. We need to split the edge, change the
1186 : // catchret to target the new block, and put the load there.
1187 1 : BasicBlock *PHIBlock = UsingInst->getParent();
1188 1 : BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1189 : // SplitEdge gives us:
1190 : // IncomingBlock:
1191 : // ...
1192 : // br label %NewBlock
1193 : // NewBlock:
1194 : // catchret label %PHIBlock
1195 : // But we need:
1196 : // IncomingBlock:
1197 : // ...
1198 : // catchret label %NewBlock
1199 : // NewBlock:
1200 : // br label %PHIBlock
1201 : // So move the terminators to each others' blocks and swap their
1202 : // successors.
1203 1 : BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1204 1 : Goto->removeFromParent();
1205 1 : CatchRet->removeFromParent();
1206 1 : IncomingBlock->getInstList().push_back(CatchRet);
1207 1 : NewBlock->getInstList().push_back(Goto);
1208 1 : Goto->setSuccessor(0, PHIBlock);
1209 1 : CatchRet->setSuccessor(NewBlock);
1210 : // Update the color mapping for the newly split edge.
1211 : // Grab a reference to the ColorVector to be inserted before getting the
1212 : // reference to the vector we are copying because inserting the new
1213 : // element in BlockColors might cause the map to be reallocated.
1214 1 : ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1215 : ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1216 1 : ColorsForNewBlock = ColorsForPHIBlock;
1217 2 : for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1218 1 : FuncletBlocks[FuncletPad].push_back(NewBlock);
1219 : // Treat the new block as incoming for load insertion.
1220 1 : IncomingBlock = NewBlock;
1221 : }
1222 : Value *&Load = Loads[IncomingBlock];
1223 : // Insert the load into the predecessor block
1224 1 : if (!Load)
1225 2 : Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
1226 1 : /*Volatile=*/false, IncomingBlock->getTerminator());
1227 :
1228 1 : U.set(Load);
1229 : } else {
1230 : // Reload right before the old use.
1231 6 : auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
1232 6 : /*Volatile=*/false, UsingInst);
1233 6 : U.set(Load);
1234 : }
1235 7 : }
1236 :
1237 146 : void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1238 : MCSymbol *InvokeBegin,
1239 : MCSymbol *InvokeEnd) {
1240 : assert(InvokeStateMap.count(II) &&
1241 : "should get invoke with precomputed state");
1242 146 : LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1243 146 : }
1244 :
1245 135 : WinEHFuncInfo::WinEHFuncInfo() {}
|